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Abstract: Convolutional neural networks have recently been used for multi-focus image fusion.
However, some existing methods have resorted to adding Gaussian blur to focused images,
to simulate defocus, thereby generating data (with ground-truth) for supervised learning.
Moreover, they classify pixels as ‘focused’ or ‘defocused’, and use the classified results to construct
the fusion weight maps. This then necessitates a series of post-processing steps. In this paper,
we present an end-to-end learning approach for directly predicting the fully focused output image
from multi-focus input image pairs. The suggested approach uses a CNN architecture trained to
perform fusion, without the need for ground truth fused images. The CNN exploits the image
structural similarity (SSIM) to calculate the loss, a metric that is widely accepted for fused image
quality evaluation. What is more, we also use the standard deviation of a local window of the
image to automatically estimate the importance of the source images in the final fused image when
designing the loss function. Our network can accept images of variable sizes and hence, we are able
to utilize real benchmark datasets, instead of simulated ones, to train our network. The model is
a feed-forward, fully convolutional neural network that can process images of variable sizes during
test time. Extensive evaluation on benchmark datasets show that our method outperforms, or is
comparable with, existing state-of-the-art techniques on both objective and subjective benchmarks.

Keywords: multi-focus image fusion; convolution neural network; unsupervised learning; structural
similarity

1. Introduction

Most imaging systems, for instance, digital single-lens reflex cameras, have a limited
depth-of-field: such that the focus is on the scene content that is in the near vicinity of the imaging plane.
Specifically, objects closer to or further away from the focal point appear to be blurred or unfocused in
the image. Multi-Focus Image Fusion (MFIF) aims at reconstructing an “in-focus” image from two or
more partly or “out-of-focus” images of the same scene. For example, there is a student standing in
front of the library building, we take a photo of this student with a common camera, we will obtain
one image with a clear student and a blurry library building and the other image with a clear library
building and a blurry student by different focus positions. To obtain an image with a clear student and
library building (all-in-focus), the multi-focus image techniques can do it. MFIF techniques have wide
ranging applications in the fields of surveillance, medical imaging, computer vision, remote sensing
and digital imaging [1–5].
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The advent of Convolutional Neural Networks (CNNs) has seen a revolution in computer vision:
in tasks ranging from object recognition [6,7], semantic segmentation [8,9], action recognition [10,11],
optical flow [12,13] to image super-resolution [14–16]. Recently, Prabhakar et al. [17] used deep learning
to fuse multi-exposure image pairs. This was followed by Liu et al. [18], who proposed a Convolutional
Neural Network (CNN), as part of their algorithm, to fuse multi-focus image pairs. That algorithm
learns a classifier to distinguish between the “focused” and “unfocused” images to calculate a fusion
weight map. Later, Tang et al. [19] improved the algorithm by proposing a pixel-CNN (p-CNN) for
categorization of “focused” and “defocused” pixels in a pair of multi-focus images. Yang et al. [20]
proposed a multi-level features CNN architecture to yield the fused image.

It is known that the performance of CNNs is often a function of large amounts of labeled
training data [21]. Liu et al. [18] and Tang et al. [19] addressed this problem by simulating
blurred versions of benchmark datasets (datasets used for image recognition). Unfocused images
were generated by adding Gaussian blur in randomly selected patches, making their training
dataset unrealistic. Furthermore, since their method is based on calculating weight fusion maps,
after learning a classifier, it does not provide an end-to-end solution. Hence, the algorithm requires
some post-processing steps for improving the results. Another issue is that, in most well known deep
networks (e.g., DeepFuse, Deepface and Facenet [17,22,23]), the input image size is restricted to the
training image size. For instance, DeepFuse [17] creates fusion maps during training and requires
the input image size to match the fusion map dimensions. This problem is circumvented by sliding
a window over the image and obtaining patches to match the fusion map size. These patches are
then averaged to obtain the final weight fusion map of the same size as corresponding source images,
thereby introducing redundancy and errors in the final reconstruction.

