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Abstract 

Many existing implant biomaterials including cobalt-chromium alloy, stainless steel, Ti-6Al-4V 

and commercially pure titanium have all been shown to demonstrate mechanical 

incompatibility, poor osseointegration and/or cause cytotoxic effects on the human body after 

some years of application, leading to revision surgery in most cases. Consequently, there is an 

immediate need for an enduring biomaterial that displays good mechanical properties and 

possesses biocompatibility and corrosion resistance, in order to reduce rates of revision 

surgeries. In this PhD work, based on the 𝐵𝑜̅̅̅̅ -𝑀𝑑̅̅̅̅̅, 𝑒/𝑎̅̅ ̅̅ ̅-𝛥𝑟̅̅ ̅ and BF-d-electron superelastic 

theoretical relationships four new series of quaternary Ti-25Nb-8Zr-xCr, Ti-25Nb-xSn-yCr, Ti-

26Nb-xMn-yZr and Ti-25Nb-xMn-ySn alloys have been designed for the first time. These 

designed alloys were produced using the cold crucible levitation melting method, where the 

effect of balanced combination of β-isomorphous (Nb), β-eutectic (Cr, Mn) and neutral (Zr, Sn) 

elements on phase transformation, β-phase stability and mechanical properties of the alloys are 

investigated.  

Microstructural investigations of Ti-25Nb-8Zr-xCr (x = 0, 2, 4, 6, 8) demonstrate a single β 

phase, with the exception of Ti-25Nb-8Zr-0Cr which shows dual α" and β phases. Furthermore, 

the addition of Cr is shown to be effective in achieving a single β phase where suppressing the 

formation of α" phase. As the content of Cr increases, the yield strength (382-773 MPa) and 

hardness (1.91-2.63 GPa) also increase in Ti-25Nb-8Zr-xCr alloys. Notably, all the investigated 

alloys demonstrated significant strain hardening rates.  

The Ti-25Nb-xSn-yCr (x = 1, 3, 5 wt% and y= 2, 4 wt%) alloys demonstrated only β phase in 

their microstructures.  It is of note that all Ti-25Nb-xSn-yCr alloys displayed large plasticity of 

~80% without failure during mechanical testing. Yield strength, hardness and elastic modulus 

were (314-463) MPa, (2.36-1.93) GPa and (66-78) GPa, respectively. Ti-25Nb-1Sn-2Cr 

possessed the higher values of wear resistance indices (i.e. H/E and H3/Eeff2) as compared to 

commercially pure titanium and Ti-6Al-4V. 

The Microstructural features of Ti-26Nb-xZr-yMn (x = 4, 7, 10 wt% and y = 3, 5 wt%) alloys 

revealed a monolithic β phase. Notably, none of the alloys displayed failure and demonstrated 

substantial true plasticity of ~160% during mechanical compression testing.  Yield strength, 

hardness and dislocation density were (609-451) MPa, (242-207) HV and (2.45×1015-0.4×1015) 

m-2, respectively. Additionally, Ti-26Nb-4Zr-5Mn demonstrates good strain hardening ability 
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and electrochemical kinetics in terms of high strain hardening indices (0.42 and 0.09) and small 

corrosion current density (0.839 nA/cm2), respectively.  

In Ti-25Nb-xMn-ySn (x = 2, 4 wt% and y = 1, 5 wt%) alloys, it was found that only Ti-25Nb-

2Mn-1Sn displayed dual β and α" phases while others showed a monolithic β phase. Yield 

strength, hardness and superelastic recovery ratio were (710-563) MPa, (244-207) HV and (90-

80) %, respectively. It is of noteworthy; Ti-25Nb-4Mn-1Sn displays the low elastic modulus 

and high energy absorption.  

The results demonstrate that among the investigated alloys Ti-25Nb-8Zr-4Cr, Ti-25Nb-1Sn-

2Cr, Ti-26Nb-4Zr-5Mn and Ti-25Nb-4Mn-1Sn display superior combination of mechanical 

properties making them suitable materials for implant applications.  
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5. Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and 

significant strain hardening  

This work has been published in the “Materials & Design” journal. 

5.1. Rationale theoretical design for the novel Ti alloys  

The Ti-25Nb-8Zr-xCr (TNZx) alloys were theoretically designed on the basis of approach 

established by Morinaga et al. [163] known as DV-Xα cluster strategy which is widely used to 

predict β phase stability and deformation mechanism for the designed Ti alloys based on the 

two electronic parameters [164]  i.e. the bond order (Bo) and the d-orbital energy level (Md) 

[63]. Bo represents the overlap population between the atomic orbitals of parent element and 

alloying elements [160]. The overlap population is in proportional relationship with covalent 

bond strength between a parent element and other alloying elements [160]. Whereas, Md 

correlates the atomic radius and electronegativity of alloying elements [40].  Md  remains in 

proportional relationship with atomic radius of an element, while it remains in inverse 

relationship with electronegativity of an element [160]. The average values of Bo̅̅̅̅  and Md̅̅ ̅̅  for 

the TNZx alloys were evaluated by the respective formulae suggested in Ref. [98]. 

Additionally, a new semi-empirical approach developed by Wang et al. [18] was used to design 

novel group of TNZx alloys. This approach was developed on the basis of two parameters, i.e. 

the valence electron concentration (e/a) and the atomic size difference (Δr). This approach 

involves plotting of their compositional average on e/a̅̅ ̅̅̅-Δr̅̅ ̅ diagram [18]. The values of  e/a ̅̅ ̅̅ ̅ 

and Δr̅̅ ̅ for the TNZx alloys were estimated using the Eqs. (5.1) and (5.2) [18]. 

                       Δr̅̅ ̅ = ∑ ci(ri − rTi)
n
i         (5.1)  

                      e/a̅̅ ̅̅̅ = ∑ ciei
n
i          (5.2)  

where 𝑐𝑖, 𝑟𝑖 and 𝑒𝑖 are the atomic fraction, atomic radius and valence electron number of the ith 

atom, respectively. Moeq is also a significant parameter for theoretically ensuring the β phase 

stability and estimating various deformation mechanisms. Moeq can be calculated using the 

equation of Moeq suggested in Ref. [7]. The calculated-values of  𝐵𝑜̅̅̅̅ , 𝑀𝑑̅̅̅̅̅, 𝑒/𝑎 ̅̅ ̅̅ ̅̅ , 𝛥𝑟̅̅ ̅ and Moeq 

for the TNZx alloys are summarized in Table 5.1. 
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Table 5.1 The values of 𝐵𝑜̅̅̅̅ , 𝑀𝑑̅̅̅̅̅, 𝑒/𝑎̅̅ ̅̅ ̅, 𝛥𝑟̅̅ ̅ (Å ) and Moeq (wt%) for all the as-cast Ti-25Nb-8Zr-xCr 
alloys. 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Results and discussion 

5.2.1. Microstructure and phase analyses 

Fig. 5.1 presents the XRD profiles of the TNZx alloys. The TNZ0 alloy comprises the 

orthorhombic α" and bcc β phases, whereas the Cr-containing alloys, i.e. TNZ2, TNZ4, TNZ6 

and TNZ8, contain only bcc β phase. The diffraction peaks of bcc Cr-containing Ti alloys shift 

towards higher 2θ angles upon increasing the Cr content. This is evident due to smaller atomic 

radius of Cr as compared to Ti [15]. The calculated ɑβ values for TNZ0, TNZ2, TNZ4, TNZ6 

and TNZ8 are found to be 0.3307, 0.3293, 0.3283, 0.3274 and 0.3264 nm respectively. The ɑβ 

of bcc Ti alloys comprising Cr reduces as content of Cr increases in the as-cast alloys because 

the atomic radius of Cr is smaller than Ti [15]. The ɑβ of TNZ0 alloy is 0.3307 nm which is 

slightly higher than that of standard bcc Ti (0.3306 nm) due to presence of Zr as it has higher 

atomic radius as compared to Ti [203, 204]. The orthorhombic α" is found in the TNZ0 alloys 

because of martensitic transformation which occurs after rapid quenching [205, 206]. The 

cooling rate plays a significant role in phase transformation from β → α" phase when alloys 

solidify from high temperature [207]. It was widely reported that, after rapid quenching of Ti 

alloys, β phase may transform into different phases, i.e. α", α', α and ω phases [120, 207]. It can 

be noticed that only bcc β peaks are evident on the XRD profiles of the as-cast Cr-containing 

alloys. It is well known that Cr is a strong β stabilizer [40, 208] and therefore, it substantially 

enhances the β stability by adding only 2% of Cr in the TNZx alloys. It was reported that the 

existence of ω phase  (Space group: P6/mmm, PDF card no: 00-051-0631) can be detected by 

XRD at low scanning speed of 0.5º/min [145, 174]. Accordingly, the XRD curves of the TNZx 

alloys acquired at slow scan speed of 0.011°/s with a step size of 0.013° in this work, which 

Alloys 
Chemical 

composition (wt%) 
𝑩𝒐̅̅ ̅̅  𝑴𝒅̅̅ ̅̅ ̅ 

 

𝒆/𝒂̅̅ ̅̅ ̅ 

 

𝜟𝒓̅̅̅̅  Moeq 

TNZ0 Ti-25Nb-8Zr 2.8521 2.4677 4.25 0.59 6.9 

TNZ2 Ti-25Nb-8Zr-2Cr 2.8519 2.4465 4.29 0.29 9.4 

TNZ4 Ti-25Nb-8Zr-4Cr 2.8518 2.4252 4.33 -0.01 11.9 

TNZ6 Ti-25Nb-8Zr-6Cr 2.8517 2.4038 4.37 -0.31 14.4 

TNZ8 Ti-25Nb-8Zr-8Cr 2.8516 2.3824 4.41 -0.61 16.9 
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could also detect the ω phase if it exists in the studied alloys. According to PDF card no: 00-

051-0631, ω phase is associated with the XRD peaks having hkl = 001, 111, 002, 112. In the 

present work, none of the aforementioned XRD peaks are found for the investigated alloys. 

Therefore, ω phase is not expected or has trace amount in all the investigated TNZx alloys. 

 

 

Fig. 5.1. The XRD patterns of the Ti-25Nb-8Zr-xCr alloys (the alloys are shortened as TNZx). 

 

The microstructure images of the TNZx alloys are shown in Fig. 5.2. Only the TNZ0 represents 

the two phases, i.e. bcc β and orthorhombic α" phases, whereas the Cr-containing TNZx alloys, 

i.e. TNZ2, TNZ4, TNZ6 and TNZ8 predominantly constitute the full β phase. Therefore, β is a 

leading phase in the microstructures of all the TNZx alloys. Moreover, an equiaxed structure of 

the bcc β phase can be clearly observed with the β grain boundaries in the SEM images of all 

the TNZx alloys. Further, the dendritic substructure, which usually occurs during solidification 

[209], can also be visible inside the β equiaxed grains  in all the studied alloys. It can be noted 

that, the two kind of contrast happen in Fig. 5.2b-e for TNZ2, TNZ4, TNZ6 and TNZ8 

respectively due to dendritic sub-structure which is present inside the β grains. By contrast, in 

Fig. 5.2a, needles of α" phase are also evident in the microstructure along with the contrast 

effect produced by dendritic sub-structure of the β grains. The evident peaks related to α" phase 

are also found in the XRD profile of TNZ0. A high-magnification BSE inset image has been 

placed in Fig. 5.2 to clearly show the acicular structure of α" phase. Based on the results of 

microstructure and phase characterization, TNZ0 contains dual phase, i.e. β and α" phases, 

while the remaining alloys (TNZ2, TNZ4, TNZ6 and TNZ8) contain single β phase. Moreover, 

EDX mapping results (not shown herein) show that the Cr has homogeneously distributed in the 

alloys for all the investigated alloys.  
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Fig. 5.2. The backscattered SEM microstructure images of the Ti-25Nb-8Zr-xCr alloys: (a) 0 wt%, (b) 2 

wt%, (c) 4 wt%, (d) 6 wt% and (e) 8 wt%. 

