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Abstract

We propose a six dimensional Universal Extra Dimensions (UED) model compactified on a
real projective plane RP 2, a two-sphere with its antipodal points being identified. We utilize
the Randjbar-Daemi-Salam-Strathdee spontaneous sphere compactification with a monopole
configuration of an extra U(1)X gauge field that leads to a spontaneous radius stabilization.
Unlike the sphere and the S2/Z2 orbifold compactifications, the massless U(1)X gauge bo-
son is safely projected out. We show how a compactification on a non-orientable manifold
results in a chiral four dimensional gauge theory by utilizing 6D chiral gauge and Yukawa
interactions. The resultant Kaluza-Klein mass spectra are distinct from the ordinary UED
models compactified on torus. We briefly comment on the anomaly cancellation and also on
a possible dark matter candidate in our model.
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1 Introduction and Conclusions
Universal Extra Dimensions (UED) allow fairly lower Kaluza-Klein (KK) scale even after taking
into account the precision electroweak constraints [1, 2, 3], comparing to a model where some
of the Standard Model (SM) fields are localized in the extra dimensions, and therefore the UED
can be directly tested at the CERN Large Hadron Collider (LHC) which is just being started.
Furthermore the Lightest KK Particle (LKP) in the UED model can serve as a natural dark
matter candidate [4, 5]. A six dimensional (6D) UED model is particularly attractive since three
generations of SM fermion are naturally required [6, 7] for the cancellation of SU(2)W global
anomaly, which is analogous to the Witten anomaly.1

In 1953, Pauli initiated the compactification on two-sphere S2 [9, 10] and DeWitt further
developed it in 1963 (see [11] for a historical review). After a half century, it has been still
attracting interest as a beautiful tool to incorporate the spontaneous compactification (see [12] and
citations thereof), the gauge-Higgs unification [13, 14, 15, 16, 17, 18], supergravity models [19, 20]
(see also [21] and references therein), etc. Recently, a UED model is constructed on the S2/Z2

orbifold [22], in which there exists a stable particle due to the “Z ′2 KK parity,” potentially being
a possible dark matter candidate.

In this paper we first consider a UED model compactified on the two-sphere, based on the
spontaneous compactification mechanism by Randjbar-Daemi, Salam and Strathdee (RSS), which
utilizes a monopole configuration of an extra U(1)X gauge field in the two-sphere [12]. A remark-
able feature of the RSS sphere compactification is that, in contrast to the ordinary UED models
on torus, the compactification radius is spontaneously fixed by the monopole configuration.2 We
show that our model can supply a possible dark matter candidate, due to what we call the KK
angular momentum. Actually the stable particle is exactly the same one as in [22] and the so-called
Z ′2 parity conservation is nothing but the result of the KK angular momentum conservation.3

However, the two-sphere compactification suffers from the existence of massless U(1)X gauge
boson, which obviously contradicts existing experimental observation [25] (see also [26] for a re-
view).4 As a remedy, we propose a compactification on a real projective plane RP 2 that is a
two-sphere with its antipodal points being identified: (θ, φ) ∼ (π − θ, φ + π).5 By this identifi-
cation, the unwanted zero mode of U(1)X gauge field is projected out, as well as the first KK
photon that is a possible dark matter candidate in the S2 and S2/Z2 UED models. In our RP 2

model, U(1)X gauge interaction is made anomaly free and the first KK mode of U(1)X gauge field
becomes a possible dark matter candidate.6 We also discuss possible cosmological constraint from
the decay of the second lightest KK particle into the dark matter.

The RP 2 is a non-orientable manifold and so is the whole space M4 ×RP 2, where M4 is the
four dimensional (4D) Minkowski space. It is standard lore that a quantum field theory must
be either P or CP symmetric on a non-orientable manifold and hence cannot account for the
SM [30, 31]. This argument is based on the fact that a non-orientable manifold necessarily has a
closed loop that gives one a parity transformation P when one circulates around it. Therefore, the
Lagrangian must be symmetric under either P or CP transformation for the theory to be single-

1 This three-generation argument of global anomaly is based on the computation with S6 [8]. Strictly speaking,
when extra dimensions are compactified on B, analysis must be redone on S4 × B. We thank S. Yamaguchi for
pointing out this issue.