To address these issues, we present an end-to-end deep network trained on benchmark
multi-focus images. The proposed network takes a pair of multi-focus images and outputs the all-focus
image. We train our network in an unsupervised fashion, without the need for ground truth ‘all focused’
images. This method of training requires a robust loss function. In contrast to the existing unsupervised
multi-focus image fusion approaches, our loss function computes only the Structural Similarity (SSIM)
of input images, which is widely used to measure the similarity between the fusion image and the
focused image, but not add other loss functions such as adversarial and gradient difference. We use
the standard deviation of a local window of the image to automatically estimate the importance of
the source images in the final fused image when determining the formulation of our loss function,
since it can be used to measure the sharpness of input images. We conduct an extensive experimental
validation with a comparison to the state-of-the-art methods using widely used datasets. Experimental
results verify the effectiveness of the proposed method, and it also can compare to or is better than the
state-of-the-art methods.

2. Related Work

The literature is rich in research on multi-focus image fusion. The bulk of the research
work can be divided into two domains: namely, ‘transform domain’ and ‘spatial domain’ based
algorithms [24]. The spatial domain based algorithms have become popular owing to the advent
of CNNs. Here, we present a brief overview of the two types of image fusion techniques, followed by
a short overview of advancements in deep learning in this field:

Transform domain based multi-focus image fusion. Image fusion has been extensively
studied in the past few years. Earlier methods were mostly based on the transform domain,
owing to their intuitive appeal. This research mainly focuses on ‘pyramid decomposition’ [25,26],
‘wavelet transform’ [27,28] and ‘multi-scale geometric analysis’ [1,29]. Common methods used
for multi-focus image fusion include the ‘gradient pyramid’ [26], ‘discrete wavelet transform’ [30],
‘non-subsampled contourlet transform’ [29], ‘shearlet transform’ [31] and ‘curvelet transform’ [32].
In all of these approaches, the source image is first decomposed into a specific multi-scale domain
(represented by some coefficients), then all the corresponding decomposed coefficients are integrated
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to generate a series of comprehensive coefficients. Finally, these coefficients are reconstructed
by performing the corresponding inverse multi-scale transform. In the transform domain based
multi-focus image fusion, the selection of the multi-scale transform approach is significant, but at the
same time, the fusion rules for high and low-frequency coefficients also cannot be ignored, since they
directly affect the fusion results.

In the recent past, under the broad category of transform based methods, ‘Independent
Component Analysis (ICA)’, ‘Principal Component Analysis (PCA)’, ‘Higher-Order Singular-Value
Decomposition (HOSVD)’ and sparse representation based methods have also been introduced in the
field of multi-focus image fusion. The core idea of these methods is to search for a feature space that
can efficiently represent the activity of ‘un-focused’ image parts. Hence, the measurement of how
‘focused’ the output is, plays a crucial role in these techniques.

Spatial domain based multi-focus image fusion. Algorithms of this category have received
significant attention because they do not require the source multi-focus images to be converted to
alternate forms. These algorithms exploit different fusion rules to generate an “all-in-focus image”,
and can be divided into two categories: ‘pixel based’ and ‘block (or region) based’ algorithms [24].
The latter type of algorithms has been more commonly adopted despite the fact that they suffer from
blocking effects in the final fused image. Furthermore, the ‘measure of focus’ is vital to both fusion
methods. The pixel based methods for multi-focus image fusion preserve the spatial consistency
of the resulting image and also extract vital information from the source ‘defocused’ image pairs.
Consequently, they have started attracting increased attention from the research community [33].
Methods incorporating ‘image matting’ [34], ‘guided filtering’ [35], ‘dense scale-invariant feature
transform’ [33], ‘edge model and multi-matting’ [36] and ‘content adaptive blurring’ [37] are common
examples of ‘pixel based’ spatial domain multi-focus image fusion methods. These methods have
achieved competitive results with high computational efficiency.

Deep learning for multi-focus image fusion. Deep learning has enabled researchers to learn the
‘focus measure’ from the data instead of hand crafting it. This measure is learned from each patch of
the source image, which is fed separately to the neural network. The quality of being ‘data-driven’
produces fewer artifacts in the resulting ‘all-focused’ image and hence makes CNN based methods
more robust as compared to their conventional counterparts. Lately, Liu et al. [18] proposed a deep
network as a subset of their multi-focus image fusion algorithm. They sourced their training data
from popular image classification databases, and simply added Gaussian blur to random patches
in the image to simulate multi-focus images. Their CNN classifies focused and unfocused pixels,
and generates an initial focus map from this information. The final all-focus image is generated after
some post-processing of the initial focus map. This step increases the computational cost, and makes
this method less suitable for single GPU processing.

