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Abstract 

Digital camera monitoring has evolved as an active application-oriented scheme to help 

address questions in areas such as fisheries, ecology, computer vision, artificial 

intelligence, and criminology. In recreational fisheries research, digital camera 

monitoring has become a viable option for probability-based survey methods, and is 

also used for corroborative and validation purposes. In comparison to onsite surveys 

(e.g. boat ramp surveys), digital cameras provide a cost-effective method of monitoring 

boating activity and fishing effort, including night-time fishing activities. However, 

there are challenges in the use of digital camera monitoring that need to be resolved.  

Notably, missing data problems and the cost of data interpretation are among the most 

pertinent. This study provides relevant statistical support to address these challenges of 

digital camera monitoring of boating effort, to improve its utility to enhance recreational 

fisheries management in Western Australia and elsewhere, with capacity to extend to 

other areas of application. 

Digital cameras can provide continuous recordings of boating and other recreational 

fishing activities; however, interruptions of camera operations can lead to significant 

gaps within the data. To fill these gaps, some climatic and other temporal classification 

variables were considered as predictors of boating effort (defined as number of 

powerboat launches and retrievals). A generalized linear mixed effect model built on 

fully-conditional specification multiple imputation framework was considered to fill in 

the gaps in the camera dataset. Specifically, the zero-inflated Poisson model was found 

to satisfactorily impute plausible values for missing observations for varied durations of 

outages in the digital camera monitoring data of recreational boating effort.  

Additional modelling options were explored to guide both short- and long-term 

forecasting of boating activity and to support management decisions in monitoring 

recreational fisheries. Autoregressive conditional Poisson (ACP) and integer-valued 

autoregressive (INAR) models were identified as useful time series models for 

predicting short-term behaviour of such data. In Western Australia, digital camera 

monitoring data that coincide with 12-month state-wide boat-based surveys (now 

conducted on a triennial basis) have been read but the periods between the surveys have 

not been read.  A Bayesian regression framework was applied to describe the temporal 

distribution of recreational boating effort using climatic and temporally classified 
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variables to help construct data for such missing periods. This can potentially provide a 

useful cost-saving alternative of obtaining continuous time series data on boating effort.  

Finally, data from digital camera monitoring are often manually interpreted and the 

associated cost can be substantial, especially if multiple sites are involved. Empirical 

support for low-level monitoring schemes for digital camera has been provided. It was 

found that manual interpretation of camera footage for 40% of the days within a year 

can be deemed as an adequate level of sampling effort to obtain unbiased, precise and 

accurate estimates to meet broad management objectives. A well-balanced low-level 

monitoring scheme will ultimately reduce the cost of manual interpretation and produce 

unbiased estimates of recreational fishing indexes from digital camera surveys.  
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CHAPTER ONE1 
General Introduction 

1.1 Background 

Cameras have been used for surveillance purposes for over 70 years and are widely used in 

different areas to address a variety of pertinent issues of society (Dornberger, 1954; Zhang, 

2017). For instance, in the area of security, digital cameras are being used as a mainstream crime 

prevention measure across the globe, and for other security purposes such as face detection and 

recognition (Ashby, 2017; Piza et al., 2019; Zhang, 2017). In an empirical analysis, digital 

camera monitoring was found to significantly increase the chances of solving crimes of different 

types (Ashby, 2017). In other areas such as tourism, ecology, household management and 

transportation, digital cameras are being used to help monitor usage of facilities, status of 

animals, and to promote road and home safety (Baran et al., 2016; Zhang, 2017). Additionally, 

in research and industries, the application of digital camera monitoring has become a viable 

option for probability-based survey methods, which often expand sample estimates to population 

totals and are also used to estimate relevant indexes. There are established measures of 

effectiveness in the value of intelligence obtained from digital camera surveillance in key 

decision-making process (Cayford and Pieters, 2018). Importantly, security and data accessibility 

are key considerations to ensure that the collection of video images does not breach privacy 

regulations (Bernal, 2016). 

In this study, attention is given to the application of digital camera monitoring of boat-based 

recreational activity in Western Australia. Recreational fishing is a popular outdoor activity 

worldwide. Approximately 11.5% of the world population are engaged in recreational fishing 

and it contributes significantly to economies as a source of leisure, job creation and revenue 

(Cooke and Cowx, 2004; Arlinghaus and Cooke, 2005). Boat-based recreational fishing activity 

is common and contributes to exploitation of fish populations, with potential sustainability 

impacts. While the majority of fisheries are managed sustainably, there are concerns for some 

fish stocks (DPIRD Annual Report, 2019). The participation rate in recreational fishing from this 

report (~26%) demonstrates the popularity of the activity and the need to ensure it is managed 

appropriately. Recreational fishing surveys play an integral role in providing information on 

recreational fishers required for fisheries management. Both on-site (e.g. access point, bus-route, 

aerial roving, traffic counters and digital camera monitoring) and off-site (e.g. mail, telephone) 

surveys methods are used (Afrifa-Yamoah et al., 2019, 2020; Hartill et al., 2019; Lai et al., 2019; 

 
1 This thesis is presented and organised as “Thesis with publication” format. 
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Ryan et al., 2017; Smallwood et al., 2012; Taylor et al., 2018; van Poorten and Brydle, 2018). 

In some parts of the world, recreational fishing activity originates at designated locations (e.g. 

boat ramps, choke points, estuary channel, groynes) enabling the potential census of boating 

effort (Hartill et al., 2019; Ryan et al., 2017), which serves as a good proxy for fishing effort in 

some regions (Johnson et al., 2017; Taylor et al., 2019), and can help in quantifying the 

recreational catch. In addition, information on boating effort can be useful for validation and 

corroborative purposes (Steffe et al., 2017), and promotes the understanding of the dynamics of 

recreational boaters’ behaviour to enhance effective management of boat ramps and recreational 

fisheries. 

1.2 Digital camera monitoring in recreational fisheries research: opportunities and 

challenges 

Paucity of information is common in recreational fisheries records as a result of the fact that there 

are no mandatory requirements for recreational fishers to provide information on their fishing 

trips. Also due to the large number of recreational fishers in WA and the vast array of fishing 

spots, the use of digital cameras in fisheries studies is increasing in line with technological 

advances in recreational fisheries, providing an opportunity for continuous monitoring of boating 

activities in a field of view, for instance, a boat ramp or choke point (Hartill et al., 2019). The 

use of cameras provides data with wider and better coverage of the temporal sampling frame for 

fishing effort, although without knowledge of the actual nature of boating activities (Steffe et al., 

2008). They can provide a general overview of boating activities and information to complement 

the sampling challenges from other survey methods in monitoring fishing effort. Cameras can be 

operated for extended periods of time in remote locations; for example, they can operate 24 hours 

per day, providing the opportunity to monitor night-time boating activities. They are also 

effective for capturing daily and seasonal effort trends and are potentially cost-effective 

(Smallwood et al., 2012). Hartill et al. (2019) reviewed the literature expanding on the 

applications and challenges of digital camera monitoring of recreational fishing effort. Fisheries 

agencies and researchers are interested in building the capacity to fully understand and integrate 

information obtained from the cameras for management purposes (Bian and Hartill, 2015; Hartill, 

2015; Ryan et al., 2015).  

1.2.1 Camera outages  

Although digital camera monitoring of recreational boating activity provides a substantial 

amount of data, intermittent challenges with cameras' operations can result in the occurrence of 

significant gaps in the data. Camera outages occur frequently as a result of technical faults, 



3 
 

vandalism, theft, weather conditions such as lightning strikes, and flooding and environmental 

factors such as extreme temperature and humidity (Blight and Smallwood, 2015). Dealing with 

missing values has been a subject of interest for researchers in diverse fields. Missing data require 

proper handling to safeguard precision and reliability of estimates and indexes (van Buuren and 

Groothuis-Oudshoorn, 2011; van Poorten et al., 2015). The types of missing data mechanisms 

have peculiar patterns and statistical properties that significantly inform the suitable imputation 

techniques and their implied assumptions. The duration of outages in the remote camera data is 

also an important consideration in an imputation scheme. The outages in digital camera 

monitoring may persist for long periods due to technical and logistic inefficiencies or remoteness. 

The longer the duration of a camera outage the more the overall quality of data is compromised. 

1.2.2 Missing data imputation 

Several imputation approaches have been proposed and applied in different research areas such 

as fisheries, meteorology, medicine, neurology, transportation (Amiri and Jensen, 2016; Deb and 

Liew, 2016; Hartill et al., 2016; Junger and de Leon, 2015; Purwar and Singh, 2015; Sovilj et 

al., 2016; van Poorten et al., 2015). We can broadly distinguish two types of imputation schemes, 

single imputations and multiple imputation. Single imputation schemes impute missing data once 

with the best plausible estimate. The scheme includes simpler methods such as mean substitution 

and regression-based estimates. However, estimates obtained from such methods usually exhibit 

greater uncertainties compared to multiple imputation schemes (van Buuren and Groothuis-

Oudshoorn, 2011). In multiple imputation schemes, missing observations are imputed m (m>1) 

times, yielding m plausible complete datasets. Then statistical analyses are performed on the m 

datasets and the parameter estimates and variances so obtained are pooled to obtain the missing 

data plausible estimates. These procedures result in improved estimates of uncertainties and are 

generalizable (van Buuren and Groothuis-Oudshoorn, 2011).  

Multiple imputation schemes are generally constructed from two approaches, namely the joint 

modeling approach (Schafer, 1997) and sequential regression modeling approach (van Buuren 

and Groothuis-Oudshoorn, 2011). The Bayesian joint modeling approach specifies the joint 

probability model for the observed and missing data. This approach could possibly run into some 

analytical problems for large datasets which could result in a non-converging numerical solution 

(Engel et al., 2015). The sequential regression modeling approach, on the other hand, imputes on 

a variable-by-variable basis by a set of conditional densities, one for each incomplete variable, 

thus providing a flexible framework for multiple imputation (van Buuren and Groothuis-

Oudshoorn, 2011). The focus of multiple imputation is to minimize misclassifications of imputed 
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values by preserving the original distribution of the dataset during imputation and produces 

robust and unbiased estimates. 

In fisheries research, the imputation work of van Poorten et al. (2015) and Hartill et al. (2016) 

on camera data is worth mentioning for the following reasons. van Poorten et al. (2015) 

developed a hierarchical Bayesian model to predict total angling effort (with the model 

accounting for three typical issues with camera effort) in recreational fishing using a multiple 

imputation scheme. Missing camera effort data were imputed from the average effort from 

proximate lakes. In Hartill et al. (2016), a high degree of correlation between the number of 

trailer boats returning at three ramps informed the imputation of missing values for the one ramp 

(where outage occurred) compared with the observed counts of the other two ramps (which were 

square root transformed). The number of days with outages represented 7% of the entire survey 

days. In Hartill's study, generalized linear models (GLMs) were used in the imputation modelling 

scheme. Both studies recommended incorporating the effects of covariates in the development 

of imputation scheme for data from remote camera surveys (van Poorten et al., 2015; Hartill et 

al., 2016). 

Analytical techniques for data involving missing observations make use of various assumptions 

which are mostly dependent on the underlying missing-data mechanism and the actual physical 

pattern of missingness (Little and Rubin, 2002). Missingness in data may be completely at 

random (that is, data are missing independently of both observed and unobserved data), or 

missingness may be random (implies that given the observed data, data are missing 

independently of unobserved data) or missingness may be non-random (implies that missing 

observations are related to values of unobserved data). There is also the case where the missing 

mechanism is censored (De Jong et al., 2016). In this thesis, the missing mechanism assumed for 

the remote camera data is missing at random. This was because, camera outages occurred in a 

random fashion and were independent of the observed data. Therefore, imputation may be 

performed based on the observed variable, 𝒀, and some covariates, 𝑿 (with complete 

observations). Modeling the missing mechanism will help remove systematic bias, which poses 

sampling selection problems and generally makes the process more efficient.  

For the model setup, let 𝒀 denote an 𝑛 × 𝑝 matrix, where 𝑛 and 𝑝 are respectively the number of 

observations and the number of observed variables, that is, the count of boat launches and 

retrievals (with some missing observations).  The matrix is then divided into elements of 

observed and missing, that is, 𝒀 = {𝒀𝑜𝑏𝑠, 𝒀𝑚𝑖𝑠} and 𝑃(𝒀|𝜃) = 𝑃(𝒀𝑜𝑏𝑠, 𝒀𝑚𝑖𝑠|𝜃) is the joint 
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distribution of 𝒀𝑜𝑏𝑠 and 𝒀𝑚𝑖𝑠, where 𝜃 denotes unknown parameters. Let 𝑴 denote an  𝑛 × 𝑝 

binary matrix for observed and missing data, where 𝑚𝑖 is an indicator variable defined as  

 
𝑚𝑖 = {

1, if 𝑦𝑖  is observed
0, if 𝑦𝑖  is missing

 
(1.1) 

with 𝑦𝑖 being realizations of the ith 𝒀. Assuming that 𝑃(𝑴|𝒀; 𝜃, 𝜙) is the conditional probability 

distribution of missingness, where 𝜙 represents the unknown parameters of 𝑴 given 𝒀, with a 

joint parameter space (𝜃, 𝜙). The joint distribution of 𝒀 and 𝑀 can be expressed as 

 𝑃(𝒀, 𝑴|𝜃, 𝜙) = 𝑃(𝒀|𝜃)𝑃(𝑴|𝒀; 𝜃, 𝜙) (1.2) 

For 𝒀 and 𝑿 (an  𝑛 × 𝑞 matrix, where 𝑞 is the number of covariates considered), the model for a 

missing at random mechanism of interest is given by  

 𝑃(𝑴|𝒀, 𝑿; 𝜃, 𝜙, 𝛽) = 𝑃(𝑴|𝒀𝑜𝑏𝑠, 𝑿; 𝜃, 𝜙, 𝛽) (1.3) 

where 𝛽 represents the unknown parameter(s) of 𝑿. We are interested in investigating potential 

models to evaluate 

 𝑃(𝒀𝑚𝑖𝑠|𝒀𝑜𝑏𝑠, 𝑴, 𝑿; Ω) (1.4) 

where Ω is model’s parameter space, such that (𝜃, 𝜙, 𝛽) ∈ Ω. 