2 See Refs. [23, 24] for cosmology of the RSS model.
3 We also note that our two-sphere compactification can serve chiral fermions [12] so that the Z2 orbifold

projection in [22], which is (θ, φ) ∼ (π − θ,−φ) in the standard polar coordinates, is rather redundant.
4 In the S2/Z2 orbifold model [22], there exists exactly the same problem and it is assumed that the SM-singlet

N− is not put and hence the U(1)X is broken by an anomaly [27]. It is somewhat puzzling how a classical gauge
configuration is allowed when U(1)X is broken by an anomaly at an UltraViolet (UV) scale Λ. That is, if we have
a gauge boson mass term like Λ2XMX

M [27], it will spoil the monopole vacuum expectation value (vev) [12] due
to the extra contribution to the energy momentum tensor in the Einstein equation.

5 A compactification on a flat projective plane is considered in a different context in [28], where all the curvature
is put into conical singularities. This singular space is also utilized to construct another UED model [29].

6 In 5D UED model, radiative corrections tend to make gauge bosons lighter than fermions [4]. If this turns out
to be the case in our model, the U(1)X KK gauge boson becomes the dark matter. Generically one expects that
there are also tree level threshold corrections at UV cut-off scale. In that case, the first KK neutrino might become
the dark matter.
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valued on the space. In four dimensions, this is obviously in contradiction to the experimentally
observed P and CP violation.

The key observation is that the higher dimensional CP transformation is different from the
four dimensional one. We can identify the field after the circulation of the closed loop by an outer
automorphism [32] with the 6D-CP transformation. Even if a theory is vector-like (non-chiral)
under the 6D-CP transformation, it can be chiral under the 4D-P and CP transformations after
the compactification. The (4D) CP violation in Yukawa sector results from the fact that we can
identify SM spinors by 6D-CP transformation and Higgs by 6D-P transformation.

We obtain the KK mass spectrum that is distinctive from those in the 5D and 6D UED
models with orbifolded toroidal compacitifications: S1/Z2 and T 2/(Z2 × Z ′2), respectively. From
the conservation of the KK angular momentum, the single production of a KK mode from SM
matters cannot occur, in contrast to the ordinary UED where only KK parity is conserved and
hence one can produce a single KK-even mode from a scattering of zero modes. Our model contains
a possible dark matter candidate, the first KK mode of the U(1)X gauge field, as well as the more
conventional one, the fist KK neutrino, depending on the input at the UV cutoff.

2 RSS Spontaneous Compactification on Sphere
First let us review the RSS spontaneous compactification on sphere [12]. We put the following
M4 × S2 ansatz on the metric

ds2 = ηµνdx
µ dxν +R2

(
dθ2 + sin2 θ dφ2

)
, (1)

where Greek indices µ, ν, . . . run for uncompactified dimensions 0, 1, 2, 3 and the constant R is the
compactification radius. This metric does not satisfy Einstein equation with any six dimensional
cosmological constant Λ6. To satisfy the Einstein equation, we introduce an extra U(1)X gauge
field X := XMdx

M with a classical monopole configuration:

X
N
S =

n

2gX
(cos θ ∓ 1)dφ, (2)

where gX is the gauge coupling constant, upper-case indicesM,N, . . . run for 0, 1, 2, 3, θ, φ, and the
superscripts N and S denote that the field is written in the north and south patches, respectively.7
From the single-valuedness of the transition function between two patches, the monopole charge n
is imposed to be an integer, which we take n > 0 without loss of generality. The Einstein equation
fixes the radion, that is, the compactification radius R is fixed to be:

R =
κn

2gX
, (3)

where κ is the six-dimensional gravitational coupling constant (κ =
√

8πG6).8 This is the RSS
spontaneous compactification on sphere.

When the compactification scale is accessible for the LHC: R−1 ∼ TeV, we find that the 6D
gravitational constant9 is required to be of order κ−1/2 ∼ 107 TeV and resultantly that the effective
four-dimensional gauge coupling gX4 := gX/

√
4πR becomes: gX4 ∼ n × 10−14. Note that a 6D

gauge theory is necessarily a non-renormalizable effective theory with a UV cutoff scale Λ and
that the effective theory is valid when gX � Λ−1, that is, when Λ � 1014 TeV for R−1 ∼ TeV.
This condition is well satisfied for the 6D UED model since it must be that Λ� κ−1/2 ∼ 107 TeV.
This set of parameters κ and gX4/n is also used in [22] implicitly.