Following Liu et al. [18], Tang et al. [19] proposedta p-CNN fortmulti-focus image fusion, while a
multi-level features CNN (MLFCNN) was proposed by Yang et al. [20]. Both methods leverage
Cifar-10 [38] to generate training image sets for their networks. They simulate ’defocus’ by adding
blur to the original focused images. The model outputs three probabilities: namely the probabilities
of defocused, focused or indeterminate for each pixel. These probabilities are used to determine the
fusion weight map. These methods also need crucial post processing steps to obtain a desired fusion
weight map.

Most recently, with the U-net being successfully applied in image-to image translation [39] and
pixel-wise regression [40]; a U-net based end-to-end multifocus image algorithm was introduced in [41].
This method also needs the ground truth for training the U-net fusion network model. To do this,
several unsupervised multi-focus image fusion networks were proposed in [42–44].

In contrast to the methods discussed above, our proposed deep network is trained ‘end-to-end’
and does not rely on post processing. Our network is trained on real multi-focus image pairs and
utilizes a ‘no-reference quality metric’ called ‘multi-focus fusion structural similarity (SSIM)’, as a
loss function (to achieve end-to-end unsupervised learning). What is more, compared with the
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unsupervised multi-focus image fusion methods, our proposed loss function used the standard
deviation of a local window of the image to automatically estimate the importance of the source
images in the final fused image, and our method obtained encouraging results. Our model has three
components: feature extraction, feature fusion and reconstruction. The proposed method is described
in detail in the succeeding paragraphs.

3. Deep Unsupervised Network for MFIF

Our goal is to reconstruct a ‘fused image’ that is all-in-focus. Given an input multi-focus image pair,
our model produces an image with all pixels in focus. As is well-known, the learning ability of CNN
relies heavily on both the network architecture and the loss function. An elementary CNN architecture
consists of a succession of convolutional layers connected in a sequential manner. We propose a
deep unsupervised Multi-Focus image Fusion Network (MFNet). Our MFNet design is motivated
by the observation that a multi-focus image pair has different features at ‘high’ and ‘detailed’ levels.
Thus, to obtain a fused image with all pixels in focus, we leverage the features at various levels and
propose a novel fusion strategy. As a first step we fuse the high level features of the input image pair
by averaging them and feed the result to a convolutional layer. Information from low level features
is leveraged by passing the input image pair through deeper convolutional networks, separately.
The features from the low level networks as well as the high level networks are fused and passed
through a reconstruction sub-network to obtain the desired fused image. In the following sub-sections,
we describe the design of our proposed network (MFNet).

3.1. Network Architecture

We propose a deep unsupervised model for the generation of focused images through multi-focus
image fusion. The network architecture is illustrated in Figure 1 and comprises four main sub-networks:
three feature extraction sub-networks and one feature reconstruction sub-network. Our model takes
an unfocused image pair as the input and predicts the image with ‘all focused’ pixels.

Figure 1. Detailed network architecture of our proposed multi-focus image fusion network. Our model
constitutes three feature extraction networks for extracting non-linear features, a feature reconstruction
layer for predicting the fused image, a convolutional layer for feature maps and fused features, and a
transposed convolutional layer for obtaining the same dimensionality as the input image.
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3.1.1. Feature Extraction Sub-Network

As displayed in Figure 1, each input image from the multi-focus image pair is passed through
a feature extraction network (shown in purple) to obtain high-dimensional non-linear feature maps.
However, before passing through this network, the images are convolved with a standard 3× 3 kernel
and 64 output channels. (The literature survey [45] has shown that a kernel of size 3× 3 is a good
choice for extracting low level features in the initial layers of a deep learning network). The output of
the feature extraction network is passed through another convolutional layer without an activation
function. Absence of an activation function avoids non-linearity and helps in retaining more semantic
information from the input image. The features from these networks for the two images are then fused
(by averaging them) to obtain a feature map. We also take the average of the two multi-focus image
pairs and pass this image through a different feature extraction network (shown in orange in Figure 1).
This step enriches the features by adding more structural information from the input pair. The output
of this network is then added to the fused output from the first two feature extraction networks and
passed to the feature reconstruction sub-network.

The details of the feature extraction sub-networks are given in Figure 2. Each network is composed
of multiple convolutional and rectification layers sans any pooling layer. We use different architectures
for the feature extraction sub-networks to cater for the level of features we want to extract, for example,
we use deeper networks for high level feature extraction and shallow networks for low level features.
The network that takes in the average of the multi-focus images as input has D2 layers while the
networks that extract features from individual images of the input pair have D1 layers. We have color
coded the networks in Figures 1 and 2 for ease of cross referencing.