1.2.3 Manual data interpretation and sampling 

Remote cameras can be operational throughout the year. If the images are interpreted from all 

365 days of the year, without any subsampling, it would mean complete monitoring and 

estimation of boating effort. However, this would result in many images and monitoring traffic 

at multiple sites could be very demanding. The time intensity and the reading cost (Smallwood 

et al., 2012; Steffe et al., 2017) of manual interpretation of images captured by cameras have 

necessitated the development of strategies that minimize the number of images interpreted (Steffe 

et al., 2008; Hartill, 2015; Hartill et al., 2016). With budgetary constraints, managers of remote 

camera surveys require methods for reducing cost of data interpretation without compromising 

much of the precision and accuracy levels of estimates obtained (Hartill et al., 2016). 

Sampling offers a suitable solution to monitoring a part of the whole with generalizable 

capabilities. It is a means to save time and cost involved in research studies, provides opportunity 

to study phenomenon with unknown population size and to carry out destructive experiments. 

There are different sampling protocols for consideration including random sampling schemes, 

non-random sampling schemes, ranked set sampling and adaptive sampling schemes (Holmes et 

al., 2004; Hartill et al., 2016; Thompson et al., 2013; Wang et al., 2009). The application of 

traditional sampling designs, such as simple random sampling, systematic sampling and stratified 

sampling is widespread, because these designs are simple to apply and require minimal a priori 
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information about the population (Holmes et al. (2004)). Other sampling schemes that are 

generally subjective such as purposive and quota sampling are known as non-random. Situations 

where there is a need to modify the sampling scheme at various stages of survey may require an 

adaptive sampling scheme. The rank set sampling scheme is non-parametric and may be useful 

where sample distributional assumption(s) may impede inference. 

In fisheries research, many sampling techniques have been investigated (Wang et al., 2009; 

Hartill et al., 2016). Wang et al. (2009) proposed efficient designs for sampling and subsampling 

based on ranked sets. Their designs were derived analytically and incorporated highly correlated 

concomitant variables with variables of interest, such as site selection for a fishery-independent 

monitoring survey. Ranked set sampling (RSS) for estimating the mean and parameter estimates 

for simple regression were applied. The relative efficiencies of their designs were compared to 

the traditional simple random sampling and reported vast improvement in terms of variance and 

mean squared error. Hartill et al. (2016) determined an optimal level of temporal subsampling 

given a random stratified sampling design using parametric simulations for camera data obtained 

from monitoring traffic at multiple ramps. The camera data were counts of trailer boats returning 

daily at three boat ramps over a twelve-month period, which were assigned to respective 

seasonal/day-type strata. In an iterative simulation scheme for each stratum, an iterative random 

stratified precision estimator and associated coefficients of variation guided their decision on an 

optimal subsample size of 60 days per year. 

The common tools employed in establishing the optimal size in sampling size planning are power 

analysis and accuracy in parameter estimation methods. Whereas power analysis is purposely 

used in hypothesis testing, that is, testing the sample size required for a chosen Type I error rate, 

the accuracy in parameter estimation method sets a precision level and identifies the required 

sample that meets the set target (Peterman, 1990; Kelly, 2007). Barrett et al. (2017) argued that 

fisheries studies are geared towards obtaining precise and accurate estimates to guide 

management decision making processes and in effect the accuracy in parameter estimation is 

more appropriate. Hartill et al. (2016) adopted the accuracy in parameter estimation approach in 

a related study, where the coefficient of variation was used as a measure of precision. The 

coefficient of variation and the root mean square error are the most used measures of precision 

and accuracy respectively in fisheries studies (Yu et al., 2012; Hartill et al., 2016; Barrett et al., 

2017). 
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1.3 Potential drivers of boating activities 

Environmental variables can predetermine human behaviour to some degree. According to 

Soykan et al. (2014), environmental variables can inform fishers to maximize their catch and 

therefore it should be possible to characterize fishing effort and human behaviour as a function 

of these variables. Environmental, climatic and social factors affect the temporal variability 

(Maynou and Sardá, 2001; Soykan et al., 2014) and can play a key role in survey design and 

sampling scheme (Steffe et al., 2017). For instance, public holidays can greatly influence the 

variability in sampling boating activities (Desfossess and Beckley, 2015; Steffe et al., 2017). The 

possible correlation between clustered ramps and environmental factors (such as wind speed, 

rainfall etc.) could also be useful in predicting fishing effort (Soykan et al., 2014). Therefore, an 

adequate model for effort requires the development of estimation schemes that incorporate a wide 

range of covariates (van Poorten et al., 2015; Hartill et al., 2016). Therefore, the knowledge of 

the role of the varying climatic, environmental conditions and social events (such as school and 

public holidays) on boating activities will be useful in the management of recreational fisheries. 

According to the proposed catchability and effort scheme by Laurec and Le Guen (1981), 

geographical accessibility of a fishing ground is a major component of catch and effort and is 

influenced by environmental, climatic and social factors. Therefore, data on boating effort at 

ramps and other viewpoints, where the effects of these factors have been accounted for, will 

provide useful accessibility information. However, the effects of these factors are minimally 

reported in literature.  

1.3.1 Climatic variables and the missing data problem 

Missing data are common in datasets of climatic variables such as precipitation, temperature, 

humidity, wind speed, wind gust, and sea level pressure. Notable causes include faulty measuring 

instruments, routine maintenance and sensor calibration (Yoagatligil et al., 2013). Missing 

observations in climate data are often characterised by occurring consecutively for long periods 

of time (Simolo et al., 2010). Climate data are typically processed and analysed at low-resolution 

levels such as daily, weekly, monthly and yearly resolution (Firat et al., 2012, Kanda et al., 2018). 

It is important to note that the estimation of fundamental statistics such as the means, and 

covariance is challenging, mostly inaccurate and can be misleading for incomplete data 

(Schneider, 2001). For instance, the “3/5 omission rule” in the Guide to Climatological Practices 

(3rd edition) stipulates that, when calculating monthly climate normals, any month that is missing 

more than three consecutive daily values, or more than five daily values in total, should not be 

included. In a field where missing observations are common, there should be clarity on how low-

resolution data are derived from finer resolution data and missing values are handled. The 
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incomplete state of the data needs to be considered carefully before any meaningful analysis can 

be carried out. In handling missing data problems, the practice of excluding missing data or 

censored data from analysis can lead to loss of information, misinterpretation, overestimation or 

underestimation and introduce bias especially when missingness is not random (Ellington et al, 

2015; Maldonado, Aguilera and Salmerón, 2016).  

The literature search revealed that several imputation methods have been applied to low-

resolution climate data, typically of daily, monthly and yearly resolutions. However, in many 

instances climatic data at fine resolution are incomplete and this is the case for the data used in 

this thesis (hourly resolution). Data at lower resolution are commonly based on aggregation from 

higher resolution data sets. Analysing high-resolution data such as h-minutes (h < 60) and hourly 

data, thus would offer greater ability to understand the nature of data variability, behaviours, 

trends and detection of small changes. In effect, building imputation models to ‘fill-in’ missing 

data in high resolution climate data would be a step in the right direction, as there is no significant 

study on the evaluation of the imputation methods for finer scale missing climate data. 

1.4 Study area and general data description 

Western Australia (WA) has a population of 2.76 million, with a 1.87% growth rate (Australian 

Bureau of Statistics, 2020) and an estimated 26% of residents participate in recreational fishing 

at least once a year (DPRID Annual Report, 2019).  WA has a coastal stretch of 12,889 km 

(Hartill et al. 2019). The coastline of WA is divided into four marine bioregions: North, 

Gascoyne, West and South Coasts (Ryan et al., 2015). In addition to ongoing surveys of boat-

based recreational fishing (Ryan et al. 2017), digital cameras have been used since 2006 to 

monitor trends in recreational boating activity at 30 sites along the coast, including boat ramps, 

channel entrances and parts of the foreshore (Hartill et al., 2019). There are 28 cameras 

monitoring 30 fields of view (see Fig. 1.1).  
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Fig. 1.1: Study area showing the locations of the network of cameras for monitoring boating 

activities at boat ramps, groynes along sections of the foreshore (Steffe et al., 2017) 
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Recreational boating effort is captured by these cameras operating 24-hours daily. Cameras 

provide full coverage of traffic activity at viewpoints namely boat ramps, choke-points (estuary 

channel, marina entrance, groyne, bridge) and foreshore (shallow flats and shore) (Blight and 

Smallwood, 2015; Hartill et al., 2019). It is important to note that the cameras do not distinguish 

recreational fishing from other types of recreational activity. Regardless, data obtained from 

these cameras are an important information source in the estimation of recreational effort and 

catch estimates for fisheries management purposes. A major drawback in the data is that there 

are many incidences of outages in the remote camera data (Steffe et al., 2017). In previous work 

(Ryan et al. 2017) short-term camera outages were imputed, however, data for periods of 

extended outages were not imputed, e.g. an instance of a two months period of outage as 

mentioned in Ryan et al. (2017). Long-term camera outages are common at some locations, due 

to technical and logistical difficulties or the remoteness of the site (Blight and Smallwood, 2015).  

The data for this thesis were obtained from two sources, namely, the Department of Primary 

Industries and Regional Development (DPIRD) and the Australian Government Bureau of 

Meteorology. DPIRD provided data of camera monitoring of boat launches and retrievals along 

the coast of WA. The counts of boat launch and retrieval activities are read for the integrated 

survey periods between 01 March 2011 to 29 February 2012, from 01 May 2013 to 30 April 2014 

and from 01 September 2015 to 31 August 2016. A launch is typically recorded when a boat 

leaves the shore and a retrieval is recorded when a boat is pulled from the water although these 

definitions do vary slightly depending on viewpoints at the different ramps (Blight and 

Smallwood, 2015). Counts of boating traffic (launches and retrievals) for each ramp are recorded 

to the nearest minute, with time stamps. The type of vessel launched or retrieved is recorded as 

either commercial, powerboat, jet-ski, kayak and other. In this thesis, analysis focused on data 

for powerboats, being the most common vessel type used for boat-based recreational activity in 

WA. In addition, the choice of boat ramps analysed were selected to reflect the vast stretch of the 

coastline and diverse patterns of traffic intensity. It is reasonable to assume that boat launched 

are retrieved at the same ramp, since there was high correlation between the number of launches 

and retrievals at the fields of view. Their distributions across the hours of day were similar (Fig. 

1.2). The peak times were between the hours of 0800 - 1000 and 1200 - 1500 for launches and 

retrievals respectively. In effect, the knowledge of one can help infer the other, therefore the 

objective of analysis informed the choice of event of boating activity used. For instance, in 

building imputation models, data on boat retrievals were used, whereas in building forecasting 

models, data on boat launches were used. Details of the reasoning behind these choices have been 

expounded in subsequent chapters. 
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WA has varying environmental features. For instance, according to the Köppen climate 

classification, the state has ten different climatic zones. From the literature search, the 

environmental factors considered were air temperature, precipitation, humidity, winds (direction, 

speed and gust), sea surface pressure. Data were obtained at an hourly resolution for the study 

duration.  

Other temporal variables that are known a priori to influence the dynamics of boating effort 

including months, type of day (categorised as weekday or weekend (include public holidays)), 

time of day (categorised as dawn, early morning, morning, afternoon, late afternoon and evening) 

and were also considered as predictors.  

Dampier 

 

Leeuwin 

 

Hillarys 

 

Broome 

 

Fig 1.2: Distribution of powerboat launches and retrievals at four boat ramps for the integrated survey 

periods between 01 March 2011 to 29 February 2012 in Western Australia 
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1.5 Research objectives and questions 

This study sought to apply estimation, sampling and modelling techniques to evaluate the trends 

of boat-based activities from remote camera data using climatic variables as covariates where 

applicable. Specifically, the objectives (and research questions) were: 

1.  We investigated imputation methods for finer resolution data to ‘fill-in’ missing observations 

in the WA climate data set. 

2.  We developed and investigated a suitable imputation technique which accounts for 

environmental conditions to “fill in” missing observations in remote camera data.  

• What are the properties of remote camera failures in WA? 

• What reasonable assumptions can be made for the imputation of remote camera missing 

data? 

• How can the effect of covariates be incorporated in imputing missing data from digital 

camera monitoring? 

3.  We built time series and regression models for predicting the temporal distribution of boat 

launches and retrievals activities. We further explored the predictive abilities of 

environmental (climatic and oceanographic) and other factors to describe boating activity 

distribution in WA recreational fisheries.  

• How well can statistical models predict boating activities in WA? 

• How does the length of the boating data time series affect model performance in WA? 

4.   We developed sampling schemes for low-level monitoring of remote cameras to meet broad 

monitoring objectives.  

• What sampling scheme will ensure adequate representative monitoring of boat-based 

activities in WA? 

• Given that the amount of traffic differs among ramps, what is the optimal sample size 

(number of days) for monitoring in a remote camera survey for each of the ramps in WA? 