7 If we simply put X ∝ cos θ dφ, the Einstein equation is satisfied but the configuration becomes singular at the
poles.

8 In order to impose the uncompactified space to be flat, we need to fine-tune the six dimensional cosmological
constant to be: Λ6 = 2g2X/κ

2n2. Here we do not seek for a solution to the cosmological constant problem.
9 We note that the 6D gravitational scale must be generally of order ∼ 107 TeV in any 6D UED model. If there

are further extra dimensions in which only gravity propagates, the higher dimensional gravitational scale needs not
to be the same as the 4D Planck scale but can be lower than that, even around TeV for large [33] and warped [34]
extra dimensions.
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Now that the background spacetime is fixed, let us consider the KK reduction of bulk fields
with spin zero, half and one. Hereafter we neglect the gravitational fluctuations. In [12], KK wave
function is given as a harmonic expansion in terms of the Wigner D-matrix. Here we reformulate
it in terms of the Newman-Penrose ð formalism and the spin-weighted spherical harmonics [35,
36, 37]. The ðs and ð̄s operators, acting on an object ηs with spin-weight s, are defined by10

ðs ηs :=− (∂θ + i csc θ∂φ − s cot θ) ηs, (4)
ð̄s ηs :=− (∂θ − i csc θ∂φ + s cot θ) ηs. (5)

A spin-weighted spherical harmonics sYjm has spin-weight s and is defined iteratively by

ðs sYjm =
√
j(j + 1)− s(s+ 1) s+1Yjm, (6)

ð̄s sYjm =−
√
j(j + 1)− s(s− 1) s−1Yjm, (7)

from the ordinary spherical harmonics 0Yjm := Yjm. Note that the ð and ð̄ operators increase and
decrease spin weight by +1 and −1, respectively. The spin-weighted spherical harmonics is the
eigenfunction of the operator

K2
s := −ð̄s+1 ðs + s(s+ 1) = −ðs−1 ð̄s + s(s− 1), (8)

with the eigenvalue

K2
s sYjm = j(j + 1) sYjm. (9)

A bulk scalar field with U(1)X charge q has the following transition function between north
and south patches:

Φ(x, θ, φ)
S

= e−2isφΦ(x, θ, φ)
N
, (10)

where the spin-weight takes the value s = qn/2 for a scalar field. The transition function (10) is
single-valued for φ→ φ+ 2π when qn is an integer. The KK expansion is given as:

Φ(x, θ, φ)
N
S =

∞∑
j=|s|

j∑
m=−j

ϕjm(x) f jmΦ (θ, φ)
N
S , f jmΦ (θ, φ)

N
S :=

sYjm(θ, φ)e±isφ

R
, (11)

where sYjm is the spin-weighted spherical harmonics. Note that although the KK wave func-
tion (11) is given for each patch with the transition (10), the 4D modes ϕjm(x) are independent
of patches as it must be. The KK mass for a jm-mode is given independently of m by

Mj =

√
j(j + 1)− s2

R2
+M2, (12)

whereM is the bulk mass. In particular, the lowest j = |s|mode mass becomesM|s| =
√
|s|
R2 +M2.

Number of (real) degrees of freedom is 2(2j + 1) for a j-th mode. In the following, we will take
the bulk Higgs to be neutral under U(1)X : q = 0.

Next we consider KK expansion of a bulk spinor field with U(1)X charge q. For the spin
connection to be regular at north and south poles, it is convenient to chooze the following vielbein
basis, defined on north and south patches, respectively:11(

e5

e6

)N
S

:=

(
cosφ ± sinφ
∓ sinφ cosφ

)(
eφ

eθ

)
, (13)

10 Note that the complex conjugate of ðs becomes ðs = ð̄−s; the left-hand-side notation will not be used
throughout this Letter. Conventionally, the subscript s is omitted from ðs but we put it for explicitness.

11 Our vielbein is related to that in [12] by e5 = −E5 and e6 = −E6.
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where eθ and eφ are vielbein 1-forms with eN := eM
NdxM and

eM
N := diag (1, 1, 1, 1, R,R sin θ). (14)

Here and hereafter, underlined indices denote the (co)tangent space coordinates. We follow the
convention in [12, 38] for the tangent space gamma matrices ΓA (A = 0, 1, 2, 3; 5, 6), then the
resultant spin connection 1-form reads

Ω
N
S = (cos θ ∓ 1) Σ56 dφ =

i

2
(cos θ ∓ 1)

(
γ5

−γ5

)
dφ, (15)

where ΣAB := 1
4

[
ΓA,ΓB

]
are generators of local Lorentz transformations. We decompose the six-

dimensional eight component spinor into the four and two component ones ψ and χ, respectively:

