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Abstract

We propose an extension of the five dimensional gravitational action with an external
source in order to allow arbitrary smoothing of the negative tension brane in the Randall-
Sundrum model. This extended action can be derived from a model with an auxiliary
four form field coupled to the gravity. We point out a further generalization of our model
in relation to tachyon condensation. A possible mechanism for radion stabilization in our
model is also discussed.
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1 Introduction

The huge hierarchy between the weak and Planck scales has been one of the
most important issues in the theory of elementary particles. The braneworld with
the warped compactification, which is proposed by Randall and Sundrum, is an
attractive model to explain the hierarchy between the weak and Planck scales [1].
Even though the hierarchy problem is resolved in the Randall-Sundrum scenario,
we still need a fine tuning among the bulk cosmological constant and the brane
tensions in order to acquire the observed four-dimensional cosmological constant
Λ4 . 10−120M4

P , where MP is the four-dimensional Planck scale determined by
the Newton’s law of gravitation in four dimensions. This fine tuning requires that
one of the branes should have a negative tension. Although the negative tension
brane appears to lead to some pathology in general relativity [2] (see also [3]),
detailed analyses have revealed that the four-dimensional effective theory on the
negative tension brane can be consistent with the standard Einstein gravity [4, 5]
as far as the moduli for the compactification radius, the radion, is fixed by some
mechanism, such as the one proposed by Goldberger and Wise [6].

Recent progress in string theory has revealed that the compactified space is
generically warped under the presence of background fluxes [7], and much effort
to realize Randall-Sundrum scenario in superstring theory has been made, see
e.g. [8] and references therein. The realization of Randall-Sundrum scenario in
superstring theory naturally requires the supersymmetric extension of the Randall-
Sundrum model in five-dimensional effective supergravity.

So far, two ways to supersymmetrize the Randall-Sundrum model are proposed
in [9, 10] and in [11], respectively. The former involves a kinky gauge coupling
which has position dependence like a step function in the extra dimension. Es-
pecially the multiple of the step function and its derivative, the delta function,
vanishes everywhere. The latter does not involve the position dependent gauge
coupling but it implicitly assumes that the multiple of a step function and a delta
function takes a finite non-zero value on the branes [12, 13].1

We want to have a way to regularize, i.e. smooth out, the step function and
the delta function in the Randall-Sundrum geometry in particular on the brane.
The step function would be realized as a kink solution of a bulk field. The posi-
tive tension brane has been smoothed out by introducing a bulk scalar field with
solitonic kink solutions [14]. It has been shown that the negative tension brane
cannot be smoothed by a bulk scalar field without an instability of the space-
time [15, 16, 17, 18].

Here we propose an extension of the five-dimensional Einstein-Hilbert action
that allows the smoothing of the negative tension brane. In our regularized model,
the multiple of the step function and the delta function vanishes on the branes in
the singular limit, in agreement with [9, 10]. Our model might provide an insight
on the supersymmetrization of the Randall-Sundrum model without resorting to
singular configurations.

Besides the somewhat technical motivation presented above, our study can be
placed on more general physical ground. Singular objects such as D-branes in

1We thank Y. Sakamura for pointing out this issue.
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string theory are often interpreted as solitonic smooth objects in dynamical or
quantum mechanical analysis. Our regularization could be a useful tool for these
analyses in the braneworld models.

In the next section, we describe our model of the extension of five-dimensional
Einstein gravity. In Section 3, we present a possible embedding of our model into
the standard five-dimensional gravity with a four-form field. Further extension
with a coupling between the four-form and a scalar source is also shown, inspired
by the tachyon condensation in string theory. In Section 4, we show that the radion
can be stabilized by a natural extension of the Goldberger-Wise mechanism. In
the last section, we provide summary and discussions.

2 Modified Gravitational Action

Let us first briefly review the Randall-Sundrum model [1]. The fifth dimension y
is compactified on S1/Z2 by the identifications y ∼ y+2L and −y ∼ y. When we
restrict it to −L < y ≤ L, the gravitational part of the action reads

S0 = M3
∗

∫

d5x
√−g

(

R

2
− Λ− λ0δ(y) − λLδ(y − L)

)

, (1)

where M3
∗ = 1/8πG with G being the higher dimensional Newton constant.2 Note

that this action does not have the full five-dimensional diffeomorphism invariance,
but the only four-dimensional diffeomorphism invariance and reparametrization
invariance with respect to the compact direction y.