 

1.6 Thesis structure 

This thesis has been presented and organised as “Thesis with publication” format2; and structured 

in chapters as follows: 

 
2 “Thesis with publication” format is an acceptable format of thesis for postgraduate research at ECU policy. The 

current thesis has been written based on the guideline provided at 
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Chapter 1 presented the background of this PhD research and brief literature overview. The 

objectives of the research and the structure of the thesis were discussed. 

Chapter 2 addressed objective 1. The contextual literature search on imputation schemes for high-

resolution climatic data revealed that the development and evaluation of imputation schemes for 

such data are at the early phase. There was the need to investigate imputation schemes that would 

help address the missing data problem in our high-resolution climate data. Multiple approaches 

to the imputation of missing values were investigated including structural time series models 

with Kalman smoothing, an ARIMA models with Kalman smoothing and multiple linear 

regression models. Results for chapter 2 have been published in the journal Meteorological 

Application (Study I).   

Chapter 3 partly addressed objective 2. Establishing the modelling framework that best describes 

the relationship between our study response variable (count of boating activities) and covariates 

(climatic and temporally classified variables) was key in the objective of building imputation 

models to ‘fill-in’ missing observations in digital camera monitoring data. There is no clear-cut 

decision on treating temporally classified variables as fixed or mixed effects, especially if the 

variable has more levels (Harrison et al., 2018). We compared the accuracy of the fits of treating 

temporally classified variables, including time of day, and type of day as fixed or mixed effects 

respectively in a generalized linear modelling setup to impute missing observation in digital 

camera monitoring data. Results for chapter 3 have been published in the proceedings of the 34th 

International Workshop on Statistical Modelling (IWSM) (Volume II), Guimarães, Portugal 

(Study II).  

Chapter 4 partly addressed objective 2. Missing data are common in digital camera monitoring 

because of camera outages. We have presented a robust imputation technique that incorporated 

climatic and some temporal classification variables to impute missing data. We compared several 

generalized linear mixed effect models formulated in the fully-conditional specification multiple 

imputation framework to impute missing data, with climatic and some temporal classifications 

as covariates. An article based on the results in chapter 4 has been published in the journal ICES 

Journal of Marine Sciences (Study III).  

 
http://www.ecu.edu.au/GPPS/policies_db/policies_view.php?rec_id=0000000434. In this format, the submitted 

thesis can consist of publications that have already been published, are in the process of being published, or a 

combination of these. 

http://www.ecu.edu.au/GPPS/policies_db/policies_view.php?rec_id=0000000434
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Having established how to impute missing data, we turned our attention to forecasting and 

distinguished between short-term and long-term forecasts. For the short-term forecasts, data were 

treated as time series and no covariates were considered, for the long-term forecasting, covariates 

were used. 

The results from Chapters 5 and 6 addressed objective 3. Data generated from recreational 

boating activity are characterised by infrequent counts, often of variable size and sparse periods 

of zero counts and such data are difficult to predict. In Chapter 5, we explored the short-term 

forecasting capabilities of intermittent demand and some count data time series methods for 

recreational boating effort data observed from digital camera monitoring (Study IV). This may 

guide decisions, such as, filling in short duration gaps, and scheduling routine maintenance of 

boat ramp.  

Survey methods used in recreational fisheries management do not ensure that data collection is 

continuous, due to budgetary constraints and logistical restrictions. Based on the success 

achieved in using the study covariates in the imputation search in Studies II & III, we explored 

their potential to describe the temporal distribution of recreational boating effort for longer 

periods. In Chapter 6 (Study V), a Bayesian regression modelling technique was considered as 

a long-term forecasting tool to formulate predictive models to determine the temporal distribution 

of boating traffic at two ramps in Western Australia.  

As a final topic, the sampling of camera data for estimating boating effort was considered to 

address objective 4. Manual interpretation of data from digital camera monitoring can be 

expensive, especially across multiple sites. In improving the utility of digital camera monitoring, 

the cost of reading data must be managed. 

In Chapter 7 an a posteriori analysis study design was used to investigate the trade-offs between 

the reading cost and accuracy measures of estimates of boat retrievals obtained at various 

sampling proportions for low, moderate and high traffic boat ramps, thereby informing decisions 

on approaches to be used for future reading of camera data. The article based on the results for 

chapter 7 has been published in the journal Fisheries Research (Study VI).  

A general discussion of the findings from the various studies has been presented in Chapter 8. 

Chapter References 

Afrifa-Yamoah, E., Mueller, U. A., Fisher, A. J. and Taylor, S. M. (2019). Fixed versus Random 

effects models: An application in building imputation models for missing data in remote camera 



15 
 

surveys. In the proceedings of the 34th International Workshop on Statistical Modelling (IWSM), 

Guimarães, Portugal, 7-12 July.  

Afrifa-Yamoah, E., Taylor, S. M. and Fisher, A. J., Mueller, U. (2020). Imputation of missing 

data from time-lapse cameras used in recreational fishing surveys, ICES Journal of Marine 

Science, 10.1093/icesjms/fsaa180. 

Amiri, M. and Jensen, R. (2016). Missing data imputation using fuzzy-rough methods. 

Neurocomputing, 205, 152-164. 

Arlinghaus, R. and Cooke, S. J. (2005). Global impact of recreational fisheries. Science, 

307, 1561-1562. 

Arlinghaus, R., Tillner, R., and Bork, M. (2015). Explaining participation rates in recreational 

fishing across industrialised countries. Fisheries Management and Ecology, 22, 45-55. 

Ashby, M. P. J. (2017). The Value of CCTV Surveillance Cameras as an Investigative Tool: An 

Empirical Analysis. Eur J Crim Policy Res., 23, 441–459. 

Australian Bureau of Statistics (2020). Australian Demographic Statistics. Retrieved from 

https://www.abs.gov.au/ on 3/09/20. 

Baran, R., Rusc, T. and Fornalski, P. A. (2016). Smart camera for the surveillance of vehicles in 

intelligent transportation systems. Multimed Tools Appl., 75, 10471–10493. 

Barrett, B. N., van Poorten, B., Copper, A. B., and Haider, W.  (2017).   Concurrently assessing 

survey mode and sample size in off-site angler survey. North American Journalof Fisheries 

Management, 37; 756-767. 

Bernal, P. (2016) Data gathering, surveillance and human rights: recasting the debate, Journal of 

Cyber Policy, 1:2, 243-264. 

Bian, R. and Hartill, B. (2015). Modelling of recreational fishing effort in QMA 1. New Zealand 

Fisheries Assessment Report 2015/26, Ministry of Primary Industries, Welling-ton, New 

Zealand, 50p. 

Blight, S. and Smallwood, C. (2015). Technical manual for camera survey of boat- and shore-

based recreational fishing in Western Australia. Fisheries Occasional Publication, No. 121, 

Department of Fisheries, Western Australia. 

Cayford, M. and Pieters, W. (2018). The effectiveness of surveillance technology: What 

intelligence officials are saying, The Information Society, 34(2), 88-103. 

Cooke, S. J. and Cowx, I. G. (2004). The role of recreational fishing in global fish crises. 

Bioscience, 54(9), 857-859. 

Deb, R. and Liew, A. W.-C. (2016). Missing value imputation for the analysis of 

incompletetraffic accident data. Information Science, 339, 274-289. 

Department of Primary Industries and Regional Development Annual Report (2019). Retrieved 

on 5.11.2019 from https://dpird.wa.gov.au/annual-report. 

https://doi.org/10.1093/icesjms/fsaa180
https://www.abs.gov.au/
https://dpird.wa.gov.au/annual-report


16 
 

De Jong, R., van Buuren, S., and Spiess, M.  (2016). Multiple Imputation of Predictor Variables 

Using Generalized Additive Models. Communications in Statistics-Simulation and Computation, 

45, 968-985. 

Desfossess, C. and Beckley, L. E. (2015). Temporal and environmental factors affecting 

thelaunching of recreational boats at entrance point boat ramp, broome, Western Australia. In 

Beckley, L. E., editor, Final Report of Project 2.1.1 of the Kimberley Marine Research Program 

Node of the Western Australian Marine Science Institution, Chapter 5, pages 77–91. WAMSI, 

Perth, Western Australia. 

Dornberger, W. (1954). “V-2, Ballantine books,” in ASIN: B000P6L1ES, pp. 14 – 15. 

Ellington, E. H., Bastille-Rousseau, G., Austin, C., Landolt, K. N., Pond, B. A., Rees, E. E., 

Rober, N., Murray, D. L. (2015). Using multiple imputation to estimate missing data in meta-

regression. Methods in Ecology and Evolution 6: 153-163. 

Engel, U., Jann, B., Scherpenzeel, A., and Sturgis, P. (2015). Improving Survey Methods. 

Routledge, Taylor & Francis Group, New York. 

Firat M, Dikbas F, Cem Koc A, Gungor M. 2012. Analysis of temperature series: estimation of 

missing data and homogeneity test. Meteorological Applications 19: 397-406. 

Hartill, B. (2015). Evaluation of web camera-based monitoring of levels of recreational fishing 

effort in FMA 1. New Zealand Fisheries Assessment Report 2015/22, Ministryof Primary 

Industries, Wellington, New Zealand. 

Hartill, B. W., Payneb, G. W., Rusha, N., and Bian, R. (2016). Bridging the temporal gap: 

Continuous and cost-effective monitoring of dynamic recreational fisheries by web cameras and 

creel surveys. Fisheries Research, 183, 488-497. 

Hartill, B. W., Taylor, S. M., Keller, K, Weltersbach, M. S. (2019). Digital camera monitoring 

of recreational fishing effort: Applications and challenges. Fish and Fisheries, DOI: 

10.1111/faf.12413. 

Harrison, X. A., Donaldson, L., Correa-Cano, M. E. et al. (2018). A brief introduction to mixed 

effects modelling and multi-model inference in ecology. PeerJ, 1-32. 

Holmes, K. W., Van Niel, K., Baxter, K., and Kendrick, G. (2004).  Designs for marine remote 

sampling: a review and discussion of sampling methods, layout, and scaling issues. CRC for 

Coastal Zone Estuary and Waterway Management, Technical Report 87, Project CB3:  Benthic 

Biology and Habitat Mapping Task 2.1 Milestone Report, 37p. 

Johnson, A. F., Moreno-Báez, M., Giron-Nava, A., Corominas, J., Erisman, B., E., E., and 

Aburto-Oropeza, O. (2017). A spatial method to calculate small-scale fisheries effort in data poor 

scenarios. PLoS ONE, 12(4), e0174064. 

Junger, W. L. and de Leon, A. P. (2015). Imputation of missing data in time series for 

airpollutants. Atmospheric Environment, 102, 96-104. 

Kanda, N., Negi, H. S., Rishi, M. S., Shekhar, M. S. (2018). Performance of various techniques 

in estimating missing climatological data over snowbound mountainous areas of Karakoram 

Himalaya. Meteorological Applications, 25, 337-349. 



17 
 

Kelly, K. (2007). Sample size planning for the coefficient of variation from the accuracy 

inparameter estimation approach. Behavior Research Methods, 39; 755-766. 

Lai, E. K. M., Mueller, U., Hyndes, G. A. and Ryan, K. L. (2019). Comparing estimates of catch 

and effort for boat-based recreational fishing from aperiodic access-point surveys. Fisheries 

Research, 219, 1-12. https://doi.org/10.1016/j.fishres.2019.06.003 

Little, R. J. and Rubin, D. B. (2002). Statistical Analysis with Missing Data.  John Wileyand 

Sons Inc., Hoboken, New Jersey. 

Laurec, A. and Le Guen, J.-C. (1981). Dynamique des populations marines exploitées. Tome 1. 

Concepts et modèles. Publications du C.N.E.X.O. Série. Rapports scientifiques et techniques, 45; 

1-120. 

Maldonado, A. D., Aguilera, P. A. and Salmerón, A. (2016). An experimental comparison of 

methods to handle missing values in environmental datasets. International Congress on 

Environmental Modelling and Software 3, 

https://scholararchive.byu.edu/iemssconference/2016/Stream-C/3 

 

Maynou, F. and Sardá, F. (2001). Influence of environmental factors on commercial trawl catches 

of Nephrops norvegicus (L). ICES Journal of Marine Science, 58; 1318-1325. 

Peterman, R. M. (1990). Statistical power analysis can improve fisheries research manage-ment. 

Canadian Journal of Fisheries and Aquatic Sciences, 47(1); 2-15. 

Piza, E. L., Welsh, B. C, Farrington, D. P and Thomas, A. L. (2019). CCTV surveillance for 

crime prevention: A 40-year systematic review with meta-analysis. Criminology and Public 

Policy, 18, 135-159. 

Purwar, A. and Singh, S. K. (2015). Hybrid prediction model with missing value imputationfor 

medical data. Expert Systems with Applications, 42, 5621-5631. 

Ryan, K. L., Hall, N. G., Lai, E. K., Smallwood, C. B., Taylor, S. M., and Wise, B. S. (2015). 

State-wide survey of boat-based recreational fishing in Western Australia 2013/14. Fisheries 

Research Report, No. 268, Department of Primary Industries and Regional Development, 

Western Australia. 

Ryan, K. L., Hall, N. G., Lai, E. K., Smallwood, C. B., Taylor, S. M., and Wise, B. S. (2017). 

State-wide survey of boat-based recreational fishing in Western Australia 2015/16. Fisheries 

Research Report, No. 287, Department of Primary Industries and Regional Development, 

Western Australia. 

Schafer, J. L. (1997). Analysis of incomplete multivariate data. Chapman & Hall, London. 

