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Abstract

Potential functions can be used as generating potentials of relevant
geometric structures for a Riemannian manifold such as the Riemannian
metric and affine connections. We study wether this procedure can also
be applied to tensors of rank four and find a negative answer. We study
this from the perspective of solving the inverse problem and also from an
intrinsic point of view.

1 Introduction

In 1925 R.A. Fisher [18] introduced the celebrated concept of statistical dis-
tance. This notion was the cornerstone for what has developed nowadays into
a major field in Statistics, known as Information Geometry. This has ramifica-
tions, for instance, in Information Theory, Statistical Mechanics, Biology and
Quantum Mechanics, see [2,8]. One key ingredient of the successful approach of
Information Geometry has been the geometrisation. That is, aiming at stating
the results in a way that is independent of the specific situation or coordinates
and thus providing a very general framework that can be applied to a variety
of situations.

The central object of the approach is known as a statistical manifold and we
will denote it by S. This assumes that, given a particular family of probability
distributions P(X) on a measure space X, one is able to find a parametrisation,
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i.e. a mapping
p : Ξ→ P(X),

such that p is a bijection onto its image p(Ξ). Under suitable conditions, we
refer to [2] for a proper definition of a Statistical Manifold, S has the structure
of a differentiable manifold and Fisher’s statistical distance provides it with a
natural Riemannian metric, the so called Fisher-Rao metric [27].

In addition to this Riemannian structure, there are two geometric objects
related to it that play an important role. On one hand there is a so called
dualistic structure [1]. This is a pair of torsion-free connections (∇,∇∗) that
satisfy the relation

X(g(Y,Z)) = g(∇XY, Z) + g(Y,∇∗XZ),

where X,Y, Z are vector fields over the manifold. These two connections are said
to be dual to each other. Notice that, in particular, the Levi-Civita connection
is the unique self–dual connection. On the other hand there is a notion of
Divergence function, the most notable example of which is commonly known
as Kullback-Leibler divergence (also called relative entropy) [22]. A divergence
function is a two-point function

F : S × S → R

which is differentiable in both entries and with the following properties:

F (x,y) ≥ 0.

F (x,y) = 0⇔ x = y. (1.1)

∂F

∂xi
∣∣
x=y

=
∂F

∂yj
∣∣
x=y

= 0,

for i, j = 1, . . . ,dim(S), and where x = {x1, x2, . . . } and y = {y1, y2, . . . }
are coordinates of the manifold S. The last condition just requires that the
first derivatives of the function F vanish on the diagonal. Notice that the three
conditions together amount to require that the function F has a local extremum
on the diagonal.

In the context of information geometry and of statistical inference the di-
vergence functions are measures of the relative difference between probability
distributions. We refer to [2] for an introduction and selected applications of
divergence functions in Information Geometry. One remarkable property, from
the geometric viewpoint, of these general divergence functions is that they are
generating potentials for the geometric structures introduced so far. The con-
crete meaning of the term “generating potential” will be made clearer in the
next section. The properties of Eq. (1.1) are sufficient for a two-point function
to generate a Riemannian metric and a dualistic structure and therefore can
be applied in general for any differential manifold, regardless if it is a Statis-
tical Manifold or not. The particular case of the Kullback-Leibler divergence
gives rise to the Fisher-Rao metric and the so called exponential connection and
mixture connections.

Having a generating potential for geometric quantities is an advantage, for
instance, when deriving geometric or, more properly, tensorial quantities that
must be preserved under concrete transformations. Indeed, this is the case of
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the Kullback-Leibler divergence, where its monotonicity under transformations
fo the probability distributions reflects on the monotonicity of the Fisher-Rao
metric [12,13,29].

In the context of Quantum Mechanics, the geometric description of the space
of pure states [3,15] leads to a natural interpretation of the Fubini-Study metric
as a quantum counterpart of the Fisher-Rao metric [17, 19, 30]. However, when
one wants to apply the same information geometric approach to the space of
quantum mixed states the picture is not so clear. There are intrinsic difficulties
in the problem, like the ambiguity in defining the logarithmic derivative of a
matrix [16,21] and the fact that the space of mixed states is not a manifold but it
is partitioned into the disjoint union of differential manifolds labelled by the rank
of quantum states [9,20,24]. This leads to a wide variety of quantum divergence
functions and quantum Fisher-Rao metrics depending on the particular aspect
that one wants to highlight, cf. [11, 26]. Having a geometric description of the
structures involved, independent of the particular realisation or setting, becomes
useful in identifying the most relevant among all the possibilities.

