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Mutation of the AMP deaminase 1 (AMPD1) gene, the predominate
AMPD gene expressed in skeletal muscle, is one of the most common
inherited defects in the Caucasian population; 2–3% of individuals in
this ethnic group are homozygous for defects in the AMPD1 gene.
Several studies of human subjects have reported variable results with
some studies suggesting this gene defect may cause symptoms of a
metabolic myopathy and/or easy fatigability while others indicate
individuals with this inherited defect are completely asymptomatic.
Because of confounding problems in assessing muscle symptoms and
performance in human subjects with different genetic backgrounds and
different environmental experiences such as prior exercise conditioning
and diet, a strain of inbred mice with selective disruption of the AMPD1
was developed to study the consequences of muscle AMPD deficiency in
isolation. Studies reported here demonstrate that these animals are a
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goodmetabolic phenocopy of human AMPD1 deficiency but they exhibit
no abnormalities in muscle performance in three different exercise
protocols.

© 2014 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

The AMP deaminase 1 (AMPD1) gene, one of the three members of the AMPDmultigene family, encodes
the predominant AMPD (adenosine monophosphate (AMP) deaminase: EC 3.5.4.6) isoform expressed in
skeletal muscle [1]. AMPD1 deficiency is one of the most common inherited defects in the Caucasian
population with a number of studies documenting that 2–3% of individuals in this ethnic group are
homozygous for defects in the AMPD1 gene [2]. It is not unreasonable to assume that deficiency of this
enzyme activity which is essential for purine nucleotide interconversion and energymetabolism [1] might be
associated with muscle symptoms and/or impaired muscle performance. Since the original report of this
enzyme deficiency by Fishbein et al. [3] in a group of patients with symptoms consistent with a metabolic
myopathy, there have been over 25 studies of individuals with this enzyme defect [1]. This body of literature
encompasses conflicting reports that describe a range of findings from asymptomatic individuals, patients
with symptoms consistent with those of a metabolic myopathy, individuals with impaired muscle
performance on exercise testing as well as individuals with normal exercise performance. This variability in
findings in human subjectsmight be explained by a host of factors including underlying genetic differences in
the human population, differences in exercise conditioning, differences in diet, differences in pain threshold,
and differences in motivation to perform in exercise tests—all of which might contribute to differences in
symptoms and/or exercise performance.

Given the high prevalence of mutations in the AMPD1 gene leading to deficiency in this enzyme
activity in skeletal muscle and the conundrum it creates due to the frequent diagnosis of AMPD deficiency
in clinical settings, we developed a murine model in which disruption of the AMPD1 gene is the sole
genetic difference in an inbred strain of mice. Using a model system such as this it is possible to eliminate
differences in exercise activity prior to physiological testing, differences in diet, and presumably other
environmental and/or psychological factors that might affect exercise performance. In this murine model
in which the AMPD1 gene has been disrupted, we find that these animals exhibit all the metabolic defects
reported in humans with inherited defects in the AMPD1 gene but exhibit no changes in exercise
performance in three different protocols for assessing muscle function.

2. Material and methods

2.1. Isolation of mouse AMPD1 cDNA and gene

Mouse AMPD1 cDNA clones were isolated from DNA fragments amplified by reverse transcription
polymerase chain amplification (RT-PCR) using RNA isolated from P19 mouse embryonal carcinoma cells
derived from 129/sv mice. PCR was carried out using primers designed from the sequence of human AMPD1
cDNA. Mouse AMPD1 genomic clones were isolated from PCR-amplified DNA fragments of genomic DNA of
P19 cells. The 3′ fragment of the AMPD1 gene was obtained using an adaptor cassette and cassette primer
following the manufacturer's protocol (LA PCR in vitro Cloning Kit, Takara).

2.2. Generation of AMPD1 mutant animals

The targeting vector was linearized with NotI and electroporated into D3 embryonic stem cells.
Transfected cells were selected by exposure to neomycin for 7 days, after which isolated colonies were
screened by PCR. Homologous recombination was confirmed by Southern hybridization on both the long-
and short-arm sides. After undergoing a karyotype test, cells were injected into blastocysts derived from
C57BL/6 mice to produce chimeric mice. Chimeric pups were identified by their agouti coat color, after
which chimeric males were bred to C57BL/6J females and germ-line transmission was determined. Mice
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with the targeted allele were backcrossed to C57BL/6 mice more than 10 times before the analysis. All of
the animals had free access to food (CE-2, CLEAR) and water, and were housed in a controlled SPF
environment with a 12-hour light–dark cycle and constant temperature.