Schneider, T. (2001). Analysis of incomplete climate data: estimation of mean values and 

covariance matrices and imputation of missing values. Journal of Climate 14, 853-871. 

Simolo C, Brunetti M, Maugeri M, Nanni T. 2010. Improving estimation of missing values in 

daily precipitation series by a probability density function-preserving approach. International 

Journal of Climatology 30: 1564-1576 

Smallwood, C. B., Pollock, K. H., Wise, B. S., Hall, N. G., and Gaughan, D. J. (2012). Expanding 

Aerial-Roving Surveys to include counts of shore-based recreational fishers from remotely 

https://doi.org/10.1016/j.fishres.2019.06.003
https://scholararchive.byu.edu/iemssconference/2016/Stream-C/3


18 
 

operated cameras: benefits, limitations and cost-effectiveness. North American Journal of 

Fisheries Management, 32(6): 1265-1276. 

Soykan, C. U., Equchi, T., Kohin, S., and Dewar, H. (2014). Prediction of fishing effort 

distributions using boosted regression trees. Ecological Applications, 24(1), 71-83. 

Sovilj, D., Eirola, E., Miche, Y., Björk, K.-M., Nian, R., and Akusok, A. (2016).  Extreme 

learning machine for missing data using multiple imputations. Neurocomputing, 174,220-231. 

Steffe, A. S., Murphy, J. J., and Reid, D. D. (2008). Supplemented Access Point Sampling 

Designs: A Cost-Effective Way of Improving the Accuracy and Precision of Fishing Effort and 

Harvest Estimates Derived from Recreational Fishing Surveys. North American Journal of 

Fisheries Management, 28(4), 1001-1008. 

Steffe, A. S., Taylor, S. M., Blight, S. J., Ryan, K. L., Desfossess, C., Tate, A., Smallwood, C. 

B., Lai, E. K., Trinnie, F. I., and Wise, B. S. (2017). Framework for Integration of Data from 

Remotely Operated Cameras into Recreational Fishery Assessments in Western Australia. 

Fisheries Research Report No. 286, Department of Primary Industries and Regional 

Development, WA. 

Taylor, S. M., Blight, S. J., Desfosses, C. J., Steffe, A. S., Ryan, K. L., Denham, A. M., & Wise, 

B. S. (2018). Thermographic cameras reveal high levels of crepuscular and nocturnal shore‐based 

recreational fishing effort in an Australian estuary. ICES Journal of Marine Science, 75(6), 2107–

2116. 

Taylor, S. M., Smallwood, C. B., Desfosses, C. J., Ryan, K. L., and Jackson, G. (2019). Integrated 

survey of boat-based recreational fishing in inner Shark Bay 2018/19. Fisheries Research Report 

No. 298. Department of Primary Industries and Regional Development. 

Thompson, D. R., Cabrol, N. A., Furlong, M., Hardgrove, C., Low, B. K. H., Moersch, J., and 

Wettergreen, D. (2013). Adaptive sensing of time series with application to remote exploration. 

In Robotics and Automation (ICRA), 2013 IEEE International Conference, IEEE, pp. 3463-

3468. 

van Buuren, S., and Groothuis-Oudshoorn, K. (2011). MICE: multivariate imputation by chained 

equations in R. Journal of Statistical Software, 45, 1-67. 

van Poorten, B. T. and Brydle, S. (2018). Estimating fishing effort from remote traffic counters: 

Opportunities and challenges. Fisheries Research, 204, 231-238. 

van Poorten, B. T., Carrutters, T. R., Ward, H. G. M., and Varkey, D. A. (2015). Imputing 

recreational angling effort from time-lapse cameras using an hierarchical Bayesian model. 

Fisheries Research, 172, 265-273. 

Wang, Y.-G., Ye, Y., and Milton, D. A. (2009).  Efficient designs for sampling and sub-sampling 

in fisheries research based on ranked sets. ICES Journal of Marine Science, 66:  928–934. 

Wise, B. S. and Fletcher, W. J. (2013). Determination and development of cost-effective 

techniques to monitor recreational catch and effort in Western Australian demersal fin-fish 

fisheries (Final Report for FRDC Project 2005/034 and WAMSI Subproject 4.4.3). Fisheries 

Research Report. 



19 
 

Yozgatligil C, Aslan S, Iyigun C, Batmaz I. 2013. Comparison of missing value imputation 

methods in time series: the case of Turkish meteorological data. Theoretical and Applied 

Climatology 112: 143-167. 

Yu, H., Jiao, Y., Su, Z., and Reid, K. (2012). Performance comparison of tradition sampling 

designs and adaptive sampling designs for fishery-independent surveys: A simulation study. 

Fisheries Research, 113, 173-181. 

Zhang, T. (2017). Exploring the Frontier of Smart Video Surveillance: Novel Domains and Fine-

Grain Event Understanding. Doctoral Thesis, The University of Queensland, Australia. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 is not included in this version of the thesis. 

Chapter 2 has been published as: 

Afrifa-Yamoah, E., Mueller, UA, Taylor, SM and Fisher, AJ (2020). Missing data imputation of 

high-resolution temporal climate time series data, Meteorological Applications, 27(1): e1873. 

https://doi.org/10.1002/met.1873 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1002/met.1873
mcouacau
Typewritten text
The open access version of this paper is available at https://ro.ecu.edu.au/ecuworkspost 2013/8627

https://ro.ecu.edu.au/ecuworkspost2013/8627/


47 
 

CHAPTER THREE 

Fixed versus random effects models: an application in building imputation models 

for missing data in remote camera surveys3 

3.1 Abstract 

The decision to specify model predictors as fixed or random effects is not always clear cut and 

at times different interpretations regarding their nature might be possible. This study investigated 

modelling frameworks for the imputation of missing counts of powerboat retrievals from camera 

data using climatic and other temporal classification variables as predictors. The temporal 

classification variables could be treated as fixed or random effects. To evaluate the impact of the 

treatment of these predictors, patterns of observed outages were applied to a set of complete 12-

month hourly camera data. The proportion of missing data ranged from 0.06 to 0.31. A variety 

of generalized linear and mixed models built on the full-conditional specification multiple 

imputation framework were formulated to impute the missing values. The models were assessed 

using the percentage bias, root-mean-square error and skill score. Results from ten replicated 

multiple imputation schemes showed that the mixed effect models obtained plausible mean 

estimates of the total number of powerboat retrievals with less variability than those from fixed 

effect models. A comparison with predictive mean matching was also performed which showed 

that the popular predictive mean matching performed worse. 

Keywords: imputation of count data, generalized linear mixed models, Bayesian sequential 

regression, Cholesky transformation 

 

 

 

 

 
3 A summarized version of the study has been published in volume II of the proceedings of the 34 th International 

Workshop on Statistical Modelling (IWSM). It can be cited as: Afrifa-Yamoah E, Mueller UA, Taylor SM, and 

Fisher AJ (2019). Fixed versus random effects models: an application in building imputation models for missing 

data in remote camera surveys. In the proceedings of the 34th International Workshop on Statistical Modelling 

(IWSM) (Volume II), Guimarães, Portugal, 7-12 July 2019. 
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3.2 Introduction 

Complex data structures often require more sophisticated statistical modelling techniques. 

Generalized additive models, Bayesian regression, linear and generalized mixed effect models 

are among the modelling techniques that could be applied to such data. These models can handle 

a mixture of variables. The distinction between specifying covariates as fixed or random effect 

is not always obvious and the multiple definitions in literature add to the dilemma (Gelman and 

Hill, 2007). The treatment of the temporal variables, however, should be motivated by the goals 

of the analysis (Gelman and Hill, 2007). For example, if the variable “time of day” is considered 

as a categorical predictor for the count of recreational boating effort; there are several possible 

levels that can be chosen for time aggregation and regardless of the choice there is potentially 

the problem of heterogeneity within the levels. In addition, if the sampling space is uneven across 

the levels of a temporal variable, then this will be a crucial consideration in deciding on how to 

treat the variable in model building. The estimation process for the model involving such 

covariates must have the potential to reduce the probability of false positives (Type I error rates) 

and false negatives (Type II error rates). Moreover, the process must have the ability to 

appropriately infer the magnitude of variation within and among clusters or hierarchical levels 

(Crawley, 2013; Harrison et al., 2018). These modelling considerations must be tailored to the 

area of application (e.g. dealing with recreational boating effort data obtained from digital camera 

monitoring). 

Digital camera monitoring provides continuous recordings of recreational boating activities; 

however, interruptions of cameras’ operations can lead to significant gaps in the data (referred to 

as ‘outages’). Despite the rapid emergence of camera-based studies relevant to recreational 

fishing, relatively few studies have examined analytical approaches for dealing with the 

modelling challenges to address outages in this type of data (van Poorten et al., 2015; Hartill et 

al., 2016). The modelling challenges sought to be addressed include the formulation of models: 

1) with the ability to capture the grouping effect of key temporal variables such as season, time 

of day etc. on the number of powerboat retrievals; 2) to allow the variance-covariance structures 

to be explicitly modelled, typical for correlated data which characterise the counts of boat 

retrievals; 3) to sufficiently address any issues relating to over- and under- dispersion of the count 

data; and 4) to account for any zero inflation in the data.  

In Western Australia (WA), digital cameras have been used since 2006 to monitor trends in 

recreational boating activity at up to 28 sites along the coast, including boat ramps, channel 

entrances and parts of the foreshore (Steffe et al., 2017), in addition to ongoing surveys of boat-



49 
 

based and shore-based recreational fishing (Ryan et al., 2017). The resulting data have outages 

and patterns of groupings in the number of counts of powerboat retrievals with respect to key 

temporally classified predictors, such as the time of the day, day type and, to a larger extent, 

seasons. For instance, boating traffic is busier in summer than in winter. Likewise, more boat 

retrievals are observed in the afternoon compared to the early morning. The clustered structure 

of the response variable would result in correlated observations and violate the independence 

assumption of ordinary least squares modelling. Additionally, the nature of boating retrieval data 

requires models with the ability to estimate the variance hierarchically, to ensure that the data 

generating process adequately estimates between-group variations in means, as well as the 

variations within groups (Harrison et al., 2018).  In this study, the treatment of temporal 

predictors as either random effects and fixed effects was investigated in a generalized linear 

modelling framework. The model fit was evaluated based on its ability to reconstruct gaps of 

missing values in data on the number of powerboat retrievals observed at a ramp in WA. 

3.3 Method 

3.3.1 Data description 

Among the digital camera records, one was complete and was used to validate models considered. 

The complete record consisted of 8,784 entries, and 54.4% of all records were zeros. A total of 

12,293 powerboat retrievals was recorded. Four distinct patterns of outages were applied to the 

complete record. The choice of the 4 outage patterns was based on the percentage of missingness, 

ranging from 0.06 to 0.31, reflecting both incidents of short and long outages. The longest outage 

was 80 days (~1,920 hours) and the shortest was one hour. Outage patterns were of variable 

lengths and uncorrelated among the ramps. The four distinct observed outage patterns applied to 

a set of complete 12-month hourly camera data of the count of the number of powerboat retrievals 

were as presented in Figure 3.1. 
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Figure 3.1: Distribution of the outage patterns applied to the Leeuwin dataset. The horizontal 

axis represents the length of the camera data partitioned into 100. The vertical axis represents the 

proportion of missing data in the partitioned block or otherwise. The brown bands represent the 

periods of camera outages and the light green shades represent the observed data. 

Hourly data on precipitation, temperature, humidity, wind speed and direction, and sea level air 

pressure for the Perth Metro station (009105) were obtained from the Australian Bureau of 

Meteorology. The correlation structure among the study variables is presented in Figure 3.2. The 

challenge associated with these covariates is that missing observations are inevitable. Advanced 

time series models with state-space representation amenable to Kalman filter and smoothing 

algorithms and multiple regression modelling techniques were applied to impute missing 

observations (Afrifa-Yamoah et al., 2020).  

The temporal variables were hours of the day (dawn, early morning, morning, afternoon, late 

afternoon and evening), the type of day (weekday or weekend/public holidays) and austral 

seasons (winter, summer, autumn and spring). 
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Figure 3.2: Correlation plot depicting the strength and direction of the correlation among the 

study variables. (Note: Prec = Precipitation, Temp = Temperature, Hum = Humidity, WinS = 

Wind speed, Wsin & Wcos = sine and cosine transformation of wind direction, WinG = Wind 

gust and SLP = sea level pressure)  

3.3.2 Missing data and assumptions 

For a given Y with some missing values, and some covariates, X, the imputation models were 

formulated to investigate the conditional distribution 

 𝑃(𝑌𝑚𝑖𝑠, Ω|𝑌𝑜𝑏𝑠, 𝑋) (3.1) 

where Ω represents the vector of unknown model parameters.  

Data were assumed to be missing at random (MAR) and generating process for Y was assumed 

to be a generalized linear model. Two generalized linear model types were considered, the first 

treated all variables as fixed effects, and the second treated the temporal variables as random 

effects. The temporal variables were considered as random effects as there were several levels 

that could have been chosen for time aggregation and to account for potential heterogeneity due 

to this decision. Quasi-Poisson and zero-inflated Poisson models were considered based on the 

relationship between mean and variance of the counting process for the camera data.  

3.3.3 Modelling framework 

Generalized linear models (GLM) are popular modeling extensions for ordinary linear models. 

In this modelling framework, it is assumed that that the distribution of Y belongs to the 



52 
 

exponential family of distributions. This enables the modelling of real-life scenarios that follow 

distributions such as Poisson, gamma, binomial and normal (see Dobson and Barnett (2008)).  

