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24

25 Abstract

26 Elevation-dependent warming (EDW), whereby warming rates are stratified by 

27 elevation, may increase the threat to the life-supporting solid water reservoir on 

28 the Tibetan Plateau. Previous studies have debated whether EDW exists and how 

29 it is driven. Using temperatures at 133 weather stations on the Tibetan Plateau 

30 during 17 different periods generated using a 30-year sliding window over 1973–

31 2018, this study finds that the existence of EDW varies as the period moves 

32 forward, and critically it has become more severe over time. During the early 

33 part of the record with weaker regional warming, there were limited changes in 

34 snow depth and no EDW, but as time advances and regional warming intensifies, 

35 snow depth declines significantly at higher elevations, causing development of 

36 EDW. We conclude that enhanced regional warming has caused decreases in 

37 snow depth, largely controlling the pattern of EDW on the Tibetan Plateau. This 

38 may explain contrasting conclusions on EDW from previous studies which have 

39 used data for different periods, and our findings support enhanced EDW and 

40 more severe depletion of the Tibetan Plateau solid water reserves in a warmer 

41 future.

42 Key words: elevation-dependent warming; Tibetan Plateau; climate warming; 

43 snow depth
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44

45

46

47 1. Introduction

48 The Tibetan Plateau (TP), known as the Earth’s Third Pole, is home to the Earth’s 

49 largest reservoir of solid water outside the polar regions, currently including 105 km2 

50 of glacial extent [1] and 41.9×109 m3 a−1 water equivalent of snow [2]. This provides 

51 life-supporting water to almost 20% of the world’s population [3]. However, most of 

52 the reservoir is located at higher elevations, typically above 4000 m on the TP. 

53 Increasing evidence suggests that higher elevations may be particularly sensitive to 

54 global climate change [4] and strong changes would threaten the solid water reservoir 

55 and affect the sustainable water supply downstream [3, 5]. 

56 Elevation-dependent warming (EDW), whereby warming rates are stratified by 

57 elevation, could mean more rapid change at the critical elevation holding the majority 

58 of the solid water reservoir, which in turn would accelerate the rate of ablation of the 

59 solid water reserve. EDW on the Tibetan Plateau and its explanatory mechanisms 

60 have been intensively studied [4, 6–8]. Early studies used station observations to 

61 reveal significant warming on the TP from 1960 to 1990 and find larger warming 

62 rates at higher elevations [9]. Subsequently, reanalyses, satellite data and model 
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63 simulation were employed to elucidate TP EDW and its mechanisms [4]. As satellite 

64 records lengthen, remotely sensed data have become more commonly used to examine 

65 plateau-wide EDW at high spatial resolution [10, 11]. In addition to investigation of 

66 past EDW, future projections can be examined based on regional climate model 

67 simulations [12].

68 Despite extensive study, results from previous studies remain divergent about the 

69 existence of Tibetan Plateau EDW [4,6,7]. For example, although clear enhancement 

70 of warming with elevation has been observed and simulated from 1960 to 1990 on the 

71 TP [9, 13], no EDW was found in another study for 1961–2005 in terms of 

72 observations and reanalysis [14]. Recent studies show that warming rates are strongest 

73 for the plateau as a whole around 4500–5000 m but weaken again at ultra-high 

74 elevations above this [10–12, 15]. Different profiles of warming have also been 

75 measured in different mountain ranges on the plateau, based on adjusted MODIS data 

76 [16]. In additional to the conflicting observed elevational profiles, the dominant 

77 driving factors determining the existence or absence of EDW have also proved elusive 

78 [4, 17, 18]. Understanding how the elevation pattern of warming has evolved may 

79 help in understanding the driving mechanisms.

80 Therefore, for the first time, this study tries to understand how EDW may be 

81 driven through examining its temporal evolution. Using 133 weather stations across 

82 the TP, we examine the elevation profile of warming for different periods using a 

83 30-year sliding window between 1973 and 2018.
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84 2. Materials and Methods

85 Daily observations of mean 2 m air temperature (°C), total precipitation (mm), snow 

86 depth (cm), relative humidity (%), and monthly means of total cloud amount (tenths), 

87 and sunshine duration (hours) were obtained from the National Meteorological 

88 Information Center, China Meteorological Administration. Daily snowfall is 

89 calculated as precipitation which falls when mean daily 2 m air temperature ≤0 °C 

90 [19]. Snow cover duration is calculated as the total number of days with snow 

91 depth >0 cm. The threshold of 0 cm is used to include days with thin snow cover. 

