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Abstract: Type 2 diabetes (T2D) and Alzheimer’s disease (AD) are growing in prevalence worldwide.
The development of T2D increases the risk of AD disease, while AD patients can show glucose
imbalance due to an increased insulin resistance. T2D and AD share similar pathological features
and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets
(i.e., islet amyloid polypeptide; IAPP) and brain (β-Amyloid; Aβ). Both IAPP and Aβ can undergo
misfolding and aggregation and accumulate in the extracellular space of their respective tissues
of origin. As a main response to protein misfolding, there is evidence of the role of heat shock
proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing
cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP)
levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space
(eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various
pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D
and AD, as well as propose that these chaperone proteins are an important link in the relationship
between T2D and AD.

Keywords: heat shock protein 70; IAPP; Aβ; iHSP; eHSP; dementia; tau

1. Introduction

Alzheimer’s disease (AD) and type 2 diabetes (T2D) are two of the most widespread age-related
chronic diseases, and the prevalence of both is steadily increasing [1,2]. AD and T2D share similar risk
factors, which can include a sedentary lifestyle, poor diet, obesity, and hereditary predisposition [3].
Studies have shown that patients with T2D are up to 65% more likely to develop AD than non-diabetic
patients, while AD individuals are more likely to be insulin resistant [4,5]. T2D and AD also
share dysfunctions in the insulin receptor, chronic inflammation, and secretion of amyloidogenic
peptides [6,7].

Amyloidogenic peptides are peptides that spontaneously misfold, aggregate, and deposit in
extracellular spaces, forming toxic soluble intermediates and insoluble fibrillar amyloid plaque.
Amyloidogenic peptides are associated with the development of T2D and AD through the formation of
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islet amyloid polypeptide (IAPP) and β-amyloid (Aβ), respectively [8–10]. These two amyloidogenic
peptides have similar methods of exerting toxicity involving membrane pore formation, mitochondrial
dysfunction, oxidative stress, endoplasmic reticulum (ER) stress, and apoptosis [11,12]. While Aβ

and IAPP deposit in their respective tissues of origin, they also co-localize in the plaque of both brain
tissue and pancreatic islets, where they undergo misfolding and aggregation [13,14]. Once co-localized,
Aβ and IAPP may also undergo a process called cross-seeding, where the aggregation and seeding of
amyloidogenic peptides attract and aggregate with more similar and/or different types of amyloidogenic
peptides [15,16]. In this case, co-localized Aβ and IAPP may promote the formation of combined
Aβ-IAPP oligomeric hetero-complexes [17–19]. Such dysfunctions in the protein homeostasis of vital
tissues often create a stressful environment in which cells may fail to thrive.

At the most basic cellular level, living organisms respond to stressful or unfavorable conditions by
changing the expression of stress-related genes, predominantly via the transcription and upregulation
of heat shock proteins (HSPs) [20]. This cytoprotective molecular organization is referred to as the heat
shock response (HSR). HSPs are a class of proteins that are rapidly upregulated by cells in response to
a variety of endogenous or exogenous stressors [20]. Despite being originally defined by their role in
the thermal stress response [21], HSPs are now understood to be expressed both constitutively and in
the presence of cellular stresses such as oxidative stress [22] and inflammation [22,23].

One of the main roles associated with the HSPs is to support protein maintenance, including
assisting the proper folding of newly synthesized proteins, refolding and clearance of misfolded and/or
aggregated proteins, and participating in the membrane translocation of secretory proteins [24]. As the
folding, maintenance, and degradation of proteins are key requirements for cell homeostasis, alterations
in the HSR and the associated functions of HSPs have been linked to chronic diseases, such as AD and
T2D. In this review, we describe the potential roles for HSPs in AD and T2D pathogenesis.

2. Dysregulation of Cellular Homeostasis in T2D and AD

T2D is a chronic disorder characterized by the dysregulation of cellular metabolism, deposition of
amyloid plaque, and disruption of insulin signaling. In T2D, the dysfunction of the insulin signaling
mechanism results in the insensitivity to insulin in peripheral tissues, leading to hyperglycemia,
hyperinsulinemia, and high levels of circulating lipids [25]. Complications of diabetes vary from acute,
such as ketoacidosis and dehydration, to chronic complications, such as angiopathy, heart disease,
kidney disease, neuropathy, and retinopathy [26]. Within pancreatic islets, T2D is associated with
a reduced β-cell mass, inefficient glucose-stimulated insulin secretion (GSIS), and the deposition of
aggregated IAPP as amyloid plaques [27,28].

IAPP has hormone functions under physiological conditions that assist in the regulation of
post-prandial glucose levels [29]. IAPP is synthesized in the ER of β-cells from precursor protein
ProIAPP and co-secreted with insulin at a ratio of 20 parts of insulin to 1 part IAPP [30]. As an
amyloidogenic peptide, IAPP is prone to misfolding and aggregating into soluble oligomeric
intermediates before progressing into insoluble fibrillar structures that deposit in the extracellular space
of pancreatic islets as a plaque [28]. The soluble oligomeric intermediate species are the more toxic
species, and unlike the insoluble fibrillar species, they have been identified both extracellularly and
intracellularly [31]. Intracellular IAPP oligomers may contain ProIAPP and can be present throughout
the secretory pathway, including the ER, secretory vesicles, and cytosol, indicating that misfolding and
aggregation is possible prior to secretion with insulin [32,33]. In addition, IAPP may be secreted as
monomers, aggregate externally, and then re-enter cells via micropinocytosis or independently cross
membranes in a similar fashion to cell-penetrating peptides [34,35]. Whether external or internal,
IAPP is capable of forming inappropriate ion channels in cell membranes, such as mitochondrial and
plasma membranes, leading to intracellular ionic dysregulation and mitochondrial dysfunction [12,33].
Mitochondrial dysfunction is not only detrimental to β-cell viability but drastically impairs insulin
secretion [36,37]. The reduction in β-cell mass, mitochondrial dysfunction, and decreased GSIS
potentiate the toxic effects of amyloidogenic peptides during the course of T2D.
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Similarly, to T2D, AD is a chronic disorder associated with the dysregulation of cellular metabolism,
dysfunctional insulin signaling, and the deposition of insoluble plaque in vital tissues. The association
between T2D and AD is shown in Figure 1. AD is a progressive neurodegenerative disease leading
to memory loss and an eventual loss of psychomotor skills and control of bodily functions [38].
The brains of AD patients often show amyloid plaques composed of Aβ, as well as neurofibrillary
tangles, consisting of hyperphosphorylated tau (pTau) protein [39]. In addition, neuroinflammation
has also long been considered a key feature of the AD process [40], and recent evidence supports
the theory that that the presence of Aβ plaques initiates the inflammatory process and promotes tau
accumulation [41–43]. A number of mechanisms underlying neurotoxicity in AD have been proposed,
including metabolic dysregulation and mitochondrial dysfunction. Similarly to IAPP, Aβ may interact
directly with membranes to form unregulated ion channels [44]. The dysregulation of ions within
the cell, or within specific organelle membranes such as the mitochondria, can result in alterations in
mitochondrial membrane potential and unbalance in the redox state of the cell, leading to oxidative
stress [45,46].
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Figure 1. Association between Type 2 diabetes and Alzheimer’s disease. Type 2 diabetes (T2D) and
Alzheimer’s disease (AD) are both age-related chronic diseases, affecting the similar populations of
people. Both diseases also feature altered metabolism, dysfunctions in insulin signaling, and plaque
deposition composed of amyloidogenic peptides such as islet amyloid polypeptide (IAPP) and
β-amyloid (Aβ). Similar to the diseases themselves, IAPP and Aβ share many commonalities, which
are predominantly shared mechanisms of toxicity. Current research suggests that IAPP and Aβ can
co-localize in the brain and pancreatic islets and cross-seed to form IAPP–Aβ heterocomplexes with
potentiated toxicity.

Another important physiological connection between T2D and AD involves the impairment
of insulin signaling in the central nervous system (CNS). Insulin signaling is strongly associated
with memory and learning in the CNS, but it may also affect Aβ production, Aβ clearance, and tau
phosphorylation [47]. The presence of insulin resistance in peripheral tissues, as noted in T2D,
potentially also reflects the presence of insulin signaling dysfunction throughout the CNS, offering a
possible explanation for the close association of T2D and AD. It has been noted that insulin signaling is
downregulated in AD-affected brains and that Aβ itself may bind to the insulin receptors, impacting
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synaptic strength and raising the possibility that Aβ could competitively inhibit the binding of
insulin [48]. Additionally, both Aβ and IAPP have demonstrated an ability to inhibit insulin sensitivity
and glucose uptake in peripheral tissues, primarily via the phosphorylation of Serine 473 of Akt [49–51].

Amyloidogenic peptides have an innate ability to recruit monomeric peptides and incorporate
them into the growing aggregated complexes [52]. This process, referred to as “seeding”, starts with a
progressive nucleation-dependent phase where an aggregated seed or “nucleus” forms. Once formed,
the rapid elongation phase begins as the recruitment of monomeric proteins is added to the aggregated
mass due to thermodynamically favorable interactions, forming insoluble complexes [53]. As the
intermediate and end products of all amyloid aggregations have common β-sheet structures, different
amyloids such as IAPP and Aβ have been shown to actively interact and form hetero-oligomer and
hetero-fibril complexes [17,54].

IAPP can function as a seed for the aggregation of Aβ and potentiate Aβ toxicity [45,55].
These complexes increase in cytotoxicity in the presence of increasing concentrations of Aβ and/or
IAPP [54]. This could particularly impact tissues where Aβ and IAPP are predominantly produced
and may then co-localize, such as the brain and pancreatic islets. Recent studies indicate that IAPP
may travel systemically from the pancreas and cross the blood–brain barrier (BBB) to deposit with Aβ

plaque in the brain [14,56]. Co-oligomerized IAPP–Aβ complexes can increase neuronal cell death
up to 3-fold compared to similar concentrations of IAPP or Aβ alone [17]. Interestingly, peripherally
produced amylin can bind to amylin receptors in the endothelial cells of the BBB, increasing the
translocation of Low-density Lipoprotein Receptor-Related Protein 1 (LRP1) to the cell membrane
and thereby actively promoting the transport of brain Aβ into the blood [57]. While transporting
soluble Aβ from the brain to the blood has the benefit of reducing toxic Aβ species from the brain, it is
in lieu of degradation pathways and does not decrease brain plaque burden [58]. Then, peripheral
insulin-sensitive tissues, such as skeletal muscle and liver, are exposed to toxic-soluble Aβ species that
may reduce insulin sensitivity [52]. Aβ can also travel systemically to the pancreatic islets, although
evidence also suggests that the pancreatic islets may be capable of the endogenous production of
Aβ [13,56,59]. Similar to the brain, co-oligomerized IAPP–Aβ complexes exert enhanced toxicity to
cells in the pancreatic islets than either IAPP or Aβ alone [52].

Considering both the critical role for HSPs in protein folding and that they are expressed in
response to misfolded or aggregated proteins, it stands to reason that these molecular chaperones have
important roles as a response to aggregated Aβ/Tau in AD or IAPP in T2D. Indeed, there is mounting
evidence that the HSF and a number or members within the HSP family are activated in the presence
of these amyloidogenic proteins and other stresses associated with AD and T2D.

3. Activation and Characterization of Heat Shock Proteins

The ability of all living organisms to respond with rapid and appropriate modifications against
physiological challenges is an essential feature for survival. The expression of HSPs is the most highly
conserved genetic system against cellular stress, and it is present in almost all known organisms [60].
The predominant role of the HSP family of proteins is to protect cells and facilitate the recovery of
disturbed metabolic pathways [61]. There are a number of members of the HSP family that are named
according to the gene that encodes them (e.g., HSPA1A, HSPA8 genes) or by the apparent molecular
weight in kDa (e.g., 70 kDa HSPs as HSP70).