3.3.3.1 Fixed effect model 

The generalized linear model is given by 

 𝑔(𝜇) = 𝑿𝛽, (3.2) 

where 𝜇 = 𝔼(𝑌), g is a link function which is monotonic and smooth, 𝑿 is the model matrix and  

𝛽 is a vector of unknown parameters. 

Additionally, the general-purpose predictive mean matching (PMM) was also applied. The 

approach is generally applicable for the imputation of numeric, non-normal, heteroscedastic 

residuals and non-linear association between variables (Rubin, 1996; Morris et al., 2014). It has 

been used to impute missing observations for continuous (van Buuren and Groothuis-Oudshoorn, 

2011) and semi-continuous variables (Vink et al., 2014).  Little is known about how PMM 

compares to models that are specifically designed to handle count data. To the best of our 

knowledge, the technique has received minimal attention in count data imputation problem.  

PMM was implemented using the mice algorithm (van Buuren and Groothius-Oudshoorn, 2011). 

It uses the ordinary multiple linear regression model to formulate the posterior distribution of the 

model parameters and imputes missing observations with observed values and thus could 

preserve the distribution of the observed data (Yu et al., 2007). 

3.3.3.2 Mixed effect model 

The generalized linear mixed model (GLMM) is given by  

 𝑔(𝜇) = 𝑿𝛽 + 𝐙b,    b ∼ 𝑁(𝟎, 𝜓),    (3.3) 

where b is a random vector containing random effects, with zero expected value and covariance 

matrix 𝜓Ω , with unknown parameters in Ω; 𝐙 is a model matrix for the random effects. (following 

from the presentation in Wood, 2017).  

Random effects are useful when a categorical variable has many levels, uneven sampling across 

those levels and some observations are correlated (Bolker, 2015). Within the boat retrieval data, 

there were several levels that could have been chosen for time aggregation and thereby account 

for potential heterogeneity. Additionally, the sampling across the levels of our temporal variables 

were uneven, for instance, weekdays were sampled more often than weekends. The estimation 

of random effects is done with partial pooling, which ensures that a level’s effect estimate will 

be based partially on the more abundant data from the other levels. The nature of the boating 

retrieval data required a model with the ability to estimate the variance hierarchically, to ensure 
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that the data generating process adequately estimates the between-group variations in means, as 

well as, the variations within groups (Harrison et al., 2018). In the modelling scheme, random 

intercept models were fitted, interaction effects were not considered. This was done to moderate 

the complexity of the model structure because of the large number of predictors involved. 

Serial correlation is common among climatic time series variables such as temperature. The 

presence of serial correlation in the covariates leads to a violation of the assumption of 

independence among the errors (see Figure 3.3) and will result in the misspecification of the error 

covariance structure, leading to biased model parameter estimates (Jahng and Wood, 2017). 

A Cholesky transformation was applied to the variables (see Jahng and Wood, 2017 for the 

mathematical details), leading to heterogeneous error covariance structure (see Figure 3.4). 

Suppose we have a linear relationship given by 

 𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + ⋯ + 𝛽𝑘𝑥𝑘,𝑡 + 𝑢𝑡 (3.4) 

for 𝑡 = 1, ⋯ , 𝑛 where 𝑛 is the number of data points and 𝑢𝑡 is generated by the Markoff scheme  

 𝑢𝑡 = 𝛼𝑢𝑡−1 + ԑ𝑡 (3.5) 

with random error ԑ𝑡 and a known autoregression coefficient  𝛼. The resultant equation from 

substituting equation (3.5) into equation (3.2) is given by  

 𝑦𝑡
′ = 𝛽0

′ + 𝛽1𝑥1,𝑡
′  + ⋯ + 𝛽𝑘𝑥𝑘,𝑡

′  + ԑ𝑡 (3.6) 

where 𝑦𝑡′ = 𝑦𝑡 − 𝛼𝑦𝑡−1, 𝑥1,𝑡
′  = 𝑥1,𝑡 − 𝛼𝑥1,𝑡−1, ⋯ and 𝑥𝑘,𝑡

′  = 𝑥𝑘,𝑡 − 𝛼𝑥𝑘,𝑡−1. 

To estimate 𝑦𝑡 from given 𝑥𝑡1
, ⋯ ,  𝑥𝑡𝑘

, equation (3.6) could be improved by  

 𝑦𝑡 = 𝛽0′ + 𝛽1(𝑥𝑡1
− 𝛼𝑥𝑡1−1) + ⋯ + 𝛽𝑘(𝑥𝑡𝑘

− 𝛼𝑥𝑡𝑘−1) + 𝛼𝑦𝑡−1 (3.7) 

where 𝛽0
′ ,  𝛽1,  ⋯ ,  𝛽𝑘 are estimated from equation (3.4). 

For each of the climatic variables, the error structure was assessed to determine the autoregressive 

parameters for the transformation. Then, each of the climate variables was transformed 

independently via regression-with-autoregressive-error models with the remaining variables as 

predictors for each time point. The transformed variables were then used to build the imputation 

model. 
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Figure 3.3: Error diagnostics for the Gaussian model output with serially correlated predictors 

before the Cholesky transformation. 

 

Figure 3.4: Error diagnostics for Gaussian model output with serially correlated predictors after 

the Cholesky transformation. 
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3.3.4 Full-conditional specification multiple imputation (FCS-MI) 

In FCS-MI (also known as Bayesian sequential regression (van Buuren, 2007), imputed values 

for missing observations of a variable are randomly drawn conditioned on the observed outcomes 

and possibly some covariates (van Buuren and Groothuis-Oudshoorn, 2011). These draws are 

guided through the formulation of models from the distribution that best approximates the 

association between the variables. For a univariate missing data imputation, the FCS-MI 

framework involves specifying a conditional model of partially observed variable given some 

covariates, to obtain a predictive distribution. In this framework, independent draws are 

generated from the posterior predictive distribution for the missing data. The posterior predictive 

distribution was obtained by 

 
𝑝(𝑦𝑚𝑖𝑠|𝑦𝑜𝑏𝑠, 𝑋) = ∫ 𝑝(𝑦𝑚𝑖𝑠|𝑦𝑜𝑏𝑠, 𝑋, Ω)𝑝(Ω|𝑦𝑜𝑏𝑠, 𝑋)𝑑Ω 

(3.8) 

where Ω = (𝛽, 𝜓, 𝜎) is the vector of parameters in equation (3.1) and 𝑝(𝜃|𝑦𝑜𝑏𝑠, 𝑋) is the 

observed data posterior density of Ω.  

Let Ω̂  be the vector of parameter estimates with covariance matrix, Var̂(Ω̂) , where Ω represents 

the vector of parameters obtained from the fitted model. For a missing observation (𝑌𝑚𝑖𝑠), the 

law of iterated expectation was used to find a consistent estimator of Ω by solving 

 𝐸
𝑓(𝑌𝑚𝑖𝑠

|𝑌𝑜𝑏𝑠, 𝑿)
[𝑢(𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝑿, Ω)] = 0 (3.9) 

where 𝑓(. ) is the conditional predictive distribution of the missing data obtained from the fitted 

model and 𝑢(. ) is the score function, which is the gradient of the log-likelihood function, 

ℓ(Ω|𝑌, 𝑋).  In this scheme, missing observations were imputed with values sampled from the 

predictive distribution of the observed data. The between-imputation variability was introduced 

using a regression-type approach of fitting specified models to different samples for each of the 

M imputations, where 𝑀 is the number of multiple imputations (see Klienke and Reinecke, 2013). 

The scheme repeatedly draws estimates of 𝑌𝑚𝑖𝑠 from 𝑌𝑜𝑏𝑠 based on 𝑓(𝑌𝑚𝑖𝑠|𝑌𝑜𝑏𝑠, 𝑿) and then 

combines the results for inference (Salfrán, 2018). The multiple imputation scheme accounts for 

the uncertainty in the missing data, since the exact true values cannot be determined (Rubin, 

1987; Sterne et al., 2009; van Buuren and Groothius-Oudshoorn, 2011; Klienke and Reinecke, 

2013). The imputation algorithms for the models are presented in Table 3.1.  

In the imputation process, the observed data and covariates were used to fit a model, to obtain Ω̂ 

and 𝑉𝑎�̂�(Ω̂). For each missing datum, chains of equations were formulated with parameter 

estimates drawn from the Ω ∼  𝑁(Ω̂, 𝑉𝑎�̂�(Ω̂)). Predicted values were obtained and corresponding 
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observed datapoints with the closest predicted values to that of the missing observation were 

sampled. The imputed values were subsequently drawn from the observed data. The process was 

repeated 𝑀 = 5 times, so that for each imputed value �̂�𝑚𝑖𝑠 there were 𝑀 replicates  �̂�𝑖,𝑚
𝑚𝑖𝑠 for 

𝑚 = 1, ⋯ , 𝑀. For a missing observation, the combined imputed estimates of the mean �̂�𝑖
𝑚𝑖𝑠̅̅ ̅̅ ̅̅  and 

variance (𝑉𝑎�̂�(�̂�𝑖
𝑚𝑖𝑠̅̅ ̅̅ ̅̅ )) were obtained as  

 

�̂�𝑖
𝑚𝑖𝑠̅̅ ̅̅ ̅̅ = ∑ �̂�𝑖,𝑚

𝑚𝑖𝑠

𝑀

𝑚=1

 

 

 

(3.10) 

 

𝑉𝑎�̂�(�̂�𝑖
𝑚𝑖𝑠̅̅ ̅̅ ̅̅ ) =

∑ 𝑉𝑎�̂�(�̂�𝑖,𝑚
𝑚𝑖𝑠)𝑀

𝑚=1

𝑀
+

𝑀 + 1

𝑀(𝑀 − 1)
∑ (�̂�𝑖,𝑚

𝑚𝑖𝑠 − �̂�𝑖
𝑚𝑖𝑠̅̅ ̅̅ ̅̅ )

2
𝑀

𝑚=1

 

 

(3.11) 

where ∑ (�̂�𝑖,𝑚
𝑚𝑖𝑠 − �̂�𝑖

𝑚𝑖𝑠̅̅ ̅̅ ̅̅ )
2

𝑀
𝑚=1  reflects the missing values estimation uncertainties (Rubin, 1987). 

The multiple imputation scheme was repeated ten times for each model to establish consistency 

or otherwise of the missing value estimates obtained from the models. All imputation modelling 

approaches were carried out using mice (van Buuren and Groothius-Oudshoorn, 2011) and 

countimp (Klienke and Reinecke, 2013) packages in R (R Core Team, 2016). 

3.3.5 Model evaluation 

The estimation accuracy of the imputed values was assessed via the percent bias, mean absolute 

error (MAE), root mean square error (RMSE) and skill score (SS) based on the mean square error 

 
%𝐵𝑖𝑎𝑠 = 100 ×

∑ (𝑛
𝑖=1 �̂�𝑖

𝑚𝑖𝑠̅̅ ̅̅ ̅̅ − 𝑌𝑖)

∑ 𝑌𝑖
𝑛
𝑖=1

 
(3.12) 

 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖 − �̂�𝑖

𝑚𝑖𝑠̅̅ ̅̅ ̅̅𝑛
𝑖=1 )2

𝑛
 

(3.13) 

 
𝑆𝑆 = 1 −

𝑀𝑆𝐸(𝑌, �̂�𝑚𝑖𝑠̅̅ ̅̅ ̅̅ )  

𝑀𝑆𝐸(𝑌 ̅, �̂�𝑚𝑖𝑠̅̅ ̅̅ ̅̅ )
 

(3.14) 

where 𝑀𝑆𝐸(𝑌, �̂�𝑚𝑖𝑠̅̅ ̅̅ ̅̅ ) =
∑ (𝑌𝑖−�̂�𝑖

𝑚𝑖𝑠̅̅ ̅̅ ̅̅ ̅𝑛
𝑖=1 )2

𝑛
 and 𝑀𝑆𝐸(𝑌 ̅, �̂�𝑚𝑖𝑠̅̅ ̅̅ ̅̅ ) =

∑ (1−𝐼𝑖)(�̅�−�̂�𝑖
𝑚𝑖𝑠̅̅ ̅̅ ̅̅ ̅𝑛

𝑖=1 )2

𝑛
.  

Percent bias measures the average tendency of imputed values to be larger or smaller than the 

associated observed values. A positive score indicates overestimation whereas a negative score 

indicates underestimation. The optimal value is 0, with low-magnitude values indicating 

plausible imputed values. RMSE is widely reported imputation modelling performance 

indicators. For RMSE, the range is 0 to +∞, and lower values indicate high levels of agreement 

between observed and estimated values and have the same units as the variables measured. The 
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skill score measures the accuracy of a forecast relative to standard reference. The values of SS 

range between −∞ and 1. A perfect forecast is observed when a score of 1 is obtained. 

Table 3.1: A) Multiple imputation scheme for the Quasi-Poisson B) Multiple imputation scheme 

for the Zero-inflated Poisson models. 

Algorithm A 

1. Obtain estimates of 𝛀, �̂� and 𝑽𝒂�̂�(�̂�) from the fitted model 

2. For 𝑰𝒊 = 𝟎, draw 𝛀∗ from 𝑵(�̂� , 𝑽𝒂�̂�(�̂�) 

3. Formulate chained equations 𝒇(𝒀|𝑿, 𝛀∗) 

4. Compute �̂� from the chained equations 

5. Randomly draw one of the 𝒀𝒐𝒃𝒔 with �̂� closet to that of 𝒀𝒎𝒊𝒔 

6.  Repeat steps 2-5 𝑴 times 

Algorithm B 

1. Obtain estimates of 𝛀 = {𝛀𝒛, 𝛀𝒄), �̂�𝒛 and 𝑽𝒂�̂�(�̂�𝒛)  from the 

zero model, and �̂�𝒄 and 𝑽𝒂�̂�(�̂�𝒄)   from the count model. 