92 Original data covered the whole period from 1951 to 2018, but only a few stations 

93 have continuous data during the earlier 20–30 years. Thus, we chose 133 stations with 

94 elevation >2 km (from over 2400 possible candidates in China) with continuous data 

95 for 1973–2018 (Table S1). 2 m air temperatures at a further 420 low-elevation 

96 weather stations (0–2 km) within 74–108°E, 22–43°N are also used to represent 

97 adjacent lowland warming (Fig. 1).

98 Observations were previously corrected using a test of spatial consistency [20] 

99 and data homogeneity has been assessed using the penalized maximal t test [21], F 

100 test [22] and the standard normal homogeneity test [23]. The amount of missing data 

101 is very small (<0.01%). For snow depth, missing records were estimated using daily 

102 precipitation and 2 m air temperature. If daily air temperature was below 0 °C, daily 

103 precipitation was directly used to convert to daily snow depth, and in the range 0–

104 2 °C, half of daily precipitation was converted to increase the daily snow depth [24]. 

105 For other variables, when there were less than 3 consecutive missing values, linear 
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106 interpolation was used based on the two nearest known values. When more than 3 

107 consecutive values were missing, linear interpolation was based on known values 

108 (same day/month as missing value) averaged over the two nearest years. Linear trends 

109 of temperature, snow depth, and cloud amount were calculated using the slope of the 

110 ordinary least-squares regression line, and statistical significance evaluated using the 

111 Student’s t test method.

112 3. Results 

113 3.1 Relationships between EDW, mean plateau-wide warming and elevation 

114 gradient of snow depth trend

115 Fig. 1 plots the changing regional warming trend averaged for the 133 stations above 

116 2 km on the Tibetan Plateau compared with that for 420 other stations below 2 km 

117 adjacent to the plateau. In both cases a sliding 30-year window is used. Clearly the 

118 rate of warming is accelerating in both cases, and the two curves are largely 

119 synchronous, meaning that the accelerated warming at high elevations is in part a 

120 response to regional atmospheric forcing which is also accelerating warming 

121 elsewhere. However, the warming in the plateau is consistently larger. Moreover, the 

122 mean plateau-wide warming trend reproduced in Fig. 2 (red hollow circles: left y axis) 

123 is strongly correlated with the elevation-dependent warming trend (defined as R: right 

124 y axis) over the period of the record. R is defined as the correlation between 

125 temperature trend magnitude and elevation for stations within the plateau (i.e., over 

126 the range 2–5 km). We call R for temperature (green solid circles) the internal EDW 
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127 signal, but R can also be calculated for trends in snow depth (blue solid circles). For 

128 most of the record the EDW signal for temperature is positive, although in the two 

129 early windows this is not the case. Over time, as plateau warming has increased, the 

130 EDW signal within the plateau has also increased, and there is a strong correlation 

131 (r=+0.88, P<0.001) between the two. The elevation-dependent snow depth trend on 

132 the other hand has decreased (i.e., greater decrease in snow depth at higher elevations) 

133 over the same time frame and is strongly negatively correlated with the EDW 

134 temperature signal (r=−0.96, P<0.001). Because snow depth is decreasing (in contrast 

135 to temperature which is increasing), a negative R in snow trends (enhanced snow loss 

136 at higher elevations) is expected.  

137 In the early part of the record, there was insignificant or even weak EDW with 

138 the strongest warming and strongest snow depth declines both at lower elevations, but 

139 as time has progressed, both the strongest warming and strongest snow loss have 

140 migrated to higher elevations–and they are strongly correlated with each other. 

141 We also examined elevation-dependent relative humidity, sunshine duration, and 

142 total cloud cover trends (Fig. S1 online). In most cases the correlations with EDW are 

143 weak (P<0.1). Our analysis therefore implies that snow depth change is a dominant 

144 driver of the TP EDW signal. 