The aim of this article is to analyse thoroughly the role of two-point functions
in differential geometry as potential functions for tensorial quantities and we will
do so in an intrinsic approach. Our interest relies also in the definition of a well-
posed inverse problem for the potential function, cf. [7,10]. In particular we will
see that Hamilton’s principal function is a particular solution to the problem.

2 Generating Potentials for Tensorial Quanti-
ties

Generating potentials are common objects in mathematics. The most simple
intrinsic example that one might think of would be the exterior differential of a
smooth function f on a differentiable manifoldM. The one-form obtained this
way is intrinsically defined and does not depend on the particular coordinates
chosen to define it. At this point one can also recognise that there might be
some global problems when defining the inverse problem. Poincaré’s Lemma
shows that the inverse problem, i.e., if given a closed form α one is able to find
a function on M such that df = α, has a local solution but in general a global
solution might not exist.

An interesting situation is encountered in the context of Kähler manifolds
where one can describe (at least locally) the symplectic form ω using the so-
called (local) Kähler potential f by means of the formula

ωij =
∂2f

∂z∂z̄
, (2.1)

where z, z̄ are, respectively, holomorphic and anti-holomorphic coordinates.
Again, this definition is intrinsic and the symplectic form defined this way does
not depend on the particular coordinates chosen to define it. Of course, by for-
mula (2.1) one computes the coordinate expression of the symplectic form, but
this coordinate expression transforms properly under a change of coordinates of
the manifold. In fact, this situation is analogous to that of the exterior differ-
ential. One can show that a local Kähler potential always exist. One can easily
define the coordinates of a tensor by taking iterated derivatives of a function
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defined on the manifold. For instance, in [14] there is introduced the concept
of Hessian Riemannian structure. Let x = {x1, x2, . . . } be local coordinates on
an open neighbourhood U ⊂M and let f : U → R be a convex function. Then
one can define the local coordinates of a Riemannian metric by

gij(x) :=
∂2f

∂xi∂xj
.

While this can be done to define the local coordinates of a tensor, if one chooses
to express the function f in a different local chart y = {y1, y2, . . . }, the expres-
sion

g̃ij(y) :=
∂2f

∂yi∂yj

defines a different tensor. There is a notable exception, closely related to Kähle-
rian functions, the so-called (flat) Hessian Structure [28]. Hence, recovering
desired transformation properties of g by imposing invariance conditions on f
is not possible by such an approach. Remarkably, if one considers two-point
functions with conditions (1.1) one is able to derive tensors of rank higher than
one. This is well known for the information geometry community, where the
relevant divergence functions that arise give rise to the Fisher-Rao metric. How-
ever, it turns out to be a general situation that can be defined on an arbitrary
differentiable manifold.

Since we want to define the potential functions in an intrinsic way, we need
to define the restriction to the diagonal appropriately. Consider the diagonal
embedding given by

D :M ↪→M×M
p 7→ (p, p) .

The restriction to the diagonal is given by means of the pull-back by D. If
F :M×M→ R is a two-point function, then F |diag = D∗F . In local coordi-
nates one has that

D∗F (p) = F (D(p)) = F
(
p(x1, x2, . . . ), p(x1, x2, . . . )

)
, p ∈M.

In addition, one can define the two canonical projections:

πL :M×M ↪→M πR :M×M ↪→M
(p, q) 7→ p (p, q) 7→ q .

By means of these one can define the Left-lift and Right-lift of a vector field
X ∈ X(M) as follows [11]. The Left-lift XL ∈ X(M×M) of the vector field X ∈
X(M) is defined as the unique πL-related vector field such that XL(π∗Rf) = 0
and XL(π∗Lf) = π∗L

(
X(f)

)
. The Right-lift is defined analogously.

We will say that a two-point function

S :M×M→ R

is a potential function if it satisfies the property

D∗(LXS) = 0, X ∈ X(M×M) , (2.2)
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where LX is the Lie derivative with respect to the vector field X. The condition
in (2.2) is slightly more general than the conditions in (1.1). Indeed, the latter
imply that the diagonal is a local extremum of the function while (2.2) only
requires it to be a critical point.

Any potential function defines a second order tensor in the following way:

g(X,Y ) := D∗(LXL
LYL

S).