2. For 𝑰𝒊 = 𝟎, draw 𝛀𝐳
∗ from  𝑵 (�̂�𝒛, 𝐕𝐚�̂�(�̂�𝒛)). 

3. From 𝜴𝒛
∗ compute predicted probabilities for having a zero vrs 

non-zero count. 

4.  𝒀𝒎𝒊𝒔 for the zero part are imputed with zeros, remembering 

cases for the non-zero part. 

5. For 𝒀𝒎𝒊𝒔 for the count part, draw 𝛀𝐜
∗ from  𝑵 (�̂�𝒄, 𝐕𝐚�̂�(�̂�𝒄)). 

6. Formulate chained equations 𝒇(𝒀|𝑿, 𝛀𝐜
∗) 

7. Compute �̂� from the chained equations 

8.  Randomly draw one of the 𝒀𝒐𝒃𝒔 with �̂� closet to that of 𝒀𝒎𝒊𝒔 

9. Repeat steps 2-8 𝑴 times 

 

3.4 Results 

The percentage of zero counts in the dataset with simulated missing data scenarios ranged from 

35.1% to 51.8% and missing proportion of missing observations were between 0.06 and 0.31 

(Table 3.2).  The 95% confidence interval of the average total imputed estimates obtained from 

the five models contained the actual totals in most cases. However, for outage pattern 1, all 

models underestimated the observed number of powerboat retrievals.  In terms of percent bias, 

models were ranked differently with four different models ranked as the best for the 4 outage 

patterns and PMM was ranked worst each time. The direction of the estimation of the bias also 

varied among the outage patterns. For example, the bias was negative for all the models for 

outage pattern 1, indicating underestimation of the total counts, but for outage pattern 4, four of 

the models recorded positive bias, with overestimated total counts.  
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In terms RMSE, the zero-inflated models were ranked the best apart from outage 3 (Table 3.2). 

The percentage differences in RMSE values between the two best models ranged from 1.53% to 

3.44%. In terms of SS, the zero-inflated models were ranked the best, with the fixed models often 

ranked as the best (Figure 3.5). The percentage difference in the SS values between the two best 

models (models with larger SS scores) for the ten outage patterns ranged from 0.06% to 10.3%, 

with the magnitude of errors between 0.01 and 0.03. Although there was no clear systematic 

trend in the performance of the models with respect to the pattern, the proportion of missing data 

and the proportion of zeros in the dataset, ZIP models were generally ranked best. PMM typically 

showed the worst performance, with comparatively large magnitude of bias over- and under-

estimation, because it generally fits the ordinary linear regression model in the parameter 

estimation process. From the ten replications, the random effect models provided more consistent 

estimates of the total powerboat retrievals, evidence the narrower confidence intervals compared 

to the fixed models.  
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Table 3.2: Models' performance evaluation. The table displays the characteristics of the missing patterns including the minimum (min) and maximum 

(max) duration of outages, the average total boat counts imputed from the fitted models versus total observed counts with associated standard 

deviations, and the average performance indicators across the ten imputation runs. 

Outage Missing prop Min Max Number of 

zeros 

Model Average Total 

Estimate (SD) 

% Bias 

(SD) 

SS RMSE 

Outage 1 0.06 1 393 4549 (51.8%) Observed 746    

     PMM 734 (22.5) -19.8 (17.6) -0.13 3.25 

     QP.fixed 795 (20.7) 23.1 (9.2) -0.09 2.89 

     ZIP.fixed 778 (15.6) 15.1 (8.7) 0.18 2.54 

     QP.mixed 800 (20.5) 25.5 (9.3) 0.02 2.86 

     ZIP.mixed 766 (14.0) 14.9 (7.8) 0.21 2.51 

Outage 2 0.08 1 345 4434 (50.5%) Observed 819    

     PMM 739 (22.5) -34 (5.9) 0.14 3.24 

     QP.fixed 782 (15.7) -12.0 (3.3) 0.19 2.86 

     ZIP.fixed 795 (13.2) -7.7 (4.0) 0.26 2.45 

     QP.mixed 768 (10.6) -15.3 (3.2) 0.20 2.95 

     ZIP.mixed 787 (7.8) -8.9 (2.6) 0.25 2.72 

Outage 3 0.12 144 940 4243 (48.3%) Observed 1642    

     PMM 1783 (22.9) 17.1 (3.2) 0.09 5.38 

     QP.fixed 1627 (26.6) -6.1 (5.6) 0.15 3.45 

     ZIP.fixed 1671 (13.5) 6.7 (1.5) 0.30 2.08 

     QP.mixed 1634 (10.9) -6.5 (4.2) 0.16 3.29 

     ZIP.mixed 1638 (19.0) -8.3 (7.7) 0.27 2.24 

Outage 4 0.31 3 1920 3080 (35.1%) Observed 2705    

     PMM 2956 (66.2) 18.7 (2.5) 0.08 4.31 

     QP.fixed 2741 (26.4) 1.1 (1.9) 0.20 2.63 

     ZIP.fixed 2693 (31.4) -6.8 (5.2) 0.23 2.74 

     QP.mixed 2725 (21.7) 0.7 (3.9) 0.21 2.59 

     ZIP.mixed 2694 (17.0) -1.9 (4.7) 0.22 2.67 
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Figure 3.5: Model performance based on the percent bias, RMSE and skill scores for the ten 

replicates of the multiple imputation scheme. Lowest and highest values of RMSE and skill 

scores respectively indicate best models. 

3.5 Discussion  

In this study, although the groupings of the temporal predictors were collectively exhaustive, 

treating them as random effects resulted in relatively more stable outcomes compared to treating 

them as fixed effects. Controlling for non-independence within the levels of temporal variables 

improved the accuracy of the parameter estimation process. In the random effect models, we 

fitted only random intercepts which allowed only the group means to vary, for simplicity and fast 

convergence of the imputation scheme. Although, treating random slope to clustered data to help 

control Type I errors (Aarts et al., 2015), the mixed models were generally provided more 



61 
 

consistent estimates of the total powerboat retrievals with narrower confidence intervals than 

their fixed effect counterparts. The difference between the model choices was more apparent in 

terms of the variability of the estimates around the mean imputed totals from the ten replications.  

The mixed effect models, notably the zero-inflated mixed models, were found to report the least 

variability, implying that more stable estimates were obtained.  

The covariates used in this study are indirectly related to boat retrievals and the imputation 

modelling scheme required enough data points to train the models to recognise the general 

patterns to impute plausible values for the missing data, which was made possible by the level of 

data resolution. The decision to make the imputation models more dependent on the observed 

data was grounded in the assumption that data were missing at random, with the premise that 

some information about the missingness in the data could be inferred from the observed data and 

some covariates. The significance of climatic and temporal strata such as time of day, type of 

day and season has been established for recreational and commercial fishing activity (Desfosses 

and Beckley, 2015; Maynou and Sardá, 2001; Soykan et al., 2014). In recreational fishing 

surveys, these temporal strata are often used for sampling scheme development, and in some 

instances for monitoring and evaluation purposes (Ryan et al., 2017; Taylor et al., 2018). These 

temporal strata to a large extent control the clustering effects of boating activities over time. The 

choice of the mixed effect modelling approach enabled the estimation process to be dependent 

on the groupings within these temporal variables. This ensured that the within-group variations 

were adequately captured to obtain estimates that were representative of the group.  

If there is weak association between outcome variable and predictors and substantial missingness 

in the outcome variable (see Figure 3.1), the full-conditional specification multiple imputation 

(FCS-MI) has been found to be more robust to model misspecification than the joint model 

multiple imputation in restricted general location modelling settings (Seaman and Hughes, 2018). 

Also, formulating joint models in multilevel setting may mathematically be unachievable or 

could require high level computational skills. Resche-Rigon and White (2018) illustrated the 

mathematical difficulty in formulating a simple joint model in specifying conditional models in 

the multilevel setting.  Within the FCS-MI framework, this complexity can be easily dealt with 

by fitting a mixed effect model. 

In Hartill et al. (2016), GLM were applied to impute the number of trailer boats that were 

retrieved when camera outage was experienced. GLM generally fails to reflect possible 

groupings in outcome variables in its estimation process (Faraway, 2010), and would perform 
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poorly in capturing the clustering effects within the boating activity data, especially for finer-

scale datasets. The application of GLMMs in modelling data in ecological studied has been 

reviewed by Bolker et al. (2008), in which the challenges in the estimation and inferential 

procedures and the opportunities have been outlined. This modelling approach is more applicable 

to non-normal data involving random effects. The approach allows flexibility in specifying the 

desired distribution, the appropriate link function and the structure of the random effect.  

Lancaster et al. (2017) used a GLMM to study the significance of ecological and geographical 

variables, including rugosity, bottom type, depth and the presence or otherwise of bullkelp 

bioband (Nereocystis luetkeana) in a location to predict shore-based recreational fishing effort 

using counts of shore-based fishers observed from digital cameras as response variable. Shore-

based monitoring of recreational fishing effort generally involves a relatively smaller area and it 

is possible to obtain consistent measurements of the covariates used. In the case of boat-based 

surveys, consistent measurements for the variables considered in Lancaster et al. (2017) may not 

be feasible and different covariates would have to be considered. The current study has the 

potential for predicting recreational activity using camera data as the response, and climatic and 

temporally classified covariates in both shore- and boat-based surveys. Comparatively, on the 

cost of obtaining data on predictors of recreational boating effort, the climatic and temporal 

variables would be a huge cost-saving option.  
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CHAPTER FIVE 

Short term prediction of recreational boating effort: Evaluation of intermittent 

demand and count data forecasting methods 4 

5.1 Abstract 

Aspects of recreational fisheries management rely on the analysis of count data of boating 

activity obtained from digital camera monitoring. Data are often highly variable, and are 

characterized by sparse periods of zero counts, dominated by seasonality which result in a 

repetitive cycle making modelling a challenge and forecasting difficult. In this study, five 

forecasting methods were evaluated and accuracies of their point estimates of forecasts for 

lead times of 12, 24, 48 and 168 hours were assessed using cross-validation techniques. 

Specifically, intermittent demand forecasting techniques, including Croston’s method and 

Syntetos-Boylan Approximation (SBA) models, and count data forecasting methods including 

autoregressive conditional Poisson (ACP) models, integer-valued moving average (INMA) 

models, and integer-valued autoregressive (INAR) models were evaluated.  Digital camera 

monitoring data of hourly counts of powerboat launches at a boat ramp in Western Australia 

were used. The length of this time series was one year. ACP and INAR models performed 

better than intermittent demand forecasting techniques for short forecast horizons and 

provided some evidence of their sufficiency in forecasting the dynamics in recreational 

boating activities. This result established that, in as much as intermittency may be a key feature 

for a given dataset, it should not override the systemic characteristics of data in the application 

of forecasting techniques. Our results provide plausible estimates for short-term outages in 

such data and promote pragmatic management decision-making.  

Keywords: digital camera monitoring, time series modelling, intermittent data, integer-valued 

models 

 

 

  

 
4 This chapter will be submitted to Journal of Time Series Analysis for publication. The full text has been 

removed from this version of the thesis. 
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CHAPTER SIX 

Modeling climatic and temporal influences on powerboat launches with 

relevance to recreational fisheries 5 

6.1 Abstract 

Digital camera monitoring data on recreational boating activity are often manually interpreted and the 

reading cost can be expensive for multiple sites. Typically, this scheme is used along with other periodic 

boat-based surveys and it is common practice that camera data between survey periods are not read, 

creating significant gaps in the time series. We predicted boating behaviour during these periods of non-

observation using historical data and secondary variables to complete the time series data. Predictive 

models, built in a Bayesian regression modelling framework, were formulated to determine the temporal 

distribution of daily boating traffic at two ramps in Western Australia based on climatic variables 

(including temperature, humidity, wind speed and gust, sea level pressure and wind direction) and 

temporal classifications (including months, and day type). Two observed year-long datasets from digital 

camera monitoring of powerboat launches were used, with a yearlong gap between them.  One set was 

used to build models, and the other set was used for validation purposes. Models were cross-validated 

using leave-one-out sample, ensemble prediction and reconstruction of observed datasets. Fitted models 

explained 50% [95% CI of R2: 0.40 – 0.58] and 62% [95% CI of R2: 0.58 – 0.66] of the variabilities in the 

daily number of powerboat launches at the two locations, respectively. Subsequently, using the data for 

the preceding period where camera data were read, we constructed plausible data for the 

period between the readings. Constructed and reconstructed data generally aligned well with 

the observed data, with some temporal biases at the bulk and upper tail of the distributions. 

The 95% credible intervals of the reconstructed periods adequately captured the observed data at both 

locations. Data for the constructed periods depicted the general trends for the observed periods. Our results 

provide useful insights into using environmental factors to predict boating activity to ‘fill in the gaps’ 

between survey years. This could assist in the ongoing monitoring and sustainable management of 

recreational fisheries.  