2.3. Genotyping, DNA, and RNA analysis

Total DNA was extracted from ES cells or mouse tails. PCR assays for genotype screening were performed
using the following primers: for thewild-type AMPD1 gene; 5′-ACAGGCCCTTGTGCAATTAGA-3′ (AM33-) and
5′-TTTCGCACAGAGGACCTTCC-3′ (AM12+), for the knock-out AMPD1 gene; 5′-ACAGGCCCTTGTGCAATT
AGA-3′ (AM33-) and 5′-CCGATTCGCAGCGCATCGCC-3′ (AM11+). Southern hybridization was performed
using a 5′ or 3′ AMPD1 probe with 5′-GTAATACGACTCACTATCGGGC–3′ and 5′-AATTAACCCTCACTAAAGGG–
3′. Total RNA extraction and northern hybridizationwere performed using a standard protocol. A cDNA probe
was produced by PCR using the primer set 5′-GGCATGAATACATTTCTGTTTC-3′ and 5′-CTGAGCGACATTT
GTCCTC-3′.

For real-time RT-PCR, total RNA was extracted from tissues using a standard protocol. Total RNA (1 μg)
was reverse-transcribed in a 20-μl reaction mixture containing random primers and Superscript III
enzyme (Invitrogen, Carlsbad, CA). Quantitative real-time PCR was performed with an ABI Prism 7000
Sequence Detection System using an SYBR Green PCR Master Mix Reagent Kit (Applied Biosystems, Foster
City, CA).

2.4. AMPD activity assay

Tissues were homogenized with an extraction buffer (100 mM K-phosphate, pH 6.5, 180 mM KCl,
1 mM DTT). The supernatant was dialyzed against 50 mM imidazole/HCl (pH 6.5), 150 mM KCl, and
1 mM DTT for 17 h at 4 °C. Fifty microliter samples were mixed with a 150-μl reaction buffer (25 mM
imidazole/HCl (pH 6.5), 150 mMKCl, 10 mM AMP) and incubated at 37 °C for 30, 60, 120, or 180 min. The
amount of IMP produced was measured using HPLC with a Capcell Pak C18 column, and a mobile phase
including phosphoric acid and diethylethanolamine (Sigma-Aldrich, St. Louis, USA). AMPD activity was
assayed by measuring the production of IMP. One unit of enzyme activity was defined as the amount that
catalyzed formation of 1 μmol of IMP.

2.5. Protocol for exercise testing

A treadmill movement test was performed according to a previously described protocol [4]. Mice at
12 weeks of age were first acclimated to the treadmill by placing them on an unmoving treadmill with a
20° incline, thereafter the speed of the treadmill was increased from 5 to 7, 10, 12, and 15 m/min for 5 min
intervals on 3 successive days before testing.

For the endurance exercise, the treadmill was set at a 20° incline and an initial speed of 5 m/min, with
the speed increased every 150 s to 7, 10, 12 or 15 m/min. Thereafter, mice were run for a total 85 min, a
point at which they could not maintain sufficient speed to avoid persistent electric shock. The number of
electric stimulations was recorded as a measure of fatigability. For sprint exercise testing, the treadmill
was set at a 20° incline and an initial speed of 15 m/min for 30 s. For femoral artery ligation ischemia of
the hindlimb, male mice were anesthetized, then after a skin incision, the entire femoral artery was
dissected free. Arteries in both hindlimbs were ligated with 4–0 silk. Twenty minutes were allowed for
recovery from anesthetization, then the mice were subjected to 30 s of the sprint exercise as described
above.

At the conclusion of the respective exercise tests, gastrocnemius specimens were snap frozen in liquid
nitrogen and stored at −80 °C. Muscle samples were also collected from animals not subjected to the
respective exercise protocols and used as “resting” controls.

2.6. Nucleotide, lactate and adenosine levels

For nucleotide levels tissues were homogenized in 0.4 mol/l perchloric acid. After centrifugation, the
clear supernatant was neutralized with 5 M K2CO3 to pH 6.6–8.0, then 10 μl of neutralized supernatant
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was applied to a Capcell Pak C18 column (Shiseido, Tokyo, Japan) for HPLC (Lachrom Elite, Hitachi, Japan)
analysis [5].