Ψ =

(
ψ+

ψ−

)
=


χ+L

χ+R

χ−L
χ−R

 , (16)

where ± denotes the 6D-chirality (eigenvalues of Γ7) and L and R denote the usual 4D-chirality,
with the γ5 eigenvalues +1 and −1, respectively.12 Note that each of six-dimensional Weyl fermion
Ψ± := 1±Γ7

2 Ψ forms an irreducible representation of the six-dimensional local Lorentz group.
Thanks to the basis (13), the spin connection takes the same form as the background monopole

configuration (2). Resultantly, the bulk spinor fields given in north and south patches in the overlap
region 0 < θ < π are connected to each other by the local Lorentz and U(1)X transformation:

Ψ(x, θ, φ)
S

= e−2φΣ56

e−iqnφΨ(x, θ, φ)
N
. (17)

The transition function (17) is single-valued for φ→ φ+ 2π when qn is an integer. In the model,
we will assign the U(1)X -charge to be qn = ±1 for the SM bulk fermions.

The KK expansion is most conveniently given in terms of the two component spinors [38]:

χα(x, θ, φ)
N
S =

∞∑
j=|s|

j∑
m=−j

χjmα (x)f jmα (θ, φ)
N
S , f jmα (θ, φ)

N
S =

sYjm(θ, φ)e±isφ

R
, (18)

where α stands for +L, +R, −L and −R and

s =
qn± 1

2
for α =

{
+L,−R,
+R,−L,

(19)

with ± signs corresponding to the α-cases above and below. The KK mass for a jm-mode is

given independently of m as
√

j(j+1)
R2 − (qn)2−1

4R2 +M2, where M is a possible 6D-Dirac mass term
MΨ+Ψ− + h.c. that is allowed when Ψ+ and Ψ− have the same U(1)X charges (as well as all the
same unbroken gauge charges).13

We note that the zero mode is the j = j0 := |qn|−1
2 mode, which becomes 4D-chiral so that there

exists only L or R component in it.14 Let us then consider a `-th massive KK mode j = j0 +` with
12 The 4D-left and right chiralities are defined differently in [12].
13 Unlike the model with position dependent mass [39], the presence of a constant bulk mass term does not lead to

a modification of the wave function profiles in extra dimensions. In particular, the zero mode wave function profile
is kept flat when qn = ±1 even if one turns on M . This is not the case when we have a warped (un-factorizable)
metric.

14 When the bulk fermion does not have a U(1)X charge: q = 0, the lightest ` = 1 mode is massive which has
both 4D-chiralities L and R.
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` ≥ 1. This mode is 4D vector-like and its 4D-Dirac mass (between fermions in mass eigenbasis)
is

M` =

√
` (`+ |qn|)

R2
+M2. (20)

Per each 6D-chiral field, number of degrees of freedom is 2(2j0 + 1) for a (4D-chiral) zero mode
and 4[2(j0 + `) + 1] for each (4D-vector-like) ` mode. We will choose the U(1)X charge of the SM
spinors to be either qn = ±1. In that case, relative number of degrees of freedom to a L or R zero
mode is 2`+ 1 for each L and R KK mode.

Next we show the KK expansion for a bulk vector field A := AMdxM . Although U(1)X gauge
field has a classical configuration, KK expansion of its quantum fluctuation is the same as the
other SM gauge fields since the U(1)X gauge field is neutral under itself. The SM gauge fields are
obviously neutral under U(1)X and are not affected by the monopole configuration.

Let us define the following complex fields as combinations of local Lorentz vectors:15

A± :=
1√
2

(
Aθ ± iAφ

)
, (21)

which satisfies A− = A†+. We write down the KK expansions for a bulk gauge field in the
Feynman-’t Hooft gauge ξ = 1:

Aµ(x, θ, φ) =

∞∑
`=0

∑̀
m=−`

A`mµ (x) f `mA (θ, φ), A+(x, θ, φ) =

∞∑
`=1

∑̀
m=−`

A`m+ (x) f `m+ (θ, φ), (22)

where the KK wave function is given by

f `mA (θ, φ) = cm
Y`m(θ, φ)

R
, f `m+ (θ, φ) =

cm√
2

1Y`m(θ, φ)

R
, (23)

with c0 = 1 and cm =
√

2 for m 6= 0. From the reality condition A† = A, a negative m mode
vector is related to the corresponding positive m mode: A`mµ (x) = (−1)mA† `,−mµ (x). The KK
mass spectrum is