The Randall-Sundrum geometry is a slice of the five dimensional anti de Sitter
space (AdS5):

ds2 = e−2k|y|ηµνdx
µdxν + dy2, (2)

where k is its curvature scale. The metric (2) becomes a solution to the five dimen-
sional Einstein equation δS/δgMN = 0 if the five dimensional bulk cosmological
constant Λ and the brane tensions λ0 and λL are fine-tuned to be

Λ = −kλ0 = kλL = −6k2 < 0. (3)

Physically the condition (3) implies that the ultraviolet (UV) brane at y = 0 has
the positive tension while the infrared (IR) brane at y = L has the negative one.
In [14] it has been shown that the positive tension brane can be smoothed out by
introducing a bulk scalar having a kink profile.

There have been attempts to smooth out the negative tension brane by intro-
ducing a so-called ghost scalar, which is a propagating degree of freedom having a
wrong-sign kinetic term [15, 16, 17]. Obviously there are resulting difficulties both
at the classical and quantum levels. Here we attempt to smooth out the negative
tension brane in a different way. A possible resolution to the wrong sing kinetic
term is shown in the next section.

2When we expand around the flat background gMN = ηMN + hMN , the graviton hMN is canonically
normalized with the unit 32πG = 1.
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Now we propose a modification of the action (1) preserving the same symmetry,
that is the four dimensional diffeomorphisms and the reparametrization of the fifth
coordinate y:

Sg = M3
∗

∫

d5x
√−g

(

R

2
− Λε(y)2 − λ

ε′(y)

2
√
gyy

)

, (4)

where ε(y) is an arbitrary Z2 odd periodic function:

ε(y + 2L) = ε(y), ε(−y) = −ε(y), (5)

and ε′(y) = ∂yε(y).
If we again fine tune the cosmological constant and the brane tension:

Λ = −kλ = −6k2 < 0, (6)

the Einstein equation

RMN − gMN

2
R+ Λε(y)2gMN + λ

ε′(y)

2
√
gyy

(

gMN − gyMgyN
gyy

)

= 0 (7)

has a solution:

ds2 = e−2σ(y)ηµνdx
µdxν + dy2, (8)

where

σ(y) = k

∫ y

dỹ ε(ỹ). (9)

We note that the equation of motion of ε(y):

2Λε(y) =
λ

2
√−g

∂y

(√−g
√
gyy

)

, (10)

is automatically satisfied due to Eqs. (6) and (9).
Now we can have an arbitrary shape of the Z2 even periodic function σ(y) by

a proper choice of ε(y). A choice of the external source ε(y) gives a corresponding
gravitational action. Any choice of ε(y) can satisfy the Einstein equation as well
as the equation of motion of ε(y) itself, with the tuning (6). One might wonder
what is the source of such a large symmetry. We come back to this point in the
next section.

When we take ε(y) to be the step function:

ε(y) =

{

1 (0 < y < L),

−1 (−L < y < 0),
(11)

we recover the original setup (1) with λ = λ0 = −λL. The point here is that
a continuous deformation of the negative tension brane becomes possible. For
instance, we can take3

ε(y) = − tanh[β(y + L)] + tanh βy − tanh[β(y − L)] (12)

3See e.g. footnote 5 in Ref. [19].
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Figure 1: Smoothed functions σ(y) (left), ε(y) = σ′(y)/k (center), and ε′(y) (right) for β = 50.

for −L ≤ y ≤ L.4 In the β → ∞ limit, ε(y) in (12) goes back to the step
function (11). For (12), the σ(y) is obtained as5

σ(y) =
k

β
log

cosh βy

cosh[β(y − L)] cosh[β(y + L)]
+ 2. (13)

As an example, the plot for β = 50 is shown in Fig. 1. Note that this gives a
smooth regularization of the Randall-Sundrum geometry which is fully consistent
with the bulk Einstein equation.

In our formulation, the multiple of the (regularized) step and delta functions
is always zero on the branes,

ε(y)ε′(y) = 0 at y = 0, L. (14)

Therefore, it may be utilized as a tool to supersymmetrize the Randall-Sundrum
model in the formulation of [9, 10], but not directly for [11].