Tissue lactate levels were measured by the enzymatic method using lactate oxidase. Tissue samples
were homogenized in 0.4 mol/l perchloric acid and the clear supernatant was neutralized with 5 M K2CO3,
then the neutralized supernatant was used for the measurement.

Tissue adenosine levels were measured with fluorescence-HPLC, using a method modified by Katayama
et al. [6]. Tissue samples were homogenized in 0.4 mol/l perchloric acid and the clear supernatant was
neutralizedwith 5 MK2CO3, then theneutralized supernatantwas used for reactingwith 2-chloroacetaldehyde,
vidarabine, and acetate buffer, using the same protocol noted above. Finally, 10 μl was injected into the
HPLC device and the assay was performed using a mobile phase of 0.05 M citric acid, 0.1 M disodium
hydrogenphosphate (pH 4.2), andmethanol (90 + 10),with a column temperature of 23 °C andflow-rate of
0.8 ml/min.

2.7. Western blot analysis

Muscle samples were sonicated and homogenized in lysis buffer (1× PBS, 1% Nonidet P-40, 0.5%
sodium deoxycholate, 0.1% SDS, 100 μg/ml phenylmethylsulfonyl fluoride, 45 μg/ml aprotinin, 100 mM
sodium orthovanadate). The homogenate supernatant was subjected to protein determination with a BCA
Protein Assay Kit (Pierce, IL, USA) and then applied onto SDS-PAGE gels for electrophoresis. After
electrophoresis, the gels were transferred to polyvinylidene difluoride membranes, then incubated with
the primary antibody, followed by the secondary antibody. Signalswere detectedwith an ECL kit (Amersham,
Piscataway, USA).

2.8. Statistical analysis

Results from knockout mice were compared with those of their wild-type littermates using the Mann–
Whitney U test, with P b 0.05 considered to indicate statistical significance.

3. Results

3.1. AMPD1 knock-out mice

AMPD1 knockout mice were generated using a standard gene targeting method (Supplemental Fig. S1A).
Disruption of the AMPD1 gene was confirmed by PCR and Southern blotting (Supplemental Fig. S1B).
Northern andwestern blots confirmed that the AMPD1 knockout homozygote [A1(−/−)] mice did not show
any expression of AMPD1 RNA or protein (Figs. 1A and B). Furthermore, AMPD activity was decreased in all
muscle types of AMPD1 knockout heterozygote [A1(+/−)] mice (Fig. 2A), and almost undetectable in the
gastrocnemius and extensor digitorum longus (EDL) of A1(−/−) mice. In the soleus muscle of A1(−/−)
mice, approximately 10% of AMPD activity remained when compared to the wild type, due to the expression
of the AMPD3 gene in this muscle type [7]. AMPD1 activity as assessed by histochemical staining (Fig. 2C), a
common test used in analysis of human muscle biopsies, also showed reduction or loss of AMPD enzyme
activity in muscle samples from the A1(+/−) and A1(−/−) animals, respectively.
Ampd1

Heart BrainKidneyLiver Muscle

Wt A1
(-/-) Wt A1
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Fig. 1. Expression of AMPD1 gene in AMPD1 knockout mice. A: Expression of AMPD1 mRNA in various tissues including skeletal
muscle (gastrocnemius) studied by northern blot analysis (Wt: wild type, A1(−/−): AMPD1 null), B: Expression of AMPD1 protein
in skeletal muscle (gastrocnemius) by western blot analysis (Wt: wild type, A1(−/−): AMPD1 null).
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muscle tissues. (Wt: wild type, A1(+/−): AMPD1 heterozygote, A1(−/−): AMPD1 null).
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3.2. Phenotypic observations of AMPD1 knockout mice

No detectable phenotypic differences were observed between A1(−/−) and wild-type mice in a
controlled SPF environment with a 12-hour light–dark cycle, constant temperature (25˚C), and free access
to food (CE-2, CLEAR) and water. A1(−/−) mice were born with the expected Mendelian ratio, litter sizes
were normal and male and female knockout mice were fertile. A1(−/−) mice exhibited no significant
changes in regard to body weight, rates of growth, body composition, food intake, and lifespan as
compared with wild-type mice. Hematoxylin and eosin (H&E) stained sections of the liver, kidney, lung,
brain, heart, spleen, and stomach showed no significant changes (data not shown). Gastrocnemius, EDL,
and soleus muscle samples were analyzed with H&E, periodic acid-Schiff (PAS), oil red O, succinate
dehydrogenase (SDH), cytochrome oxidase, acid phosphatase, Gomori's Trichrome, Sudan black B, and NADH
staining (data not shown), and there were no detectable differences between A1(−/−) and wild-type
animals indicating there was no change in fiber-type change in the A1(−/−) mice.