 

5.2.2. Mechanical properties 

It is known that the microstructural characteristics and their corresponding Vf constitutes in Ti 

alloys influence their mechanical properties [120, 196]. Therefore, to investigate the influence 

of different compositions on the mechanical performance of the designed Ti alloys, 

compression testing at room temperature and Vickers micro-hardness tests were conducted. 

Fig. 5.3 demonstrates the compressive engineering stress-strain curves taken for the TNZx 

alloys at room temperature. The stopping criterion for the compressive tests was either the alloy 

failed or when the compression testing machine reached 100 kN (the load capacity of the 

mechanical machine). It can be noticed from Fig. 5.3 that all the studied TNZx alloys except for 

the TNZ0 exhibit very large plastic strain and do not fail until the 100 kN is reached. Note that, 

the addition of Cr significantly enhances the mechanical properties (strength and plasticity) of 

acicular a" 

t 39° 
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the TNZx alloys. Fig. 5.3 inset shows the difference in specimen-size before and after 

compression testing for TNZ8. A small shear crack (after the compression test) on the 

specimen-surface of TNZ8 can also be seen in Fig. 5.3 inset because the definite fracture has 

not occurred in any Cr-containing TNZx alloys, until the load reaches 100 kN in compression 

testing. 

 

 

Fig. 5.3. The ambient temperature engineering stress-strain curves of the Ti-25Nb-8Zr-xCr alloys (the 
alloys are shortened as TNZx). 

 

Fig. 5.4 shows the relationship between yield strength (σ0.2) and Hardness (H) of the TNZx 

alloys. In this work, both σ0.2 and H change in a same fashion as both have a proportional 

relationship with each other [40, 210, 211]. It is clear from Fig. 5.4 that the values of σ0.2 and H 

increase gradually with increasing the Cr content in the studied alloys. The values of σ0.2 for the 

Cr-containing alloys vary from 385 ± 44 MPa to 773 ± 28 MPa. Further, the values of H for the 

Cr-containing alloys vary from 1.94 ± 0.05 GPa to 2.63 ± 0.06 GPa. Such an increasing trend of 

σ0.2 and H for the TNZx alloys is positively influenced by the effect of solid-solution 

strengthening [42]. The phenomenon of solid-solution strengthening occurs as per  the well-

known Hume-Rothery rule due to adding low atomic radius (solute) element, i.e. Cr, in the 

alloys [15].  
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Fig. 5.4. Yield strength (σ0.2) and hardness (H) of the Ti-25Nb-8Zr-xCr alloys (name of the alloys are 

shortened as TNZx). 

 

It is of worth noting from Fig. 5.5 that the addition of Cr significantly enhances the plastic 

strain and maximum compressive strength obtained at 100 kN for all the studied alloys. Among 

the investigated alloys, TNZ0 exhibits the lowest plastic strain (28 ± 0.5%) as it consists of α" 

phase along with β phase. Whereas, all the Cr-containing alloys display superior plastic strain 

(~75%) and maximum compressive strength (~4.5 GPa) at 100 kN, because the Cr has 

enhanced the β phase stability and thus suppresses the α". Accordingly the mechanical 

properties (both strength and plasticity) of all the investigated Cr-containing TNZx alloys are 

significantly enhanced [120]. In the present work, the mechanical properties are influenced by 

the addition of Cr. Moreover, all the investigated alloys show equiaxed β grains and the size of 

the β grains decrease as the content of Cr increases in the TNZx alloys. However, it is difficult 

to measure the accurate average size of the β grains as the size of the β grains is greater than 

around 300-500 µm in all the investigated alloys. It can be inferred based on the points 

discussed above that the mechanical properties are mainly affected due to the content of solute 

element (i.e. Cr) instead of the minimum differences in dendritic structures of the investigated 

alloys.  
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Fig. 5.5. Maximum strength (σmax) and plastic strain (ep) of the Ti-25Nb-8Zr-xCr alloys (the alloys are 
shortened as TNZx). 

 

Fig. 5.6 presents the compressive true stress-strain curves obtained at room temperature for the 

TNZx alloys. It can be observed from Fig. 5.6 that the true stress-strain curves comprise 

multiple peaks of stress oscillations and these curves include four stages: (I) elastic stage, (II) 

first strain hardening stage, (III) strain softening stage and (IV) second strain hardening stage as 

presented in Fig. 5.6 inset only for TNZ4 as an example to show the four stages. Such kind of 

multiple-peak oscillations have also been reported in the previous work on Ti-Nb-Ta-Zr-O alloy 

during straining [212]. The first strain hardening stage occurs based on the dynamic Hall-Petch 

effect, which shows that α'' martensite and twinning deformation produce new sharp interfaces 

due to continuous sub-grain division. These interfaces would also restrict the dislocation motion 

and minimize the dislocation mean free path, thereby causing increased rate of strain hardening 

[213, 214]. The strain softening is produced due to the effect of stress relaxation in which stress 

intensity reduces when the specimen is loaded for quite long period of time at constant strain 

rate [215]. Second strain hardening stage occurs due to the formation of shear bands [212, 216]. 

As such, at the end of compression test, a high intensity of shear stress remains in the specimen 

and the deformation mechanism alters into the formation of shear bands [212].  
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Fig. 5.6. The true stress-strain curves of the Ti-25Nb-8Zr-xCr alloys (the alloys are shortened as TNZx). 

Inset shows the four stages in deformation. 

 

Fig. 5.7 illustrates the relationship between strain hardening rate (θ) and true plastic strain (ɛp) 

for the TNZx alloys. The inset presented in Fig. 5.7 is for TNZ4 only as an example to show the 

variation in θ. The ∂σT/∂ɛp for TNZx alloys containing Cr comprises, the first strain hardening 

stage (before point A), the strain softening stage (between points A and B) and the second strain 

hardening stage (after point B). It is clear from inset Fig. 5.7 that ∂σT/∂ɛp < 0 during strain 

softening stage, ∂σT/∂ɛp > 0 during strain hardening stages and ∂σT/∂ɛp ≈ 0 at points A and B. 

Notably, the θ increases by adding 2 wt% Cr in the TNZ0 alloy (i.e. the TNZ2 alloy) (5 GPa) 

during first stage of strain hardening. This occurs due to the activation of twin deformation 

mechanism [176, 217, 218]. The second strain hardening stage occurs due to the formation of 

shear bands. Therefore, TNZ4 demonstrates the highest rate of strain hardening (0.65 GPa) in 

the second stage among the investigated TNZx alloys because the highest plasticity is also 

found in TNZ4 among all the studied alloys [212].  
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Fig. 5.7. The strain hardening rate as a function of true plastic strain of the Ti-25Nb-8Zr-xCr alloys (the 

alloys are shortened as TNZx). Inset shows the variation in strain hardening stages. 

 

5.2.3. The elasto-plastic deformation 

The elasto-plastic deformation behavior can be analyzed effectively by studying the 

deformation patterns around the Vickers indentation [218]. Typically, there are three forms of 

morphologies formed around micro-hardness indentations of an alloy (i.e. “Sink-in”, “pile-up” 

and “crack”) [210]. The formation of deformation bands, extrusion and cracks may occur 

during hardness testing around the impression of an indenter [210]. While performing 

indentation in hardness testing, the deformation of material around the edge of an indenter takes 

place due to both the shear and normal stress components, whereas the deformation around the 

corners emerges because of normal stress components only which remains the cause of crack 

formation [210]. The wavy and straight morphologies of deformation bands around the 

hardness indentation can be used to determine the boundaries between slip and twin mechanism 

in 𝐵𝑜̅̅̅̅ -𝑀𝑑̅̅̅̅̅ map [160]. Wavy slip bands form around indentation when slip mechanism is 

dominant and straight twin bands form around indentation when twin mechanism dominates the 

deformation of a material [160]. 

Fig. 5.8 displays the optical micrographs which were captured around the micro-hardness 

indentations of the TNZx alloys. No crack morphology is found on the corners of an indenter 

for all the investigated alloys as all show significant plasticity in compressive testing as shown 

in Fig. 5.6. Hence, few deformation bands are obtained around the hardness indentation for 

TNZ0 (Fig. 5.8a), because it has the lowest plastic deformation strain among the investigated 

alloys. A substantial increase in the number of bands can be clearly observed from Fig. 5.8b 

after addition of 2 wt% Cr in the TNZ0 alloy. As such, the morphology of the bands around the 
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indentations of TNZ2 is straight twin, which represents that twin mechanism is dominant in the 

deformation of TNZ2 alloy [160]. In Fig. 5.8c, more wavy slip bands are observed along with a 

few straight twin bands, which represents the activation of twin + slip deformation mechanism 

in the TNZ4 alloy [160]. It can be clearly seen from Fig. 5.8d-e that only wavy slip bands are 

formed around the indentations, which indicates that slip mechanism is dominant in the 

defamation of both TNZ6 and TNZ8 alloys [160]. 
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Fig. 5.8. The optical micrographs around the Vickers micro-hardness indentations captured for the Ti-

25Nb-8Zr-xCr alloys (the alloys are shortened as TNZx): (a) TNZ0, (b) TNZ2, (c) TNZ4, (d) TNZ6 and 
(e) TNZ8. 

 

Fig. 5.9 and Fig. 5.10 shows the boundaries between different deformation mechanisms of the 

TNZx alloys. In Fig. 5.9, the regions of α, α+β and β phases and their possible deformation 
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mechanisms (i.e. slip and twin) can be clearly seen. The phase stability in 𝐵𝑜̅̅̅̅ -𝑀𝑑̅̅̅̅̅ map can be 

observed by plotting the 𝐵𝑜̅̅̅̅  and 𝑀𝑑̅̅̅̅̅ values of the TNZx alloys in the 𝐵𝑜̅̅̅̅ -𝑀𝑑̅̅̅̅̅ map as suggested 

by Ref. [19]. It is reported that alloy should have high 𝐵𝑜̅̅̅̅  and low 𝑀𝑑̅̅̅̅̅ values to attain a high β 

stability position in the 𝐵𝑜̅̅̅̅ -𝑀𝑑̅̅̅̅̅ map [40]. The locations of all the studied alloys, on the basis of 

their respective 𝐵𝑜̅̅̅̅  and 𝑀𝑑̅̅̅̅̅ values presented in Table 5.1 are plotted in the 𝐵𝑜̅̅̅̅ -𝑀𝑑̅̅̅̅̅ map. It is 

clearly observed from Fig. 5.9 that TNZ0 is located in the martensite region, TNZ2 is placed in 

the twin region, TNZ4 is almost on the boundary of slip/twin, while the rest alloys (i.e. TNZ6 

and TNZ8) are located in the slip region. Deformation mechanisms can also be estimated by 

plotting the 𝑒/𝑎̅̅ ̅̅ ̅ and 𝛥𝑟̅̅ ̅ values of the studied alloys in 𝑒/𝑎̅̅ ̅̅ ̅-𝛥𝑟̅̅ ̅ diagram as suggested by Ref. 

[18]. 

 

 

Fig. 5.9. The locations of the Ti-25Nb-8Zr-xCr alloys (the alloys are shortened as TNZx) on the phase 
stability diagram. 
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Fig. 5.10. The locations of the Ti-25Nb-8Zr-xCr alloys (name of the alloys are shortened as TNZx) on 

the 𝑒/𝑎̅̅ ̅̅ ̅-𝛥𝑟̅̅ ̅  diagram. The orange lines in this diagram are plotted based on Ref. [18]. 
 