M` =

√
`(`+ 1)

R
(24)

for both Aµ and A±. We note that the extra dimensional components A± do not have a zero
mode and that ` starts from 1 for A±. The number of degrees of freedom is 2(2` + 1) for each
of Aµ and A±, among which 2` + 1 of the A± KK mode is absorbed by the corresponding Aµ
KK mode and 2`+ 1 remain as physical scalars in the unitary gauge ξ →∞ [38]. When the bulk
vector field gets a bulk mass M from a spontaneous symmetry breaking, the resultant KK mass
(in ξ = 1 gauge) becomes [38]

M` =

√
`(`+ 1)

R2
+M2. (25)

Several comments are in order. The above KK wave-functions are all single-valued for φ →
φ + 2π and do not have φ dependence at poles except for A± [38]. In terms of cotangent space
vector, only Aθ has φ dependence at poles. We can interpret that the choice of the cotangent
space basis eθ depends on φ in the limit ε → +0 for θ = ε and θ = π − ε. Since the Lagrangian
is still invariant under the isometry of the sphere, the corresponding KK angular momentum, in
particular the quantum number m, is conserved in our RP 2 model. We note that all the KK wave
functions are written in terms of the spin-weighted spherical harmonics and that the Lagrangian
is manifestly spin-weight 0.

15 These fields can be written in terms of a complex adjoint 6D scalar ΦA:

A+ = −ið0 Φ†A, A− = ið̄0 ΦA.

6



3 Universal Extra Dimensions on Two-Sphere
We consider a UED model compactified on sphere. We follow the particle content and 6D-chirality
by Dobrescu and Poppitz [6]:

Q+,U−,D−,L+,N−, E−. (26)

We assign U(1)X charge qn = −1 for these fields and q = 0 for the bulk Higgs field. The KK wave
functions and their masses are already given above. The physics of S2 UED is almost equivalent to
that of the S2/Z2 model [22] except that half of the massive KK modes are projected away in the
latter. There is no problem for the electroweak symmetry breaking by the bulk Higgs potential.
A massless fermion can acquire a mass through the Yukawa coupling

LYukawa = −yDQ+HD− − yUQ+εH∗U− − yEL+HE− − yNL+εH∗N− + h.c. (27)

The lightest massive KK mode becomes stable because of the KK angular momentum conservation,
providing a possible dark matter candidate.16

Let us illustrate the situation comparing with a five dimensional theory. For the S1 com-
pactification, stability of the lightest massive KK particle is already guaranteed due to the KK
number conservation. S1/Z2 was introduced to yield a chiral spinor zero mode. In six dimensions,
sphere compactification already gives us a 4D-chiral fermions and therefore our S2 model is more
economical than the S2/Z2 model.

So far the S2 UED model seems successful. However, there is a serious problem in this model.
From the KK reduction (22), we see that there remains an extra massless U(1)X -gauge boson
after compactification, which transmits a long-range force. Such a long-range force is severely
constrained by a torsion balance experiment [25] to be g2

X4 . 10−46 and hence the KK mass scale,
given by Eq. (3), is constrained by R−1 . MeV/n. (Note that the KK scale R−1 is proportional
to gX4 and hence is constrained from above by the torsion balance experiment rather than from
below as in ordinary constraints.) Such a low KK scale contradicts with the absence of direct
observation at colliders up to now. The minimal S2 UED model cannot be consistent to the
torsion balance experiment.17 In this Letter, we propose to utilize the projective plane in order
to overcome this difficulty.

Finally let us comment on a 4D-Majorana mass for the 4D-right-handed neutrino, which is
necessary for the see-saw mechanism to work successfully. In [6] the SM-neutral (would-be 4D-
right-handed) neutrino N− is introduced to cancel pure gravitational anomaly. In six dimensions,
the 6D-charge conjugation gives the same 6D-chirality, that is, (Ψ±)C still has an eigenvalue
±1 for Γ7 (and contains (ψ±)c rather than (ψ∓)c, where superscripts C and c denote the 6D
and 4D charge conjugations, respectively). Therefore, the 6D Majorana mass term: (N−)CN−
automatically vanishes and the right handed neutrinoN− cannot serve for the seesaw mechanism.18

4 Universal Extra Dimensions on Real Projective Plane
The real projective plane RP 2 is a sphere S2 with its antipodal points identified by (θ, φ) ∼
(π − θ, φ+ π). Under this identification, fields can generically be transformed by a symmetry of
the action. That is, a field is not necessarily single-valued on RP 2 but can be multiply-defined up
to a symmetry that we want to impose. A field must be single-valued only on a universal cover,

16 In [22], it is argued that the Z′2 parity (x, θ, φ) → (x, θ, φ+ π) is essential for having a stable KK particle.
From the point of view of this paper, this is the direct consequence of the KK angular momentum conservation,
that is, we can directly read it off from the KK wave function written in spin-weighted spherical harmonics.