We will show that g is f -linear in both entries and therefore that it is a tensor.
First notice that for any function f on M and any vector field X ∈ X(M) one
has that

(fX)L = (π∗Lf)XL

and therefore f -linearity in the first entry follows by the f -linearity of the Lie
derivative. Now consider

LXL
L(fY )LS = LXL

(π∗LfLYL
S) (2.3)

= π∗LfLXL
LYL

S + LXL
(π∗Lf)LYL

S, (2.4)

and taking the pull-back by D on both sides we get

g(X, fY ) = fg(X,Y ) +D∗ (LXL
(π∗Lf))D∗ (LYL

S) (2.5)

and by condition (2.2) the second term at the right hand side vanishes. It is
easy to see that this tensor is symmetric. Indeed,

LXL
LYL

S = LYL
LXL

S + L[X,Y ]S

and after applying D∗ one gets

g(X,Y ) = g(Y,X).

Notice that no assumption has been made on the symmetry of S under
permutation of its entries and in the most common situations this will not be
the case. There are other possible combinations in order to obtain tensors of
rank two, but all of them lead to the same symmetric tensor up to a sign.
Indeed,

D∗(LXL
LYL

S) = D∗(LXR
LYR

S)

= −D∗(LXR
LYL

S) (2.6)

= −D∗ (LXL
LYR

S) = g(X,Y ).

A general and coordinate free proof of this fact can be found in [11]. Note
that if every point on the diagonal of M×M is a minimum for S, then g is
positive semi-definite. Analogously, if every point on the diagonal ofM×M is
a maximum for S, then g is negative semi-definite. If {xj , yk} is a coordinate
system on M×M adapted to the Cartesian product structure, then the local
components of g read:

gjk =

(
∂2S

∂xj∂xk

)
x=y

=

(
∂2S

∂yj∂yk

)
x=y

= −
(

∂2S

∂xj∂yk

)
x=y

, (2.7)

in complete accordance with the expressions used in information geometry [1,2].
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Example 1. Let H be a finite-dimensional complex Hilbert space, and consider
the open submanifold H0 consisting of H without the null vector. It is well
known that the space of pure quantum states may be identified with the complex
projective space CP(H) associated withH. Furthermore, the complex projective
space is the base space of the principal fibre bundle π : H0 → CP(H) with struc-
ture group C0, that is, the Abelian multiplicative group of non-zero complex
numbers. In particular, we have π(ψ) = [ψ], where [ψ] is the equivalence class
of vectors in H0 differing only by the multiplication with a non-zero complex
number. Now, let us consider the following two-point function on H0 ×H0:

S(ψ, φ) :=
|〈ψ|φ〉|2

|ψ|2 |φ|2
, (2.8)

which is the quantum-mechanical counterpart of the (non-normalised) “gener-
alised transition probability” introduced by Cantoni in [5,6,30]. If {ej}1,...,dim(H)

is an orthonormal basis in H, we may introduce a Cartesian coordinate system
on H0 setting ψ =

∑
j (xj + iyj) ej . Then, in an obvious way, we may in-

troduce a Cartesian coordinate system {xj , yj ; Xk, Y k} on H0 × H0 that is
adapted to the product structure. In this (global) coordinate system, it is a
matter of straightforward computations to prove that S is a potential function.
Furthermore, from the expressions:

∂S

∂xj
=

1

|ψ|2 |φ|2

(
〈ψ|φ〉 (Xj − iY j) + 〈φ|ψ〉 (Xj + iY j)− 2xj |〈ψ|φ〉|2

|ψ|2

)
,

∂S

∂yj
=

1

|ψ|2 |φ|2

(
〈ψ|φ〉 (Y j + iXj) + 〈φ|ψ〉 (Y j − iXj)− 2yj |〈ψ|φ〉|2

|ψ|2

)
,

it is easy to see that the symmetric covariant tensor g generated by S reads:

g =
∑
j,k

2
(
xjxk + yjyk − δjk R2

)
R4

(
dxj ⊗ dxk + dyj ⊗ dyk

)
+

+
∑
j,k

yjxk − ykxj

R4

(
dxj ⊗ dyk − dyj ⊗ dxk

)
,

(2.9)

where R2 = x2 + y2. This is the pull-back to H0 of the Fubini-Study metric
tensor on the space of pure quantum states CP(H).

We may take a further step and give a generating algorithm for covariant
tensors of order three. The main ingredient in order to do so is that one can
combine the action of Left-lifts and Right-lifts in order to cancel non-tensorial
contributions of the higher order derivatives. Consider for example

T1(X,Y, Z) := D∗ (LXL
LYR
LZR

S − LXR
LYL
LZL

S) , (2.10)

T2(X,Y, Z) := D∗ (LXL
LYL
LZR

S − LXR
LYR
LZL

S) .