In this work, the values of 𝑒/𝑎̅̅ ̅̅ ̅ and 𝛥𝑟̅̅ ̅ (Table 5.1) for all the TNZx alloys and some other 

studied Ti alloys in literature are plotted in Fig. 5.10 in order to investigate the deformation 

mechanism through 𝑒/𝑎̅̅ ̅̅ ̅-𝛥𝑟̅̅ ̅ diagram. All the plotted alloys are in good agreement with the 

predicted deformation mechanisms as suggested by 𝑒/𝑎̅̅ ̅̅ ̅-𝛥𝑟̅̅ ̅ diagram. Fig. 5.10 predicts the twin 

or SIM mechanism for TNZ2 and TNZ0, slip + twin mechanism for TNZ4 and slip mechanism 

for TNZ6 and TNZ8.  Furthermore, Kolli et al. [16] studied the influence of the values of Moeq 

on the various deformation mechanisms for Ti alloys and found that the deformation 

mechanisms change in the sequence of α' → α" → ω + twinning → twinning + Slip → Slip as 

increasing the values of Moeq [16]. The values of Moeq for the studied TNZx alloys (as shown in 

Table 5.1) suggest the similar trend as suggested by Ref. [16]. As a result, the deformation 

mechanisms predicted by the 𝐵𝑜̅̅̅̅ -𝑀𝑑̅̅̅̅̅ diagram and 𝑒/𝑎̅̅ ̅̅ ̅-𝛥𝑟̅̅ ̅ diagram are in good agreement with 

that by morphologies of deformation bands around the micro-hardness indentations for the 

studied TNZx alloys. 

5.2.4. Fracture analyses 

It is known that shear bands are the localization of high shear strains which cause the 

4.5 • 2( 0 □ n (T wok] • fr.rt g ais • 0r-441, • mu4[Ti wore • r-er] □ • n(Tl wok 
4.4 • e-24 ' po(ti we • er[4t] 0 • • ....4 ' 0 • mfr(4t] 0 • .ti 0 • 4.3 0 hf (1 0e • • fen [ts g 5 • hf2f% (1 

• hf4l (16. Slip a Slip • • $ff% (1$ 
• .4of«.0f(14 • 4.2 ft@ft6] 
¢ rt.f«(1. 
ref[4.a • neg4.2] 
nrre814.a] 

4.1 0 hi4 142] • .44.2] • nu.¢pl Twinning/SIM 
Twinning/SIM 

4.0 
-d -3 -2 -1 0 1 2 3 4 

Ar 



82 

 

occurrence of deformation bands along the direction of maximum shear stress [219]. Prior to 

the formation of shear bands, a material typically experiences a yielding and deformation 

twinning during the plastic deformation [220]. Thus, analyses of shear bands were performed 

on the samples prepared metallographically for the investigated Cr-containing Ti alloys at the 

same load limit (at 100 kN). The features of these analyses are presented in Fig. 5.11. TNZ0 is 

not included in this analysis as the TNZ0 fails before reaching the 100 kN in compression 

testing. Hence, for analyzing the shear bands at the same load limit, the compression tests were 

stopped at 100 kN in the present work. Shear bands can be clearly noticed in Fig. 5.11a-d. In 

Fig. 5.11b, thick shear bands can be observed in TNZ4, which indicates that a large plastic 

deformation occur in TNZ4 alloy and as a consequence TNZ4 relatively displays the largest 

plastic strain [15, 221]. 

 

 

Fig. 5.11. Backscattered SEM images of mechanically deformed surface morphologies of the Ti-25Nb-

8Zr-xCr alloys containing Cr: (a) TNZ2, (b) TNZ4, (c) TNZ6 and (d) TNZ8. 

 

Fig. 5.12 shows the SEM images of fractographic morphologies captured on the deformed-outer 

surfaces of the tested specimens for the investigated TNZx alloys. The shear crack angle 

between the fracture plane and compressive loading direction is almost 45° which indicates that 

cracks form in a shear mode [139]. There is a minor shear crack on the outer surfaces of the Cr-

containing alloys. Fig. 5.12 shows the SEM fractographic images for the deformed Cr-

containing TNZx alloys together with TNZ0. Fig. 5.12a displays the flat main fracture in TNZ0 
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which demonstrates a transgranular fracture. Further, the cracks can be observed on the 

fractographic image of TNZ0. On the other hand, Fig. 5.12b-e displays that fracture is not 

observed in the deformed samples of all the investigated Cr-containing TNZx alloys since these 

alloys do not fail in mechanical compression testing. Nonetheless, many shear bands are 

observed in all the deformed Cr-containing TNZx alloys. Therefore, all of the investigated Cr-

containing TNZx alloys possess a significantly large plasticity. The fractographic results are in 

line with the studied mechanical properties of TNZx alloys. 

 

 

Fig. 5.12. SEM fracture surface morphologies of the Ti-25Nb-8Zr-xCr alloys: (a) TNZ0, (b) TNZ2, (c) 

TNZ4, (d) TNZ6 and (e) TNZ8. 

 

5.3. Conclusions  

The present work investigates the microstructural characteristics, the mechanical properties, the 

elasto-plastic deformation and deformation behaviors for the newly-designed Ti-25Nb-8Zr-xCr 

(x = 0, 2, 4, 6, 8 wt%) alloys, which were designed based on DV-Xα cluster method and 𝑒/𝑎̅̅ ̅̅ ̅-
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𝛥𝑟̅̅ ̅ diagram. The following concluding remarks can be made from the results presented. 

 The Ti-25Nb-8Zr alloy displays a dual-phase (bcc β and orthorhombic α" phases) 

microstructure while the Cr-containing Ti-25Nb-8Zr-xCr alloys predominantly comprise 

a single bcc β phase in microstructure. 

 All the Cr-containing alloys do not fail in the compression tests performed up to the load 

capacity at 100 kN. All the Cr-containing alloys exhibit impressive maximum 

compressive strength (~4.5 GPa) and superior plastic strain (~75%). Both hardness (1.91 

GPa to 2.63 GPa) and yield strength (382 MPa to 773 MPa) increase as the Cr 

concentration increases in the Ti-25Nb-8Zr-xCr alloys. Enhanced strain hardening rate 

(5 GPa) is achieved in Ti-25Nb-8Zr-2Cr alloy. 

 The predicted deformation mechanisms based on deformation bands investigated around 

micro-hardness indentations, 𝐵𝑜̅̅̅̅ -𝑀𝑑̅̅̅̅̅ diagram and  𝑒/𝑎̅̅ ̅̅ ̅-𝛥𝑟̅̅ ̅ diagram are in line with each 

other for the investigated Ti-25Nb-8Zr-xCr alloys. Moreover, the results of the fracture 

analyses and the mechanical properties for the investigated alloys are also in good 

agreement with each other. 

 Among all the as-cast alloys, the Ti-25Nb-8Zr-2Cr and Ti-25Nb-8Zr-4Cr alloys exhibit 

significant strain hardening and superior plasticity. Both alloys can be potentially used 

in advanced biomedical and structural applications. 

  



The following chapter is not included in this version of the thesis: 

 

6. Mechanical characterization and deformation behaviour of β-stabilized Ti-

Nb-Sn-Cr alloys 
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7. Strengthening mechanism and corrosion resistance of 

beta-type Ti-Nb-Zr-Mn alloys 

This work has been published in the “Material Science and Engineering: C” journal. 

7.1. Material design 

The Ti-26Nb-xZr-yMn (TNZM) alloys and their elemental concentrations were theoretically 

designed using DV-Xα cluster design strategy. The mean values of bond order (𝐵𝑜̅̅̅̅ ) and metal 

d-orbital energy level (𝑀𝑑̅̅̅̅̅) for the designed alloys are shown in Table 7.1 The 𝐵𝑜̅̅̅̅  and 𝑀𝑑̅̅̅̅̅ 

values were designed with an objective to achieve the fully stabilized β phase based on the 

phase stability map suggested by Abdel-Hady et al. [19]. 

 

Table 7.1. The values of mean bond order (𝐵𝑜̅̅̅̅ ) and mean metal d-orbital energy level (𝑀𝑑̅̅̅̅̅), and the 
lattice parameter (ɑ) of β phase (ɑβ) estimated from XRD patterns in as-cast (ɑβ) and after compression 

testing ( ɑβ*) and the mean grain size (D) estimated by ImageJ for all the Ti-26 wt% Nb-(4, 7, 10) wt% 

Zr-(3, 5) wt% Mn alloys. 

  

7.2. Results and discussion 

7.2.1. Phase and microstructure characterizations 

Fig. 7.1 shows the XRD profiles of all the TNZM alloys. All the TNZM alloys show the peaks 

related to body-centered cubic (bcc) β phase (PDF card no.: 00-044-1288 and 01-071-9942). 

The diffraction peaks slightly shift towards a higher 2θ angle when augmenting the amount of 

Mn in the TNZM alloys. This phenomenon occurs because of the addition of Mn which 

possesses the smaller atomic radius than Ti. Furthermore, the ɑ of bcc β phase (ɑβ) in as-cast 

condition for the TNZM alloys are presented in Table 7.1. The decreasing trend of ɑβ is 

apparent while increasing the amount of Mn in the TNZM alloys. The decreasing trend in the 

values of ɑβ occurs due to replacing Ti by Mn comprising smaller atomic radius than Ti [42]. 

Alloys Chemical composition (wt%) 

  

𝑩𝒐̅̅ ̅̅  
 

  

𝑴𝒅̅̅ ̅̅ ̅ 
 

ɑβ (nm) ɑβ*(nm) D (µm) 

T43 Ti-26Nb-4Zr-3Mn 2.8438 2.4169 0.3275 0.3278 203 ± 32 

T73 Ti-26Nb-7Zr-3Mn 2.8503 2.4255 0.3277 0.3281 245 ± 50 

T103 Ti-26Nb-10Zr-3Mn 2.8570 2.4345 0.3279 0.3284 315 ± 54 

T45 Ti-26Nb-4Zr-5Mn 2.8426 2.391 0.3269 0.3274 122 ± 27 

T75 Ti-26Nb-7Zr-5Mn 2.8491 2.3993 0.3271 0.3277 183 ± 29 

T105 Ti-26Nb-10Zr-5Mn 2.8558 2.4078 0.3276 0.3280 244 ± 45 
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Whereas, the increasing trend in the values of ɑβ can be observed by increasing the amount of 

Zr in the TNZM alloys because Zr has a larger atomic radius compared to Ti [233]. In this 

work, the XRD profile of each alloy was acquired at slow scan speed of 0.011 °/s and a step 

size of 0.013°. In XRD profiles of the investigated alloys, the peaks associated with miller 

indices 001, 111, 002, 112 of ω phase are not detected with Co-kα radiation source (Space 

group: P6/mmm, PDF card no: 00-051-0631)  [152]. Therefore, ω phase is not expected in all 

the TNZM alloys. 

 

 

Fig. 7.1. XRD profiles of the Ti-26Nb-xZr-yMn (x = 4, 7, 10 wt% and y = 3, 5 wt%) alloys (The alloys 

are named in the Txy format). 

 

The microstructural topographies of all the TNZM alloys are presented in Fig. 7.2. The 

equiaxed bcc β grains with elongated grain boundaries can be observed for all the TNZM 

alloys. Furthermore, the dendritic substructure is obvious in the β grains of all the TNZM alloys 

which typically forms during solidification process after casting. The mean grain size for each 

TNZM alloy estimated using an ImageJ software is shown in Table 7.1 Among the TNZM 

alloys, the T103 displays the largest mean grain size of 315 ± 54 µm, whereas T54 shows 

smallest mean grain size of 122 ± 27 µm. It is noted that the mean grain size of the TNZM 

alloys decreases as the amount of Mn as a solute atom increases. The reduction in grain size of 

the TNZM alloys occurs due to the addition of Mn. In general, Mn comprises high growth-

restriction factor when alloy to Ti and therefore, the addition of Mn in the TNZM alloys leads 

to a grain refinement [234]. By contrast, grain size increases when increasing the amount of Zr 

in the TNZM alloys. A similar trend has been reported in the previous studies [42, 235]. The 

phase and microstructural characterizations indicate that all the TNZM alloys are comprised of 
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a monolithic β phase. It has been reported in previous studies that the addition of 30 wt% or 

high quantities of Nb in Ti-Nb binary alloys can result in monolithic β phase [223]. In this 

work, Mn and Zr are added with 26% of Nb to compensate towards the stabilization of a 

monolithic β phase in all the TNZM alloys. 