3 Four Form Field and Tachyon Condensation

So far, the action (4) is given just by hand. One might consider that this is too ad
hoc. Here we argue that the action (4) could be regarded as an effective theory of
an underlying microscopic theory.

Let us consider the following five dimensional gravitational action coupled to
a four-form gauge field A4:

S =
M3

∗

2

∫

(R ∧ ∗1 + F5 ∧ ∗F5) , (15)

where F5 = dA4 and ∗ is the Hodge dual in five dimensions. Note that the
gauge kinetic term has a wrong sign here. This does not lead to an immediate
inconsistency because A4 has no physical degree of freedom in five dimensions.
Such a wrong-sign “auxiliary” gauge field has also been introduced by Turok and
Hawking for an inflation model inspired by the M-theory [20].

Generically one can write a five form field in five dimensions as

F5 = f(x)
√−g d5x, ∗F5 = −f(x), (16)

4It is straightforward to make (12) symmetric under the translation y → y + 2L by adding terms at other
integer multiples of L.

5The value of the constant term can be varied by rescaling xµ.
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where d5x = dx0∧· · ·∧dx3∧dy and f(x) is a scalar function. The action in terms
of f(x) reads

S =
M3

∗

2

∫ √−g d5x
(

R− f2
)

=
M3

∗

2

∫ √−g d5x
(

R+ ϕ2 − 2ϕf
)

, (17)

where we have introduced another auxiliary field ϕ in the last step.
The gauge field A4 has five independent component fields. Assuming the in-

variance under the four dimensional diffeomorphisms and the reparametrization
of y, it would be natural to expect that the components of A4 except for Aµ1µ2µ3µ4

,
where µi = 0, · · · , 3, are irrelevant, and therefore they could be ignored from the
beginning. For the remaining component, we make the following field redefinition:

A4 = a(x)

√

−g(4) d4x, (18)

where a(x) is a scalar function and d4x = dx0 ∧ · · · ∧ dx3. In terms of a(x), the
field strength becomes

f =
1√−g

∂y

(

a(x)

√

−g(4)
)

. (19)

Putting this into the action, we obtain

S =
M3

∗

2

∫

d5x
√−g

(

R+ ϕ2 +
2a(x)
√
gyy

∂yϕ

)

, (20)

where we have performed the partial integration. If we could choose ϕ(x) and
a(x) as

ϕ(x) =
√
Λ ε(x), a(x) =

λ

4
√
Λ
, (21)

we recover the extended action (4).
Now it is obvious why ε can be an arbitrary function, that is, why δS/δε = 0

is always satisfied because ε is nothing but an auxiliary field ϕ. The fine tuning
of the cosmological constant and the brane tension is done by fixing the constant
value of the scalar field a(x). We note that a(x) must be treated as a genuinely
external source, as long as the action (15) is regarded as the microscopic action
of our theory, because the equation of motion for a(x) leads to the unwanted
condition ε′(y) = 0 which does not allow a kink-like solution.

It is interesting to observe that the action (15) can be rewritten as (20) which
is similar to (4). There might be a more fundamental theory whose action includes
the terms in (15) so that our action (4) can be regarded as (a part of) its effective
action. Then the resultant equation of motion of a(x) would be more complicated,
hopefully allowing a non-trivial solution for ϕ(x). The constant a(x) solution
should be consistent with the equations of motion of the fundamental theory.

In the more fundamental theory, the profile of ε(y), which has been completely
arbitrary so far, might be determined by some mechanism. For example, suppose
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that there is the following term of the Chern-Simons type in the action of the
underlying theory:

SCS =

∫

dT ∧A4, (22)

where T is a Z2-odd scalar source. Due to this term, the equation of motion of
a(x) can relate ϕ(x) to T (x). As a result, if T (x) has a kink-like profile, so would
ϕ(x). Note that this term is topological, i.e. independent of metric and does not
change the Einstein equation. We also note that this extra term often appears in
string theory in the context of the tachyon condensation where the T (x) is indeed
identified as a tachyon field, see [21] for a review and references therein. Further
investigation of a possible underlying theory that can lead to our action is left for
future research.