145 Since snow on the TP is largely absent for half of the year (Fig. S2 online), a 

146 seasonal analysis was performed (Fig. S3 online). Unsurprisingly the relationship 

147 between EDW, regional mean warming trend on the entire TP, and 
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148 elevation-dependent snow depth trend is strong in the extended winter (October to 

149 May) , but absent (even reversed) in the summer (June to September).  

150 3.2 Impact of snow depth change on EDW 

151 To further examine the impact of snow depth change on EDW, we analyze elevational 

152 profiles of snow depth and warming trends during three periods when the correlation 

153 between snow depth trend and elevation is most positive (1973–2002), closest to zero 

154 (1976–2005), and most negative (1989–2018) (Fig. 3). During the first period (1973–

155 2002), snow showed little change at most elevations, but actually increased above 4 

156 km. At the same time warming was much reduced at the highest elevations. By 1976–

157 2005 both the snow depth trends and temperature trends show almost no gradient with 

158 elevation. It is only during the latter period (1989–2018) that snow depth shows the 

159 strongest declines at high elevations, coupled with a strong EDW signal. 

160 To more clearly illustrate the relation between the two profiles of warming and 

161 snow depth trends, we calculate the differences in temperature and snow trends 

162 between the two periods with opposing elevation gradients in snow-change 

163 (increasing/decreasing with elevation) (i.e., 1989–2018 minus 1973–2002) (Fig. 4). 

164 Significant negative correlations exist between elevational profiles of warming and 

165 snow depth trends, suggesting that changes in snow depth are a major influence on 

166 changing EDW patterns over time. Decreasing/increasing snow will reflect less/more 

167 incoming solar radiation, thus encouraging raising/depression of air temperature 

168 through the albedo effect [17].
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169 Taking the above analyses together suggests that during the earlier periods 

170 regional warming was relatively weak and did not result in significant changes in 

171 snow and EDW. As regional warming has intensified and become statistically 

172 significant, snow depth has decreased due to both decreasing snowfall and increased 

173 melt (Fig. S4 online). Because the decrease has recently become concentrated at 

174 higher elevations, this has been a strong influential factor generating EDW in the most 

175 recent period. 

176 4. Discussion and Conclusion

177 This study reveals that temporal variation in EDW on the TP is significantly 

178 correlated with the amplitude of regional mean climate warming. However, it is 

179 difficult to conclude that intensified regional climate warming “causes” the EDW or 

180 vice versa. We have defined EDW as internal to the TP (i.e., between 2–5 km). One 

181 may argue that it is the EDW which has caused the enhanced regional warming on the 

182 plateau. However, the fact that the warming on the plateau is in tandem with broader 

183 scale warming over the rest of China (Fig. 1) shows that this is unlikely to be the case. 

184 It is far more likely that the regional warming is controlled in part by large scale 

185 response of the climate system over continental Asia, and that additional EDW has 

186 been instilled through local feedback processes which have subsequently resulted 

187 (Fig. S5 online). 

188 Regional warming, especially its amplitude, is not immune from local forcing 

189 and feedback processes [25]. Radiative forcing by dust and black carbon aerosols 
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190 from adjacent deserts and local emissions respectively are known to heat the 

191 atmosphere over the TP [26], producing excess heat and moisture via the 

192 elevated-heat-pump effect [27]. A warmer, moister free atmosphere will also reduce 

193 sensible and latent heat exchange from surface to atmosphere and enhance warming 

194 of the land surface. Deposition of dust and black carbon will also substantially 

195 decrease snow albedo and accelerate snow melt [28]. Regional warming enhanced by 

196 these local processes will therefore encourage snow melt and associated EDW. EDW, 

197 in turn, accelerates regional warming, causing a positive feedback loop (Fig. S5 

198 online). 

199 This study further reveals that changes in snow depth are a strong control of the 

200 variability of EDW during different periods, suggesting that snow albedo is a 

201 dominant factor determining the existence of EDW. Changes in snow cover duration 

202 (as well as depth) could also correlate with EDW variability because only a relatively 

203 thin cover of snow is required to significantly change surface albedo [29]. Further 

204 analysis demonstrates this, by showing that the elevation-dependent snow cover 

205 duration trend is strongly correlated both with the elevation-dependent snow depth 

206 trend (r=+0.93, P<0.001) and the warming trend (r=−0.87, P<0.001) during different 

207 periods (Fig. S6 online). Other meteorological factors, such as cloud-radiation, water 

208 vapor, wind speed, and sunshine do not show such strong relationships with the 

209 existence of EDW. It is the case however that the elevation gradient of relative 

210 humidity trends shows a statistically significant correlation with EDW during 1989–

211 2018 (R=+0.67, P<0.01) (Fig. S7 online). This is consistent with the previous findings 
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212 from Rangwala et al. [30] who have shown that increased humidity has a 

213 disproportionate effect on warming at high elevations because the relationship 

214 between specific humidity and downwelling longwave radiation is non-linear.