 

 Fig. 7.2. The backscattered SEM microstructural features of the Ti-26Nb-xZr-yMn (x = 4, 7, 10 wt% 

and y = 3, 5 wt%) alloys (The alloys are named in Txy format). Note that grain boundary is labelled as 
GB. 

 

7.2.2. Mechanical characterizations 

It is well known that the microstructure and phase characterization of an alloy greatly influence 

their mechanical properties [196, 236]. The newly designed TNZM alloys were subjected to 

mechanical compression testing in order to demonstrate its rudimentary mechanical 

characterizations. As a matter of fact, the bones and surrounding hard tissues are primarily 

subjected to compressive loads; therefore, the compression testing has been carried out in this 

work [237]. Fig. 7.3a displays compressive engineering stress strain curves for all the TNZM 
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alloys. Moreover, the properties of true stress-strain curves of polycrystalline materials remain 

analogous in compression and in tension except the strain to failure propert [201, 238]. 

Therefore, the compressive true stress-strain curves for all the TNZM alloys have also been 

presented in Fig. 7.3b. All the TNZM alloys exhibit a significant plastic deformation in 

mechanical compression testing. The engineering stress-strain curves (Fig. 7.3a) of the TNZM 

alloys are comprised of mainly three stages, i.e., elastic stage, plateau stage and densification 

stage [95]. According to Gibson-Ashby's model for compressive stress-strain curves, the unit 

cell wall bending, the collapse of the unit cell and the continuous load applied to strengthen the 

completely collapsed unit cells remain responsible for the elastic stage, the plateau stage and the 

densification stage, respectively [20]. Notably, all the TNZM alloys do not display a fracture 

during the compression tests within the load capacity of 100 kN. The values of engineering 

maximum compressive strength and plastic strain presented in Table 7.2 were obtained at 100 

kN for all the TNZM alloys. All the TNZM alloys demonstrate engineering plasticity of ~80% 

and engineering maximum strength of ~5 GPa due to the strong β-phase stability found in all 

the TNZM alloys [40]. The true stress-strain curves Fig. 7.3b) display significant amount of 

plasticity and strength within the load capacity of 100 kN. An oscillating effect can be noted in 

plastic region of true stress-strain curves that shows a softening behavior which occur due to 

stress relaxation [238].  The values of true maximum strength and plastic strain presented in 

Table 7.3 were obtained at 100 kN for all the TNZM alloys. All the TNZM alloys display 

significant true plasticity of ~160% and true maximum strength of ~950 MPa. In general, the 

instantaneous cross-sectional area of a specimen increases when a material undergoes the 

deformation in the plastic region during compression testing. Therefore, engineering strain 

remains lower than true strain and contrastingly, engineering stress remains higher than 

engineering strain [201, 238]. The analogous behavior can be observed for true strain with 

engineering strain and true stress with engineering strain values of the TNZM alloys. Moreover, 

the TNZM alloys display moderate hardness values in the range of 200-250 HV (Table 7.2). 

The values of hardness increase upon increasing the amount of Mn in the TNZM alloys. By 

contrast, the value of hardness decreases upon increasing the amount of Zr in the TNZM alloys. 
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Fig. 7.3. The (a) engineering and (b) true stress-strain curves of the Ti-26Nb-xZr-yMn (x = 4, 7, 10 wt% 

and y = 3, 5 wt%) alloys (The alloys are named in Txy format). 

 

Table 7.2. The compressive engineering mechanical properties such as yield strength (σ0.2), plastic strain 

(휀𝑝) and maximum strength (σmax) along with hardness (H) obtained for all the Ti-26 wt% Nb-(4, 7, 10) 

wt% Zr-(3, 5) wt% Mn alloys. 

 
Table 7.3. The compressive true mechanical properties such as plastic strain (휀𝑝,   𝑇), maximum strength 

(σmax, T) and strength co-efficient (K) obtained for all the Ti-26 wt% Nb-(4, 7, 10) wt% Zr-(3, 5) wt% Mn 

alloys. 

 

In order to calculate the dislocation density as well as to confirm the formation of any stress 

induced martensitic transformation (SIMT) during deformation, the XRD analyses have been 

carried out on a deformed specimen (after compression testing) of all the TNZM alloys. It is 

evident in Fig. 7.4 that all the investigated alloys show only a single bcc β-phase even after 

compression testing and the evidence of peaks related to martensitic phases in the XRD spectra 

are not found. This suggests that the SIMT does not occur during the deformation of all the 

Alloys Chemical composition (wt%) σ0.2 (MPa) 𝜺𝒑 (%) σmax (GPa) H (HV) 

T43 Ti-26Nb-3Mn-4Zr 591 ± 18 79.2 ± 0.5 4.91 ± 0.12 225 ± 5 

T73 Ti-26Nb-3Mn-7Zr 557 ± 6 80.4 ± 0.4 5.13 ± 0.21 219 ± 2 

T103 Ti-26Nb-3Mn-10Zr 451 ± 19  80.0 ± 0.4 4.94 ± 0.35 207 ± 5  

T45 Ti-26Nb-5Mn-4Zr 609 ± 18 78.9 ± 0.7 4.91 ± 0.21 242 ± 5 

T75 Ti-26Nb-5Mn-7Zr 571 ± 3 77.7 ± 0.5 4.89 ± 0.30 236 ± 4 

T105 Ti-26Nb-5Mn-10Zr 488 ± 19 77.9 ± 0.3 4.90 ± 0.15 228 ± 4 

Alloys Chemical composition (wt%) 𝜺𝒑,   𝑻 (%) σmax, T (MPa) K (MPa) 

T43 Ti-26Nb-3Mn-4Zr 163 ± 2 923 ± 54 902 ± 18 

T73 Ti-26Nb-3Mn-7Zr 166 ± 7 935 ± 42 889 ± 20 

T103 Ti-26Nb-3Mn-10Zr 168 ± 2 929 ± 16 865 ± 26 

T45 Ti-26Nb-5Mn-4Zr 162 ± 3 964 ± 39 1000 ± 19 

T75 Ti-26Nb-5Mn-7Zr 157 ± 2 961 ± 23 974 ± 15 

T105 Ti-26Nb-5Mn-10Zr 157 ± 2 968 ± 23 921 ± 24 
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TNZM alloys. The values of ɑβ*  for all the TNZM samples after compression testing presented 

in Table 7.1 followed a similar trend like ɑβ, however, the values of ɑβ* are increased in 

comparison to the values of ɑβ due to the lattice distortion that occurs when a material 

undergoes a compression testing or a rolling operation [201, 239]. 

 

 

Fig. 7.4. XRD spectra of the Ti-26Nb-xZr-yMn (x = 4, 7, 10 wt% and y = 3, 5 wt%) alloys after 
compression testing (The alloys are named in the Txy format). 

 

7.2.3. Strengthening mechanism 

The strengthening mechanism for monolithic β phase Ti alloys has been recently modeled by 

Zhao et al. [159] through the integration effect of solid-solution hardening, grain-boundary 

hardening and dislocation hardening. The solid solution hardening is usually defined by the 

elastic misfit (η) and lattice parameter misfit (γ) between the solvent and solute atoms [156, 

240]. The effect of solid solution strengthening was first studied by Fleisher et al [241], in 

which the effect of isolated solute atoms was determined in the crystal structure of the solvent. 

Thus, the isolated solute atoms hinder the dislocation movement. This approach was further 

extended by Gypen et al. [242] and Toda-Caraballo et al. [241] to approximate the solid 

solution hardening in multi component alloys. The solid solution hardening in multi-component 

alloys can be expressed using Eq. (7.1) [241]: 

𝜎𝑠𝑠 =  (∑ 𝐵𝑖
3/2𝑋𝑖𝑖 )

2/3
         (7.1) 

where σss is yield strength component produced due to solid solution hardening, Bi is solid 

solution strengthening co-efficient which depends on η and γ, and Xi is fraction of solute atom 
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in an alloy. The values of Bi  for the alloying elements Nb, Zr and Mn in Ti alloys were taken as 

71, 1201, 1485 MPa.at.-2/3, respectively [159]. Conventionally, the grain-boundary 

strengthening increases the strength of an alloy through grain-boundary refinement and 

therefore, it is also known as grain refinement strengthening [243]. It has been established that 

the small sized grains provide a greater number of grain boundaries which could immensely 

hinder the dislocations movement [158]. The grain-boundary strengthening in an alloy can be 

estimated using the classical Hall-Petch expression using Eq. (7.2) [243]:    

𝜎𝑔𝑏 =  𝜎𝑜 +  
𝑘𝑌

√𝐷
         (7.2) 

where σgb is yield strength component produced due to grain refinement, σo is friction stress, kY 

is Hall-Petch constant and D is mean grain size. The values of kY were derived using the 

expression Eq. (7.3): 

 𝑘𝑦 = 𝑘𝑇𝑖 +  ∑ 𝑘𝑖𝑋𝑖𝑖                                                                                             (7.3) 

where kTi and ki are Hall-patch constants for pure Ti and alloying elements, respectively. The 

value 𝑘𝑇𝑖 for pure Ti is 0.75 MPa·m1/2 and the values of 𝑘𝑖 for Nb, Zr and Mn in Ti alloys were 

taken as 1.05, 0.28, 0.06 MPa·m1/2, respectively [243-245]. Moreover, the dislocation 

strengthening occurs when two dislocations gliding on the different slip planes cross each other  

and consequently, their total energy reduces and a new junction forms as a third dislocation 

segment [246]. This dislocation junction is immobilized and it impedes the other dislocations 

movement. The critically resolved shear stress (τ) needs to break this junction so that the 

dislocations cross each other based on a relationship Eq. (7.4): 

𝜏 ∝ 𝜇𝑏/𝑙                                                                                                           (7.4) 

where µ is shear modulus, b is burgers vector and l is length between the interesting obstacles 

and the mean value of length (lm) is related to dislocation density according to a relationship: 

𝑙𝑚 ∝ 1/√𝜌 [246]. This phenomenon leads to the famous Bailey-Hirsch expression 

demonstrating the dislocation strengthening as Eq. (7.5) [247]: 

𝜎𝜌 =  𝛼𝑀µ𝑏√𝜌         (7.5)  

where σρ is yield strength component produced due to dislocation strengthening, α is mean 

junction strength (0.3), M is Taylor factor (2.8), µ is shear modulus for Ti (45 GPa), b is 

Burgers vector and ρ is dislocation density of an alloy  [156, 159]. The theoretical yield stress 
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for β-type Ti alloys operating with slip dominated mechanism can be predicted using the 

following model that can be expressed as Eq. (7.6) [159]. 

            𝜎𝑌 =  𝜎𝑇𝑖 +  𝛼𝑀µ𝑏√𝜌 +  (∑ 𝐵𝑖
3/2𝑋𝑖𝑖 )

2/3
+  

𝑘𝑇𝑖+ ∑ 𝑘𝑖𝑋𝑖𝑖

√𝐷
     (7.6) 

where 𝜎𝑇𝑖 is slip activation critical stress for Ti. Considering the solid-solution, grain-boundary 

and dislocation strengthening mechanisms, the contribution of each strengthening mechanism 

estimated using the corresponding equations described above is presented in Fig. 7.5 for each 

TNZM alloy. It can be noted in Fig. 7.5 that the grain-boundary strengthening contributes the 

least in strengthening the TNZM alloys. By contrast, the dislocation and solid solution 

strengthening mechanisms are the main contributors in enhancing the strength of the TNZM 

alloys. Notably, the trend of σρ is directly proportional to dislocation density of the TNZM 

alloys, whereas both Mn and Zr are producing the solid solution strengthening effect and 

increases the σss in the TNZM alloys because of their high values of Bi in Ti alloys.  