It is easy to check that both objects are indeed f -linear in all the entries and
symmetric. One can define up to 8 different possible combinations that lead to
order three tensors. As happens for the second order tensor, it can be proven
that all of them are equal up to a sign, cf. [11].
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In the context of information geometry this tensors are called the skewness
tensors [1, Chapter4] and they are used to define the dualistic structure of the
statistical manifold. The Christoffel symbols of the dual connections ∇ and ∇∗
are defined by adding and subtracting, respectively, to the Christoffel symbol
of the Levi-Civita connection the skewness tensor

Γi
±jk = Γi

jk ± gilTljk.

For instance, by this procedure the Kullback-Leibler divergence gives rise to
the exponential connection and the mixture connection. Notice that both right
hand sides in (2.10) vanish if the potential function is symmetric, thus recovering
the well known result that symmetric divergence functions can lead only to the
self-dual case ∇ = ∇∗.

At this point, a natural question would be if it were possible to use the
same procedure to recover higher order tensors from a given potential function
S. However, before considering this issue in Section 4, we will address first
the inverse problem of finding a potential function that generates two given
covariant tensor fields of order two and three.

3 Hamilton-Jacobi approach to Divergence Func-
tions and the inverse problem

In this section we will address the inverse problem of finding a potential func-
tion given a Riemannian metric and a skewness tensor. This inverse problem
will be relevant in situations where there are not clear candidates for the po-
tential/divergence functions but where there are relevant metrics or connections
that one would want to generate. This is of particular importance in Quantum
Mechanics where, as explained in the introduction, it can help to distinguish or
highlight particular families of divergence functions among the available variety.

In some situations one can find a canonical divergence function. For instance,
the self-dual case has as natural divergence function the geodesic distance be-
tween points of the manifold. In general, a canonical solution to the problem
will not exist. Roughly speaking, this is due to the fact that the metric and
skewness tensor only fix the lower order terms in a power series expansion. Thus,
the higher order terms might be changed arbitrarily to define infinite possible
equivalent divergence functions. By equivalent we mean that they generate the
same metric and skewness tensors. A successful attempt to obtain solutions to
the inverse problem is given, for instance, in [4], however, this approach lacks
of a characterisation of the geometric conditions needed to guarantee the global
existence of the solution.

We will review here the approach introduced in [10] based on the Hamilton-
Jacobi theory. In this case the existence of the solution of the inverse problem
can be characterised. Moreover, it will allow us to address the problem of
finding a generating potential for higher order rank tensors. The main idea
is to consider Hamilton’s Principal function as a two-point function. Given
a Lagrangian L and a solution of the equations of motion determined by the
Lagrangian, γ : [tin, tfin] → M Hamilton’s principal function is given by the
action integral

S[γ] =

∫ tfin

tin

L (γ(t), γ̇(t)) dt.
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If one considers only solutions with tin = 0 and tfin = 1 such that γ(0) = x and
γ(1) = y it becomes a two point function

S[x,y] =

∫ 1

0

L (γ(t), γ̇(t)) dt.

Moreover, assume that the dynamical system defined by the Lagrangian is com-
pletely integrable.

From now on we will assume that the Lagrangian is at least of second order
with respect to the velocities, i.e.,

L = gijv
ivj +O(|v|3),

and that g is positive defined. In particular, let us consider the Lagrangian

L(q,v) =
1

2
gijv

ivj +
α

6
Tijkv

ivjvk, (3.1)

where α ∈ R is a parameter that is included for convenience. Have into account
that this Lagrangian can be written in a coordinate free way as was done in
[10].

We will show that the two-point function S determined by this Lagrangian
solves, under certain assumptions, the inverse problem for g and T . From the
Hamilton-Jacobi theory [23], having into account that S is Hamilton’s principal
function and recalling that in the Lagrangian formulation of dynamics [25] the
local expression of the canonical momentum is given by pi = ∂L

∂vi , we have that:

∂S

∂xi
= −pi =

∂L

∂vi

∣∣∣
q=x

= −gij(x)vjin −
α

2
Tijk(x)vjinv

k
in, (3.2)

∂S

∂yi
= Pi =

∂L

∂vi

∣∣∣
q=y

= gij(y)vjfin +
α

2
Tijk(y)vjfinv

k
fin. (3.3)

This guarantees that

D∗pi = D∗Pi = 0, i = 1, . . . , n.