17 This problem also persists in the S2/Z2 model [22], where it is assumed that the U(1)X is broken by an
anomaly in order to avoid the problem. It might be somewhat unclear how the classical monopole configuration,
which is essential for the RSS spontaneous compactification, is maintained when the symmetry is broken by an
anomaly at an UV cut-off scale.

18 Even if we introduce further field N+ and put a large 6D-Dirac mass term N+N−, the resultant seesaw matrix
yields one (still) massless neutrino and two heavy ones.
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which is S2 in our case. In particular, since π1(RP 2) = Z2, a field identification Φ(x, θ, φ) =
P (Φ(x, π − θ, φ+ π)) must be by a transformation P that gives identity when squared: P2 = 1.

Since RP 2 is a non-orientable manifold, there always is a circle that gives a parity transforma-
tion when one circulates around it and comes back to the original point. To achieve a chiral four
dimensional theory after the compactification, we identify by a 6D-CP transformation so that the
four dimensional theory is chiral even if a six dimensional theory is vector-like.

Let us start with the matter content same as in the S2 UED model (26), as well as the
SU(3)C ×SU(2)W ×U(1)Y gauge fields and the U(1)X one introduced above. As in the ordinary
UED model, the electroweak symmetry breaking SU(2)W × U(1)Y → U(1)EM is achieved by a
vev of a bulk Higgs field H due to its bulk potential.

A natural antipodal identification for the U(1)X field is the 6D-CP transformation that is
consistent to and does not violate the U(1)X monopole configuration (2):19

Xµ(x, π − θ, φ+ π)
N

= XC
µ (x, θ, φ)

S
= −Xµ(x, θ, φ)

S
,

Xφ(x, π − θ, φ+ π)
N

= XC
φ (x, θ, φ)

S
= −Xφ(x, θ, φ)

S
,

Xθ(x, π − θ, φ+ π)
N

= −XC
θ (x, θ, φ)

S
= Xθ(x, θ, φ)

S
. (28)

This identification by 6D-CP transformation is an outer automorphism, see [32] for its use in five
dimensions. We find that only odd ` modes survive under this projection. In particular the zero
mode of U(1)X is projected out and hence the U(1)X symmetry is broken by the projection.

The SM fermions must have a U(1)X charge in order to have a massless mode after KK
reduction. In order to have an invariant U(1)X interaction under this antipodal projection, the
U(1)X -charged SM fermions must have the following transformation property, which is nothing
but a 6D-CP transformation:

ΨN (x, π − θ, φ+ π) = ηΨΓ5
(
ΨS(x, θ, φ)

)C
= −ξΨηΨΓ2ΨS∗(x, θ, φ), (29)

where ξΨ and ηΨ are the intrinsic parities for 6D-C and P transformations, respectively: |ξΨ| =
|ηΨ| = 1. Note that

(
ΨC
)
C = −Ψ with our conventions. We put the 6D-CP intrinsic parity

ξΨηΨ = ±1 for matter (26) with 6D-chirality ±, and accordingly ∓1 for mirror matter (31) with
± chirality. We use another basis 5 and 6 according to [12]. In this basis, under the projection,
the six dimensional basis ∂A transform as

∂µ → ∂µ, ∂5

N
S → −∂5

S
N , ∂6

N
S → ∂6

S
N . (30)

Hence Γ5 in (29) means 6D-P transformation.
This identification necessitates a mirror field having opposite 6D-chirality and opposite SM

charges per each field in Eq. (26):

Q−,U+,D+,L−,N+, E+, (31)

where we set U(1)X charge for the mirror fermions (31) to be qn = −1 and therefore the same as
that of the ordinary one (26). We doubled the field content by adding a mirror field with opposite
6D-chirality per each field, and then these mirror fields (31) will be identified-away with (26) by
the antipodal projection.