Keywords: temporal analysis, digital camera monitoring data, distributional regression, 

Bayesian regression modelling, recreational fisheries management 

  

 
5 This chapter will be submitted to Fisheries Research for publication. The full text has been removed from 

this version of the thesis. 
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CHAPTER EIGHT 

General Discussion 

8.1 Discussion 

The wealth of information obtained from digital camera monitoring has established its wide 

application in different fields of study. The amount of data generated from digital camera 

monitoring is enormous and statistical knowledge is required to fully unravel patterns, trends 

and derive meaningful summaries that translate raw data into problem solving tools. This study 

has provided relevant statistical support to improve the utility of digital camera monitoring of 

boating effort. Specifically, methods have been developed and investigated for dealing with 

missing observations in high-resolution climate data (Study I) and digital camera monitoring 

data (Study II & III), modelling and describing the temporal distribution of recreational 

boating activity (Study IV & V) and designing an appropriate low level and cost-saving 

monitoring scheme for digital camera usage in recreational fisheries research (Study VI) . The 

main findings of this thesis are: 1) climatic and temporal variables are useful predictors for 

describing the distribution of recreational boating effort and are suitable for model building, 2)  

structural time series models with Kalman smoothing, ARIMA models with Kalman smoothing 

and multiple linear regression are potentially useful methods for imputing missing observations 

in high-resolution climate data, 3) generalized linear mixed models built on the full conditional 

specification multiple imputation (FCS-MI) framework are suitable for imputing missing 

observations in digital camera monitoring data, 4) autoregressive conditional Poisson (ACP) 

models and integer-valued autoregressive (INAR) models were appropriate for short horizons 

forecasting of count data that are highly variable, 5) manual interpretation of camera footage 

for 40% of the days within a year can be deemed as an adequate level of sampling effort to 

obtain unbiased, precise and accurate estimates to meet broad management objectives.  

In digital camera monitoring outages are expected and, in many instances, some form of 

imputation will be required. An aspect of this thesis investigated missing observations in data 

generated from monitoring of recreational boating effort. Recreational fisheries studies that 

have used digital camera monitoring have dealt with missing observations by borrowing 

information from cameras in proximate locations (Hartill et al., 2016; van Poorten et al., 2015) 

or by using methods that were of limited use for imputing long outages (Ryan et al., 2013, 

2015, 2017). However, long outages are common in such data, especially in remote locations 

and so an imputation scheme was required that would deal with imputing plausible values for 

varied durations of outages (Study II & III) In the proposed scheme, climatic and some 
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temporal variables were used to describe the distribution of boating effort to guide the 

imputation process. Climatic variables including temperature, precipitation, humidity, wind 

speed and gust, and wind direction are commonly observed meteorological measurements. The 

climatic data set had missing observations so it was first necessary to impute them before they 

were subsequently used to model the camera data. Study I investigated and proposed suitable 

imputation methods for addressing relatively short duration missing observations in high‐

resolution temperature, humidity and wind speed data. Measurements on climatic variables are 

universally available for use, thus promoting the practicality of the proposed technique 

elsewhere, albeit with contextual variations.  

Some considerations were made in using these covariates in the imputation model building for 

the digital camera monitoring data. It is typical in scientific studies to focus on the relative 

importance of predictors within statistical models. However, it is important to note that the 

covariates used were not directly associated with the missing mechanism and did not explicitly 

give any information on why the camera records were missing. Thus, the focus was on 

assessing the predictive information on boating effort that the covariates collectively 

contributed. Part of the objective was to establish the means to effectively combine these 

covariates to extract the signals from the noises in the digital camera monitoring data. The 

climatic variables were treated as fixed effects in the model building. However, the treatment 

of the temporal variables could be motivated by the goals of the analysis (Gelman and Hill, 

2007). For example, time of day was considered as a categorical variable, and there were 

several levels that could have be chosen for time aggregation and regardless of the choice there 

existed heterogeneity within the levels. Additionally, the uneven sampling across the levels of 

such classifications was a crucial consideration in terms of how they should be treated in model 

building. Particularly, type of day was a categorical variable with levels weekday and weekend; 

weekday was sampled more often in the model building. In effect, the estimation process must 

have the potential to reduce the probability of false positives (Type I error rates) and false 

negatives (Type II error rates). In additional, the process must have the ability to appropriately 

infer the magnitude of variation within and among clusters or hierarchical levels (Crawley, 

2013; Harrison et al., 2018).  

The distinction between specifying covariates as fixed or random effect is not always obvious 

and the multiple definitions in the literature add to the dilemma (Gelman and Hill, 2007). Study 

II used a generalized linear modelling framework to explore two ways of treating the temporal 

variables, either as fixed or random effects. It was found that treating these variables as random 
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effects produced consistent estimates with narrower confidence intervals compared to the fixed 

effect counterparts in ten replicated runs. It was noted that treating the variables as random 

effects enabled the explicit modelling of the random structures in the boating effort data. This 

aided the correct inference about fixed effects, depending on which level of the data’s hierarchy 

was being manipulated. For example, when fixed effects varied or were manipulated at the 

level of time of day, then treating number of boat counts from a time block as independent 

represented pseudo replication, which was controlled carefully by using random effects. 

Similarly, if fixed effects varied at the levels of time of day, then the non-independence of the 

hours within the time blocks was also accounted for. The estimation of random effects was 

done with partial pooling, which ensured that level’s effect estimate was based partially on 

more abundant data across levels, thus addressing the sampling disparity issues. 

In Study III, generalized linear mixed effect models with climatic and temporal variables were 

considered to build imputation models to “fill-in” missing observations in the digital camera 

monitoring data. The study design used was a simulation scenario, where observed data of 

complete records were turned into missing data based on 10 observed outage patterns, with 

missing proportion ranging from 0.06 to 0.61. Nine models were built on the full conditional 

specification multiple imputation (FCS-MI) framework (van Buuren and Groothius-

Oudshoorn, 2011; Kleinke and Reinecke, 2013). The FCS-MI framework was used to specify 

conditional models of the partially observed outcome variable given the covariates, to obtain a 

posterior predictive distribution. Two approaches were investigated to obtain independent 

draws of the parameters for the partially observed outcome variable. The first approach used a 

Gibbs sampler to make independent draws from an assumed normally distributed pool of model 

parameters. The second approach estimated the parameters using bootstrapping. The models 

were found to reconstruct plausible values of counts of powerboat retrievals for the durations 

of outages studied. The longest outage imputed was 80 days (~1,920 hours) and the shortest 

was one hour. There were no systematic trends in performance among the models, however, 

zero-inflated Poisson (ZIP) and its bootstrap variant models consistently ranked amongst the 

top three models and possessed the narrowest confidence intervals. The outlined framework 

has adaptable properties, as the choice and type of model will generally be dependent on the 

nature and characteristics of the data set and the missing patterns being investigated. However, 

the ZIP models are likely to perform well for count data with many zeros. This was established 

in the satisfactory results obtained when the ZIP models were applied to impute missing 

observations in digital camera monitoring data observed at two different ramps in WA. The 
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additional advantage of the multiple imputation scheme is that it has self-correcting properties 

which makes it robust even in cases where imputation models are slightly mis-specified 

(Salfran and Spiess, 2015). Admittedly, in the outlined framework there is the possibility of 

specifying models where the conditional distributions will not correspond to valid joint 

distributions, however, it has been established that in practice this will have little impact on the 

results (Raghunathan et al., 2001; van Buuren, 2007).  

Understanding accessibility patterns at ramps by recreational boaters will help managers to 

have greater anticipation of the current and future management needs to inform regulatory 

policies. In recreational fisheries management practices, short-term forecasts may assist in 

guiding decisions that will help to draw the right balance between sustainable recreational 

fisheries management practices and high-quality fishing experience for recreational fishers. 

Digital camera monitoring of boating effort may observe data that are highly variable, of fine 

granularity and can be characterized by sparse periods of zero counts, dominated by seasonality 

that results in cyclicity, making forecasting difficult. Study IV evaluated and compared point 

estimates of short-term forecasts of boating effort using intermittent demand forecasting 

techniques, including Croston’s method and Syntetos-Boylan Approximation (SBA) models, 

as well as count data forecasting methods including autoregressive conditional Poisson (ACP) 

models, integer-valued moving average (INMA) models, and integer-valued autoregressive 

(INAR) models. Integer-valued autoregressive (INAR) and autoregressive conditional Poisson 

(ACP) models were identified as useful for predicting short-term behaviour of recreational 

boating effort. Based on the success achieved in using the study covariates to impute plausible 

values for the missing observations in the boating effort data, Study V explored the 

opportunities to use them to predict the temporal distribution of recreational boating effort. 

Using a Bayesian regression framework, it was found that the covariates contained adequate 

predictive abilities to reveal patterns and trends in recreational boating effort. Using the No-U-

Turn Sampler (NUTS) proposed by Hoffman and Gelman (2014), the modelling framework 

provided greater flexibility and power to uncover complex relationship structures within the 

datasets. This modelling scheme would provide continuous time series data on boating effort 

and provide additional support for dealing with missing observation issues in digital camera 

monitoring data. 

One major challenge of digital camera monitoring of recreational boating effort is the cost of 

manual interpretation of video imagery, especially if multiple sites are involved. In the final 

study, Study VI, an a posteriori analysis was undertaken to investigate the trade-offs between 
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the reading cost and accuracy measures of estimates of boat retrievals obtained at various 

sampling proportions for low, moderate and high traffic boat ramps, thereby informing 

decisions on approaches to be used for future reading of camera data. Classical random 

sampling techniques including simple random sampling, systematic sampling and stratified 

sampling designs with proportional and weighted allocation were found to produce unbiased 

estimates of the total number of powerboat retrievals in 10,000 jackknife resampling draws. It 

was concluded that manual interpretation of camera footage for 40% of the days within a year 

can be deemed as an adequate level of sampling effort to obtain unbiased, precise and accurate 

estimates to meet broad management objectives. The relative standard error (RSE ± standard 

deviations) obtained for sampling proportions from 0.4 onwards were below the 20% threshold 

adopted in some fisheries research practices (Vølstad et al., 2014) for three of the sampling 

designs across the three boat ramps. Coverage rates of over 90% were observed for the 

confidence intervals for the estimated annual number of powerboat retrievals, with low relative 

standard errors (RSE < 20%). While the automation of the monitoring system would ultimately 

provide a cost-efficient means of data interpretation (Buch et al., 2011), advances in this 

technology are in an early phase for monitoring recreational fishing effort (Hartill et al., 2019). 

Thus, in the interim and beyond, the current study can improve the utility of digital camera 

monitoring by reducing the cost of manual data interpretation. The consistency in the trends of 

the relationships between the performance indicators, cost across ramps and sampling 

proportion from the sampling designs are indicative of the significant gains achieved and their 

reliability in practice. 

8.2 Limitations and future work 

In this thesis, the study objectives were achieved by applying diverse concepts of statistical 

techniques, specifically imputation, modelling, time series analysis and sampling. In this thesis 

the FCS-MI framework was used to impute plausible values for the periods of missing data, 

however other frameworks such as a Bayesian joint modelling approach or machine learning 

algorithms were not explored. A comparative study of different imputation modelling 

frameworks would be useful to fully understand the strengths and weaknesses that may exist 

in the approach chosen. This would provide opportunities of applications and help 

contextualize analytical techniques to meet specific imputation objectives. Secondly, the length 

of data used in this thesis is relatively short for a time series analysis, and there was the 

additional challenge of the paucity in the series. An attempt has made to construct the gaps 

between surveys, however, there were no rigorous validation of the modelled series. It would 
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be useful to explore adaptive schemes where sparse readings between survey years are matched 

to the modelled series. In addition, longer continuous time series of digital camera monitoring 

data would enhance the opportunities of using statistical modelling techniques to improve the 

utility of digital camera monitoring in recreational fisheries. Thirdly, the study predictors, 

notably the climatic variables are not exhaustive and leave a wide area for exploration as 

recreational boaters’ exhibit greater stochasticity in their boating behaviours. To gain greater 

understanding of the processes underlying the relationships of climatic variables and 

recreational boating activity, a further exploration of varying modelling setups and adaptation 

of the climatic conditions in a simulation study would be useful. Finally, automation of digital 

camera monitoring system will improve efficiency and enhance application. 
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Appendix A: Sample R-codes 

 

 Chapter 2  

# Set working directory 

# Use read.table to load data  

 

# Multiple regression modelling  

# Create indicator variable for variable with missing  

# observations 

 Var.name <- function(aug){ 

               x<-dim(length(aug)) 

                x[which(!is.na(aug))]=1 

                x[which(is.na(aug))]=0 

             return(x) 

                        } 

 

## Imputation function  

 for (i in 1:nrow(Data)) 

 { 

   if(Data$Var.name[i]==0) 

   { 

     Data$var_1[i]= c_0+c_ii*Data$vars[-var_1] 

   } 

 } 

# where vars are the set of predictors and var_1 is the  

# response 

 

# Structural models & State-space ARIMA(with Kalman filtering) 

# library(imputeTS) (version 2.7) 

# Transform data as ts object  

 na.kalman(ts.object, model=c("StructTS","auto.arima") 

 

# accuracy measures: mean absolute error (MAE), root mean  

# square error (RMSE) and symmetric mean absolute percentage  

# error (SMAPE) 

 MAE <- (sum(abs(Data$Observed-Data$Estimate)))/nrow(Data) 

 MSE <- (sum((Data$Observed-Data$Estimate)^2))/nrow(Data) 

 RMSE <- sqrt(MSE) 

 SMAPE <- ((sum(abs((Data$Observed-Data$Estimate)/  

          Data$Observed)))/nrow(Data))*100 

 cbind(MAE, MSE, RMSE, SMAPE)  
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 Chapter 3 & 4  

# Set working directory 

# Use read.table to load data  

 

#library(mice) (version 2.14) 

#library(VIM)  (version 4.8.0) 