This is because the points in the diagonal satisfy x = γ(0) = γ(1) = y and
therefore the initial velocity is zero. This shows that the two-point function
satisfies the condition in Eq. (2.2).

We need to obtain the explicit solution of the equations of motion in order
to be able to express vin and vfin only in terms of the endpoints of the curve γ.
If we use the Taylor expansion around t = 0 of the solution of the equations of
motion we have that

γ(t) = γ(0) + tvin +
t2

2
v̇in +

t3

6
v̈in +O(t4). (3.4)

Substituting t = 1 and having into account that γ(0) = x and γ(1) = y we have
that

vin = y − x− 1

2
v̇in −

1

6
v̈in +O(t4). (3.5)

Analogously, if we expand around t = 1 we get an expression for vfin, namely,

vfin = y − x +
1

2
v̇fin −

1

6
v̈fin +O(t4). (3.6)
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The Euler-Lagrange equations determined by the Lagrangian are

v̇l = −αT l
jkv

j v̇k − Γl
jkv

jvk − α

6
glrArjksv

jvkvs, (3.7)

where we are raising and lowering indices in the usual way by means of the
Riemannian metric g. Here, Γi

jk are the Christoffel symbols of the Levi-Civita
connection and we have defined the tensor

Arjks :=

(
∂Tjkr
∂qs

+
∂Tjrs
∂qk

+
∂Trks
∂qj

− ∂Tjks
∂qr

)
.

We will assume now that v̇ is an analytic function of the velocities and
we will neglect terms with high powers of v, since we are interested in what
happens in a neighbourhood of v = 0, i.e. the diagonal. We can inductively
substitute (3.7) in (3.5) and (3.6) in order to obtain the expressions for vin and
vfin respectively. The analytic expression for v̈ is obtained by differentiating the
equations of motion. Notice that v̇ is at least of order O(v2) and that v̈ is at
least of order O(v3). If we define now ∆i = yi−xi a straightforward calculation
leads to:

∂S

∂xi
=− gij(x)∆j − 1

2
Γijk(x)∆j∆k − 1

6
Γijk(x)Γj

ls(x)∆k∆l∆s (3.8)

− α

2
Tijk(x)∆j∆k − α

12
Aijkl(x)∆j∆k∆l +O

(
(y − x)4

)
.

∂S

∂yi
= gij(y)∆j − 1

2
Γijk(y)∆j∆k +

1

6
Γijk(y)Γj

ls(y)∆k∆l∆s (3.9)

+
α

2
Tijk(y)∆j∆k − α

12
Aijkl(y)∆j∆k∆l +O

(
(y − x)4

)
.

Now one can check that formulae (2.6) and (2.10) give rise to the tensors g and
T . For instance, one has that

D∗
(

∂2S

∂yi∂xj

)
(q) = D∗

(
∂2S

∂xi∂yj

)
(q) = −gij = −D∗

(
∂2S

∂xi∂xj

)
(q).

this shows that (up to a sign) only one tensor of rank two can be generated out
of the two-point function. Moreover,

D∗
(

∂3S

∂xl∂xk∂yj

)
(q) = −Γjkl + αTjkl, (3.10)

D∗
(

∂3S

∂yl∂yk∂xj

)
(q) = −Γjkl − αTjkl. (3.11)

Hence, choosing α = 1/2 in the Lagrangian solves the inverse problem, since
subtracting the latter formulae from each other is precisely one of the definitions
in (2.10). Remember that there are other 6 possible linear combinations of the
derivatives that lead to rank three tensors. However, one can check that they
generate the same tensor T up to a sign.

Strictly speaking, in order to prove (3.10) and (3.11) it is not necessary to
consider the term v̈ in the expressions (3.5) and (3.6). Neither is it necessary
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to consider the expressions (3.8) and (3.9) up to order O((y − x)3). The con-
tributions of these terms to the third order derivatives of the principal function
vanish identically after taking the pull-back to the diagonal. In fact, these terms
were not taken into account in [10] but have been considered here since we are
willing to study what happens in order to generate higher order tensors. In
particular, we are interested in the possibility of generating fourth order tensor
fields.

4 Higher rank tensors in the general case

In this section we will consider the problem of defining tensors of order four
out of a two-point function, or more concretely, out of a potential function, cf.
Eq. (2.2). Our first objective will be to find linear combinations of derivatives
of the two-point function giving raise to rank four tensors. We will use the
following abbreviated notation

LRLR := D∗ (LXL
LYR
LZL
LWR

S) .