Figure 2. Structures of our feature extraction and reconstruction sub-networks. There are D1, D2,
D3 convolutional layers in the three networks, respectively. The weights of convolutional layers are
distinct among these three networks.
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3.1.2. Feature Reconstruction Sub-Network

The goal of this module is to produce the final fused image. It takes as input the output of the
third feature extraction sub-network and the convolutional features obtained from the two added
input images. As shown in Figure 2, the feature reconstruction network also consists of a cascade
of CNNs and is deeper than the feature extraction sub-networks. It comprises seven layers, out of
which the first six include the ‘Leaky Rectified Linear Units (LReLUs)’ while the last one is followed
by a sigmoid non-linear activation function. Using LReLU in the last layer reduces the contrast of
the reconstructed image; hence, we replace it with a sigmoid function. The output fused image is
produced by the final convolutional layer.

3.2. Loss Function

Our unsupervised training strategy does not require ground truth and instead uses the image
Structure SIMilarity (SSIM) [46] quality metric. The SSIM is a widely used perceptual image quality
metric, which is well aligned with how the Human Visual System evaluates the quality of images.
Moreover, the standard deviation (SD) of the pixel intensities is also a classical multi-focus image
fusion evaluation metric. Thus, in order to obtain a visually pleasing fusion result, it is natural to use
these two metrics to design the loss function. Let the input image pair be denoted by x1, x2, and let
θ represent the network parameters we wish to optimize. The goal of training is to learn a mapping
function g, which produces an image (fused image) ŷ = g (x1, x2; θ) that resembles the desired image
(all the pixels in this image are in focus) y as close as possible. We now briefly explain the concept of
multi-focus SSIM and then present our proposed loss function.

The image structure similarity (SSIM) is designed to calculate the structural similarities of different
sliding windows in their corresponding positions between two images. Let x and y be the reference
image and a test image, respectively, and then the SSIM can be defined as:

SSIM (x, ŷ|ω) =

(
2ω̄xω̄y + C1

) (
2σωxωy + C2

)
(

ω̄2
x + ω̄2

y + C1

) (
σ2

ωx + σ2
ωy + C2

) , (1)

where C1 and C2 are two small constants, ωx is a sliding window in x, ω̄x represents the average of ωx,
σ2

ωx is the variance of ωx and σωxωy denotes the covariance of ωx and ωy. The variables ωy, ω̄y and σωy

have the same meanings for image y (instead of x). The value of SSIM (x, ŷ|ω) ∈ [−1, 1] measures the
‘similarity’ between ωx and ωy. When its value is 1, it means that ωx and ωy are the same.

To assess the image quality in the local windows, we first calculate the structure similarities
SSIM (x1, ŷ|ω) and SSIM (x2, ŷ|ω) using Equation (1). The constants C1 and C2 are set as 1× 10−4 and
9× 10−4 (as in [46]), respectively. The size of the sliding window is 7× 7, and it moves by one pixel as
it slides from the top-left to the bottom-right of the image. We use the structural similarity of the input
images as the matching metric. When the standard deviation std(x1|ω) of a local window of input
x1 is equal to or larger than the corresponding std(x2|ω) of input x2, it means that the local window
image patch of input x1 is likely more focused. Therefore, we define an objective function to evaluate
the image patch similarity, as follows:

S (x1, x2, ŷ|ω) =


SSIM (x1, ŷ|ω) ,
i f std (x1|ω) ≥ std (x2|ω)

SSIM (x2, ŷ|ω) , otherwise
(2)
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Based on the value of S (x1, x2, ŷ|ω) in local window ω, we obtain a robust loss function to
optimize the unsupervised network. The overall loss function is defined as

Loss (x1, x2, ŷ) = 1− 1
N

N

∑
ω=1

S (x1, x2, ŷ|ω) , (3)

where, total number of sliding windows are indicated by N. The network is trained by back-propagating
the computed loss. Equation (3) shows that SSIM encodes the structural similarity between the input
and the output fused images, and hence performs better than other objective functions.