Nonetheless, Fig. 7.5 demonstrates the greater contribution of dislocation and solid-solution 

strengthening mechanisms as compared to grain-boundary strengthening because grain- 

boundary strengthening correlates with the grain size. All the TNZM alloys comprise large 

grain size (>120 µm). Therefore, the number of grain boundaries remains less and as a result, 

the contribution of grain-boundary strengthening remains less as compared to dislocation and 

solid-solution strengthening mechanisms. Moreover, dislocation strengthening can occur inside 

the grains as well as at the grain boundaries due to interaction of multiple dislocations, whereas 

the strengthening effect produced due to solid solution strengthening remains directly 

proportional to the amount of Zr and Mn added in the TNZM alloys, which can be evidently 

seen in Fig. 7.5. This demonstrates that the interaction of dislocations should have occurred 

extensively and therefore, the interaction of dislocations produces the greater amount of 

strengthening. 
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Fig. 7.5. The estimated strengthening contributions of the dislocation, solid-solution and grain-boundary 

strengthening mechanisms in yield strength of the Ti-26Nb-xZr-yMn (x = 4, 7, 10 wt% and y = 3, 5 

wt%) alloys (The alloys are named in Txy format). 

 

The values of measured true yield strength and dislocation density for all the TNZM alloys are 

presented in Fig. 7.6. It can be noted that measured engineering yield strength and measured 

true yield strength followed an identical trend. Therefore, from now onwards the values of true 

yield strength have been used in subsequent discussion. It can be noted in Fig. 7.6 the measured 

true yield strength displays an increasing trend upon the addition of Mn as a solute atom 

because Mn has relatively higher values of η and γ [138, 159]. Consequently, Mn produces a 

strong solid solution strengthening effect in the TNZM alloys. The direct relationship between 

true yield strength and dislocation density has been demonstrated by the Bailey-Hirsch 

relationship in Eq. (8). Accordingly, it can be noted in Fig. 7.6 that the dislocation density is 

directly proportional to the true yield strength for all the TNZM alloys. By contrast, the Hall-

Petch relationship demonstrates the inverse relationship between the measured true yield 

strength and mean grain size of an alloy [243]. Hence, the measured true yield strength varies 

with mean grain size Table 7.1 for all the TNZM alloys. Thus, the measured true yield strength 

of all the TNZM alloys are influenced by the combined effects of solid-solution, grain-

boundary and dislocation strengthening. Notably, T45 possesses the highest measured true yield 

strength (654 ± 12 MPa) among all the TNZM alloys.  
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Fig. 7.6. True yield strength and dislocation density of the Ti-26Nb-xZr-yMn (x = 4, 7, 10 wt% and y = 
3, 5 wt%) alloys (The alloys are named in Txy format). 

 

As shown in Fig. 7.3a, the strain hardening ability of all the TNZM alloys is apparent. The 

strain hardening ability is generally characterized in terms of either the strain hardening rate or 

the strain hardening index [248]. In this work, to characterize the strain hardening ability of the 

TNZM alloys in the plastic region, the strain hardening index which symbolizes the resistance 

to plastic deformation [249] can be evaluated by using a classical Holloman expression using 

Eq. (7.7) [250]. 

  𝜎𝑡 = 𝐾ɛ𝑡
𝑛          (7.7) 

where σt is true stress, 휀𝑡 is true strain and K is strength coefficient of a material. The material 

demonstrates the perfect elastic fracture when the value of strain hardening index is equal to 1, 

whereas it displays a complete plastic deformation when the value of strain hardening index is 

equal to 0 [249]. To evaluate the values of n1 & n2 for the TNZM alloys, Eq. (7.7) is rearranged 

and rewritten as Eq. (7.8) [249]. 

𝑙𝑛𝜎𝑡 = 𝑙𝑛𝐾 + 𝑛𝑙𝑛ɛ𝑡         (7.8)   

By using Eq. (7.8), the lnσt-ln휀𝑡 plots for all the TNZM alloys are presented in Fig. 7.7. It can 

be noted in Fig. 7.7Fig. 7.7f that the strain hardening is comprised of two stages. The n1 displays 

the elastic-plastic deformation, whereas the n2 shows the complete plastic deformation [249]. 

All the TNZM alloys exhibit the high n1 and low n2 values in the range of 0.428 ± 0.01 to 0.542 

± 0.01 and 0.125 ± 0.005 to 0.090 ± 0.006, respectively, which demonstrate their enhanced 

strain hardening behavior and good work formability. The values of n1 & n2 for the TNZM 

alloys rise upon increase in the Zr content, whereas the values of n1 & n2 demonstrate a 

decreasing trend upon increase in the Mn content. Similar results of strain hardening behavior 
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have been reported in the previous studies [251, 252]. The decreasing trend of the values of n1 

& n2 is associated with an increase in dislocation density of the TNZM alloys [248]. Moreover, 

it has also been reported in previous studies that the strain hardening index of a material 

increases with increasing mean grain size up to a certain extent [253]. By contrast, strain 

hardening index decreases with increasing mean grain size when the amount of second phase is 

precipitated in an alloy [253]. The strain hardening index and mean grain size can be correlated 

by using the Morrison model as follows as presented in Eq. (7.9) [254]:  

𝑛 =
5

(10+ 𝐷−1/2)
          (7.9)                                                                                                                          

where n is strain hardening index and D is mean grain size. In the present wok, all the TNZM 

alloys are comprised of a single phase. Therefore, it is noted that the values of n1 & n2 (Fig. 

7.7Fig. 7.7f) are directly proportional to mean grain size as presented in Table 7.1 for all the 

TNZM alloys. Furthermore, the values of strength coefficient presented in Table 7.3 follow the 

classical Hall-Petch relationship [255] as these values decrease with increasing values of n1 & 

n2 for all the TNZM alloys. The values of n1 & n2 for all the TNZM alloys demonstrate the high 

strain hardening ability and therefore, all of the TNZM alloys exhibit a significant plasticity and 

enhanced β phase stability [11, 256]. In conclusion to mechanical characterization and 

strengthening mechanisms for the TNZM alloys, T45 and T43 exhibit higher yield strength and 

significant strain hardening capability among all the TNZM alloys.  
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Fig. 7.7. Relationship between lnσt and ln휀𝑡  for the Ti-26Nb-xZr-yMn (x = 4, 7, 10 wt% and y = 3, 5 

wt%) alloys (The alloys are named in Txy format). 

 

7.2.4. Electrochemical performance 

It has been stated that any biomaterial used for orthopedic implant application should have 

enhanced electrochemical performance in the human body environment [257]. It has also been 

documented in the literature that the Ti-Nb-Zr system demonstrates excellent corrosion 

resistance with any amount of alloying elements as compared to Ti-6Al-4V in any artificial 

human body environment and for any immersion time for electrochemical analysis [257]. The 

high corrosion resistance of the Ti-Nb-Zr system is ascribed to quick formation of oxide film 
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(i.e., Ti oxide and Nb oxide) on the surface of material [191, 257]. Notably, these layers have 

capability to self-repair any film damages, which in turn resists the additional corrosion in the 

material [191]. Among the all the TNZM alloys, T43 and T45 exhibit superior mechanical 

properties. Therefore, the electrochemical analyses were performed for only T43 and T45 

among the investigated TNZM alloys. The OCP curves for T43 and T45 are presented in Fig. 

7.8a. The OCP curves display a slight fluctuation during the preliminary phase of the test. The 

fluctuating behavior is ascribed to electron movement occurred between the material surface 

and the simulated body fluid until the equilibrium potential attained for both sides [258]. It can 

be noted in Fig. 7.8a that both alloys attain a more positive and a stable state after few initial 

minutes; this trend attributes to the rapid development of oxide layer on the surface of alloys 

[259]. In order to better characterize the strength of the developed Ti and Nb oxide layers, 

potentiodynamic polarization curves are obtained in modified Hank’s solution for T43 and T45 

alloys and presented in Fig. 7.8b. The corrosion kinetics parameters, i.e. Ecorr and icorr, are 

obtained from the Tafel region of the potentiodynamic polarization curves. In the present work, 

the Ecorr values of T43 and T45 are -0.45 and -0.48 V, respectively. The relatively positive 

values of Ecorr  for T43 and T45 alloys demonstrate their better corrosion resistance than the as-

cast CP-Ti, i.e., -0.58 V [191]. In general, according to the concept of electrochemistry, the high 

value of Ecorr and the low value of icorr are the indicators for good corrosion resistance of a 

material [259, 260]. The reported value of icorr in this work for T43 and T45 are 0.838 and 0.839 

nA/cm2, respectively. Both the alloys exhibit lower icorr value than the as-cast Ti-6Al-4V, i.e., 

1.037 nA/cm2 [259]. Thus, the investigated T43 and T45 alloys demonstrate a better corrosion 

resistance than CP-Ti and Ti-6Al-4V. Furthermore, the EIS study was carried out on the T43 

and T45 alloys to illustrate the nature of formed passive oxide layer. The characterization of 

electron movement resistance can usually be performed by EIS Nyquist curve. The extent of 

semi-circular arc radius on EIS Nyquist plot is directly proportional to the corrosion resistance 

of a material [260]. The radius of a semi-circular arc for T43 is somewhat higher than T45, as 

presented in Fig. 7.8c which demonstrates that the passive oxide film of T43 has better 

polarization resistance on the surface [258]. The Bode impedance plot and the Bode phase plot 

are presented in Fig. 7.8d. The Bode impedance plot displays two distinct phases: (i) the flat 

phase in the frequency range of 1 × 105 Hz to 1 × 103 Hz, the flat portion illustrates the solution 

resistance [258], (ii) the inclined phase in the frequency range of 1 × 103 Hz to 1 × 10-1 Hz. The 

impedance increases up to 1 × 10 6 Ω cm2 during this phase. Moreover, the phase angle close to 

90° demonstrates a denser passive oxide film [191]. In the present work, the Bode phase angle 

plot displays a wide plateau above phase angle of 80° from middle to low frequency range 
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which illustrates the formation of denser passive oxide films on the surface of both alloys.  

 

 

Fig. 7.8. Results of the electrochemical tests for the T43 and T45 alloys in modified Hank’s solution at a 

pH value of 7.4 at room temperature. (a) Open circuit potential curves vs. time (b) Potentiodynamic 
polarization curves. EIS results in the form of (c) Nyquist plots and (d) Bode plots. 

 

Moreover, the SEM-EDX surface analyses were performed in order to confirm the formation of 

oxides on the surface of T43 and T45 alloys after corrosion tests. Fig. 7.9 shows the formation 

of oxides on the surface of T43 and T45 (after 1 h immersion into Hank's solution). The similar 

kind of oxide formation has been reported for Ti-5Cu alloy after corrosion analysis [260]. The 

formation of oxides on the surface of T43 and T45 alloys has been further confirmed by means 

of EDX spectrum analysis which was performed on the oxide particles as well as on the surface 

other than oxide particles. The EDX spectra of T43 and T45 alloys (Fig. 7.9c-d) exhibit a peak 

of oxygen besides the peaks of other elements composing the alloys, i.e., Ti, Nb, Mn and Sn 

suggesting the formation of surface passive film by a mixture of oxides. Hence, the SEM-EDX 

surface analyses results are in good agreement with results of electrochemical tests. Based on 

the points discussed above, T43 and T45 alloys exhibit good corrosion resistance for their use 

in orthopedic implant applications. 
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Fig. 7.9. The SEM micrographs of (a) T43 (b) T45 after corrosion test in Hank’s solution and their 

corresponding EDX spectra (c) T43 (d) T45. 