In order to realize proper SM gauge interactions between zero modes, we find that the SM
gauge fields A should be identified by the 6D-P transformation

Aµ(x, π − θ, φ+ π) = Aµ(x, θ, φ),

Aφ(x, π − θ, φ+ π) = Aφ(x, θ, φ),

Aθ(x, π − θ, φ+ π) = −Aθ(x, θ, φ). (32)
19 C changes the sign of all XM and 6D-P transformation further changes the sign of Xθ. This CP is essentially

the same as the one in [40]. Note that the even field Xθ does not have a zero mode since it picks put the curvature
of S2 and its KK expansion (together with Xφ) starts from ` = 1 mode as can be seen from Eq. (22). See also
footnote 20.
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Note that only even ` modes survive under this identification. In the S2/Z2 orbifold model [22],
half of modes in each KK level are projected away, while in our model, whole modes in each odd `
level are projected away for the SM gauge fields. In particular there remains a zero mode for and
only for Aµ.20 The SM gauge interaction must be of the following 6D-chiral form:

Sint = −ig6

∫
d6x
√
−g
(
Ψ+ΓMAMΨ+ −Ψ−ΓMA∗MΨ−

)
, (33)

where Ψ stands for Q, UC , DC , L, NC and EC , with C being the 6D-charge conjugation that
does not change the 6D-chirality. Note that both the Ψ+ and Ψ− are irreducible representations
of Lorentz transformation and hence are totally independent of each other at this stage. We also
note that when we redefine the chirality minus field by the 6D-charge conjugation as Ψ̃− = ΨC

−,
we get completely vector-like SM gauge interaction

Sint = −ig6

∫
d6x
√
−g
(

Ψ+ΓMAMΨ+ + Ψ̃−ΓMAM Ψ̃−

)
. (34)

This is why we have assigned SM charges such that 6D-chirality plus spinor Ψ+ has opposite
charges to original chirality minus spinor Ψ−. With this identification and charge assignments,
U(1)X symmetry is broken by the compactification at the KK scale ∼ R−1, while all the SM gauge
fields have zero modes after the compactification.

Next we discuss the electroweak symmetry breaking in our model. Since the Higgs doublet
does not have U(1)X charge, it can be trivially identified under the antipodal projection (by a
6D-P transformation):

H(x, π − θ, φ+ π) = H(x, θ, φ). (35)

The Higgs field has expansion (11) in terms of the ordinary spherical harmonics Y`m = 0Y`m and
can have a vev that is constant in extra dimensions. Then we can realize ordinal electroweak
symmetry breaking and obtain W±, Z and A as four dimensional zero modes.

We summarize our KK mass specta in Fig. 1, which are distinctive from those in the 5D and 6D
UED models with orbifolded toroidal compacitifications: S1/Z2 and T 2/(Z2 × Z ′2), respectively.
We have shown the tree-level KK mass in units of the first KK mass m1 that is the physical
quantity observed at collider.21 We have plotted the KK mass up to 4m1 neglecting the bulk
mass M , which should be generated by the electroweak symmetry breaking for SM fields but is
negligible as long as M2 � R−2 ' TeV2.

We introduce 6D-Dirac Yukawa interaction, e.g. for down-type quarks as follows:

LYukawa = −
√
−g
[
yD

(
Q+HD− +QC−HDC+

)
+ h.c.

]
, (36)

and similarly for up-type quarks and leptons. Note that this 6D Yukawa interaction violates the
6D-CP invariance since the Yukawa couplings include complex phases. We identify 6D spinors
and U(1)X vector by 6D-CP transformation, while identifying Higgs and SM gauge fields by 6D-P
transformation. This 6D-CP violating interaction allows such identifications of 6D fields and we
can get effective 4D-CP violating Yukawa and gauge interactions. Namely, under the antipodal
identification, Q+ and QC− as well as D− and DC+ are interchanged so that the sum of the terms
in the parentheses in Eq. (36) are left invariant under the identification even if it violates 6D-CP .

In our RP 2 model, we can write a following 6D bulk mass term for and only for the SM-
neutral N±

LN := −
√
−g
(
MNN+N− +M∗NN−N+

)
. (37)

20 Note that Aφ does not allow a zero mode since it picks up the curvature of S2, namely, the KK expansion (22)
starts from ` = 1 for the extra-dimensional componentA+ even before the antipodal projection. See also footnote 19.

21 Recall that in our modelm1 =
√

2/R, while in the S1/Z2 and T 2/(Z2×Z′2) modelsm1 = 1/R. The KK masses

are then given as |n|m1 with n ∈ Z for the S1/Z2 model and
√
n2
1 + n2

2m1 with n1, n2 ∈ Z for the T 2/(Z2 × Z′2)

model.
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Figure 1: Tree level KK mass spectra in units of the 1st KK mass m1, neglecting bulk masses.