In humans, the HSR is primarily regulated by heat shock factors (HSFs), which are transcriptional
activators of the HSP genes. While inactive, HSF monomers bind to HSPs, forming an inactive complex.
As protein misfolding commences, HSPs begin dissociating themselves from HSFs and migrate to
the misfolded proteins. This allows the HSFs to undergo trimerization and translocate to the cell
nucleus. Here, they bind to heat shock elements within the promoter regions of their target genes and
activate the transcription of new HSPs [62]. Although there are four identified HSFs, only HSF1, HSF2,
and HSF4 have been identified in humans. HSF2 and HSF4 are not known to be extensively involved
in the HSR and have been suggested to be predominately involved in embryonic development and
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tissue-specific transcriptional regulation, rather than the HSR. Traditionally, HSF1 is known as the
“master regulator” and is both the best characterized and most intimately involved in the HSR [63–66].
Interestingly, recent evidence suggests that HSF2 may regulate HSF1 activity via the formation of
heterotrimers, altering HSF1′s responsiveness to stress [67]. Regardless, once activated and transcribed
by HSFs, the HSPs begin their role as molecular chaperones.

HSP70 is the most characterized member of the HSP family, the members of which also includes
HSP90, HSP60, HSP40, and the lower molecular weight species known collectively as small HSPs
(sHSP) [68,69]. Apart from their size, key differences in functionality also separate the HSP families.
For example, the higher molecular weight species (HSP90-40) are ATP-dependent in function, requiring
ATP hydrolysis to alter their conformation to become active, while the sHSPs are ATP-independent
and only activated by cellular stress [69]. Differences in subcellular locations are also common, as some
HSPs only affect specific organelles (such as the mitochondria or ER), while others are cytosolic [61,68].

Although the HSR is a vital mechanism for homeostasis, HSPs are not only produced during cellular
stress. Some HSPs are known to be constitutively expressed, with essential roles in cellular functioning
that include controlling the trafficking of proteins in the cytosol and across cell membranes, the folding
of recently synthesized proteins, and assisting in the assembly of large protein complexes [69,70].
HSPs can also be located in the extracellular spaces (termed eHSPs). In contrast to the classical
anti-inflammatory and protective roles of intracellular HSPs (iHSP), eHSPs are thought to have a
pro-inflammatory role, particularly in age-related chronic diseases [71,72]. Discussed further below in
this review is the role of eHSPs and the importance of maintaining an appropriate balance between the
levels of iHSPs and eHSPs for cellular homeostasis under conditions of stress.

4. Heat Shock Response in Type 2 Diabetes and Alzheimer’s Disease

HSPs and the HSR have a predominantly cytoprotective role with the potential to attenuate T2D or
AD pathology. HSPs can clear aggregated amyloid proteins and prevent further amyloid aggregation
by inhibiting both the nucleation and elongation processes of cross-seeding [73,74]. However, both AD
and T2D may feature an altered expression of HSPs, as the HSR is often dysregulated in aged and obese
individuals, and phenotypes often seen in both of these two chronic metabolic-associated age-related
diseases [75,76]. A downregulation of HSP and the HSR correlates with dysfunctional insulin signaling,
which is another feature of both diseases, suggesting a strong correlation between HSPs and insulin
signaling [77–79]. A potential reason for this involves glycogen synthase kinase-3 (GSK-3), which is
a negative regulator of the insulin signaling cascade. An inflammatory environment resulting from
chronic disease and obesity, such as in AD and T2D, negatively impact insulin signaling, which results
in the activation of GSK-3 [79,80]. As well as further impairing insulin signaling, activated GSK-3 can
phosphorylate HSF1 [81,82]. The phosphorylation of HSF1 inhibits its translocation to the nucleus,
thereby lowering the gene expression of HSPs. The inhibition of GSK-3 causes an upregulation of HSP
and restoration of insulin signaling [79,81,83,84]. Then, a vicious cycle can be established, where the
inflammatory environment impairs insulin sensitivity and insulin signaling, which in turn impairs
the cells’ ability to manage the stresses of the local environment via the downregulation of HSPs,
making insulin-sensitive tissues more susceptible to damage and resulting in further increases in
inflammation and hyperglycemia (Figure 2) [79].
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Figure 2. The heat shock response in Alzheimer’s disease and type 2 diabetes. The inflammatory
environment in AD and T2D negatively disrupts insulin signaling, activating glycogen synthase kinase-3
(GSK-3), which in turn inappropriately phosphorylates heat shock factor 1 (HSF1). This phosphorylation
inhibits the translocation of the HSF1 trimers to the nucleus, and as a result, inhibits the upregulation of
HSPs. This reduced intracellular HSP pool is unable to effectively clear the aggregated amyloidogenic
peptides within the cells. In the external environment, increased levels of extracellular HSPs found
in T2D and AD patients can act as “chaperokines” and stimulate the immune system to produce
pro-inflammatory factors. This becomes a vicious cycle of increased inflammation, decreased insulin
signaling, and a decreased ability for HSP to clear aggregated peptides. On the other hand, some
eHSPs (e.g., eHSP90 and eHSP70) in AD may have a role in the clearance of amyloid plaque, as they
can modulate Aβ toxicity.

In neuronal tissue and pancreatic islets where amyloid plaque can accumulate, impaired insulin
signaling can result in a low HSP environment, favoring an increased aggregation of amyloidogenic
peptides [82]. However, in a T2D monkey model, it was shown that despite decreases in HSP and
HSF levels in peripheral tissues such as the liver, HSF1 expression was increased, and HSP levels
were maintained in pancreatic tissue [85]. This could indicate a possible islet-specific mechanism for
protection from the inflammatory environment compared to peripheral tissues at early stages of T2D.

It has also been suggested that decreased membrane integrity could contribute to the reduction of
HSP and HSF levels. Membrane lipid defects affecting integrity, fluidity, and composition, are featured
in both AD and T2D [86,87]. HSPs are known to mediate membrane integrity, supporting the cell
during stressful conditions [78]. Therefore, the combination of a reduction in HSPs and lipid defects
induced by insulin insensitivity could further potentiate lipid membrane disruptions [88]. Considering
that that there are several HSP proteins and that they have different locations and functions, the effects
on the pathology in T2D and AD cannot be generalized amongst all members of the HSP/HSF family.
Indeed, evidence to date implicate HSP90, 70, 60, and 40 in moderating Aβ, Tau, or IAPP aggregation,
or cellular stress induced by these aggregated proteins [89]. There are also emerging roles for sHSP
and extracellular eHSP in T2D and AD. These topics are discussed further in the present review.

4.1. Heat Shock Protein 90

HSP90 is the most abundantly expressed HSP protein in eukaryotic cells [90]. Predominantly
located in the cytosol, the functions of HSP90s include mediating the inflammatory response, as well
as stabilizing and correcting misfolded proteins [90]. Experimental evidence suggests that HSP90s are
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involved in regulating the activity of several signaling proteins, such as steroid hormone receptors,
and cellular differentiation processes [89].

Although the expression of HSP90 is predominantly constitutive, it can also be stress-induced in
response to misfolded or aggregated proteins. HSP90 can inhibit Aβ toxicity by binding misfolded
Aβ peptides [91]. Once bound, HSP90 then prevents further aggregation using an ATP-independent
pathway or by changing the conformation of Aβ to a state less prone to aggregation via an
ATP-dependent pathway [91]. In addition, tau is a substrate protein for HSP90 chaperones, where they
can bind hyperphosphorylated tau and activate degradation processes [92,93]. As for IAPP, evidence
shows that the ubiquitin–proteosomal system, which includes HSP90, is important for IAPP clearance
and turnover. A decline in the function of this system due to inflammation and aging is detrimental to
pancreatic islets, allowing IAPP aggregation to occur [94–96].

The role of HSP90 in T2D and AD is complex, as HSP90 can reportedly have both protective
and detrimental roles in managing amyloidogenic peptides. The inhibition of HSP90 promoted an
increased clearance of Aβ and tau in primary neuronal cells of rats [97,98], and it also facilitated
better glucose regulation in T2D mice [99]. HSP90 inhibition also increased the HSR by increasing the
dissociation of HSF1 from HSP90, where it could translocate to the nucleus and activate/potentiate the
HSR [97]. HSP90 assists in the maintenance and function of GSK-3 [98], which is well known for its
detrimental effects in T2D and AD [81,84]. In addition, HSP90 may even facilitate tau aggregation and
hyperphosphorylation in rat brain extracts by promoting conformation changes in tau that promote its
phosphorylation by GSK-3 [100].

As HSP90 actions can vary so widely, post-translational modifications and co-chaperones are
among the most important factors in the regulation of HSP90 activity. This includes the acetylation
and/or phosphorylation of HSP90, as well as the formation of larger protein complexes with other
HSPs, particularly HSP70 and HSP40 [101]. The HSP90/70/40 complex can slow Aβ aggregation in
a chaperone dose-dependent manner. In addition, in brain tissue from both transgenic AD mouse
models and AD patients, expression or formation of the HSP90/70/40 complex has been found to
inversely correlate with tau aggregation [102], supporting a protective role for this complex.

4.2. Heat Shock Protein 70

The HSP70 family is a varied group of chaperones with wide-ranging functions and subcellular
locations. A defining feature of the group, aside from their similar molecular weight, is the shared
structure of a substrate binding domain at the C-terminus that bind polypeptides, and at the N-terminus,
a nucleotide binding domain (NBD) that interacts with ATPase to hydrolyze ATP [103]. Members of
this family include the constitutively expressed Heat Shock Cognate 70 (HSC70) and the stress-induced
HSP72, which are both found in the cytosol. Other members of the HSP70 family are found in
organelle-specific locations, such as glucose-responsive proteins 78 (GRP78) and 75 (GRP75) are
localized in the ER and mitochondria, respectively [104].

HSC70, as a constitutive HSP, is involved in general proteostatic functions, such as the support of
protein assembly and protein trafficking throughout the cell. It also has roles in the innate immune
response, as well as cell differentiation processes [69,105]. However, during cellular stress, HSP72 is one
of the most strongly induced chaperones in the HSR and is considered one of the main stress-responsive
chaperones in cells [106].

In T2D patients, HSP72 has been reported to inhibit the aggregation of IAPP [107,108]. Heat therapy
to induce HSP72 was found to reduce insulin resistance and improve clinical parameters in T2D
patients [78]. This was suspected to result from an HSP72-induced reduction of pro-inflammatory
signaling molecule phosphorylation, which impaired normal insulin responses [78]. HSP72 can increase
the fatty acid oxidation capacity in skeletal muscle, protecting against increases in insulin resistance
and body weight [108]. Furthermore, HSP72 mRNA expression in skeletal muscle correlates with
mitochondrial enzyme activity, rate of lipid turnover, and insulin-stimulated glucose uptake [77,109].
However, skeletal muscle HSP72 mRNA expression has been shown to be reduced in T2D patients
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compared to controls, suggesting a less efficient HSR [77]. In addition, HSP70 can be susceptible to
glycation in a hyperglycemic environment, further reducing its chaperone activity [110].

In AD, the HSP70 proteins have cytoprotective roles via different mechanisms, including the
inhibition of Aβ oligomerisation and remodeling to a less amyloidogenic form [90,92], upregulation of
Aβ degradation enzymes [89,111,112], and restoring tau homeostasis by promoting the degradation
of pTau aggregates, most likely by the ubiquitin–proteasome and/or autophagy systems [89,112].
However, HSC70 and HSP72 had opposite effects on tau stability; HSP72 increases the degradation of
tau, while HSC70 reduces it. The ratio of inducible to constitutive HSPs appears to be a critical factor,
as increased levels of HSP72 appears to negate the ability of HSC70 to stabilize Tau [113,114].

Other members of the HSP70 family, such as GRP78, also have documented roles in AD pathology.
Intracellular Aβ oligomers can cause cellular damage before becoming extracellular. To prevent Aβ

intracellular toxicity, GRP78 can bind to Aβ precursor proteins in the ER, preventing the β/γ-secretase
cleavage necessary to process APP to Aβ, as shown in an HEK cell model co-transfected with APP and
GRP78 [115].

4.3. Heat Shock Protein 60

HSP60 chaperones are traditionally associated with the mitochondria, and various studies
have indicated that HSP60 may be more ubiquitously expressed than previously thought [116,117].
Within the mitochondria, HSP60 works closely with co-factor HSP10 (a member of the sHSP family) to
maintain and correct the folding of mitochondrial proteins. If a deficiency in these HSPs were to occur,
as observed in skeletal muscle of T2D patients [118] and the cortex of AD patients [119], cellular stress
is enhanced [89].