 

7.3. Conclusions 

The present work evaluates the phase, microstructure and mechanical characterizations 

including and the strengthening mechanisms of the newly designed Ti-26Nb-xZr-yMn (x = 4, 7, 

10 wt% and y = 3, 5 wt%) alloys and based on the superior mechanical properties among the 

investigated alloys the electrochemical kinetics of the Ti-26Nb-4Zr-3Mn Ti-26Nb-4Zr-5Mn 

alloys. The key findings from this work are summarized as below. 

 The phase and microstructural analyses illustrate a monolithic β phase in all the 

investigated alloys. 

 All the investigated alloys exhibit a pronounced true plastic strain (~ 160%) and a true 

maximum strength (~ 950 MPa) and do not show any fracture in compression testing. 

 The addition of Mn positively affects the strength of the Ti-Nb-Zr system alloys. The 

strengthening in the present work is influenced by combined effect of solid-solution, 

grain-boundary and dislocation strengthening.  

 The Ti-26Nb-4Zr-3Mn and Ti-26Nb-4Zr-5Mn alloys demonstrate an improved 

electrochemical performance as compared to commercially available biomaterials. 

Among the investigated alloys, Ti-26Nb-4Zr-5Mn displays a superior combination of true 
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maximum strength (951 MPa), large true plasticity (162%), highest true yield strength (654 

MPa), dislocation density (2.45 × 1015 m-2) and hardness (242 HV) along with improved strain 

hardening ability and electrochemical kinetics considering the high strain hardening indices 

(0.42 and 0.09) and low corrosion current density (0.839 nA/cm2). Therefore, Ti-26Nb-4Zr-

5Mn could be the promising candidate for orthopedic implant applications. 
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8. Tailoring deformation and superelastic behaviors of 

beta-type Ti-Nb-Mn-Sn alloys 

This work has been published in “Journal of Mechanical Behavior of Biomedical Materials”. 

In this work a new series of alloys Ti-25Nb-xMn-ySn have been designed. The phase, 

microstructure, mechanical and superelastic behaviors of the aforementioned group of alloys 

have been investigated in this work for the biomedical applications. 

8.1. Results and discussion 

8.1.1. Empirical design for novel Ti alloys 

The novel series of the Ti-25Nb-xMn-ySn (Ti25xy) alloys were empirically designed on the 

basis of a “BF-d-electron superelasticity” empirical relationship based on Coulomb's law and 

d-electron alloy theory, as developed by Morinaga [261, 262]. The Coulomb’s law 

demonstrates that the attractive force between two charges is directly proportional to their 

multiplication and inversely proportional to the square of the distance between them, which can 

be shown, as below in Eq. (8.1): 

𝐹 ∝  
𝑞1𝑞2

𝑟2           (8.1) 

where q1 and q2 are the electric charges and r represents the distance between them. The 

positive charge on ion cores refers to the effective nucleus charge (Zeff) experienced by valence 

electrons which is regarded as q1. The value of Zeff can be calculated by using the relationship 

(Zeff = Z‒s), where Z is the atomic number and s is the Slater shielding parameter. The other 

two electronic parameters used in the d-electron alloy theory are named as bond order (Bo) and 

metal d orbital energy level (Md), which are calculated particularly for distinctive alloying 

elements in bcc Ti and hcp Ti clusters [263]. The parameter Bo demonstrates the probability 

distribution of valence electrons between atoms of alloying elements and Ti. Therefore, Bo is 

regarded as q2 charge, which operates to neutralize the positive charge of the ion core and 

restricts it in metallic crystal. The parameter Md displays the d orbital energy level of an 

alloying element, where the level of Md is directly related with metallic radius irrespective the 

shell in which element is present. Hence, the Md value can be considered as an approximated 

value of the metallic radius. By combining d-electron theory and Coulomb’s law the 

interatomic bonding force (BF) of Ti alloys can be measured using Eq. (8.2): 

-- 
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         𝐵𝐹 ∝  
𝑍𝑒𝑓𝑓 ̅̅ ̅̅ ̅̅ ̅ ∙  𝐵𝑜̅̅ ̅̅̅

𝑀𝑑̅̅ ̅̅ ̅
          (8.2) 

where 𝑍𝑒𝑓𝑓
̅̅ ̅̅ ̅̅  , 𝐵𝑜̅̅̅̅  and 𝑀𝑑̅̅̅̅̅  are the compositional averages of  the effective charge experienced 

by valence electron, bond order and metal d orbital energy level, respectively. The values of 

theoretically designed electronic parameters of the investigated Ti25xy alloys were calculated, 

with their results presented in Table 8.1 It has been reported that alloys having high BF values 

are anticipated to respond elastically to a large stress [17]. Hence, a high amount of recoverable 

strain is expected to be achieved in theoretically designed alloys with a high BF value [17]. BF 

values reported for recently developed Ni-free superelastic and shape memory Ti alloys are 

typically in the range of 1.54 – 1.69 [17]. Therefore, in the present work, all the Ti25xy alloys 

with BF values in the range of 1.61 – 1.76 (Table 8.1) are anticipated to exhibit high recoverable 

strain. 

 

Table 8.1 The electronic parameters for all the Ti-25Nb-xMn-ySn (wt%; x = 2,4 and y = 1,5; denoted in 

the form of Ti25xy) alloys. 𝐵𝑜̅̅̅̅  and 𝑀𝑑̅̅̅̅̅  are the compositional averages of bond order and metal d 

orbital energy level, respectively;  𝑍𝑒𝑓𝑓
̅̅ ̅̅ ̅̅  is the compositional averages of the effective charge 

experienced by valence electron; BF is the interatomic bonding force and e/a is the valence atom to 
electron ratio. 

 

Alloys Compositions (wt%) 𝑩𝒐̅̅ ̅̅  𝑴𝒅̅̅ ̅̅ ̅ 𝒁𝒆𝒇𝒇
̅̅ ̅̅ ̅̅  BF e/a 

Ti2521 Ti-25Nb-2Mn-1Sn 2.8320 2.4168 3.336 1.617 4.20 

Ti2525 Ti-25Nb-2Mn-5Sn 2.8235 2.4094 3.388 1.648 4.22 

Ti2541 Ti-25Nb-4Mn-1Sn 2.8308 2.3916 3.490 1.727 4.26 

Ti2545 Ti-25Nb-4Mn-5Sn 2.8222 2.3834 3.547 1.762 4.28 

 

8.1.2. Phase constitution and morphology 

Fig. 8.1 shows the XRD patterns of the Ti25xy alloys. Among all the investigated Ti25xy 

alloys, only Ti2521 demonstrates the peaks of dual phases, i.e., the bcc β and orthorhombic α" 

phases (PDF card # 00-044-1288 and 01-078-4886). By contrast, the other investigated Ti25xy 

alloys, i.e., Ti2525, Ti2541 and Ti2545, illustrate the peaks of a single bcc β phase (PDF card # 

00-044-1288). The values of volume fraction for α" and β phases in the Ti25xy alloys are 

presented in Table 8.2. The monolithic bcc β phase has been achieved in the Ti25xy alloys by 

adding further 2 wt% Mn or 4 wt% Sn to Ti2521 alloy. This phenomenon clearly manifests that 

both the alloying elements Mn and Sn contribute to the β-phase stability of Ti alloys [264, 265]. 

It can be noted in Fig. 8.1 that the diffraction peaks shift to higher 2θ angels when increasing 

the amount of Mn in the Ti25xy alloys. Moreover, the estimated ɑβ for all the Ti25xy alloys are 

presented in Table 8.2, which shows a decreasing trend when increasing the content of Mn in the 
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Ti25xy alloys. Both the preceding phenomena are attributed to the larger difference in atomic 

radii of Mn (0.127 nm) in comparison of that of Ti (0.147 nm) [42]. By contrast, the addition of 

Sn increases the ɑβ for the Ti25xy alloys; where a similar trend has been documented in existing 

literature [20, 201]. The ɑβ for all the Ti25xy alloys are lower than the standard ɑβ for Ti (0.3306 

nm), which demonstrates that ɑβ for the Ti25xy alloys are lower due to the addition of Mn with 

smaller atomic radius in all the Ti25xy alloys [42].  

 

 

Fig. 8.1. The XRD spectra for all the Ti-25Nb-xMn-ySn (x = 2,4 wt% and y = 1,5 wt%) alloys (The 
alloys are designated as Ti25xy). 

 

Table 8.2. The constituent phases, volume fraction (Vf) estimated from XRD peaks, lattice parameter of 

β phase (ɑβ) and the average grain size of β phase (Dβ) for all the investigated Ti25xy alloys. 

 

In general, the β-phase stability in multi-component Ti alloys is a function of the amount of β-

stabilizers alloyed in Ti alloys [16]. If the amount of β stabilizing elements is eliminated or 

added in a trace quantity, then only the α phase would exist upon quenching [16, 266]. If an 

intermediate quantity of β-stabilizers is added, then α+β phases would be present in Ti alloys 

upon quenching [16]. Upon addition of high enough quantities of β-stabilizers, only the 

Alloys Compositions (wt%) Phases Vf,α (%) Vf,β(%) ɑβ (nm) Dβ (µm) 

T2521 Ti-25Nb-2Mn-1Sn β+α'' 10 90 0.3281 151 ± 48  

T2525 Ti-25Nb-2Mn-5Sn β 0 100 0.3285 188 ± 50 

T2541 Ti-25Nb-4Mn-1Sn β 0 100 0.3272 105 ± 36 

T2545 Ti-25Nb-4Mn-5Sn β 0 100 0.3275 163 ± 49 
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metastable β phase would dominate in Ti alloys, which usually undergoes some martensitic 

transformation, i.e., β → α', β → α'' and β → ω, upon quenching [11, 267, 268]. The formation 

of previously mentioned martensitic phases upon quenching can be inhibited by the addition of 

an adequate amount of β-stabilizing elements in Ti alloys [16]. In this work, β-stability is 

achieved with the addition of Mn and Sn as alloying elements in the Ti25xy alloys. Fig. 8.2 

illustrates the microstructural features of the Ti25xy alloys. The Ti2521 alloy displays 

significant retention of the β phase along with a small fraction of acicular α'' martensitic phase 

which forms within the β matrix upon cooling as shown in Fig. 8.2a inset. By contrast, Ti2525, 

Ti2541 and Ti2545 alloys (Fig. 8.2b-d) exhibit a monolithic β phase in their microstructures. 