3.3. Implementation Details

All the convolutional layers have 64 filters of size 3× 3 in our proposed MFNet. We randomly
initialized the parameters of convolutional filters and used zero padding match filter sizes. We used
LReLUs [47] with a negative slopetof 0.2 as the non-lineartactivation function except for the last
convolutional (reconstruction) layer where we chose sigmoid as the activation function. For the feature
extraction and reconstruction sub-networks, the number of convolutional layers D1, D2 and D3 are set
as 5, 6 and 7, respectively.

We used 60 pairs of multi-focus images from the benchmark Lytro Multi-focus Image dataset [48]
and grayscale image pairs from a popular multi-focus image dataset [33,49] as our training data.
Since the dataset is small, we randomly cropped 64× 64 patches to form our final training dataset.
The total number of the cropped patches is 50,000. The ratio of the size of the training, validation and
test datasets is 3:1:1. We used Tensorflow [50] to train our model and ran it for 90 epochs. In addition,
we set the weight decay to 10−4, initialized the learning rate to 10−3 for all layers, set the decay
coefficient to 103, the decay rate to 0.96 and our loss function quickly decreased after training 500 K
interactions. Moreover, the size of our model is 278 M and the number of our model parameters
is 484,292.

4. Experimental Results

4.1. Evaluation Criteria and Comparison

Quantitative evaluation of image fusion is a non-trivial task due to the unavailability of the
reference images in most cases. Hence, multiple evaluation metrics have been introduced for
evaluating image fusion performance. However, there is hardly any consensus on which metrics can
completely describe the fusion performance. Liu et al. [51] classified most of the existing image
fusion evaluation metrics into four groups (categories) of metrics. These metrics are based on
‘image-structural similarity’, ‘image features’, ‘information theory’ and ‘human perception’. Apart from
these four classifications, a new metric based on ‘visual information fidelity’ was introduced by
Han et al. [52]. For a comprehensive evaluation of our proposed MFNet we report results on all five
metrics. A description of these metrics follows:

Let A and B represent the source multi-focus images pair and let the fused image be represented
by F.

(1) Cvejie’s Metric QC [53]. This metric mainly concerns the structural information in the source
images and measures the amount of this information retained in the resulting fused image. It belongs
to the ‘image-structural similarity’ category. It is defined as follows:

QC = ∑
ω∈W

sim (A, B, F|ω) Q (A, F|ω) + (1− sim (A, B, F|ω)) Q (B, F|ω) (4)

where ω is the analysis window and W is the family of all the windows, Q is the Universal Image
Quality Index, sim represents the weighting factor and depends on the similarity in the spatial domain
between the input images and the fused image defined in [53].
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(2) Multi-scale Scheme Metric QM [54]. Based on ‘image features’ thistmetric measures thetamount
of edge information retained in the fused image from the source images. It is defined as follows:

QM =
S

∏
s=1

(
QAB/F

s

)βs
(5)

where QAB/F
s is the normalized global edge preservation value at scale s, S is the number of the

decomposition scale, βs is a scale adjusting parameter [54].
(3) Tsallis Entropy Metric QTE [55]. Inspired by ‘information theory’ this metric measures the

total amount of information retained by the final fused image from the source images. It is defined
as follows:

QTE =
Iq (A, F) + Iq (B, F)

Hq (A) + Hq (B)− Hq (A, B)
(6)

where Iq(A, F) + Iq and Iq(B, F) + Iq are the Tsallis entropies, Hq(A) and Hq(B) are the marginal
entropies of images A and B, and Hq(A, B) is the Tsallis Mutual Information between image A and B,
q is a real value, and the detailed description of QTE is given in [55].

(4) Chen–Varshney Metric QCV [56]. This metric is inspired by ‘human perception’ and compares
the ‘edge information’ between source and fused images. It is calculated as follows:

QCV =
∑L

l=1

(
λ
(

IWl
A

)
D
(

IWl
A , IWl

F

)
+ λ

(
IWl
B

)
D
(

IWl
B , IWl

F

))
∑L

l=1

(
λ
(

IWl
A

)
+ λ

(
IWl
B

)) (7)

where D(IWl
A ) and D(IWl

B ) is the similarity measure in the local region W, λ(.) represents the local region
saliency value, Wl is a local region, L denotes the number of nonoverlapping regions, the detailed
description can be found in [56].

(5) Visual Information Fidelity Metric VIFF [52]. It is a ‘multi-resolution image fusion’ metric and
measures the visual information fidelity transferred from input images A and B to the fused images F.
It is defined as follows:

VIFF (A, B, F) =
K

∑
k=1

pkVIFFk (A, B, F) (8)

where k and K denote the sub-band index and the number of sub-bands, respectively. The detailed
description of VIFF is given in [52].