Neuroprotective effects of HSP60 have been demonstrated in a human neuroblastoma cell line,
where the overexpression of HSP60 inhibited an Aβ-induced reduction of Cytochrome C Oxidase
(COX) IV activity in the mitochondria, subsequently reducing apoptosis [117,120]. However, HSP60
has also been implicated in pro-apoptotic functions in cells. HSP60 was shown to bind to pro-caspase 3
in vitro and accelerate its maturation during apoptosis [89,121,122]. Furthermore, HSP60 can mediate
the mislocalisation of APP to the mitochondria, where Aβ peptides can aggregate, possibly leading to
mitochondrial dysfunction [123]. Considering these somewhat opposite effects reported for HSP60
on AD pathology, further investigation is warranted, potentially examining the role of expression or
interactions with other HSPs that moderate the overall activities of HSP60.

4.4. Heat Shock Protein 40

The HSP40 family of chaperones function differently compared to other HSPs, as they require
co-chaperones from the HSP70 group to be active [89,124]. HSP40 uses a conserved N-Terminus
J-Domain to bind to the ATPase N-Terminus of HSP70s, stimulating ATP’s conversion to adenosine
diphosphate (ADP) via hydrolysis. Once this occurs, HSP70 becomes activated, dissociates from HSF1,
and begins binding to non-native proteins [125]. HSP40 may also bind to substrates and escort them to
the substrate-binding domain of HSP70, where they mediate the process of refolding the substrate
proteins. This HSP70/40 complex greatly enhances the efficiency and capability of the refolding cycle,
including increasing ATP hydrolysis rate up to 1000-fold over basal levels [124,126].

While HSP40 is not directly involved in the pathogenesis of T2D or AD, it can facilitate and
regulate many of the HSPs that are—for example, the HSP70/40 complex, which has been shown to
inhibit Aβ aggregation in neuronal cells [102]. Interestingly, the B3 member of the HSP40 co-chaperone
family, along with HSP72, has been shown to mediate glucose uptake and insulin signaling via c-Jun
N-terminal kinase (JNK) repression [127]. Thus, alterations in the expression or function of HSPs in
tissues associated with amyloidogenic peptides could result in the promotion of chronic disease such
as T2D and AD.
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4.5. Small Heat Shock Proteins

sHSPs are a family of ATP-independent chaperones with sizes ranging from 10 to 40 kDa that share
common features, including a conserved α-crystallin domain. This domain allows for dimerization,
leading to oligomeric assembly of the sHSPs, where they can then successfully bind non-native protein
substrates and form stable sHSP–substrate complexes [89]. The oligomeric complexes are known for
binding to several non-native proteins at once, which is a feature that is absent in other molecular
chaperone families [128,129]. ATP-dependent chaperones are required to release the non-native protein
from the sHSP–substrate complex, where it can then be refolded or degraded. By creating a reservoir
of proteins for refolding or degradation, the presence of sHSPs makes the process more efficient [128].

sHSP have vital roles in T2D and AD. The expression of sHSPs is upregulated in T2D-associated
tissues, including skeletal muscle, retina, and cardiac muscle. However, their ability to function
correctly is often negatively affected, as both the solubility and activation of specific sHSPs is reduced
in hyperglycemic environments [130,131]. In AD, the HSP27 species of sHSP preferentially interacts
with hyperphosphorylated tau in human brain samples. In vitro, HSP27 modulates tau pathology by
decreasing the level of hyperphosphorylated tau, suppressing tau-induced apoptosis and increasing
the amount of dephosphorylated tau [132]. Furthermore, sHSP species can directly bind to Aβ and
IAPP to prevent fibril formation [133] and aggregation. Aβ binding to metal ions, such as Cu2+,
forms metal–peroxidases, which contribute to oxidative stress and an increased aggregation of Aβ.
sHSP chaperones have been shown to prevent the Cu2+-induced aggregation by dislodging the bound
Cu2+ ion, preventing fibril formation [134]. However, preventing fibril formation may not result in
reductions in amyloid-induced toxicity. When the sHSP, αB-crystallin, was co-incubated with Aβ

peptides in vitro, it inhibited the aggregation of Aβ into fibrils and instead maintained the Aβ peptides
in oligomeric αB-crystallin/Aβ complexes that were more toxic to neuronal cells [135].

5. Extracellular HSPs

Since the discovery of HSPs in 1962, several in vitro and in vivo studies have demonstrated that
an increase in intracellular HSP (iHSP) is an important mechanism for cell protection and survival
against cell stress challenges [136]. However, subsequent studies over the past 30 years have shown
that eHSPs are involved with a more complex signaling network with various biological, homeostatic,
and immunomodulatory properties.

HSPs are exported to the extracellular space through two main different mechanisms: active, due
to a nonconventional secretory process, and passive, which is secondary to cell death and lysis [137].
Briefly, an active mechanism (also known as non-classical or unconventional secretory pathway) occurs
through the lysosome–endosome pathway where HSPs, such as HSP70, are translocated into the
lysosome lumen via an ATP-binding cassette (ABC) transport-like system and further transported
outside the cell via the endocytic process or secretory-like granules. The most accepted mechanism for
the release of HSPs into the extracellular space is via extracellular vesicles derived from the plasma
membrane (called exosomes) mainly through endocytosis [138,139]. However, apart from exosome
release [140], there are other potential mechanisms that have been proposed by which eHSP is released,
including via lipid rafts interactions [90,141], α1-andrenergic receptor-mediated pathways [142],
and upon necrotic or apoptotic cell death [143,144].

Similar to the iHSPs, eHSPs are involved in protein folding quality control. Interestingly,
eHSPs, such as eHSP90, eHSP70, eHSP60, and eHSP27 might be highly expressed and released as
“chaperokines”, where they play a major role in inflammation and immunity [142,145,146]. However,
dependent on the circumstances, the same HSP proteins are not as highly expressed and can be observed
in lower amounts in the extracellular space, such as eHSP60 [147] and eHSP27 [148]. eHSPs can
stimulate inflammatory cytokine release from immune cells [141,143], recruit Natural Killer (NK)
cells [141], and activate microglial phagocytosis [70]. eHSPs also facilitate innate immune responses by
binding to Toll-like receptors (TLRs), most likely TLR2 and TLR4, and activating the inflammatory
cascade mediated by NF-κB [139,140,142,149]. A combination of oxidative stress and high levels of
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eHSPs, such as eHSP70, can also worsen the prognosis of inflammatory processes that occur in chronic
diseases [150], such as in T2D [139] and AD [144]. eHSP are more susceptible to oxidative stress in the
extracellular space, such as the bloodstream [138]. For instance, the increased protein oxidation in
serum observed in AD [144] was associated with the functional impairment of HSP70 [151]. Moreover,
oxidized protein aggregates may remain in extracellular fluids in the form of soluble aggregates and
stimulate neutrophils to produce high levels of ROS and thereby promoting oxidative stress [27] and
the activation of immune-inflammatory responses [152].

In T2D, iHSP levels (e.g., iHSP70) are decreased, while eHSP levels are increased and positively
correlated with the progression of the disease [139,153]. eHSPs in T2D patients, such as eHSP70
and eHSP60 [154], are correlated with insulin resistance and beta-cell dysfunction and death [155].
On the other hand, eHSPs do not necessarily have a pro-inflammatory role under all circumstances.
For example, eHSP90 may have a role in the clearance of amyloid plaque, as they can modulate
Aβ toxicity in AD [156] and upregulate its clearance via the stimulation of TLRs and microglial
phagocytosis [157]. Additionally, eHSPs may even have protective roles against protein aggregation,
since eHSP70 may affect the Aβ assembling process, preventing oligomer formation and toxicity in
neuronal cells in vitro. Thus, there is an inverse relationship between the presence of HSPs (mainly
HSP70), the stage of Aβ oligomers, neurotoxicity, and the incidence of AD, as the expression and
circulating levels of HSPs decrease with aging [152].

Thus, evaluating eHSPs levels outside the cells (e.g., bloodstream or liquor) might be useful to
understanding the nature of the HSR as a biomarker of defense integrity of the organism. If we consider
that iHSPs act in recovering homeostasis by inducing eNOS-dependent NO production, activating
antioxidant enzymes, and inactivating NF-KB, contrarily, eHSPs can induce the oxidative inflammatory
process by binding to NF-KB and AP-1, thereby inducing the expression of enzymes involved in ROS
production, adhesion molecules, and in the release of inflammatory interleukins [158]. In addition,
the same metabolically stressful situations that trigger the HSR within the intracellular milieu are
able to activate the release of exosomes containing eHSPs by non-canonical secretory mechanisms.
eHSPs can bind to membrane receptors (e.g., Toll-like) bringing about pro-inflammatory cytokine-like
signals toward all tissues for the presence of homeostasis-threatening condition. However, at the
same time that T2D patients (and other cardiovascular diseases patients) present a chronic low-grade
inflammatory profile with an increase in the eHSPs levels, the HSR is impaired in these patients and
associated with oxidative stress (a characteristic common in AD and T2D). Consequently, the eHSPs,
even at higher levels in the bloodstream, have poor immune signaling properties after oxidation.
This scenario represents a suppressed anti-inflammatory HSR, which may be a permissive situation for
AD and T2D development [159].

Considering the “good” and “bad” roles of HSPs in the intra and extracellular milieu, as a whole,
the balanced ratio between iHSP and eHSP in order to prevent cytotoxic effects of eHSP has been
proposed [160]. In addition, a better understanding of the role of the eHSP and eHSP/iHSP ratio
may contribute to the development of novel opportunities for the prediction, identification, diagnosis,
management, and treatment of chronic diseases, such as T2D and AD.

6. Conclusions: Heat Shock Proteins as a Therapeutic Target

In this review, we have identified the upregulation of HSPs as thermally activated therapeutic
targets for the treatment of chronic age-related diseases such as T2D and AD (see above). HSPs
are a collective family of proteins that are suffixed by their molecular mass (in kilodaltons; kDa),
both constitutively expressed, and inducible isoforms across several intracellular tissue sites and
in extracellular fluid following stress [20]. Compared to increased intracellular HSP content
(a necessary component for protective cellular adaptation), the presence of extracellular changes
in HSP concentration reflects a relatively lower transient stress response which may act acutely as a
signaling response. The 70 kDa and 90 kDa families of HSPs, normally known as HSP70 and HSP90,
are generally the most widely studied responders to thermal stressors. Chaperones ensure appropriate
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cell function in a wide variety of conditions and have distinct roles in several physiological adaptations,
including the unfolded protein response, e.g., recognizing misfolded or mislocalized proteins that
may be subsequently degraded by the proteasome, and are a key component of chaperone-mediated
autophagy [161,162]. We have described each of these roles above. The reader is directed elsewhere to
contextualize these actions.

As therapeutic targets, HSPs may be considered to have a direct and indirect role in chronic
diseases associated with the aggregation of misfolded proteins, including AD and T2D. In AD, HSP70
may suppress the proteolysis of Aβ precursor proteins [163] and in addition to HSP70, HSP90, and small
HSPs reduce the formation of Aβ fibrils and Aβ toxicity [164]. Tauopathy occurrence in AD may also
be positively impacted by HSP changes in HSP70 and HSP90 [165]. In a similar manner, HSP70 also
reduces the formation of amyloid fibrils by preventing the primary nucleation and aggregation of
misfolded IAPP [107]. In light of this, HSR inducible medications are suspected of having therapeutic
potential in the treatment of these diseases. For example, geranylgeranylacetone (GGA), BGP-15,
and Matrine have all shown some ability to promote glucose tolerance and insulin sensitivity in
peripheral tissues, improving diabetic outcomes [166–168]. Matrine has also shown an ability to
reduce the pro-inflammatory actions of microglia in the brain, potentially affecting the progression
of AD [147,169]. Other methods of HSR induction, such as heat therapy, exercise, and mild electrical
stimulation, have also shown therapeutic potential in the treatments of T2D and AD [167,170–172].
Despite the body of evidence available demonstrating the role of HSPs as therapeutic targets in T2D
and AD, this is still an area with large potential to explore.