4 Introducing bulk scalar field

In general a bulk scalar field plays a crucial role in the radion stabilization [6,
14]. To see the dependence on radius L explicitly in our setup, we rewrite our
background metric (2) as

ds2 = e−2kLα(θ)ηµνdx
µdxν + L2dθ2, (23)

where α(θ) = α(θ + 2) is an arbitrary dimensionless periodic function. One can
check that the equation of motion for the metric is satisfied for an arbitrary L,
which is promoted to a massless field, radion, in the perturbation analysis.

In our setup having symmetries of four dimensional diffeomorphisms and re-
parametrization of the fifth coordinate, a bulk scalar field Φ can couple to the
gravity in the following form

S = M3
∗

∫

d5x
√−g

[

R

2
− Λ(Φ)ε2 − λ(Φ)

∂5ε

2
√
g55

− gMN

2M3
∗

∂MΦ∂NΦ

]

, (24)

where the cosmological constant Λ and the brane tension λ are now promoted
to functions of Φ. The mass dimensions are: [Φ] = 3/2, [Λ] = 2, and [λ] = 1.
Assuming that the vacuum expectation value is much smaller than the Planck
scale Φ2 ≪ M3

∗ , we can expand in terms of (Φ2/M3
∗ )

Λ(Φ) = M2
∗

(

c1 +
c2
2

Φ2

M3
∗

+
c3
4!

(

Φ2

M3
∗

)2

+ · · ·
)

,

λ(Φ) = M∗

(

d1 +
d2
2

Φ2

M3
∗

+
d3
4!

(

Φ2

M3
∗

)2

+ · · ·
)

, (25)

where we have assumed the invariance under the flip Φ → −Φ for simplicity.
To allow the solution of the form of the generalized step function ε(θ) = α′(θ),

we set the first order constants to be c1 = −6(k/M∗)
2 and d1 = 6(k/M∗). Note

that the fine tuning of the first order constants c1 and d1 corresponds to the
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fine-tuning of the cosmological constant, which is inevitable for all the versions of
Randall-Sundrum type models so far.

The resultant bulk scalar field equation is

Φ′′(θ)− 4kLα′(θ)Φ′(θ)− L2M3
∗

[

α′(θ)2
∂Λ

∂Φ
+

α′′(θ)

2L

∂λ

∂Φ

]

= 0. (26)

Once we find the solution to the field equation (26) for Φ, generically a potential
for the radion L in the four-dimensional effective theory is generated as

V (L) = LM3
∗

∫ 1

−1
dθ e−4kLα(θ)

(

α′(θ)2Λ(Φ) +
α′′(θ)

2L
λ(Φ) +

1

2L2M3
∗

Φ′(θ)2
)

.

(27)

Since, in general, the equation (26) is highly non-linear, we cannot expect
to have an analytic solution.6 However, for free scalar field, one can obtain an
analytic solution for a certain choice of parameters as we show below. By an
ansatz Φ(θ) = v3/2eσ(θ), the field equation (26) reads

σ′′(θ) + σ′(θ)2 − 4kLα′(θ)σ′(θ)− (LM∗)
2 [c2 + · · · ]α′(θ)2 − LM∗

2
[d2 + · · · ]α′′(θ) = 0,

(28)

where terms denoted by · · · are O(v3/M3
∗ ) and neglected in the following. The

parameter v becomes the vacuum expectation value of Φ at the positive tension
brane in the limit (11) with the normalization α(0) = 0. Here, we set the second

order constants c2 =
d2
4

(

d2 − 8k
M∗

)

so that we can have an analytic solution

σ(θ) =
d2
2
LM∗α(θ). (29)

There should be a more general solution to the equation (26), since it is the
second order differential equation while the solution specified by (29) has only one
integration constant v. To examine the general solution, it is convenient to define
Ψ(θ) = e−d2LM∗α(θ)/2Φ(θ). The equation for Ψ(θ) is reduced to

Ψ
′′

(θ) + (d2M∗ − 4k)Lα
′

(θ)Ψ
′

(θ) = 0. (30)

Obviously, Ψ(θ) = const. is a trivial solution. The above equation can be inte-
grated easily and the general solution becomes

Ψ(θ) = A+B

∫ θ

dθ̃ exp
(

(d2M∗ − 4k)Lα(θ̃)
)

. (31)

Since the integral in the second term does not satisfy periodicity condition Ψ(θ+
2) = Ψ(θ), one has to put B = 0. This proves that the solution (29) gives the
general periodic solution to Eq. (26).