Note that, for all the metrics except for QCV , a large value means an improved fusion quality of a
fused image. In contrast, a smaller value of QCV indicates a more improved result.

As mentioned earlier, MFNet is an unsupervised multi-focus image fusion technique. Hence, we can
only compare the performance of our method with the available state-of-the-art supervised methods.
These include the Non-Subsampled Contournet Transform (NSCT) [29], Guided Filtering (GF) [35],
Dense SIFT (DSIFT) [33], as well as the methods based on Boundary Finding (BF) [57],
Convolutional Neural Network (CNN) [18], the U-net [41]; deep unsupervised algorithms
FusionDN [43], MFF-GAN [44] and U2Fusion [42]. We implemented these algorithms using code
acquired from their respective authors. We carry out extensive experiments on nine pairs of multi-focus
images from two public benchmark datasets: the multi-focus image fusion dataset [58] and the recently
released ‘Lytro’ [48] dataset.

4.2. Qualitative Results

Figure 3 compares the results of our proposed MFNet with the other best performing multi-focus
image fusion approaches on the “Clock” image set. It is evident that our proposed algorithm provides
the optimum fusion result among these methods. To aid comparison, we depict the magnified regions
of the fused images taken from Figure 3, as shown in Figure 4. The results clearly show that the fused
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images from MFNet contain no obvious artifact in these regions, while the fused results from the other
methods contain some artifacts around the boundary of focused and defocused clocks (highlighted
with green rectangles) and pseudo-edges (highlighted with red rectangles).

Figure 3. The “Clock” source image pair and their fused images obtained with different fusion methods.

Figure 4. Magnified regions of the “Clock” source images and fused images obtained with
different methods.

Detailed and magnified results of the “Volleyball Court” image set are depicted in Figures 5 and 6,
respectively. The fused result obtained with the BF method is distinctly blurred. Note that the fused
result from the NSCT method contains artifacts (highlighted as pink rectangles) while the results of
GF, DSIFT, BF, CNN and U-net algorithms betray blur artifacts around the fence edges (highlighted as
green rectangles). The output of the U-net algorithm shows stark edge artifacts, especially (seen in
Figure 6(h2)). Our proposed network displays no such shortcomings.
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Figure 5. The “Volleyball Court” source image pair and their fused images obtained with different
fusion methods.

Figure 6. Magnified regions of the “Volleyball Court” source images and fused images obtained with
different methods.

Figures 7 and 8 present the original and magnified visual comparison of image fusion algorithms
on the “Model Girl” image set. Although all the algorithms show similar results for the background
focused region (first row of Figure 8), we can easily find blur artifacts on the girl’s shoulder in the
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results of NSCT, GF, DSIFT, BF, CNN and U-net algorithms. By contrast, the fused results from our
method cannot find the obvious blur artifacts.

Figure 7. The “Model Girl” source image pair and their fused images obtained with different
fusion methods.

Figure 8. Magnified regions of the “Model Girl” source images and fused images obtained with
different methods.

4.3. Quantitative Comparison

To further demonstrate the effectiveness of our proposed fusion method, we perform experiments
on nine pairs of multi-focus images, as shown in Figure 9. Among them two pairs are from the
grayscale Multi-focus Image dataset [18] (seen in the first two rows of Figure 9) while the remaining
are from the Lytro dataset [48]. The mean and standard deviation of scores achieved by our proposed
MFNet are reported in Table 1. The table also compares the results of our unsupervised MFNet with six
state-of-the-art supervised image-fusion methods. Our proposed method outperforms the compared
state-of-the-art on all metrics except the QTE and QM metrics where we rank second. Moreover,
the QM metric, our proposed method is very close to the best method NSCT. As shown in Table 1,
MFNet achieves the optimal result on QCV and the suboptimal result on QM that indicates more edge
information in our result inherited from the source images. Similarly, the optimal result on QC and
the suboptimal result on QTE show that the results obtained by MFNet contain higher similarity with
the source images with less distortion or artifacts, and more information, respectively. The results are
consistent with the qualitative results shown in Figure 10. Moreover, the best result on VIFF illustrates
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that MFNet achieves the best information fidelity. What is more, we also compare our proposed
MFNet with recently presented deep unsupervised methods FusionDN, MFF-GAN and U2Fusion.
Table 2 gives the mean and standard deviation of the scores achieved by different unsupervised methods.
From Table 2, it can be found that MFNet achieves the optimal results on QC, QM, QTE and QCV .
The optimal mean values of our proposed method on these metrics show that our results contain more
edge information, more significant information, higher similarity with the source image. Furthermore,
the result on VIFF shows that our method should improve the information fidelity compared with
other deep unsupervised methods. Figure 11 shows the results of different unsupervised methods that
are consistent with the qualitative results.