Note that the fermion bilinear Ψ+Ψ− is odd for each of the 6D-P and C transformations and hence
is even for the 6D-CP transformation. This term gives 4D Majorana mass of the 4D-right-handed
neutrino after the antipodal identification and the dimensional reduction. Our UED model on
RP 2 overcomes the problem of appearance of the U(1)X zero mode, as well as the absence of the
Majorana mass term of 4D-right-handed neutrino.

5 Discussions
First let us discuss 6D anomalies. In the RP 2 model, irreducible gauge anomalies, which cannot
be canceled by the Green-Schwarz mechanism [41, 42], are [SU(3)C ]3 U(1)Y , [SU(3)C ]3 U(1)X
and [U(1)Y ]3U(1)X .22 With the matter content (26),23 the first one automatically vanishes.24
A simple remedy to cancel the last two, involving U(1)X , is to introduce additional heavy 6D
spinors Q1

+, Q
2
−, L

1
+, L

2
− whose SM charges are the same as quark and lepton doublets while their

U(1)X charge is +1.25 We note that both before and after adding these fermions, the pure
gravitational anomaly automatically cancels since there are equal number of + and − fields.
Also, irreducible mixed gravitational anomalies: [U(1)X ]2[graviton]2, [U(1)Y ]2[graviton]2, and
U(1)XU(1)Y [graviton]2 are automatically canceled before and after adding them. Note also that
we can freely make new spinors heavy by introducing bulk mass term MQ1

+Q
2
− etc.26 All the

remaining local anomalies can be absorbed by the Green-Schwarz mechanism [6, 7]. It would be
worth studying if three generations are required by the SU(2)W global anomaly, see also footnote 1.

In this paper we have neglected gravitational modes.27 Since the same isometry remains in RP 2

after the antipodal projection, there are several massless modes from the fluctuation of graviton,
which are 4D gravitons and 4D isometry gauge field (non-abelian graviphoton). We note that the

22 Actually we may cancel such a mixed gauge anomaly by adding a four form field whose field strength is dual
to that of a scalar, see e.g. [43]. In that case, U(1)X gauge boson will become superheavy and will spoil the RSS
spontaneous compactification, as is discussed in footnote 4.

23 In this discussion, we take the bulk fermions (26) as physical degrees of freedom and regard that the mirror
fermions are identified-away.

24 In the models on the sphere and S2/Z2, both of these irreducible anomalies automatically vanish if one
introduces N−. In [22], there is no field corresponding to N− and the U(1)X is assumed to be broken by an
anomaly. As mentioned above, such a breaking spoils the U(1)X monopole configuration and destroys the RSS
spontaneous compactification itself.

25 Of course we need to add their mirrors Q1
−, Q

2
+, L

1
−, L

2
+ having the same U(1)X charge +1 and the chiral

gauge interaction (33) between Q1
+ and Q1

− etc.
26 After we integrate out such new heavy spinors, Wess-Zumino-like terms [44] might be induced at lower energies.

It would be worth studying this issue further.
27A technique is given in [45] that may be useful for the explicit computation of the full spectrum including bulk

graviton contributions.
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lowest modes of the gravi-scalars are all massive of order 1/R and that the radion is stabilized
by the RSS spontaneous compactification [21]. The existence of massless graviphoton violates the
experimental constraint [25]. However spin-weight of the isometry gauge fields is±1 [12, 21, 46, 47].
Therefore we suppose that these graviphotons cannot propagate between zero-mode SM matters,
which have spin-weight 0 at the tree level although such an interaction might be loop induced.28

Finally let us comment on the cosmological constraint. In the RP 2 model, the SM gauge bosons
have only even KK modes. In particular, the fist KK photon is projected away and cannot be a
dark matter, unlike the minimal 5D UED model. Therefore the most phenomenologically natural
mass spectrum would be that the first U(1)X gauge boson is the LKP and the first KK neutrino
is the Next Lightest KK Particle (NLKP) or vice versa.29 Since we expect that the tree level mass
splitting at the UV cutoff scale would be small compared to the KK scale [5], the supposed NLKP
decays into the LKP with lifetime relevant to the bound coming from neutrino injection [48], if
the above mass splitting is realized. Detailed study of this issue will be presented in a separate
publication.
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