6Of course, it is straightforward to solve the differential equations numerically.
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Using this solution, we have the effective potential for the radius L up to quartic
order (∼ Φ4):

V (L) =
Lv6

24M∗

(

c3 − d3d̃2

)

∫ 1

−1
dθ α′(θ)2e2d̃2LM∗α(θ), (32)

where we have defined d̃2 ≡ d2 − 2k
M∗

. Note that c1 and d1 terms are being under-
stood to cancel the gravitational part and hence omitted and that the quadratic
Φ2 terms vanish too. Since all the non-linear terms are suppressed by v3/M3

∗ , our
free field solution and effective potential correspond to the leading approximations
in the v3/M3

∗ expansion.
In Fig. 2, we plot the potential V (L) with the regularized profile (13) for β = 50

and the parameters d̃2 = −1, c3− d3d̃2 = −0.1 as an illustration. We see that the
non-trivial potential for L is generated as the first approximation in the v3/M3

∗

expansion. Several comments are in order:

• The resultant potential minimum value is negative here and we have to fine-
tune the cosmological constant again by shifting c1, d1, c2, d2.

• In the singular limit, α(θ) → |θ|, the effective potential becomes a monotoni-
cally decreasing function of L, and does not have a minimum. The non-trivial
minimum is generated due to the smoothness of the branes.

• The original Goldberger-Wise setup [6] corresponds to c3 = 0, where it has
been crucial to have different (positive) brane potentials from each other.7

However, in our action (24), the brane potential is given by a single function
λ(Φ) and cannot be independent of each other even in the singular limit. In
particular, the sign of quartic coupling in the brane potential is flipped by
the factor ∂5ε ∝ [δ(y)− δ(y − L)] in the step-function limit (11) in Eq. (24),
while it should be positive on the both branes in the Goldberger-Wise setup.
It would also be interesting to realize the Goldberger-Wise mechanism by
introducing another bulk scalar field in our setup.

7The different potentials give the different boundary conditions on the bulk scalar field that lead to the
non-trivial wave function profile in the extra dimension. Then the kinetic term balances the bulk mass term in
the total energy and serves a “repulsive force” to keep a finite radius for the extra dimension, see e.g. Ref. [22].
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• The study including the higher order non-linear terms in the equation of
motion for Φ would require a detailed numerical analysis, which we leave for
future research. Also, the back-reaction from Φ to the metric is neglected at
this order. For a fixed four form field, we expect that gravitational instability
would be absent after the stabilization of the radion. See also Refs. [23, 24, 25]
for related issues.

5 Summary and Discussions

We have proposed the modification of the five dimensional gravitational action
that allows an arbitrary smoothing of the negative tension brane in the context
of the Randall-Sundrum I brane world. This can be viewed not only as a possible
regularization but also as arising from the high energy theory with the four form
auxiliary gauge field. It would be interesting to investigate possible connection
of our mechanism to the four form mechanism in the five dimensional supergrav-
ity [12, 13].

The application of our regularized Z2-odd function ε(y) to the Z2-odd gravipho-
ton gauge coupling might be possible in the context of the supersymmetric Randall-
Sundrum model [9, 10] with ε(y)ε′(y) = 0 on the branes, while the version [11]
with ε(y)ε′(y) 6= 0 would require further elaboration.

We have discussed that the profile of the four form field can arise from the
tachyon condensation in string theory. In the point of view of tachyon conden-
sation, it would be natural to expect the following scenario to be realized: The
five-dimensional spacetime is filled with an unstable D-brane on which there ex-
ists a tachyon T . If T forms a kink, then the kink would be regarded as a stable
D3-brane to which A4 couples. In other words, the braneworld is created dynam-
ically. However, it seems strange that, in this scenario, an anit-kink corresponds
to a negative-tension brane since it is usually regarded as just an anti-brane with
a positive tension. It would be worth studying this issue further.

Our model does not allow the Goldberger-Wise mechanism for the radion sta-
bilization. However we show that the introduction of the bulk scalar field and its
natural embedding into our extended action can stabilize the radion. The stability
under gravitational perturbation of the system would be worth investigating.
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