215 Although this study uses most weather stations that have continuous records on 

216 the TP, the results do not represent the western TP well due to an uneven distribution 

217 of stations. Intensive field survey and more observations are required in the western 

218 TP to examine EDW there in future. Owing to high resolution and regional coverage, 

219 remotely sensed platforms have much potential to examine EDW on the TP [31]. 

220 MODIS now has around 20 years of land surface temperature (LST) data and has 

221 been demonstrated to be potentially reliable [11, 16]. More studies need to calibrate 

222 such remotely sensed data sources against in situ observations so that the former can 

223 offer opportunity to quantify EDW in the western TP. 

224 In conclusion, this study reveals that the amplitude of regional climate warming 

225 determines the existence of EDW on the TP. Changes in snow depth, usually 

226 concentrated at higher elevations, act as a bridge to connect regional climate warming 

227 and the existence of intra-plateau EDW. Our findings help to explain why there is 

228 divergence in previous studies about the existence of EDW and its associated 

229 mechanisms. It also has critical implications for the Tibetan Plateau solid water 

230 reserves, implying quicker ablation in a warmer world.
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329

330

331

332 Figure captions:

333 Figure 1. Evolution over time of mean warming on the TP and surrounding lowlands. 

334 (a) Location of the selected weather stations with different elevations 

335 (common color bar showing elevation). (b) Comparison between mean 

336 warming trends for different groups of stations; all stations (n=553), stations 

337 on TP (elevation > 2 km: n=133), and surrounding lowland stations 

338 (elevation ≤  2 km: n=420). The correlation coefficient (r) between mean 

339 warming trends for stations on the TP and surrounding lowland stations is 
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340 given in the top left corner of (b).

341 Figure 2. Relationship of the entire Plateau-mean warming trend (red hollow circles, 

342 left y axis) with elevation-dependent warming trends (R, right y axis, green 

343 solid circles) and elevation-dependent snow depth trends (R, right y axis, 

344 blue solid circles) for different periods across selected 133 weather stations 

345 with elevation > 2 km. R is defined as the correlation between 

346 warming/snow depth trend magnitudes and elevation for stations within the 

347 plateau (i.e., over the range 2–5 km). Correlation coefficients (r) of 

348 elevation-dependent warming trends (green solid circles) with the entire 

349 Plateau-mean warming trend (red hollow circles) and elevation-dependent 

350 snow depth trends (blue solid circles) are given. The two dashed horizontal 

351 black lines represent the critical R value (±0.17, right y axis) at statistical 

352 significance P<0.05. The labels “{1}”, “{2}”, “{3}” denote the three 

353 periods that have the most positive (1973–2002), closest to zero (1976–

354 2005), and the most negative (1989–2018) R between snow depth trend and 

355 elevation.

356 Figure 3. Elevational profiles of snow depth trends and air temperature trends for the 

357 three periods when the correlation coefficient between snow depth trend and 

358 elevation is most positive (1973–2002) (left), closest to zero (1976–2005) 

359 (middle), and most negative (1989–2018) (right), also indicated by labels 

360 “{1}”, “{2}”, “{3}” in Fig. 2.

361 Figure 4. Elevational profiles of the difference in snow depth and air temperature 

362 trends between 1989–2018 and 1973–2002. The black dashed lines 

363 represent the regression line matched by a regression equation. The 

364 correlation coefficient (r) between snow depth and air temperature trends is 
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365 given in the middle of the figure. The numbers on the top of the figure are 

366 the number of weather stations in the corresponding elevation bin.
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382 Graphic abstract:

383 Climate change is having disproportionate impacts on the Tibetan plateau. Elevation-dependent- 

384 warming (EDW), faster warming in high mountains, poses an enhanced threat to life-supporting 

385 snow/ice reserves above 5000 m. Past studies debate how EDW is caused, and cannot predict how 

386 it will change in future. This study, for the first time, shows that the amplitude of regional 

387 warming determines the pattern of EDW, and that changing elevation gradients in snow depth 

388 over time have been responsible. Snow loss at increasingly higher elevations moves the zone of 

389 enhanced impact uphill, probably continuing in future. Our results explain the divergence in 

390 previous studies about causes of EDW, and also have critical implications for longer-term 
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391 sustainability of water resources on the Tibetan Plateau.
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