And similarly for other combinations of Left- and Right-lifts. This is convenient
because the only differences between the terms will be the particular combina-
tion of Left- and Right-lifts that appear. There are only two possible rank four
tensors, namely

Q1(X,Y, Z,W ) =(LRRL−RLLR) + (LRRR−RLLL)

+ (LRLL−RLRR) + (LRLR−RLRL), (4.1)

Q2(X,Y, Z,W ) =(LLLL−RRRR) + (LLLR−RRRL)

+ (LLRL−RRLR) + (LLRR−RRLL). (4.2)

We can now compute the derivatives of the principal function and see what
is the rank four tensor that one gets. In principle, one could also enlarge the
Lagrangian to accommodate a term of order O(v4). Before computing the
tensors Q1 and Q2 we will consider the Lagrangian given by

L(q,v) =
1

2
gijv

ivj +
α

6
Tijkv

ivjvk +
1

24
Cijklv

ivjvkvl, (4.3)

where now C is some fourth order tensor. Using the same analysis of the previous
section one can show that the first order derivatives of the principal function
become now:

∂S

∂xi
=− gij(x)∆j − 1

2
Γijk(x)∆j∆k − 1

6
Γijk(x)Γj

ls(x)∆k∆l∆s (4.4)

− α

2
Tijk(x)∆j∆k − α

12
Aijkl(x)∆j∆k∆l

− 1

24
Cijkl(x)∆j∆k∆l +O

(
(y − x)4

)
.

∂S

∂yi
= gij(y)∆j − 1

2
Γijk(y)∆j∆k +

1

6
Γijk(y)Γj

ls(y)∆k∆l∆s (4.5)

+
α

2
Tijk(y)∆j∆k − α

12
Aijkl(y)∆j∆k∆l

+
1

24
Cijkl(y)∆j∆k∆l +O

(
(y − x)4

)
.
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Now one can compute the result of tensors Q1 and Q2 and it turns out that both
of them vanish identically. This means that this particular potential function
does not generate rank four tensors.

In what follows we will show that if the potential function is analytic on
a neighbourhood of the diagonal, it cannot generate order four tensors. First
notice that condition (2.2) amounts to say that the diagonal of M×M is a
set of critical points for a potential function S, and there it attains the value
S(q,q) for q ∈M. A Taylor series expansion around a point q0 of the diagonal
has necessarily the form

S(x,y) =S(q0,q0) + hij(q0)(yi − xi)(yj − xj)+
+ tijk(q0)ijk(yi − xi)(yj − xj)(yk − xk)+ (4.6)

+ cijkl(q0)(yi − xi)(yj − xj)(yk − xk)(yl − xl) +O((y − x)5),

where {x1, x2, . . . , xn, y1, y2, . . . , yn} are now coordinates relative to the point
(q0,q0) on M×M and where hij depends on the second derivatives of S, tijk
depends on the third derivatives of S and so on. This is so because all the
derivatives along the direction tangent to the diagonal vanish.

If one computes the tensors Q1 and Q2 in this particular case one gets that
they vanish identically. This means that a potential function, assuming it is
analytic, is not capable of generating non-trivial covariant tensor fields of order
four.

5 Conclusions

We have studied the inverse problem for potential functions and found a solution
in terms of Hamilton’s principal function and a suitable chosen Lagrangian built
from the metric and the skewness tensor. The solution will exist provided that
the equations of motion of the associate Hamilton-Jacobi problem are completely
integrable. We have also studied if one is able to recover higher order rank
tensors (order four) from a potential function satisfying (2.2). It turns out that
the answer is negative assuming that the potential fucntion is analytic on a
neighbourhood of the diagonal.

Notice that potential functions, as they are described here, have the lim-
itation that they cannot generate non-symmetric tensors. For instance, one
cannot generate a symplectic structure using the procedure described. One way
of achieving that could be by considering Grassmann variables.

Another interesting line to pursue would be that of finding a way of gener-
ating higher order tensors. From what we have seen, at least for order four, this
will not be achievable by a two-point function. By that we mean that the tensor
arises as linear combinations of the derivatives of the potential function. It is
clear that once one has obtained the Christoffel symbols, for instance, one can
compute out of them the Riemann tensor in the usual way. What we have shown
is that the Riemann tensor cannot be directly obtained by computing fourth or-
der derivatives of the potential function. It is very likely that one could do
that by considering three-point functions. However, developing such a theory
in depth would also require a Hamilton-Jacobi theory of order higher than two
(associated to evolution equations including up to third order derivatives).
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