3.3. Assessment of muscle performance

Muscle function was assessed in 12-week-old male mice using both an endurance (85 min) and sprint
(30 s) exercise protocol. No significant differences were observed in fatigability after sprint (Fig. 3A) and
endurance (Fig. 3B) exercise between the wild-type and A1(−/−) mice. In addition, exercise performance
was assessed under ischemic conditions, i.e. following arterial ligation, and no difference in exercise
performance was noted between wild-type and A1(−/−) animals (Fig. 3C).
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Nucleotide levels (IMP, AMP, ADP, ATP) were determined in the gastrocnemius muscle before and after
performing sprint and endurance exercises (Table 1). IMP in the A1(−/−) group was not detected before
or after exercise, indicating that the degradation pathway of AMP to IMP was blocked in the muscle tissues
of those mice. After 85 min endurance exercise, the increase in AMP and decrease in ATP levels were similar
Table 1
The nucleotide levels in the gastrocnemius muscles before and after endurance (85 min) and sprint (30 s) exercise.

Mean ± SE (nmol/mg wet weight)

n ATP ADP AMP IMP

Pre Wt 4 10.0 ± 0.2 2.79 ± 0.13 0.36 ± 0.01 0.26 ± 0.04
A1(−/−) 3 9.9 ± 0.3 2.78 ± 0.13 0.40 ± 0.03 ND

Endurance ex Wt 3 9.2 ± 0.4⁎ 2.20 ± 0.10 0.62 ± 0.26⁎ 0.15 ± 0.08
A1(−/−) 3 9.0 ± 0.3⁎ 2.30 ± 0.22 1.00 ± 0.45⁎ ND

Sprint ex Wt 3 10.8 ± 0.4 2.82 ± 0.04 0.36 ± 0.03 0.41 ± 0.02#

A1(−/−) 3 12.5 ± 0.2 2.98 ± 0.08 0.43 ± 0.04 ND

Pre: pre-exercise, Sprint ex: sprint exercise, Endurance ex: endurance exercise.
n: number of animals.
ND: not detected.
⁎ P b 0.05 between Pre and Endurance ex.
# P b 0.05 between Pre and Sprint ex.
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in both thewild-type and A1(−/−)mice. In the sprint protocol, the level of IMPwas significantly increased in
the wild-type mice after 30 s exercise, whereas AMP, ADP and ATP levels were not significantly different
between the wild-type and A1(−/−) mice in this condition.

We also measured nucleotide levels in the gastrocnemius muscle before and after sprint exercise in
mice with femoral artery ligation ischemia (Table 2). During this short burst of exercise (30 s), no
apparent difference of performance was observed between the wild-type and A1(−/−) mice (Fig. 3C).
Prior to exercise, ATP levels were decreased in both groups due to acute ischemia, while IMPwas increased
in the wild-type but not A1(−/−) mice. After 30 s of sprint exercise, the ATP level in the wild-type was
further decreased and that of IMP was further increased. Furthermore, ATP, ADP, and AMP levels were
higher in the A1(−/−) gastrocnemius muscle than in that of the wild type mice in this condition.