Much of the literature describing these responses involve complex and isolated tissue/cell models
to understand how HSP manipulation impacts upon amyloid-associated disease factors; thus, direct
application for humans remains undefined. However, with mechanistic support for the role of HSP
augmentation to improve disease outcomes, the application of heat therapy and/or heat adaptation in
this context would be worthwhile.
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AD Alzheimer’s disease
ABC ATP-binding cassette
ADP Adenosine diphosphate
Akt Protein kinase B (PKB)
Aβ β-Amyloid
BBB Blood brain barrier
COX IV Cytochrome c oxidase
CNS Central nervous system
eHSP Extracellular heat shock proteins
ER Endoplasmic Reticulum
GGA Geranylgeranylacetone
GRP Glucose-responsive proteins
GSIS Glucose-stimulated insulin secretion
GSK-3 Glycogen synthase kinase-3
HSC Heat shock cognate
HSFs Heat shock factors
HSR Heat shock response
IAPP Islet amyloid polypeptide
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iHSP Intracellular heat shock proteins
JNK c-Jun N-terminal kinase
LRP1 Low-density lipoprotein receptor-related peptide 1
NBD Nucleotide binding domain
NK Natural killer
pTau Hyperphosphorylated Tau
sHSP Small HSPs
T2D Type 2 diabetes
TLRs Toll-like receptors
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15. Berhanu, W.M.; Yaşar, F.; Hansmann, U.H.E. In Silico Cross Seeding of Aβ and Amylin Fibril-like Oligomers.
ACS Chem. Neurosci. 2013, 4, 1488–1500. [CrossRef]

16. Baram, M.; Atsmon-Raz, Y.; Ma, B.; Nussinov, R.; Miller, Y. Amylin-Abeta oligomers at atomic resolution
using molecular dynamics simulations: A link between Type 2 diabetes and Alzheimer’s disease. Phys. Chem.
Chem. Phys. 2016, 18, 2330–2338. [CrossRef] [PubMed]

http://dx.doi.org/10.2337/diacare.27.5.1047
http://www.ncbi.nlm.nih.gov/pubmed/15111519
http://dx.doi.org/10.1016/S0140-6736(05)67889-0
http://dx.doi.org/10.1111/j.1365-2125.2010.03830.x
http://www.ncbi.nlm.nih.gov/pubmed/21284695
http://dx.doi.org/10.1001/archneur.61.5.661
http://www.ncbi.nlm.nih.gov/pubmed/15148141
http://dx.doi.org/10.2337/diabetes.53.2.474
http://www.ncbi.nlm.nih.gov/pubmed/14747300
http://dx.doi.org/10.1016/j.ceca.2009.12.010
http://dx.doi.org/10.1007/s00125-008-1255-x
http://dx.doi.org/10.1038/1831202a0
http://dx.doi.org/10.1056/NEJM200008103430607
http://dx.doi.org/10.1038/sj.cdd.4401528
http://dx.doi.org/10.1073/pnas.0903563106
http://dx.doi.org/10.1074/jbc.271.4.1988
http://www.ncbi.nlm.nih.gov/pubmed/8567648
http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.019
http://dx.doi.org/10.1002/ana.23956
http://www.ncbi.nlm.nih.gov/pubmed/23794448
http://dx.doi.org/10.1021/cn400141x
http://dx.doi.org/10.1039/C5CP03338A
http://www.ncbi.nlm.nih.gov/pubmed/26349542


Int. J. Mol. Sci. 2020, 21, 8204 13 of 20

17. Bharadwaj, P.; Solomon, T.; Sahoo, B.R.; Ignasiak, K.; Gaskin, S.; Rowles, J.; Verdile, G.; Howard, M.J.;
Bond, C.S.; Ramamoorthy, A.; et al. Amylin and beta amyloid proteins interact to form amorphous
heterocomplexes with enhanced toxicity in neuronal cells. Sci. Rep. 2020, 10, 10356. [CrossRef]

18. Bharadwaj, P.; Wijesekara, N.; Liyanapathirana, M.; Newsholme, P.; Ittner, L.; Fraser, P.; Verdile, G.
The Link between Type 2 Diabetes and Neurodegeneration: Roles for Amyloid-β, Amylin, and Tau Proteins.
J. Alzheimers Dis. JAD 2017, 59, 421–432. [CrossRef] [PubMed]

19. Martinez-Valbuena, I.; Valenti-Azcarate, R.; Amat-Villegas, I.; Riverol, M.; Marcilla, I.; de Andrea, C.E.;
Sánchez-Arias, J.A.; Del Mar Carmona-Abellan, M.; Marti, G.; Erro, M.E.; et al. Amylin as a potential link
between type 2 diabetes and alzheimer disease. Ann. Neurol. 2019, 86, 539–551. [CrossRef]

20. Kampinga, H.; Hageman, J.; Vos, M.; Kubota, H.; Tanguay, R.; Bruford, E.; Cheetham, M.; Chen, B.;
Hightower, L. Guidelines for the nomenclature of the human heat shock proteins. A Compr. J. Stress Biol.
Med. 2009, 14, 105–111. [CrossRef]

21. Yang, X.M.; Baxter, G.F.; Heads, R.J.; Yellon, D.M.; Downey, J.M.; Cohen, M.V. Infarct limitation of the second
window of protection in a conscious rabbit model. Cardiovasc. Res. 1996, 31, 777–783. [CrossRef]

22. Krause, M.S.; Oliveira, L.P.; Silveira, E.M.S.; Vianna, D.R.; Rossato, J.S.; Almeida, B.S.; Rodrigues, M.F.;
Fernandes, A.J.M.; Costa, J.A.B.; Curi, R.; et al. MRP1/GS-X pump ATPase expression: Is this the explanation
for the cytoprotection of the heart against oxidative stress-induced redox imbalance in comparison to skeletal
muscle cells? Cell Biochem. Funct. 2007, 25, 23. [CrossRef]

23. Cruzat, V.F.; Pantaleao, L.C.; Donato, J., Jr.; de Bittencourt, P.I., Jr.; Tirapegui, J. Oral supplementations with
free and dipeptide forms of L-glutamine in endotoxemic mice: Effects on muscle glutamine-glutathione axis
and heat shock proteins. J. Nutr. Biochem. 2014, 25, 345–352. [CrossRef] [PubMed]

24. Edkins, A.L.; Price, J.T.; Pockley, A.G.; Blatch, G.L. Heat shock proteins as modulators and therapeutic targets
of chronic disease: An integrated perspective. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2018, 373, 20160521.
[CrossRef] [PubMed]

25. Newsholme, P.; Krause, M. Nutritional regulation of insulin secretion: Implications for diabetes. Clin. Biochem.
Rev. 2012, 33, 35–47.

26. Ripsin, C.M.; Kang, H.; Urban, R.J. Management of blood glucose in type 2 diabetes mellitus. Am. Fam.
Physician 2009, 79, 29–36.

27. Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I., Jr. Molecular mechanisms of ROS
production and oxidative stress in diabetes. Biochem. J. 2016, 473, 4527–4550. [CrossRef]

28. Westermark, P.; Engstrom, U.; Johnson, K.H.; Westermark, G.T.; Betsholtz, C. Islet Amyloid
Polypeptide—Pinpointing amino-acid-residues linked to amyloid fibril formation. Proc. Natl. Acad.
Sci. USA 1990, 87, 5036–5040. [CrossRef]

29. Krampert, M.; Bernhagen, J.; Schmucker, J.; Horn, A.; Schmauder, A.; Brunner, H.; Voelter, W.; Kapurniotu, A.
Amyloidogenicity of recombinant human pro-islet amyloid polypeptide (ProIAPP). Chem. Biol. 2000, 7,
855–871. [CrossRef]

30. Martin, C. The physiology of amylin and insulin—Maintaining the balance between glucose secretion and
glucose uptake. Diabetes Educ. 2006, 32, 101S–104S. [CrossRef]

31. Meier, J.J.; Kayed, R.; Lin, C.Y.; Gurlo, T.; Haataja, L.; Jayasinghe, S.; Langen, R.; Glabe, C.G.; Butler, P.C.
Inhibition of human IAPP fibril formation does not prevent beta-cell death: Evidence for distinct actions of
oligomers and fibrils of human IAPP. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E1317–E1324. [CrossRef]
[PubMed]

32. Paulsson, J.F.; Andersson, A.; Westermark, P.; Westermark, G.T. Intracellular amyloid-like deposits contain
unprocessed pro-islet amyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressing the
gene for human IAPP and transplanted human islets. Diabetologia 2006, 49, 1237–1246. [CrossRef] [PubMed]

33. Gurlo, T.; Ryazantsev, S.; Huang, C.-J.; Yeh, M.W.; Reber, H.A.; Hines, O.J.; O’Brien, T.D.; Glabe, C.G.;
Butler, P.C. Evidence for Proteotoxicity in β Cells in Type 2 Diabetes. Am. J. Pathol. 2010, 176, 861–869.
[CrossRef] [PubMed]

34. Magzoub, M.; Miranker, A.D. Concentration-dependent transitions govern the subcellular localization of
islet amyloid polypeptide. FASEB J. 2012, 26, 1228–1238. [CrossRef]

35. Trikha, S.; Jeremic, A.M. Distinct internalization pathways of human amylin monomers and its cytotoxic
oligomers in pancreatic cells. PLoS ONE 2013, 8, e73080. [CrossRef]

http://dx.doi.org/10.1038/s41598-020-66602-9
http://dx.doi.org/10.3233/JAD-161192
http://www.ncbi.nlm.nih.gov/pubmed/28269785
http://dx.doi.org/10.1002/ana.25570
http://dx.doi.org/10.1007/s12192-008-0068-7
http://dx.doi.org/10.1016/S0008-6363(96)00026-0
http://dx.doi.org/10.1002/cbf.1343
http://dx.doi.org/10.1016/j.jnutbio.2013.11.009
http://www.ncbi.nlm.nih.gov/pubmed/24524905
http://dx.doi.org/10.1098/rstb.2016.0521
http://www.ncbi.nlm.nih.gov/pubmed/29203706
http://dx.doi.org/10.1042/BCJ20160503C
http://dx.doi.org/10.1073/pnas.87.13.5036
http://dx.doi.org/10.1016/S1074-5521(00)00034-X
http://dx.doi.org/10.1177/0145721706288237
http://dx.doi.org/10.1152/ajpendo.00082.2006
http://www.ncbi.nlm.nih.gov/pubmed/16849627
http://dx.doi.org/10.1007/s00125-006-0206-7
http://www.ncbi.nlm.nih.gov/pubmed/16570161
http://dx.doi.org/10.2353/ajpath.2010.090532
http://www.ncbi.nlm.nih.gov/pubmed/20042670
http://dx.doi.org/10.1096/fj.11-194613
http://dx.doi.org/10.1371/journal.pone.0073080


Int. J. Mol. Sci. 2020, 21, 8204 14 of 20

36. Robertson, R.P.; Harmon, J.S. Diabetes, glucose toxicity, and oxidative stress: A case of double jeopardy for
the pancreatic islet beta cell. Free Radic. Biol. Med. 2006, 41, 177–184. [CrossRef]

37. Newsholme, P.; Gaudel, C.; Krause, M. Mitochondria and diabetes. An intriguing pathogenetic role. Adv. Exp.
Med. Biol. 2012, 942, 235–247. [CrossRef]

38. Burns, A.; Iliffe, S. Alzheimer’s disease. BMJ 2009, 338, b158. [CrossRef]
39. Verdile, G.; Fuller, S.; Atwood, C.S.; Laws, S.M.; Gandy, S.E.; Martins, R.N. The role of beta amyloid in

Alzheimer’s disease: Still a cause of everything or the only one who got caught? Pharmacol. Res. 2004, 50,
397–409. [CrossRef]

40. O’Bryant, S.E.; Zhang, F.; Johnson, L.A.; Hall, J.; Edwards, M.; Grammas, P.; Oh, E.; Lyketsos, C.G.;
Rissman, R.A. A Precision Medicine Model for Targeted NSAID Therapy in Alzheimer’s Disease. J. Alzheimer’s
Dis. Jad 2018, 66, 97–104. [CrossRef]

41. Ittner, L.M.; Ke, Y.D.; Delerue, F.; Bi, M.; Gladbach, A.; van Eersel, J.; Wolfing, H.; Chieng, B.C.; Christie, M.J.;
Napier, I.A.; et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse
models. Cell 2010, 142, 387–397. [CrossRef] [PubMed]