The β-stabilizing attribute of Mn and Sn as the alloying elements shows that a single β phase 

can be attained by further addition of 2 wt% Mn or 4 wt% Sn in Ti2521 alloy. Furthermore, the 

dendritic substructure can be clearly observed in Fig. 8.2 for each Ti25xy alloy. The dendritic 

substructure has formed during solidification when element with a high melting point (such as 

Nb used in this work) has been added to Ti alloys. This remarkable segregation occurred during 

solidification is due to the Nb element with a high melting point [140], which leads to a 

partition co-efficient higher than 1 when it dissolves in Ti alloys. The partition coefficient is 

defined as the ratio of solute constituents in the solid to that of in the liquid during solidification 

[269]. The partition coefficient is 1 when it is in equilibrium, where it is either <1 or >1 when 

the liquid in the surrounding of solid/liquid boundary is either enriched or depleted of solute, 

respectively [269]. The chemical speciation via EDX point analysis for dendritic substructure 

demonstrates the chemical homogeneity in all the Ti25xy alloys. Therefore, only the chemical 

speciation results for the dendritic substructure in Ti2541 are presented in Table 8.3. The 

backscattered electron (BSE) SEM image of Ti2541 in Fig. 8.2c which shows that the points 

marked by 1, 2 and 3 at lighter contrast display dendritic-core region whereas the points marked 

by 4, 5 and 6 are at darker contrast show inter-dendritic region. It is of noteworthy as presented 

in Table 8.3Table 8.3 that, the concentrations of Nb obtained in the dendritic-core areas (lighter 

contrast) against the points 1, 2, 3 are higher than its nominal composition; on the other hand, 

the inter-dendritic (darker contrast) region against the points 4, 5, 6 has higher Ti concentration 

than its nominal composition. This phenomenon occurs due to the higher melting point of Nb as 

compared to Ti. Additionally, the low-magnification micrographs presented in Fig. 8.3 were 

used to estimate the β grain size for each Ti25xy alloy. In this method, the β grain size of 

various β grains was measured using imageJ software and then average β grain size values for 

each Ti25xy alloy were taken and are presented in Table 8.2. As seen from Table 8.2, the 

Ti2541 alloy exhibits the smallest grain size of 105 ± 36 µm whereas the Ti2525 alloy 
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possesses the largest grain size of 188 ± 50 µm among the investigated Ti25xy alloys. It has 

been reported that different factors influence the microstructure of as-cast Ti alloys by affecting 

either growth or nucleation during solidification. The influence of solute elements on grain 

refinement of as-cast Ti alloys can be quantified using growth restriction factor. The growth 

restriction factor demonstrates the segregating potency of all alloying elements during 

solidification in the alloy. It has an important role in controlling the grain size of as-cast Ti 

alloys [234, 270]. Easton and John [271] has established a simple relationship between the 

growth restriction factor and the simple relationship between the growth restriction factor and 

the grain size for an alloy composition as shown below in Eq. (8.3): 

𝑑 = 𝑎 +  
𝑏

𝑄
          (8.3) 

where, d is grain size, a is maximum number of active nucleants, b is nucleant potency and Q is 

growth restriction factor. Notably, the mean grain size decreases when the amount of Mn 

increases because it contains high growth-restriction factor whereas the mean grain size 

increases when the amount of Sn increases because it contains zero growth-restriction factor as 

a solute atom in Ti alloys [234]. Similar trend has been documented in previous work [234, 

272]. Hence, the results of phase constitution are consistent with microstructural features of all 

the investigated Ti25xy alloys. 

  

- 
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Fig. 8.2. The backscattered electron SEM images for all the Ti-25Nb-xMn-ySn (x = 2,4 wt% and y = 1,5 

wt%) alloys (The alloys are designated as Ti25xy). 

 
Table 8.3. The results of EDX point analysis measured on the points marked in Fig. 8.2c for Ti2541 (i.e., 

Ti-25Nb-4Mn-1Sn) alloy. 

Points marked Ti (wt %) Nb (wt %) Mn (wt %) Sn (wt %) 

1 65.0 ± 1.2 31.9 ± 1.1 2.4 ± 0.6 0.7 ± 0.6 

2 65.0 ± 0.6 30.8 ± 0.8 3.2 ± 0.3 1.1 ± 0.3 

3 64.7 ± 1.3 31.0 ± 1.3 2.7 ± 0.7 1.6 ± 0.6 

4 71.3 ± 0.6 23.3 ± 0.6 4.7 ± 0.3 0.8 ± 0.3 

5 71.2 ± 2.5 21.3 ± 2.4 6.0 ± 1.4 1.5 ± 1.1 

6 70.7 ± 1.2 23.1 ± 1.1 5.0 ± 0.7 1.2 ± 0.5 
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Fig. 8.3 The optical micrographs for all the Ti-25Nb-xMn-ySn (x = 2,4 wt% and y = 1,5 wt%) alloys 
(The alloys are designated as Ti25xy). 

 

8.1.3. Mechanical properties 

Generally, the mechanical performance of Ti alloys is a function of their phase constitutions 

and microstructural features. In order to evaluate the mechanical performance of newly 

designed Ti25xy alloys, the static compression tests, cyclic loading-unloading tests, Vickers 

micro-hardness tests and deformation behaviors were carried out in this work. Fig. 8.4 presents 

the uniaxial compressive stress-strain curves for all the Ti25xy alloys at room temperature. All 

the Ti25xy alloys except for Ti2521 demonstrate a substantial plasticity and do not fail until the 

load reaches the load capacity of mechanical testing machine (i.e., 100 kN). Notably, the 

addition of sufficient quantities of Mn and Sn in the Ti25xy alloys can considerably enhance the 

mechanical properties of the Ti25xy alloys. The room-temperature stress-strain curves of all the 

Ti25xy alloys except Ti2521 consist of three regions: (i) a linear elastic region, (ii) a stress 

plateau region and (iii) a strain hardening region. By contrast, Ti2521 demonstrates fracture in 

linear plastic region during static compression testing.  
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Fig. 8.4. The engineering stress - strain curves for all the Ti-25Nb-xMn-ySn (x = 2,4 wt% and y = 1,5 

wt%) alloys (The alloys are designated as Ti25xy). All Ti25xy alloys except Ti2521 did not fail when 

the load reached the load capacity of mechanical testing ma machine (100 kN). 

 

It can be noted in Fig. 8.4 that none of the Ti25xy alloys except Ti2521 has failed during 

testing, where the values of total plastic strain and ultimate compressive strength cannot be 

calculated for Ti25xy alloys except for Ti2521 which shows the total plastic strain of 41 ± 2.5 

% and the ultimate compressive strength of 1800 ± 25 MPa. The Ti2521 alloy demonstrates a 

relatively low β-phase stability and comprising dual phase (α"+β) microstructure, which 

subsequently leads to its failure during compression testing [11]. By contrast, further addition of 

β-stabilizing elements in Ti25xy alloys leads to a monolithic β phase in their microstructure. 

Therefore, enhanced β stability has increased the number of slip systems, which results in easy 

deformation and large plasticity displayed in Ti2525, Ti2541 and Ti2545 alloys [13, 14, 264, 

273]. The 0.2% strain offset method was used to estimate the compressive yield strength for all 

the Ti25xy alloys obtained from the engineering stress-strain curves of the Ti25xy alloys and 

the results are presented in Fig. 8.5; the values of compressive yield strength are affected by the 

concentration of Mn and Sn added in the Ti25xy alloys. It can be inferred from the trend of 

yield strength in Fig. 8.5 that, among the Ti25xy alloys, the alloy contains a highest content of 

Mn and a lowest content of Sn (i.e., Ti2541) shows the highest yield strength (710 ± 35 MPa) 

among the Ti25xy alloys. This is attributed to the strong solid solution strengthening effect as 

per the Hume-Rothery principle resulted from the smaller atomic radius of Mn compared to that 

of Ti [42]. Therefore, an increase in the amount of Mn enhances the yield strength of the 

Ti25xy alloys. Furthermore, the addition of Mn in the Ti25xy alloys reduces their grain size 

(Table 8.2). Hence, the grain boundary strengthening also contributes to the enhancement in the 

yield strength when raising the amount of Mn in Ti25xy alloys [42]. By contrast, the alloy 
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contains the lowest Mn content and the highest Sn content (i.e., Ti2525) exhibits the lowest 

yield strength (563 ± 23 MPa) among the Ti25xy alloys. This phenomenon results from an 

increase in ɑβ and/or an increase in grain size of the Ti25xy alloys (Table 8.2) when increasing 

the amount of Sn in the Ti25xy alloys [42]. Hence, the addition of Sn causes a decline in the 

yield strength of Ti25xy alloys [226].  Conversely, the highest Vickers micro-hardness (244 ± 

6.3 HV) is observed in the Ti2521 alloy because it contains orthorhombic α" phase in 

microstructure [40]. The trend of hardness in Fig. 8.5 decreases with further addition of Mn and 

Sn due to having monolithic β phase in its microstructure, where the hardness of an alloy is 

affected by its primary microstructure [211]. Moreover, the trend of hardness for monolithic β 

alloys is similar to the trend of yield strength since hardness and yield strength are directly 

proportional to each other [210].  

 

 
Fig. 8.5. Yield strength (σ0.2) and hardness (H) of the Ti-25Nb-xMn-ySn (x = 2,4 wt% and y = 1,5 wt%) 

alloys (The alloys are designated as Ti25xy). 

 

To evaluate the superelastic behavior of the Ti25xy alloys, the loading-unloading stress-strain 

curves for all the Ti25xy alloys are presented in Fig. 8.6. All the investigated Ti25xy 

demonstrate pseudo-elastic shape recovery upon unloading.  

900 350 m:° 
d 80 300 
d 5 2 r coo 260 go g • • $ • 60 
0 
p e r ; $00 160 

400 100 



124 

 

 

Fig. 8.6. The cyclic loading-unloading stress-strain curves for all the Ti-25Nb-xMn-ySn (x = 2,4 wt% 

and y = 1,5 wt%) alloys up to 3% engineering strain (The alloys are designated as Ti25xy). 

 

In order to further illustrate the superelastic behavior of the Ti25xy alloys, the strain recovery 

rate and two types of strains during cyclic loading and unloading are described as follows: (i) 

the residual strain (εp) which remains permanent after unloading, (ii) the recoverable strain (εr) 

which is recovered after unloading and (iii) the superelastic recovery ratio (η) which can be 

defined as in Eq. (8.4) [265, 274]: 

𝜂 =  
𝜀𝑟

𝜀𝑟+𝜀𝑝
          (8.4) 

The εr and εp are measured using loading-unloading stress-strain curves for each Ti25xy alloy 

as characterized in Fig. 8.6c inset. The values of εr for Ti2525, Ti2525, Ti2541 and Ti2545 are 

found to be 2.08, 1.80, 2.35 and 2.05 %, respectively. As seen from Fig. 8.6, all the Ti25xy 

alloys exhibit moderate pseudo-elastic shape recovery property. The η values for the Ti25xy 

alloys are displayed in Fig. 8.7.  All the Ti25xy alloys exhibit adequate η where the Ti2541 

alloy exhibits the highest η among the investigated Ti25xy alloys. Thus, the addition of Mn in 

the Ti25xy alloys improves their superelastic behavior. Furthermore, it has been reported that 

the superelastic shape recovery behavior of an alloy is due to the martensitic transformation and 
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martensitic reverse transformation upon loading and unloading, respectively, where the increase 

in σSIM may enhance the superelastic behavior of an alloy [265, 275, 276]. To clearly 

demonstrate the effect of alloying elements (i.e., Mn and Sn) on the superelastic behavior of the 

Ti25xy alloys, the values of σSIM were calculated using cyclic loading curves [277] (indicated 

by red arrow in Fig. 8.6c inset) for all the Ti25xy alloys and are presented in Fig. 8.7. It can be 

inferred from Fig. 8.7 that the values of η and σSIM demonstrate a similar changing trend. It is 

well known that Mn is a strong β stabilizing element [41]. Therefore, addition of Mn in Ti25xy 

alloys suppresses the martensitic transformation from β phase, which enhances the stress σSIM. 

In all the Ti25xy alloys, it can be noted that εr increases as σSIM increases during cyclic loading, 

which improves the superelasticity of Ti25xy alloys.  

 

 

Fig. 8.7. The superelastic recovery ratio (η) versus critical stress for inducing martensite (σSIM) for all the 

Ti-25 wt% Nb-xMn-ySn (x = 2,4 wt% and y = 1,5 wt%) alloys (The alloys are designated as Ti25xy). 