Lactate production was measured after sprint exercise under non-ischemic or ischemic conditions
(Fig. 4A). A1(−/−) mice exhibited no differences as compared to the wild-type mice with regard to lactate
production. In contrast, NH3 accumulation in the gastrocnemius muscle was abolished after exercise in the
AMPD1 knockout animals (Fig. 4B). In addition, adenosine production was increased significantly in the
A1(−/−) gastrocnemius muscle following exercise under ischemic conditions (Fig. 4C).
4. Discussion

The results of this study demonstrate that disruption of the AMPD1 gene in this murine model
[A1(−/−)] mimics essentially all of the metabolic features AMPD1 deficiency in human subjects-AMPD
enzyme activity is markedly reduced in skeletal muscle but not entirely eliminated due to expression of
other members of this gene family, NH3 production is markedly reduced upon ischemic challenge, IMP is
virtually undetectable even after strenuous exercise, the pool of adenine nucleotides although redistributed
among the ATP/ADP/AMP components is maintained in the face of strenuous exercise and ischemia, and
adenosine is produced in increased amounts. All of thesemetabolic signatures have been observed in muscle
samples from human subjects with mutations in the AMPD1 gene [1]. Thus, we conclude that this murine
model is a good metabolic phenocopy for human AMPD1 deficiency.

Disruption of the AMPD1 gene did not adversely affect the general health of these mice in comparison
to mice with a normal AMPD1 gene with regard to fetal development, postnatal growth and development,
appetite, and activity in their cages. Also, muscle fiber type was not different in the A1(−/−) mice compared
with the wild-type mice.

Different exercise protocols were employed to assess muscle performance and metabolic changes in
three different physiological situations, i.e. endurance exercise, sprint exercise, and exercise performed
during ischemia. These conditionswere selected tomimic situationswhich have been used in various studies
of human subjects with AMPD1 deficiency. In all three exercise protocols there was no demonstrable
Table 2
The nucleotide levels in the gastrocnemius muscles under ischemia before and after short sprint exercise (30 s).

mean ± SE (nmol/mg wet weight)

n ATP ADP AMP IMP

Pre Wt 4 10.0 ± 0.2 2.79 ± 0.13 0.36 ± 0.01 0.26 ± 0.04
A1(−/−) 3 9.9 ± 0.3 2.78 ± 0.13 0.40 ± 0.03 ND

Post-ischemia Wt 3 7.9 ± 0.7⁎ 2.98 ± 0.26 0.45 ± 0.13 1.30 ± 0.34⁎

A1(−/−) 3 8.1 ± 1.0⁎ 3.20 ± 0.10 0.57 ± 0.03⁎ ND
Post-ischemia Wt 3 4.8 ± 0.2⁎ 2.50 ± 0.16 0.41 ± 0.06 4.50 ± 0.48⁎

+Ex A1(−/−) 3 8.3 ± 0.5# 4.20 ± 0.41# 0.91 ± 0.12# ND

Pre: pre-exercise and ischemia, Post- ischemia + Ex: Post-ischemia and exercise.
n: number of animals.
ND: not detected.
⁎ P b 0.05 between Pre and and Post-ischemia, or Post-ischemia and Post-ischemia + Ex.
# P b 0.05 between genotypes.



0

50

100

150

200

pre-exercise post postpre

ischemia

*

*

Wt
A1(-/-)

0

1

2

3

4

5

postpre

ischemia

*

Wt
A1(-/-)

0

1

2

3

4

5

pre-exercise postpre-exercise post postpre

ischemia

Wt
A1(-/-)

A B

C

La
ct

at
e 

(m
g/

g 
w

et
 w

ei
gh

t)

   
  N

H
3 

in
 m

us
cl

e 
(n

m
ol

/m
g 

w
et

 w
ei

gh
t)

A
de

no
si

ne
 in

 m
us

cl
e 

(p
m

ol
/m

g 
w

et
 w

ei
gh

t)

Fig. 4. Assessment of metabolites in muscles of wild-type (Wt) and A1(−/−) mice after treadmill exercise. A: Lactate in muscles
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difference in exercise performance between mice with disruption of the AMPD1 gene and mice with normal
AMPD1.

We conclude from this study that isolated deficiency of AMPD1 does not lead to muscle dysfunction
under the various conditions employed in this study. This does not however preclude that AMPD1
deficiency may contribute to muscle dysfunction in association when other genetic or environmental
differences are present. The results of this study suggest that in patients with muscle symptoms and
AMPD1 deficiency it may be prudent to search for other causes of symptoms and/or muscle dysfunction.

While this study does not support a role for AMPD1 deficiency in isolation as a cause of skeletal muscle
dysfunction, it does not rule out effects of loss of AMPD1 activity in skeletal muscle on other metabolic
pathways such as insulin mediated pathways of carbohydrate and lipid metabolism [8].

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.ymgmr.2013.12.004.
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