42. Nussbaum, J.M.; Seward, M.E.; Bloom, G.S. Alzheimer disease: A tale of two prions. Prion 2013, 7, 14–19.
[CrossRef]

43. Felsky, D.; Roostaei, T.; Nho, K.; Risacher, S.L.; Bradshaw, E.M.; Petyuk, V.; Schneider, J.A.; Saykin, A.;
Bennett, D.A.; De Jager, P.L. Neuropathological correlates and genetic architecture of microglial activation in
elderly human brain. Nat. Commun. 2019, 10, 409. [CrossRef] [PubMed]

44. Verdier, Y.; Penke, B. Binding sites of amyloid beta-peptide in cell plasma membrane and implications for
Alzheimer’s disease. Curr. Protein Pept. Sci. 2004, 5, 19–31. [CrossRef]

45. Lim, Y.A.; Ittner, L.M.; Lim, Y.L.; Gotz, J. Human but not rat amylin shares neurotoxic properties with Abeta42
in long-term hippocampal and cortical cultures. FEBS Lett. 2008, 582, 2188–2194. [CrossRef] [PubMed]

46. Peng, T.I.; Jou, M.J. Oxidative stress caused by mitochondrial calcium overload. Ann. N. Y. Acad. Sci. 2010,
1201, 183–188. [CrossRef]

47. Candeias, E.; Duarte, A.I.; Carvalho, C.; Correia, S.C.; Cardoso, S.; Santos, R.X.; Placido, A.I.; Perry, G.;
Moreira, P.I. The impairment of insulin signaling in Alzheimer’s disease. IUBMB Life 2012, 64, 951–957.
[CrossRef]

48. Patel, A.N.; Jhamandas, J.H. Neuronal receptors as targets for the action of amyloid-beta protein (Abeta) in
the brain. Expert Rev. Mol. Med. 2012, 14, e2. [CrossRef]

49. Jimenez-Palomares, M.; Ramos-Rodriguez, J.J.; Lopez-Acosta, J.F.; Pacheco-Herrero, M.;
Lechuga-Sancho, A.M.; Perdomo, G.; Garcia-Alloza, M.; Cozar-Castellano, I. Increased Abeta
production prompts the onset of glucose intolerance and insulin resistance. Am. J. Physiol. Endocrinol. Metab.
2012, 302, E1373–E1380. [CrossRef]

50. Zhang, Y.; Zhou, B.; Deng, B.; Zhang, F.; Wu, J.; Wang, Y.; Le, Y.; Zhai, Q. Amyloid-beta induces hepatic
insulin resistance in vivo via JAK2. Diabetes 2013, 62, 1159–1166. [CrossRef]

51. Tabata, H.; Hirayama, J.; Sowa, R.; Furuta, H.; Negoro, T.; Sanke, T.; Nanjo, K. Islet amyloid polypeptide
(IAPP/amylin) causes insulin resistance in perfused rat hindlimb muscle. Diabetes Res. Clin. Pract. 1992, 15,
57–61. [CrossRef]

52. Moreno-Gonzalez, I.; Edwards Iii, G.; Salvadores, N.; Shahnawaz, M.; Diaz-Espinoza, R.; Soto, C. Molecular
interaction between type 2 diabetes and Alzheimer’s disease through cross-seeding of protein misfolding.
Mol. Psychiatry 2017, 22, 1327–1334. [CrossRef] [PubMed]

53. Jarrett, J.T.; Lansbury, P.T., Jr. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism
in Alzheimer’s disease and scrapie? Cell 1993, 73, 1055–1058. [CrossRef]

54. Yan, L.M.; Velkova, A.; Kapurniotu, A. Molecular characterization of the hetero-assembly of beta-amyloid
peptide with islet amyloid polypeptide. Curr. Pharm. Des. 2014, 20, 1182–1191. [CrossRef]

55. Ono, K.; Takahashi, R.; Ikeda, T.; Mizuguchi, M.; Hamaguchi, T.; Yamada, M. Exogenous amyloidogenic
proteins function as seeds in amyloid beta-protein aggregation. Biochim. Biophys. Acta 2014, 1842, 646–653.
[CrossRef] [PubMed]

56. Wijesekara, N.; Ahrens, R.; Sabale, M.; Wu, L.; Ha, K.; Verdile, G.; Fraser, P.E. Amyloid-β and islet amyloid
pathologies link Alzheimer’s disease and type 2 diabetes in a transgenic model. FASEB J. 2017, 31, 5409–5418.
[CrossRef]

http://dx.doi.org/10.1016/j.freeradbiomed.2005.04.030
http://dx.doi.org/10.1007/978-94-007-2869-1_10
http://dx.doi.org/10.1136/bmj.b158
http://dx.doi.org/10.1016/j.phrs.2003.12.028
http://dx.doi.org/10.3233/jad-180619
http://dx.doi.org/10.1016/j.cell.2010.06.036
http://www.ncbi.nlm.nih.gov/pubmed/20655099
http://dx.doi.org/10.4161/pri.22118
http://dx.doi.org/10.1038/s41467-018-08279-3
http://www.ncbi.nlm.nih.gov/pubmed/30679421
http://dx.doi.org/10.2174/1389203043486937
http://dx.doi.org/10.1016/j.febslet.2008.05.006
http://www.ncbi.nlm.nih.gov/pubmed/18486611
http://dx.doi.org/10.1111/j.1749-6632.2010.05634.x
http://dx.doi.org/10.1002/iub.1098
http://dx.doi.org/10.1017/S1462399411002134
http://dx.doi.org/10.1152/ajpendo.00500.2011
http://dx.doi.org/10.2337/db12-0670
http://dx.doi.org/10.1016/0168-8227(92)90068-3
http://dx.doi.org/10.1038/mp.2016.230
http://www.ncbi.nlm.nih.gov/pubmed/28044060
http://dx.doi.org/10.1016/0092-8674(93)90635-4
http://dx.doi.org/10.2174/13816128113199990064
http://dx.doi.org/10.1016/j.bbadis.2014.01.002
http://www.ncbi.nlm.nih.gov/pubmed/24440525
http://dx.doi.org/10.1096/fj.201700431R


Int. J. Mol. Sci. 2020, 21, 8204 15 of 20

57. Zhu, H.; Wang, X.; Wallack, M.; Li, H.; Carreras, I.; Dedeoglu, A.; Hur, J.Y.; Zheng, H.; Li, H.; Fine, R.; et al.
Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain
amyloid pathology in murine models of Alzheimer’s disease. Mol. Psychiatry 2015, 20, 252–262. [CrossRef]
[PubMed]

58. Mohamed, L.A.; Zhu, H.; Mousa, Y.M.; Wang, E.; Qiu, W.Q.; Kaddoumi, A. Amylin Enhances Amyloid-β
Peptide Brain to Blood Efflux Across the Blood-Brain Barrier. J. Alzheimers Dis. JAD 2017, 56, 1087–1099.
[CrossRef]

59. Stutzer, I.; Selevsek, N.; Esterhazy, D.; Schmidt, A.; Aebersold, R.; Stoffel, M. Systematic proteomic analysis
identifies beta-site amyloid precursor protein cleaving enzyme 2 and 1 (BACE2 and BACE1) substrates in
pancreatic beta-cells. J. Biol. Chem. 2013, 288, 10536–10547. [CrossRef] [PubMed]

60. Lindquist, S.; Craig, E.A. The heat-shock proteins. Annu. Rev. Genet. 1988, 22, 631–677. [CrossRef]
61. Welch, W.J. The Mammalian Stress Response: Cell Physiology & Biochemistry of Stress Proteins; Cold Spring

Harbor Laboratory Press: New York, NY, USA, 1990; p. 55.
62. Prahlad, V.; Morimoto, R.I. Integrating the stress response: Lessons for neurodegenerative diseases from C.

elegans. Trends Cell Biol. 2009, 19, 52–61. [CrossRef]
63. Dayalan Naidu, S.; Dinkova-Kostova, A.T. Regulation of the mammalian heat shock factor 1. FEBS J. 2017,

284, 1606–1627. [CrossRef]
64. Metzler, B.; Abia, R.; Ahmad, M.; Wernig, F.; Pachinger, O.; Hu, Y.; Xu, Q. Activation of Heat Shock

Transcription Factor 1 in Atherosclerosis. Am. J. Pathol. 2003, 162, 1669–1676. [CrossRef]
65. Schuetz, T.J.; Gallo, G.J.; Sheldon, L.; Tempst, P.; Kingston, R.E. Isolation of a cDNA for HSF2: Evidence for

two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 1991, 88, 6911–6915. [CrossRef]
66. Wang, G.; Ying, Z.; Jin, X.; Tu, N.; Zhang, Y.; Phillips, M.; Moskophidis, D.; Mivechi, N.F. Essential requirement

for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 2004, 38, 66–80.
[CrossRef]

67. Sandqvist, A.; Björk, J.K.; Åkerfelt, M.; Chitikova, Z.; Grichine, A.; Vourc’H, C.; Jolly, C.; Salminen, T.A.;
Nymalm, Y.; Sistonen, L. Heterotrimerization of Heat-Shock Factors 1 and 2 Provides a Transcriptional
Switch in Response to Distinct Stimuli. Mol. Biol. Cell 2009, 20, 1340–1347. [CrossRef]

68. Raboy, B.; Sharon, G.; Parag, H.A.; Shochat, Y.; Kulka, R.G. Effect of stress on protein degradation: Role of
the ubiquitin system. Acta Biol. Hung. 1991, 42, 3–20.

69. Sevin, M.; Girodon, F.; Garrido, C.; de Thonel, A. HSP90 and HSP70: Implication in Inflammation Processes
and Therapeutic Approaches for Myeloproliferative Neoplasms. Mediat. Inflamm. 2015, 2015, 970242.
[CrossRef]

70. Garrido, C.; Gurbuxani, S.; Ravagnan, L.; Kroemer, G. Heat shock proteins: Endogenous modulators of
apoptotic cell death. Biochem. Biophys. Res. Commun. 2001, 286, 433–442. [CrossRef]

71. Krause, M.; Bock, P.M.; Takahashi, H.K.; Homem De Bittencourt, P.I., Jr.; Newsholme, P. The regulatory roles
of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes.
Clin. Sci. 2015, 128, 789–803. [CrossRef]

72. Yuan, J.; Dunn, P.; Martinus, R.D. Detection of Hsp60 in saliva and serum from type 2 diabetic and non-diabetic
control subjects. Cell Stress Chaperones 2011, 16, 689. [CrossRef]

73. Duennwald, M.L.; Echeverria, A.; Shorter, J. Small heat shock proteins potentiate amyloid dissolution by
protein disaggregases from yeast and humans. PLoS Biol. 2012, 10, e1001346. [CrossRef]

74. Arimon, M.; Grimminger, V.; Sanz, F.; Lashuel, H.A. Hsp104 targets multiple intermediates on the amyloid
pathway and suppresses the seeding capacity of Abeta fibrils and protofibrils. J. Mol. Biol. 2008, 384,
1157–1173. [CrossRef] [PubMed]

75. Tower, J. Hsps and aging. Trends Endocrinol. Metab. 2009, 20, 216–222. [CrossRef] [PubMed]
76. Sabbah, N.A.; Rezk, N.A.; Saad, M.S.S. Relationship Between Heat Shock Protein Expression and Obesity

With and Without Metabolic Syndrome. Genet. Test. Mol. Biomark. 2019, 23, 737–743. [CrossRef] [PubMed]
77. Kurucz, I.; Morva, A.; Vaag, A.; Eriksson, K.F.; Huang, X.; Groop, L.; Koranyi, L. Decreased expression of

heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance.
Diabetes 2002, 51, 1102–1109. [CrossRef] [PubMed]