Figure 9. Nine pairs of multi-focus images used for validation.
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Figure 10. Fused results of nine pairs of source images obtained by different fusion methods.

Table 1. Comparison of the mean and standard deviation (±SD) of five evaluation metrics between the
unsupervised MFNet and the state-of-the-art supervised networks.

NSCT GF DSIFT BF CNN U-Net MFNet

QC ↑ 0.788 ± 0.028 0.791 ± 0.030 0.79 ± 0.030 0.787 ± 0.033 0.794 ± 0.028 0.788 ± 0.031 0.799 ± 0.023
QM ↑ 0.934 ± 0.027 0.93 ± 0.033 0.926 ± 0.033 0.924 ± 0.033 0.929 ± 0.032 0.928 ± 0.033 0.933 ± 0.031
QTE ↑ 0.929 ± 0.012 0.926 ± 0.014 0.923 ± 0.015 0.911 ± 0.026 0.925 ± 0.015 0.921 ± 0.015 0.926 ± 0.015

VIFF ↑ 0.923 ± 0.039 0.917 ± 0.041 0.918 ± 0.043 0.893 ± 0.057 0.916 ± 0.042 0.913 ± 0.040 0.930 ± 0.060
QCV ↓ 54.8 ± 24.7 60.0 ± 27.3 64.0 ± 30.3 66.8 ± 34.2 61.0 ± 27.7 64.5 ± 30.0 53.2 ± 19.9
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Table 2. Comparison of the mean and standard deviation (±SD) of five evaluation metrics between the
unsupervised MFNet and the state-of-the-art unsupervised networks.

FusionDN MFF-GAN U2Fusion MFNet

QC ↑ 0.7612 ± 0.027 0.7855 ± 0.020 0.7504 ± 0.028 0.799 ± 0.023
QM ↑ 0.8967 ± 0.039 0.9166 ± 0.030 0.8989 ± 0.032 0.933 ± 0.031
QTE ↑ 0.8930 ± 0.028 0.9176 ± 0.013 0.9113 ± 0.020 0.926 ± 0.015

VIFF ↑ 0.9747 ± 0.129 0.9403 ± 0.068 0.9871 ± 0.071 0.930 ± 0.060
QCV ↓ 86.5 ± 50.8 56.6 ± 37.4 60.3 ± 44.7 53.2 ± 19.9

Figure 11. Fused results of nine pairs of source images obtained by different deep unsupervised
learning fusion methods.

4.4. Execution Time

We used a desktop machine with 3.4 GHz Intel i7 CPU (32 RAM) and NVIDIA Titan Xp GPU
(12 GB Memory) to evaluate our algorithm. For fairness, we compared our proposed algorithm with
other deep unsupervised algorithms [42–44] since others did not perform with a GPU. The average
run-time of our proposed MFNet, FusionDN, MFF-GAN and U2Fusion is 4.33, 1.55, 1.60 and 1.78 s,
respectively. It can be found that the run-time of our proposed algorithm is higher compared to other
deep unsupervised algorithms. It means that we should optimize the network to improve efficiency in
future works.

5. Conclusions

We have introduced a new approach to learn multi-focus image fusion from an input pair of varied
focus images. We have presented a deep unsupervised network (MFNet) that directly operates on
multi-focus pair data, employs the image structural similarity (SSIM) quality metric as a loss function,
and leverages the standard deviation of a local window of the image to automatically estimate
the importance of the source images in the final fused image when designing the loss function.
Our proposed unsupervised method obtains results that outperform, or are comparable to existing
state-of-the-art supervised methods. However, our proposed method cannot directly be used to
process more than two input images for the designed model and is slower than other deep
unsupervised approaches. Thus, we would like to explore how to use our techniques for more
than two multi-focus image fusions, and optimize our network to improve efficiency.
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