 

The evaluation of energy absorption is one of the key parameter in order to assess the 

performance of biomedical implant material. Therefore, in this work the absorbed total energy 

from displacement 0 to hmax for all the Ti25xy alloys can be evaluated using the Eq. (8.5) 

presented as below [278]: 

𝑊𝑇 =  ∫ 𝑃(ℎ) 𝑑ℎ
ℎ𝑚𝑎𝑥

0
         (8.5) 

where WT is the absorbed total energy and P is the applied loading force. The absorbed elastic 

energy during the deformation is calculated by using the Eq. (8.6) presented as below: 

𝑊𝐸 =  ∫ 𝑃(ℎ)𝑑ℎ
ℎ𝑚𝑎𝑥

ℎ𝑓
         (8.6) 

where WE represent the absorbed elastic energy and hf denotes the displacement after unloading. 
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The absorbed plastic energy WP can be given by using Eq. (8.7) shown as below: 

𝑊𝑃 = 𝑊𝑇 − 𝑊𝐸          (8.7) 

Fig. 8.8a demonstrates the absorbed energy distribution. The absorbed total energy is the 

maximum stress at a certain strain level, which constitutes both the plastic and elastic absorbed 

energies. The high absorbed plastic energy is due to the movement and generation of slip and/or 

dislocation bands while the high absorbed elastic energy results in enhanced recovery after 

unloading. It can be noticed in Fig. 8.8b-d the Ti2525 demonstrates the lowest absorbed total 

energy as it possesses the lowest maximum stress during each cycle. By contrast, Ti2541 

demonstrates the highest absorbed total energy. Notably, Ti2541 demonstrates the best recovery 

after loading among all the Ti25xy alloys; hence, it exhibits the highest absorbed total energy. 

The Ti2521 and Ti2545 have similar absorbed elastic energy but different absorbed total 

energy. Specifically, the Ti2521exhibits higher absorbed plastic energy compared with Ti2545 

alloy. 

 

 
Fig. 8.8. The absorbed energy for all the Ti-25 wt% Nb-xMn-ySn (x = 2,4 wt% and y = 1,5 wt%) alloys: 

(a) the pictorial representation for absorbed energy, (b) the absorbed total energy, (c) the absorbed 
elastic energy, and (d) the absorbed plastic energy. (The alloys are designated as Ti25xy). 
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during plastic deformation [279]. The shear bands occur at oblique angels with reference to 

primary deformation axis and infiltrate several crystals in the deformation structure [279]. To 

characterize the formation of shear bands, the deformation analyses were carried out on the 

outer surface of the Ti25xy alloys. The Ti2521 alloy contains α" phase and displays sufficient 

plasticity of (41 ± 2.5 %). Therefore, Ti2521 alloy shows some shear bands and cracks in its 

deformed morphology (Fig. 8.9a) [11]. By contrast, the Ti2525, Ti2541, Ti2545 alloys do not 

fail during compression testing, consequently all of them display several shear bands in their 

deformed morphologies (Fig. 8.9b-d). 

 

 

Fig. 8.9. The second electron SEM images of compressively deformed morphologies observed on the 

outer surface for all the Ti-25Nb-xMn-ySn (x = 2,4 wt% and y = 1,5 wt%) alloys (The alloys are 

designated as Ti25xy). 

 

8.2. Conclusion 

The present work investigates the microstructural features, phase constitution, static 

compressive and superelastic mechanical properties and deformation behavior for the newly 

designed Ti-25Nb-xMn-ySn (in wt.%; x = 2, 4 and y = 1, 5) alloys for biomedical implant 

applications. The following main conclusions can be made from this work: 

https://www.sciencedirect.com/topics/engineering/deformation-structures
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 Microstructural and phase characterizations revealed that the Ti-25Nb-2Mn-1Sn alloy 

comprises a dual-phase microstructure (α"+β phases). By contrast, other alloys, i.e., Ti-

25Nb-2Mn-5Sn, Ti-25Nb-4Mn-1Sn and Ti-25Nb-4Mn-5Sn, possess monolithic β phase. 

 Static compression characterizations display that Ti-25Mn-2Mn-1Sn fails after attaining 

41 ± 2.5 % plastic strain during compression testing. By contrast, the Ti-25Nb-2Mn-

5Sn, Ti-25Nb-4Mn-1Sn and Ti-25Nb-4Mn-5Sn do not fail during compression testing 

even after the load reaches the load capacity of 100 kN. 

 Ti-25Nb-4Mn-1Sn alloy exhibits the highest value of yield strength of 710 ± 35 MPa 

and the Ti-25Nb-2Mn-1Sn possesses the highest value of hardness i.e., 244 ± 6.3 HV 

among the Ti-25Nb-xMn-ySn alloys. Notably, yield strength is influenced by solid 

solution and grain boundary strengthening while hardness is affected by the amount of 

constituent phases in each alloy. 

 The superelastic behaviors show that Ti-25Nb-4Mn-1Sn exhibits the maximum 

recoverable strain of 2.35 % and superelastic recovery ratio of 90 % during cyclic 

loading-unloading up to 3% strain level and demonstrates highest total energy 

absorption among the investigated Ti-25Nb-Mn-Sn alloys.  

 Moreover, all the Ti-Nb-Mn-Sn alloys display shear bands while Ti-25Nb-2Mn-1Sn 

display shear bands as well as some cracks on the outer surface of compressively 

deformed morphologies.  

 Based on the findings of this work, Ti-25Nb-4Mn-1Sn shows better blend of high yield 

strength, large plasticity, sufficient recoverable strain and high energy absorption 

provided that Ti-25Nb-4Mn-1Sn could be a promising material for biomedical implant 

applications. 
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9. Conclusion and future prospects 

In this work, four new series of Ti-25Nb-8Zr-xCr, Ti-25Nb-xSn-yCr, Ti-26Nb-xZr-yMn and 

Ti-25Nb-xMn-ySn alloys have been designed for biomedical implant applications based on the 

performance and cost parameters. Low-cost, abundant earth metals such as Cr, Mn and Sn have 

been employed in the investigated alloys in order to further enhance the performance of the 

designed alloys. The key concluding remarks from this work are summarized as below: 

1. In Ti-25Nb-8Zr-xCr, the addition of Cr renders a dual phase α"+β dual-phase 

microstructure formed in Ti-25Nb-8Zr to a monolithic β phase formed in the alloys 

comprised of Cr. Both yield strength and hardness of the studied alloys increase due to 

the effect of solid-solution strengthening. By contrast, the plasticity, maximum strength 

and strain hardening rate are influenced by the β stability as well as the distinct 

deformation mechanisms. None of the alloys comprising Cr fail up to 100 kN (the load 

capacity used) and all show impressive plasticity (~75%) and superior maximum 

compressive strength (~ 4.5 GPa) at 100 kN. Both hardness (1.91 GPa to 2.63 GPa) and 

yield strength (382 MPa to 773 MPa) increase as the Cr concentration increases in the 

Ti-25Nb-8Zr-xCr alloys. Enhanced strain hardening rate ~ 5 GPa is achieved after 

addition of 2 wt% Cr in Ti-25Nb-8Zr alloy.  

 

2. In Ti-25Nb-xSn-yCr alloys, all the investigated alloys display a monolithic β phase 

microstructure and exhibit high maximum strength (~ 5 GPa) as well as superior 

plasticity (~ 80 %, without failure even though the maximum load limit is reached at the 

load capacity of 100 kN). Ti-25Nb-1Sn-2Cr displays the highest yield strength (463 ± 

30 MPa), hardness (2.36 GPa) and lowest elastic modulus (66 GPa) among the Ti-25Nb-

xSn-yCr alloys. Furthermore, Ti-25Nb-1Sn-2Cr possesses the higher values of wear 

resistance indices (i.e. H/E and H3/Eeff
2) as compared to CP-Ti and Ti64. 

 

3. All the Ti-26Nb-xZr-yMn alloys illustrate a monolithic β phase in their microstructure 

and they all possess substantial true plasticity (~ 160%) and true maximum strength (~ 

950 MPa) without fracture during the compression tests within the load capacity of 100 

kN. The contribution of solid-solution, grain-boundary and dislocation strengthening 

mechanisms has been evaluated using the strengthening model for β Ti alloys for all the 

investigated alloys. Among the investigated alloys, Ti-26Nb-4Zr-5Mn demonstrates the 
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highest true yield strength (654 MPa), dislocation density (2.45 × 1015 m-2) and hardness 

(242 HV) along with improved strain hardening ability in terms of strain hardening 

indices (0.42 and 0.09). Furthermore, based on the superior mechanical properties 

among the investigated alloys, the electrochemical performance of Ti-26Nb-4Zr-3Mn 

and Ti-26Nb-4Zr-5Mn has also been analyzed in this work. The electrochemical 

measurements show that both alloys have almost similar corrosion potential and 

corrosion current density in simulated body fluid, i.e., -0.45 V and 0.838 nA/cm2 for Ti-

26Nb-4Zr-3Mn, -0.48 V and 0.839 nA/cm2 for Ti-26Nb-4Zr-5Mn, respectively. 

 

4. Monolithic β phase is found in all Ti-25Nb-xMn-ySn alloys except in Ti-25Nb-2Mn-

1Sn alloy which exhibits α"+β dual-phase microstructure. During compression testing, 

the Ti-25Nb-2Mn-1Sn alloy fails and demonstrates sufficient plasticity of ~ 41% and 

ultimate compressive strength of ~ 1800 MPa, where other alloys do not fail within the 

load capacity of 100 kN. Among all the investigated alloys, Ti-25Nb-4Mn-1Sn alloy 

exhibits the highest yield strength (~ 710 MPa) while Ti-25Nb-2Mn-1Sn alloy possesses 

the highest hardness (~ 244 HV). In this work, yield strength is influenced by solid 

solution and grain boundary strengthening while hardness is affected by the amount of 

constituent phases in each alloy. Additionally, Ti-25Nb-4Mn-1Sn shows the highest 

recoverable strain (2.35%) and superelastic recovery ratio (90%) during cyclic loading-

unloading up to 3% strain level, with the highest total energy absorption among the 

investigated alloys.  

 

5. The predicted deformation mechanisms based on deformation bands investigated around 

micro-hardness indentations, 𝐵𝑜̅̅̅̅ -𝑀𝑑̅̅̅̅̅ diagram and  𝑒/𝑎̅̅ ̅̅ ̅-𝛥𝑟̅̅ ̅ diagram are in line with each 

other for theTi-25Nb-8Zr-xCr and Ti-25Nb-xSn-yCr alloys.  

 

6. The results of deformation analysis after compression testing demonstrate the formation 

of shear bands, cracks and dimples for Ti-25Nb-8Zr-xCr, Ti-25Nb-xSn-yCr and Ti-

25Nb-xMn-ySn. The alloys that failed during compression testing displayed some 

cracks, by contrast those that did not fail during compression testing demonstrated 

excessive shear bands and dimples formation on their deformed morphology.  
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7. Based on the results achieved in this work, it can be concluded that Ti-25Nb-8Zr-4Cr, 

Ti-25Nb-1Sn-2Cr, Ti-26Nb-4Zr-5Mn and Ti-25Nb-4Mn-1Sn alloys demonstrate a good 

blend of desired properties for orthopedic implant application. 

This PhD study answers all the research questions presented for this thesis. However, while 

investigating the microstructure, mechanical properties and corrosion resistance are of critical 

importance for developing new generation of Ti alloys for orthopedic implant applications, 

further investigations to study other properties and/or further improve the performance of alloys 

are still required. The recommendations for some future work are summarized as below:  

1. Investigating biocompatibility via cell culturing of the designed alloys and comparing 

the performance with those of Ti-6Al-4V and CP-Ti, as biocompatibility tests are of 

crucial importance for the suitability of designed alloys in orthopedic implant 

applications. 

 

2. Investigating the tensile mechanical properties of designed alloys as tensile mechanical 

properties are supposed to be more reliable than compressive mechanical properties. 

3. Studying the fatigue properties of designed alloys and investigating the effects of Cr, 

Mn, Sn and Zr on fatigue strength of Ti-Nb and compare the performance with that of 

Ti-6Al-4V and CP-Ti. 

 

4. Producing the porous structure of designed alloys through different production methods 

such as spark plasma sintering and selective laser melting in order to further enhance the 

mechanical performance of the deigned alloys. 

 

5. Employ some heat treatment and work hardening process such as solution treatment, 

aging, forging, cold rolling and hot rolling etc to further enhance the mechanical 

performance of the designed alloys. 
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