78. Vigh, L.; Horvath, I.; Maresca, B.; Harwood, J.L. Can the stress protein response be controlled by
‘membrane-lipid therapy’? Trends Biochem. Sci. 2007, 32, 357–363. [CrossRef]

http://dx.doi.org/10.1038/mp.2014.17
http://www.ncbi.nlm.nih.gov/pubmed/24614496
http://dx.doi.org/10.3233/JAD-160800
http://dx.doi.org/10.1074/jbc.M112.444703
http://www.ncbi.nlm.nih.gov/pubmed/23430253
http://dx.doi.org/10.1146/annurev.ge.22.120188.003215
http://dx.doi.org/10.1016/j.tcb.2008.11.002
http://dx.doi.org/10.1111/febs.13999
http://dx.doi.org/10.1016/S0002-9440(10)64301-5
http://dx.doi.org/10.1073/pnas.88.16.6911
http://dx.doi.org/10.1002/gene.20005
http://dx.doi.org/10.1091/mbc.e08-08-0864
http://dx.doi.org/10.1155/2015/970242
http://dx.doi.org/10.1006/bbrc.2001.5427
http://dx.doi.org/10.1042/CS20140695
http://dx.doi.org/10.1007/s12192-011-0281-7
http://dx.doi.org/10.1371/journal.pbio.1001346
http://dx.doi.org/10.1016/j.jmb.2008.09.063
http://www.ncbi.nlm.nih.gov/pubmed/18851977
http://dx.doi.org/10.1016/j.tem.2008.12.005
http://www.ncbi.nlm.nih.gov/pubmed/19394247
http://dx.doi.org/10.1089/gtmb.2019.0062
http://www.ncbi.nlm.nih.gov/pubmed/31517511
http://dx.doi.org/10.2337/diabetes.51.4.1102
http://www.ncbi.nlm.nih.gov/pubmed/11916932
http://dx.doi.org/10.1016/j.tibs.2007.06.009


Int. J. Mol. Sci. 2020, 21, 8204 16 of 20

79. Hooper, P.L.; Hooper, P.L. Inflammation, heat shock proteins, and type 2 diabetes. Cell Stress Chaperones 2009,
14, 113–115. [CrossRef]

80. Patel, S.; Doble, B.; Woodgett, J.R. Glycogen synthase kinase-3 in insulin and Wnt signalling: A double-edged
sword? Biochem. Soc. Trans. 2004, 32, 803–808. [CrossRef]

81. Henriksen, E.J.; Dokken, B.B. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes.
Curr. Drug Targets 2006, 7, 1435–1441. [CrossRef]

82. Kurthy, M.; Mogyorosi, T.; Nagy, K.; Kukorelli, T.; Jednakovits, A.; Talosi, L.; Biro, K. Effect of BRX-220
against peripheral neuropathy and insulin resistance in diabetic rat models. Ann. N. Y. Acad. Sci. 2002, 967,
482–489. [CrossRef]

83. Hooper, P.L. Insulin Signaling, GSK-3, Heat Shock Proteins and the Natural History of Type 2 Diabetes
Mellitus: A Hypothesis. Metab. Syndr. Relat. Disord. 2007, 5, 220–230. [CrossRef] [PubMed]

84. Hooper, C.; Killick, R.; Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 2008, 104,
1433–1439. [CrossRef]

85. Kavanagh, K.; Zhang, L.; Wagner, J.D. Tissue-specific regulation and expression of heat shock proteins in
type 2 diabetic monkeys. Cell Stress Chaperones 2009, 14, 291–299. [CrossRef]

86. Ginsberg, L.; Atack, J.R.; Rapoport, S.I.; Gershfeld, N.L. Evidence for a membrane lipid defect in Alzheimer
disease. Mol. Chem. Neuropathol. 1993, 19, 37–46. [CrossRef] [PubMed]

87. Weijers, R.N.M. Lipid Composition of Cell Membranes and Its Relevance in Type 2 Diabetes Mellitus. Curr.
Diabetes Rev. 2012, 8, 390–400. [CrossRef]

88. Horváth, I.; Multhoff, G.; Sonnleitner, A.; Vígh, L. Membrane-associated stress proteins: More than simply
chaperones. Biochim. Biophys. Acta BBA Biomembr. 2008, 1778, 1653–1664. [CrossRef]

89. Muchowski, P.J.; Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci.
2005, 6, 11. [CrossRef]

90. Mickler, M.; Hessling, M.; Ratzke, C.; Buchner, J.; Hugel, T. The large conformational changes of Hsp90 are
only weakly coupled to ATP hydrolysis. Nat. Struct. Mol. Biol. 2009, 16, 281. [CrossRef]

91. Evans, C.G.; Wisén, S.; Gestwicki, J.E. Heat Shock Proteins 70 and 90 Inhibit Early Stages of Amyloid β-(1–42)
Aggregation in Vitro. J. Biol. Chem. 2006, 281, 33182–33191. [CrossRef]

92. Dickey, C.A.; Yue, M.; Lin, W.-L.; Dickson, D.W.; Dunmore, J.H.; Lee, W.C.; Zehr, C.; West, G.; Cao, S.;
Clark, A.M.K.; et al. Deletion of the Ubiquitin Ligase CHIP Leads to the Accumulation, But Not the
Aggregation, of Both Endogenous Phospho- and Caspase-3-Cleaved Tau Species. J. Neurosci. 2006, 26,
6985–6996. [CrossRef]

93. Sahara, N.; Murayama, M.; Mizoroki, T.; Urushitani, M.; Imai, Y.; Takahashi, R.; Murata, S.; Tanaka, K.;
Takashima, A. In vivo evidence of CHIP up-regulation attenuating tau aggregation. J. Neurochem. 2005, 94,
1254–1263. [CrossRef]

94. Press, M.; Jung, T.; König, J.; Grune, T.; Höhn, A. Protein aggregates and proteostasis in aging: Amylin and
β-cell function. Mech. Ageing Dev. 2019, 177, 46–54. [CrossRef]

95. Chatterjee Bhowmick, D.; Jeremic, A. Functional proteasome complex is required for turnover of islet amyloid
polypeptide in pancreatic β-cells. J. Biol. Chem. 2018, 293, 14210–14223. [CrossRef]

96. Singh, S.; Trikha, S.; Sarkar, A.; Jeremic, A.M. Proteasome regulates turnover of toxic human amylin in
pancreatic cells. Biochem. J. 2016, 473, 2655–2670. [CrossRef]

97. Zhao, H.; Michaelis, M.L.; Blagg, B.S.J. Hsp90 Modulation for the Treatment of Alzheimer’s Disease.
In Advances in Pharmacology; Michaelis, E.K., Michaelis, M.L., Eds.; Academic Press: Cambridge, MA, USA,
2012; Volume 64, pp. 1–25.

98. Dou, F.; Chang, X.; Ma, D. Hsp90 Maintains the Stability and Function of the Tau Phosphorylating Kinase
GSK3β. Int. J. Mol. Sci. 2007, 8, 51–60. [CrossRef]

99. Lee, J.-H.; Gao, J.; Kosinski, P.A.; Elliman, S.J.; Hughes, T.E.; Gromada, J.; Kemp, D.M. Heat shock protein 90
(HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose
regulation in diabetic mice. Biochem. Biophys. Res. Commun. 2013, 430, 1109–1113. [CrossRef] [PubMed]

100. Tortosa, E.; Santa-Maria, I.; Moreno, F.; Lim, F.; Perez, M.; Avila, J. Binding of Hsp90 to tau promotes a
conformational change and aggregation of tau protein. J. Alzheimers Dis. JAD 2009, 17, 319–325. [CrossRef]

101. Wandinger, S.K.; Richter, K.; Buchner, J. The Hsp90 Chaperone Machinery. J. Biol. Chem. 2008, 283,
18473–18477. [CrossRef]

http://dx.doi.org/10.1007/s12192-008-0073-x
http://dx.doi.org/10.1042/BST0320803
http://dx.doi.org/10.2174/1389450110607011435
http://dx.doi.org/10.1111/j.1749-6632.2002.tb04306.x
http://dx.doi.org/10.1089/met.2007.0005
http://www.ncbi.nlm.nih.gov/pubmed/18370776
http://dx.doi.org/10.1111/j.1471-4159.2007.05194.x
http://dx.doi.org/10.1007/s12192-008-0084-7
http://dx.doi.org/10.1007/BF03160167
http://www.ncbi.nlm.nih.gov/pubmed/8363706
http://dx.doi.org/10.2174/157339912802083531
http://dx.doi.org/10.1016/j.bbamem.2008.02.012
http://dx.doi.org/10.1038/nrn1587
http://dx.doi.org/10.1038/nsmb.1557
http://dx.doi.org/10.1074/jbc.M606192200
http://dx.doi.org/10.1523/JNEUROSCI.0746-06.2006
http://dx.doi.org/10.1111/j.1471-4159.2005.03272.x
http://dx.doi.org/10.1016/j.mad.2018.03.010
http://dx.doi.org/10.1074/jbc.RA118.002414
http://dx.doi.org/10.1042/BCJ20160026
http://dx.doi.org/10.3390/i8010060
http://dx.doi.org/10.1016/j.bbrc.2012.12.029
http://www.ncbi.nlm.nih.gov/pubmed/23261432
http://dx.doi.org/10.3233/JAD-2009-1049
http://dx.doi.org/10.1074/jbc.R800007200


Int. J. Mol. Sci. 2020, 21, 8204 17 of 20

102. Ou, J.-R.; Tan, M.-S.; Xie, A.-M.; Yu, J.-T.; Tan, L. Heat Shock Protein 90 in Alzheimer’s Disease. Biomed Res.
Int. 2014, 2014, 796869. [CrossRef]

103. Young, J.C. Mechanisms of the Hsp70 chaperone system. Biochem. Cell Biol. Biochim. Biol. Cell. 2010, 88,
291–300. [CrossRef]

104. Daugaard, M.; Rohde, M.; Jäättelä, M. The heat shock protein 70 family: Highly homologous proteins with
overlapping and distinct functions. FEBS Lett. 2007, 581, 3702–3710. [CrossRef]

105. Ribeil, J.A.; Zermati, Y.; Vandekerckhove, J.; Cathelin, S.; Kersual, J.; Dussiot, M.; Coulon, S.; Moura, I.C.;
Zeuner, A.; Kirkegaard-Sorensen, T.; et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated
cleavage of GATA-1. Nature 2007, 445, 102–105. [CrossRef] [PubMed]

106. Lanneau, D.; Brunet, M.; Frisan, E.; Solary, E.; Fontenay, M.; Garrido, C. Heat shock proteins: Essential
proteins for apoptosis regulation. J. Cell. Mol. Med. 2008, 12, 743–761. [CrossRef] [PubMed]

107. Chilukoti, N.; Sahoo, B.; Maddheshiya, M.; Garai, K. Hsp70 Delays Amyloid Aggregation of Amylin by
Inhibiting Primary Nucleation. Biophys. J. 2018, 114, 78a–79a. [CrossRef]

108. Chung, J.; Nguyen, A.-K.; Henstridge, D.C.; Holmes, A.G.; Chan, M.H.S.; Mesa, J.L.; Lancaster, G.I.;
Southgate, R.J.; Bruce, C.R.; Duffy, S.J.; et al. HSP72 protects against obesity-induced insulin resistance.
Proc. Natl. Acad. Sci. USA 2008, 105, 1739–1744. [CrossRef] [PubMed]

109. Henstridge, D.C.; Whitham, M.; Febbraio, M.A. Chaperoning to the metabolic party: The emerging
therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol. Metab. 2014, 3, 781–793.
[CrossRef]

110. Takino, J.-I.; Kobayashi, Y.; Takeuchi, M. The formation of intracellular glyceraldehyde-derived advanced
glycation end-products and cytotoxicity. J. Gastroenterol. 2010, 45, 646–655. [CrossRef]

111. Hoshino, T.; Murao, N.; Namba, T.; Takehara, M.; Adachi, H.; Katsuno, M.; Sobue, G.; Matsushima, T.;
Suzuki, T.; Mizushima, T. Suppression of Alzheimer’s Disease-Related Phenotypes by Expression of Heat
Shock Protein 70 in Mice. J. Neurosci. 2011, 31, 5225–5234. [CrossRef]

112. Patterson, K.R.; Ward, S.M.; Combs, B.; Voss, K.; Kanaan, N.M.; Morfini, G.; Brady, S.T.; Gamblin, T.C.;
Binder, L.I. Heat Shock Protein 70 Prevents both Tau Aggregation and the Inhibitory Effects of Preexisting
Tau Aggregates on Fast Axonal Transport. Biochemistry 2011, 50, 10300–10310. [CrossRef]

113. Jinwal, U.K.; Akoury, E.; Abisambra, J.F.; O’Leary, J.C.; Thompson, A.D.; Blair, L.J.; Jin, Y.; Bacon, J.;
Nordhues, B.A.; Cockman, M.; et al. Imbalance of Hsp70 family variants fosters tau accumulation. FASEB J.
2013, 27, 1450–1459. [CrossRef] [PubMed]

114. Jinwal, U.K.; Miyata, Y.; Koren, J.; Jones, J.R.; Trotter, J.H.; Chang, L.; O’Leary, J.; Morgan, D.; Lee, D.C.;
Shults, C.L.; et al. Chemical Manipulation of Hsp70 ATPase Activity Regulates Tau Stability. J. Neurosci.
2009, 29, 12079–12088. [CrossRef] [PubMed]

115. Yang, Y.; Turner, R.S.; Gaut, J.R. The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases
Abeta40 and Abeta42 secretion. J. Biol. Chem. 1998, 273, 25552–25555. [CrossRef]

116. Cappello, F.; Conway de Macario, E.; Marasa, L.; Zummo, G.; Macario, A.J. Hsp60 expression, new locations,
functions and perspectives for cancer diagnosis and therapy. Cancer Biol. Ther. 2008, 7, 801–809. [CrossRef]

117. Capello, F.; Gammazza, A.M.; Vilasi, S.; Ortore, M.G.; Biagio, P.L.S.; Campanella, C.; Pace, A.; Piccionello, A.P.;
Taglialatela, G.; Macario, E.C.D.; et al. Chaperonotherapy for Alzheimer’s Disease: Focusing on HSP60.
In Heat Shock Protein-Based Therapies; Asea, A.A.A., Almasoud, N.N., Krishnan, S., Kaur, P., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; pp. 51–77.