#library(pscl) (version 1.5.2) 

#library(countimp) (version 1.0) 

#library(lattice) (version 0.20-38) 

#library(ggplot2) 

 

# Initialize the mice algorithm  

   ini<-mice(Data, m=5, maxit = 0, print = FALSE) 

 

# See van Buuren, S., and Groothuis-Oudshoorn, K. (2011). MICE:  

# multivariate imputation by chained equations in R. Journal  

# of Statistical Software, 45, 1-67. 

 

# Assign a new predictor matrix to meet modelling specification 

   pred<-ini$predictorMatrix 

   pred[var[i],] <- c(); c() may contain 0, 1, 2, and/or 3 

# Note that number of entries in c() is dependent on number of  

# predictors 

 

# Specify the model 

   meth<-ini$method 

   meth[var[i]]<-"model"  

# For example, model=='2l.zip' imputes missing data based on a  

# generalized linear mixed effects Zero-inflated Poisson model.  

# See Klienke, K. and Reincke, J. (2013). Multiple imputation  

# of incomplete zero-inflated count data. Statistica  

# Neerlandica, 67(3): 311-336. 

 

# Run imputation algorithm 

# Specify the number of multiple imputations (m) and iterations  

# (maxit) 

# Set seed for reproducibility 

   imp <- mice(Data, m = num, method = meth,maxit = num, 

             predictorMatrix = pred, seed = num, print = TRUE) 

# This algorithm runs on 'countimp' using 'mice' and 'pscl' as 

portable interfaces 

 

# For illustration, suppose we are imputing missing data with  

# zero-inflated Poisson model where underlying process for the 

# zero and count parts are influenced by the same set of  

# predictors assuming there are 3 predictors). The modelling  

# configuration will be as follows;  

   ini<-mice(Camera, m=5, maxit = 0, print = FALSE) 

   pred<-ini$predictorMatrix 

   pred[1,] <- c(0,1,1,1) 
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   meth<-ini$method 

   meth[2]<-"2l.zip"  

   imp <- mice(Data, m = num, method = meth, maxit = num, 

             predictorMatrix = pred, seed = num, print = TRUE) 

 

# Evaluation of imputation 

# generate the convergence properties of the multiple  

# imputations  

   plot(imp) 

 

# generate plot where the distributions of the observed and  

# imputed data are compared 

   Long <- complete(imp,"long") 

   levels(long$.imp) <- paste("Imputation",1:5) 

   long <- cbind(long, La.na =is.na(imp$data$Var.nam)) 

  

   densityplot(~Var.name|.imp, data=long, group = La.na,  

             plot.point = FALSE, ref=TRUE, xlab="Counts",       

             scales = list(y=list(draw=F)), par.settings =  

             simpleTheme(col.line = rep(c("blue","red"))), 

             auto.key = list(columns=2, text = c("Observed",  

             "Imputed"))) 

# accuracy measures: mean absolute error (MAE), root mean  

# square error (RMSE) and skill score (SS) 

   Bias <- 100*(sum(Imputed – Observed))/sum(Observed) 

   MAE <- (sum(abs(Observed- Imputed)))/nrow(Data) 

   MSE <- (sum((Observed- Imputed)^2))/nrow(Data) 

   RMSE <- sqrt(MSE) 

   MSE_1 <- (sum((Observed- Imputed)^2))/nrow(Data) 

   MSE_2 <- (sum((mean(Observed)-Imputed)^2))/nrow(Data) 

   SS <- 1 – (MSE_1/MSE_2) 

   cbind(Bias, MAE, RMSE, SS)  
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 Chapter 5 

# Set working directory 

# Use read.table to load data 

 

# library(forecast) (version 8.7)  

# library(lubridate) (version 1.7.4) 

# library(tsintermittent) (version 1.9) 

# library(acp) (version 2.1) 

# library(dplyr) (version 0.8.3) 

# library(tscount) (version 1.4.2) 

# Specify the format of date 

 Data$Date <- dmy_hm(Data$Date) 

 

# Split data into training and test set 

 Train_data <- ts(Data$var[i], start = num, end = num) 

 Test_data <- ts(Data$var[i],start = num, end = num) 

 

# Fit Croston & SBA model to the dataset 

 Model <- crost(Data, h = time horizon, type = c("croston",  

                "SBA")) 

 

# Fit Autoregressive Conditional Poisson (ACP) model 

 Model <- acp(var[i]~-1,data = Data,p = num, q = num,  

              family="acp") 

# See Heinen, A. (2003). Modeling Time Series Count Data: An  

# Autoregressive Conditional Poisson Model, MPRA Paper No.8113  

 

# Fit Integer-valued Autoregressive (INAR) model 

 Model <-tsglm (Data, model = list(past_obs = c(num,num)),  

                distr="distribution") 

 

# Fit Integer-valued Moving Average (INMA) model 

 Model <-tsglm (Data, model = list(past_mean=c(num)),  

                distr="poisson") 

 

# measure accuracy of model for in-sample and out-of-sample   

# prediction 

 accuracy(Model$components$c.in[,1],Data) 

 

# Mean Absolute Scaled Error  

 mase <- function(Train_ts, Test_ts, outsample_forecast){ 

            naive_insample_forecast <- stats::lag(Train_ts) 

            insample_mae <- mean(abs(Train_ts -     

            naive_insample_forecast), na.rm = TRUE) 

            error_outsample <- Test_ts - outsample_forecast 

            ase <- error_outsample / insample_mae 

            mean(abs(ase), na.rm = TRUE) 

            } 

 mase(Train_data,Test_data,h_ahead)  
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 Chapter 6 

# Set working directory 

# Use read.table to load data  

 

# library(sjmisc) (version 2.8.2) 

# library(rstan) (version 2.19.2) 

# library(rstanarm) (version 2.19.2) 

# library(sjstats) (version 0.17.7) 

# library(rstantools) (version 2.0.0) 

# library(brms) (version 2.10.0) 

# library(mgcv) (version 1.8-28) 

# library(coda) (version 0.19-3) 

# library(ggplot2) (version 3.2.1) 

# Set priors on the predictors 

 priori <- get_prior(Response ~ Predictors, family="model",  

                     data   = Data) 

 

 prior <- c(set_prior("dist. specification", class = "", coef  

            = "Predictor"),) 

  

# Fit Bayesian regression model 

 Modeltest <- brm(Response ~ Predictors,  

                 data   = Data, 

                 family = "distribution", 

                 warmup = num,  

                 iter   = num, 

                 chains = num, 

                 prior = prior, 

                 control = list(adapt_delta = num), 

                 inits  = "random", 

                 cores  = num) 

# This model runs in 'brms' using 'rstanarm' as a portable  

# interface for running the model in Stan for full Bayesian  

# inference  

# See Bürkner, P.-C. (2017). Brms: An R package for Bayesian  

# Multilevel Models using Stan. Journal of Statistical  

# Software, 80(1): 1-28, doi:10.18637/jss.v080.i01  

# See also Bürkner, P.-C. (2018). Advanced Bayesian Multilevel  

# Modelling with the R package brms. R Journal, 10(1), 395-411.  

# https://doi.org/10.32614/RJ-2018-017 

 

# Evaluation – display densities overlay from ensembles of  

# predicted distribution for daily powerboat launches from the  

# fitted models and the observed data 

    par(mfrow=c(1,2)) 

    pp_check(Modeltest,nsamples = num) 

    pp_check(Modeltest,nsamples = num,type = "loo_pit_overlay") 

 

# To estimate Bayes R^2  

    plot(bayes_R2(Modeltest)) 

https://doi.org/10.32614/RJ-2018-017
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# To obtain the marginal_smooths for the predictors  

    modelposterior <-as.mcmc(Modeltest) 

 

# To obtain the Geweke diagnostic use – to assess convergence  

# by comparing the estimated between-chains and within-chain  

# variances for each model parameter  

    geweke.diag(modelposterior[,1:23],frac1 = 0.1,frac2 = 0.9) 

    geweke.plot(modelposterior[,1:23],frac1 = 0.1,frac2 = 0.9) 

 

# Plot fitted means against actual response 

    dat1 <- as.data.frame(cbind(Y = standata(Modeltest)$Y,  

                        fitted_values1)) 

    ggplot(dat1) + geom_point(aes(x = Estimate, y = Y)) 

# 

# Predict for new dataset of predictors 

    future <- predict(Modeltest, newdata = newdata)  
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 Chapter 7 

# library(TeachingSampling) (version 3.4.2)  

# library(sampling) (version 2.8) 

# library(SamplingStrata) (version 1.4-1) 

# Simple random sampling (SRS) 

  Popsize =366 

  sample_stats <- function(df, n=n){ 

# randomly sample size of n without replacement from the  

# dataframe 

       df1 <- df[sample(1:nrow(df), n, replace=F),] 

# post-stratification 

      m_1<- filter(df1, Interact == "Autumn/Weekday") %>%  

      summarise(Awd_n=n(),Awd_Tot=sum(var.nam),    

             Awd_M=mean(var.nam),Awd_SE=sd(var.nam),  

             Awd_E=strata_1*Awd_M, Awd_ESE=  

            (sqrt((strata_1-Awd_n)/(strata_1-1)))   

    *(sqrt(strata_1^2/Awd_n)) * Awd_SE, Awd_PME = 1.96*Awd_ESE) 

# Do for all 8 strata  

# estimate the mean of retrievals from the sample  

  mx <- mean(df1$var.nam) 

# estimate the standard deviation with fpc factor 

  sdx <- sd(df1$var.nam) 

  sumx<- sum(df1$var.nam) 

# expanded total estimate 

  Total <- Popsize*mx 

  Total_se <- sqrt((Popsize^2)/n)*sdx 

  CI_U <- Total+1.96*Total_se 

  CI_L <- Total-1.96*Total_se 

  PME <- 1.96*Total_se 

# Check if actual value is found within confidence interval 

  Count <- between(Actual, CI_L,CI_U) 

# coeeficient of variation 

  cv <- sdx/mx 

# estimate the root mean square error. 

  RMSE <- sqrt((sum((df1$var.nam -mx)^2)/n)) 

  return(c(Mean = mx, SD = sdx, S_total = sumx, E_total = Total,    

      E_Tse = Total_se, CL = CI_L, CU = CI_U, PME = PME, 

#    Cov = Count, CV = cv, RMSE = RMSE, m_1, m_2, m_3, m_4, m_5,  

     m_6, m_7, m_8)) 

     } 

# 10000 Jacknife draws 

# results <- replicate(10000, sample_stats(Data, n = num)) 

# Systematic sampling (SSRS) 

 sample_stats <- function(df){ 

       sam<-S.SY(Popsize, int) 

       df1<-df$var[sam] 

       m_1 <-summary(df1) 

       df2<-df$Ret[sam] 

       mx <- mean(df2) 

       sdx <- sd(df2)*sqrt((Popsize-length(df2))/(Popsize-1)) 

       sumx<-sum(df2) 
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       Total <- Popsize*mx 

       Total_se <- sqrt((Popsize^2)/length(df2))*sdx 

       CI_U <- Total+1.96*Total_se 

       CI_L <- Total-1.96*Total_se 

       PME <- 1.96*Total_se 

       Count <- between(Actual, CI_L,CI_U) 

       cv <- sdx/mx 

       RMSE <- sqrt((sum((df2-mx)^2)/length(df2))) 

  return(c(Mean=mx, SD=sdx, S_total=sumx, E_total=Total,  

           E_Tse=Total_se, CL=CI_L, CU=CI_U, PME=PME, 

           Cov= Count, CV= cv, RMSE=RMSE,m_1)) 

     } 

 int = num 

 results <- replicate(10000, sample_stats(Camera)) 

# Stratified sampling (SRSP) 

  sample_stats <- function(df){ 

   df <- df %>% group_by(Interact) %>% sample_frac(sp) 

   m_1<- filter(df, Interact == "Autumn/Weekday") %>%  

    summarise(Awd_n=n(),Awd_Tot=sum(var.nam),  

             Awd_M=mean(var.nam),Awd_SE=sd(var.nam),  

             Awd_E=strata_1*Awd_M, Awd_ESE=  

             (sqrt((strata_1-Awd_n)/(strata_1-1)))  

      *(sqrt(strata_1^2/Awd_n)) * Awd_SE,Awd_PME=1.96*Awd_ESE) 

# Do for all 8 strata  

# Estimate the all relevant statistics from the sample  

  return(c(all relevant estimates)) 

  } 

 sp = num 

 nsize = num 

 results <- replicate(10000, sample_stats(Data)) 

# Optimal stratified sampling design (SRSW) 

 sample_stats <- function(df){ 

      df1<-strata(df, stratanames ="Interact", size= size,  

                  method="srswor") 

      df2<-getdata(df,df1) 

      m_1<- filter(df2, Interact == "Autumn/Weekday") %>%  

           summarise(Awd_n=n(),Awd_Tot=sum(var.nam),  

              Awd_M=mean(var.nam),  

              Awd_Ma=strata_1*mean(var.nam), 

              Awd_SE=(sqrt((strata_1-Awd_n)/(strata_1-1)  

              *(sum(df2$ var.nam -Awd_M)^2)/(Awd_n-1)  

              *(nsize/Awd_n)*(strata_1/Popsize)^2)), 

              Awd_s=Awd_SE/(Awd_n)^2,Awd_PME=1.96*Awd_SE) 

# Do for all 8 strata  

# estimate the all relevant statistics from the sample  

  return(c(all relevant estimates)) 

  } 

 nsize = num 

 size = c(num,num,num,num,num,num,num,num) 

 results <- replicate(10000, sample_stats(Data)) 
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