118. Juwono, J.; Martinus, R.D. Does Hsp60 Provide a Link between Mitochondrial Stress and Inflammation in
Diabetes Mellitus? J. Diabetes Res. 2016, 2016, 6. [CrossRef]

119. Yoo, B.C.; Kim, S.H.; Cairns, N.; Fountoulakis, M.; Lubec, G. Deranged expression of molecular chaperones in
brains of patients with Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2001, 280, 249–258. [CrossRef]
[PubMed]

120. Veereshwarayya, V.; Kumar, P.; Rosen, K.M.; Mestril, R.; Querfurth, H.W. Differential effects of mitochondrial
heat shock protein 60 and related molecular chaperones to prevent intracellular beta-amyloid-induced
inhibition of complex IV and limit apoptosis. J. Biol. Chem. 2006, 281, 29468–29478. [CrossRef]

121. Xanthoudakis, S.; Roy, S.; Rasper, D.; Hennessey, T.; Aubin, Y.; Cassady, R.; Tawa, P.; Ruel, R.; Rosen, A.;
Nicholson, D.W. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during
apoptosis. EMBO J. 1999, 18, 2049–2056. [CrossRef]

http://dx.doi.org/10.1155/2014/796869
http://dx.doi.org/10.1139/O09-175
http://dx.doi.org/10.1016/j.febslet.2007.05.039
http://dx.doi.org/10.1038/nature05378
http://www.ncbi.nlm.nih.gov/pubmed/17167422
http://dx.doi.org/10.1111/j.1582-4934.2008.00273.x
http://www.ncbi.nlm.nih.gov/pubmed/18266962
http://dx.doi.org/10.1016/j.bpj.2017.11.475
http://dx.doi.org/10.1073/pnas.0705799105
http://www.ncbi.nlm.nih.gov/pubmed/18223156
http://dx.doi.org/10.1016/j.molmet.2014.08.003
http://dx.doi.org/10.1007/s00535-009-0193-9
http://dx.doi.org/10.1523/JNEUROSCI.5478-10.2011
http://dx.doi.org/10.1021/bi2009147
http://dx.doi.org/10.1096/fj.12-220889
http://www.ncbi.nlm.nih.gov/pubmed/23271055
http://dx.doi.org/10.1523/JNEUROSCI.3345-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19793966
http://dx.doi.org/10.1074/jbc.273.40.25552
http://dx.doi.org/10.4161/cbt.7.6.6281
http://dx.doi.org/10.1155/2016/8017571
http://dx.doi.org/10.1006/bbrc.2000.4109
http://www.ncbi.nlm.nih.gov/pubmed/11162507
http://dx.doi.org/10.1074/jbc.M602533200
http://dx.doi.org/10.1093/emboj/18.8.2049


Int. J. Mol. Sci. 2020, 21, 8204 18 of 20

122. Samali, A.; Cai, J.; Zhivotovsky, B.; Jones, D.P.; Orrenius, S. Presence of a pre-apoptotic complex of
pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J 1999, 18, 2040–2048.
[CrossRef]

123. Walls, K.C.; Coskun, P.; Gallegos-Perez, J.L.; Zadourian, N.; Freude, K.; Rasool, S.; Blurton-Jones, M.;
Green, K.N.; LaFerla, F.M. Swedish Alzheimer Mutation Induces Mitochondrial Dysfunction Mediated by
HSP60 Mislocalization of Amyloid Precursor Protein (APP) and Beta-Amyloid. J. Biol. Chem. 2012, 287,
30317–30327. [CrossRef]

124. Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 1996, 381, 571–579. [CrossRef] [PubMed]
125. Kityk, R.; Kopp, J.; Mayer, M.P. Molecular Mechanism of J-Domain-Triggered ATP Hydrolysis by Hsp70

Chaperones. Mol. Cell 2017, 69, 227–237.e224. [CrossRef] [PubMed]
126. Alderson, T.R.; Kim, J.H.; Markley, J.L. Dynamical structures of Hsp70 and Hsp70–Hsp40 complexes.

Structure 2016, 24, 1014–1030. [CrossRef]
127. Abu-Farha, M.; Cherian, P.; Al-Khairi, I.; Tiss, A.; Khadir, A.; Kavalakatt, S.; Warsame, S.; Dehbi, M.;

Behbehani, K.; Abubaker, J. DNAJB3/HSP-40 cochaperone improves insulin signaling and enhances glucose
uptake in vitro through JNK repression. Sci. Rep. 2015, 5, 14448. [CrossRef]

128. Haslbeck, M.; Franzmann, T.; Weinfurtner, D.; Buchner, J. Some like it hot: The structure and function of
small heat-shock proteins. Nat. Struct. Mol. Biol. 2005, 12, 842–846. [CrossRef]

129. Lee, G.J.; Roseman, A.M.; Saibil, H.R.; Vierling, E. A small heat shock protein stably binds heat-denatured
model substrates and can maintain a substrate in a folding-competent state. EMBO J. 1997, 16, 659–671.
[CrossRef]

130. Reddy, V.S.; Jakhotia, S.; Reddy, P.Y.; Reddy, G.B. Hyperglycemia induced expression, phosphorylation, and
translocation of αB-crystallin in rat skeletal muscle. IUBMB Life 2015, 67, 291–299. [CrossRef] [PubMed]

131. Reddy, V.S.; Raghu, G.; Reddy, S.S.; Pasupulati, A.K.; Suryanarayana, P.; Reddy, G.B. Response of small heat
shock proteins in diabetic rat retina. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7674–7682. [CrossRef]

132. Shimura, H.; Miura-Shimura, Y.; Kosik, K.S. Binding of Tau to Heat Shock Protein 27 Leads to Decreased
Concentration of Hyperphosphorylated Tau and Enhanced Cell Survival. J. Biol. Chem. 2004, 279, 17957–17962.
[CrossRef]

133. Mannini, B.; Cascella, R.; Zampagni, M.; van Waarde-Verhagen, M.; Meehan, S.; Roodveldt, C.; Campioni, S.;
Boninsegna, M.; Penco, A.; Relini, A.; et al. Molecular mechanisms used by chaperones to reduce the toxicity
of aberrant protein oligomers. Proc. Natl. Acad. Sci. USA 2012, 109, 12479–12484. [CrossRef]

134. Bakthisaran, R.; Tangirala, R.; Rao, C.M. Small heat shock proteins: Role in cellular functions and pathology.
Biochim. Biophys. Acta BBA Proteins Proteom. 2015, 1854, 291–319. [CrossRef]

135. Stege, G.J.; Renkawek, K.; Overkamp, P.S.; Verschuure, P.; van Rijk, A.F.; Reijnen-Aalbers, A.; Boelens, W.C.;
Bosman, G.J.; de Jong, W.W. The molecular chaperone alphaB-crystallin enhances amyloid beta neurotoxicity.
Biochem. Biophys. Res. Commun. 1999, 262, 152–156. [CrossRef] [PubMed]

136. Ritossa, F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 1962, 18,
571–573. [CrossRef]

137. Pockley, A.G.; Henderson, B. Extracellular cell stress (heat shock) proteins-immune responses and disease:
An overview. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373. [CrossRef] [PubMed]

138. Sitia, R.; Braakman, I. Quality control in the endoplasmic reticulum protein factory. Nature 2003, 426, 891–894.
[CrossRef] [PubMed]

139. Krause, M.; Heck, T.G.; Bittencourt, A.; Scomazzon, S.P.; Newsholme, P.; Curi, R.; Homem de Bittencourt, P.I.
The Chaperone Balance Hypothesis: The Importance of the Extracellular to Intracellular HSP70 Ratio to
Inflammation-Driven Type 2 Diabetes, the Effect of Exercise, and the Implications for Clinical Management.
Mediat. Inflamm. 2015, 2015, 12. [CrossRef] [PubMed]

140. Krause, M.; Keane, K.; Rodrigues-Krause, J.; Crognale, D.; Egan, B.; De Vito, G.; Murphy, C.; Newsholme, P.
Elevated levels of extracellular heat-shock protein 72 (eHSP72) are positively correlated with insulin resistance
in vivo and cause pancreatic beta-cell dysfunction and death in vitro. Clin. Sci. 2014, 126, 739–752. [CrossRef]

141. Kakimura, J.; Kitamura, Y.; Takata, K.; Umeki, M.; Suzuki, S.; Shibagaki, K.; Taniguchi, T.; Nomura, Y.;
Gebicke-Haerter, P.J.; Smith, M.A.; et al. Microglial activation and amyloid-beta clearance induced by
exogenous heat-shock proteins. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2002, 16, 601–603.

http://dx.doi.org/10.1093/emboj/18.8.2040
http://dx.doi.org/10.1074/jbc.M112.365890
http://dx.doi.org/10.1038/381571a0
http://www.ncbi.nlm.nih.gov/pubmed/8637592
http://dx.doi.org/10.1016/j.molcel.2017.12.003
http://www.ncbi.nlm.nih.gov/pubmed/29290615
http://dx.doi.org/10.1016/j.str.2016.05.011
http://dx.doi.org/10.1038/srep14448
http://dx.doi.org/10.1038/nsmb993
http://dx.doi.org/10.1093/emboj/16.3.659
http://dx.doi.org/10.1002/iub.1370
http://www.ncbi.nlm.nih.gov/pubmed/25900025
http://dx.doi.org/10.1167/iovs.13-12715
http://dx.doi.org/10.1074/jbc.M400351200
http://dx.doi.org/10.1073/pnas.1117799109
http://dx.doi.org/10.1016/j.bbapap.2014.12.019
http://dx.doi.org/10.1006/bbrc.1999.1167
http://www.ncbi.nlm.nih.gov/pubmed/10448084
http://dx.doi.org/10.1007/BF02172188
http://dx.doi.org/10.1098/rstb.2016.0522
http://www.ncbi.nlm.nih.gov/pubmed/29203707
http://dx.doi.org/10.1038/nature02262
http://www.ncbi.nlm.nih.gov/pubmed/14685249
http://dx.doi.org/10.1155/2015/249205
http://www.ncbi.nlm.nih.gov/pubmed/25814786
http://dx.doi.org/10.1042/CS20130678


Int. J. Mol. Sci. 2020, 21, 8204 19 of 20

142. Salari, S.; Seibert, T.; Chen, Y.X.; Hu, T.; Shi, C.; Zhao, X.; Cuerrier, C.M.; Raizman, J.E.; O’Brien, E.R.
Extracellular HSP27 acts as a signaling molecule to activate NF-kappaB in macrophages. Cell Stress
Chaperones 2013, 18, 53–63. [CrossRef]

143. Horn, P.; Kalz, A.; Lim, C.L.; Pyne, D.; Saunders, P.; Mackinnon, L.; Peake, J.; Suzuki, K. Exercise-recruited
NK cells display exercise-associated eHSP-70. Exerc. Immunol. Rev. 2007, 13, 100–111.

144. Conrad, C.C.; Marshall, P.L.; Talent, J.M.; Malakowsky, C.A.; Choi, J.; Gracy, R.W. Oxidized proteins in
Alzheimer’s plasma. Biochem. Biophys. Res. Commun. 2000, 275, 678–681. [CrossRef]

145. Lei, H.; Romeo, G.; Kazlauskas, A. Heat shock protein 90alpha-dependent translocation of annexin II to the
surface of endothelial cells modulates plasmin activity in the diabetic rat aorta. Circ. Res. 2004, 94, 902–909.
[CrossRef] [PubMed]

146. Gezen-Ak, D.; Dursun, E.; Hanagasi, H.; Bilgic, B.; Lohman, E.; Araz, O.S.; Atasoy, I.L.; Alaylioglu, M.;
Onal, B.; Gurvit, H.; et al. BDNF, TNFalpha, HSP90, CFH, and IL-10 serum levels in patients with early
or late onset Alzheimer’s disease or mild cognitive impairment. J. Alzheimers Dis. JAD 2013, 37, 185–195.
[CrossRef]

147. Zhang, R.; Li, Y.; Hou, X.; Miao, Z.; Wang, Y. Neuroprotective effect of heat shock protein 60 on
matrine-suppressed microglial activation. Exp. Ther. Med. 2017, 14, 1832–1836. [CrossRef] [PubMed]

148. Gruden, G.; Bruno, G.; Chaturvedi, N.; Burt, D.; Schalkwijk, C.; Pinach, S.; Stehouwer, C.D.; Witte, D.R.;
Fuller, J.H.; Perin, P.C.; et al. Serum heat shock protein 27 and diabetes complications in the EURODIAB
prospective complications study: A novel circulating marker for diabetic neuropathy. Diabetes 2008, 57,
1966–1970. [CrossRef] [PubMed]

149. Salminen, A.; Huuskonen, J.; Ojala, J.; Kauppinen, A.; Kaarniranta, K.; Suuronen, T. Activation of innate
immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res. Rev.
2008, 7, 83–105. [CrossRef]

150. Gelain, D.P.; de Bittencourt Pasquali, M.A.; Comim, M.C.; Grunwald, M.S.; Ritter, C.; Tomasi, C.D.; Alves, S.C.;
Quevedo, J.; Dal-Pizzol, F.; Moreira, J.C. Serum heat shock protein 70 levels, oxidant status, and mortality in
sepsis. Shock 2011, 35, 466–470. [CrossRef]

151. Grunwald, M.S.; Pires, A.S.; Zanotto-Filho, A.; Gasparotto, J.; Gelain, D.P.; Demartini, D.R.; Scholer, C.M.; de
Bittencourt, P.I., Jr.; Moreira, J.C. The oxidation of HSP70 is associated with functional impairment and lack
of stimulatory capacity. Cell Stress Chaperones 2014, 19, 913–925. [CrossRef]

152. Wyatt, A.R.; Yerbury, J.J.; Poon, S.; Wilson, M.R. Therapeutic targets in extracellular protein deposition
diseases. Curr. Med. Chem. 2009, 16, 2855–2866. [CrossRef]

153. Nakhjavani, M.; Morteza, A.; Khajeali, L.; Esteghamati, A.; Khalilzadeh, O.; Asgarani, F.; Outeiro, T.F.
Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones 2010, 15,
959–964. [CrossRef]

154. Shamaei-Tousi, A.; Stephens, J.W.; Bin, R.; Cooper, J.A.; Steptoe, A.; Coates, A.R.; Henderson, B.;
Humphries, S.E. Association between plasma levels of heat shock protein 60 and cardiovascular disease in
patients with diabetes mellitus. Eur. Heart J. 2006, 27, 1565–1570. [CrossRef]

155. Rodrigues-Krause, J.; Krause, M.; O’Hagan, C.; De Vito, G.; Boreham, C.; Murphy, C.; Newsholme, P.;
Colleran, G. Divergence of intracellular and extracellular HSP72 in type 2 diabetes: Does fat matter? Cell Stress
Chaperones 2012, 17, 293–302. [CrossRef]

156. Takata, K.; Kitamura, Y.; Tsuchiya, D.; Kawasaki, T.; Taniguchi, T.; Shimohama, S. Heat shock
protein-90-induced microglial clearance of exogenous amyloid-beta1-42 in rat hippocampus in vivo.
Neurosci. Lett. 2003, 344, 87–90. [CrossRef]

157. Locke, M.; Noble, E.G. Exercise and Stress Response: The Role of Stress Proteins; CRC Press: New York, NY,
USA, 2002; p. 226.

158. Costa-Beber, L.C.; Hirsch, G.E.; Heck, T.G.; Ludwig, M.S. Chaperone duality: The role of extracellular
and intracellular HSP70 as a biomarker of endothelial dysfunction in the development of atherosclerosis.
Arch. Physiol. Biochem. 2020, 1–8. [CrossRef] [PubMed]

159. Heck Thiago, G.; Ludwig Mirna, S.; Frizzo Matias, N.; Rasia-Filho Alberto, A.; Homem de Bittencourt, P.I., Jr.
Suppressed anti-inflammatory heat shock response in high-risk COVID-19 patients: Lessons from basic
research (inclusive bats), light on conceivable therapies. Clin. Sci. 2020, 134, 1991–2017. [CrossRef]

160. Rivera, I.; Capone, R.; Cauvi, D.M.; Arispe, N.; De Maio, A. Modulation of Alzheimer’s amyloid β peptide
oligomerization and toxicity by extracellular Hsp70. Cell Stress Chaperones 2017. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s12192-012-0356-0
http://dx.doi.org/10.1006/bbrc.2000.3356
http://dx.doi.org/10.1161/01.RES.0000124979.46214.E3
http://www.ncbi.nlm.nih.gov/pubmed/15001530
http://dx.doi.org/10.3233/JAD-130497
http://dx.doi.org/10.3892/etm.2017.4691
http://www.ncbi.nlm.nih.gov/pubmed/28781634
http://dx.doi.org/10.2337/db08-0009
http://www.ncbi.nlm.nih.gov/pubmed/18390793
http://dx.doi.org/10.1016/j.arr.2007.09.002
http://dx.doi.org/10.1097/SHK.0b013e31820fe704
http://dx.doi.org/10.1007/s12192-014-0516-5
http://dx.doi.org/10.2174/092986709788803187
http://dx.doi.org/10.1007/s12192-010-0204-z
http://dx.doi.org/10.1093/eurheartj/ehl081
http://dx.doi.org/10.1007/s12192-011-0319-x
http://dx.doi.org/10.1016/S0304-3940(03)00447-6
http://dx.doi.org/10.1080/13813455.2020.1745850
http://www.ncbi.nlm.nih.gov/pubmed/32293198
http://dx.doi.org/10.1042/CS20200596
http://dx.doi.org/10.1007/s12192-017-0839-0
http://www.ncbi.nlm.nih.gov/pubmed/28956268


Int. J. Mol. Sci. 2020, 21, 8204 20 of 20

161. Kampinga, H.H.; Bergink, S. Heat shock proteins as potential targets for protective strategies in
neurodegeneration. Lancet Neurol. 2016, 15, 748–759. [CrossRef]

162. Zarouchlioti, C.; Parfitt, D.A.; Li, W.; Gittings, L.M.; Cheetham, M.E. DNAJ Proteins in neurodegeneration:
Essential and protective factors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373. [CrossRef]

163. Hoshino, T.; Nakaya, T.; Araki, W.; Suzuki, K.; Suzuki, T.; Mizushima, T. Endoplasmic reticulum chaperones
inhibit the production of amyloid-beta peptides. Biochem. J. 2007, 402, 581–589. [CrossRef]

164. Wilhelmus, M.M.; Otte-Höller, I.; Wesseling, P.; de Waal, R.M.; Boelens, W.C.; Verbeek, M.M. Specific
association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains.
Neuropathol. Appl. Neurobiol. 2006, 32, 119–130. [CrossRef]

165. Luo, W.; Dou, F.; Rodina, A.; Chip, S.; Kim, J.; Zhao, Q.; Moulick, K.; Aguirre, J.; Wu, N.; Greengard, P.;
et al. Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in
tauopathies. Proc. Natl. Acad. Sci. USA 2007, 104, 9511–9516. [CrossRef] [PubMed]

166. Literáti-Nagy, Z.; Tory, K.; Literáti-Nagy, B.; Kolonics, A.; Török, Z.; Gombos, I.; Balogh, G.; Vígh, L., Jr.;
Horváth, I.; Mandl, J.; et al. The HSP co-inducer BGP-15 can prevent the metabolic side effects of the atypical
antipsychotics. Cell Stress Chaperones 2012, 17, 517–521. [CrossRef]

167. Kondo, T.; Motoshima, H.; Igata, M.; Kawashima, J.; Matsumura, T.; Kai, H.; Araki, E. The role of heat shock
response in insulin resistance and diabetes. Diabetes Metab. J. 2014, 38, 100–106. [CrossRef]

168. Zeng, X.Y.; Wang, H.; Bai, F.; Zhou, X.; Li, S.P.; Ren, L.P.; Sun, R.Q.; Xue, C.C.; Jiang, H.L.; Hu, L.H.; et al.
Identification of matrine as a promising novel drug for hepatic steatosis and glucose intolerance with HSP72
as an upstream target. Br. J. Pharmacol. 2015, 172, 4303–4318. [CrossRef] [PubMed]

169. Ding, F.; Li, Y.; Hou, X.; Zhang, R.; Hu, S.; Wang, Y. Oxymatrine inhibits microglia activation via HSP60-TLR4
signaling. Biomed. Rep. 2016, 5, 623–628. [CrossRef] [PubMed]

170. Archer, A.E.; Von Schulze, A.T.; Geiger, P.C. Exercise, heat shock proteins and insulin resistance. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 2018, 373. [CrossRef]

171. Krause, M.; Ludwig, M.S.; Heck, T.G.; Takahashi, H.K. Heat shock proteins and heat therapy for type 2
diabetes: Pros and cons. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 374–380. [CrossRef] [PubMed]

172. Hunt, A.P.; Minett, G.M.; Gibson, O.R.; Kerr, G.K.; Stewart, I.B. Could Heat Therapy Be an Effective Treatment
for Alzheimer’s and Parkinson’s Diseases? A Narrative Review. Front. Physiol. 2020, 10. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S1474-4422(16)00099-5
http://dx.doi.org/10.1098/rstb.2016.0534
http://dx.doi.org/10.1042/BJ20061318
http://dx.doi.org/10.1111/j.1365-2990.2006.00689.x
http://dx.doi.org/10.1073/pnas.0701055104
http://www.ncbi.nlm.nih.gov/pubmed/17517623
http://dx.doi.org/10.1007/s12192-012-0327-5
http://dx.doi.org/10.4093/dmj.2014.38.2.100
http://dx.doi.org/10.1111/bph.13209
http://www.ncbi.nlm.nih.gov/pubmed/26040411
http://dx.doi.org/10.3892/br.2016.776
http://www.ncbi.nlm.nih.gov/pubmed/27882228
http://dx.doi.org/10.1098/rstb.2016.0529
http://dx.doi.org/10.1097/MCO.0000000000000183
http://www.ncbi.nlm.nih.gov/pubmed/26049635
http://dx.doi.org/10.3389/fphys.2019.01556
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Are heat shock proteins an important link between type 2 diabetes and Alzheimer disease?
	Authors

	Introduction 
	Dysregulation of Cellular Homeostasis in T2D and AD 
	Activation and Characterization of Heat Shock Proteins 
	Heat Shock Response in Type 2 Diabetes and Alzheimer’s Disease 
	Heat Shock Protein 90 
	Heat Shock Protein 70 
	Heat Shock Protein 60 
	Heat Shock Protein 40 
	Small Heat Shock Proteins 

	Extracellular HSPs 
	Conclusions: Heat Shock Proteins as a Therapeutic Target 
	References

