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Abstract

In this paper we study the 4D trajectory planning problem in a contrail sen-
sitive environment. We identify the control inputs that steer the aircraft from
the initial fix to the final fix following a horizontal route of waypoints while
performing step climbs and descents, in order to minimize the overall flying
cost of fuel consumption, CO2 emissions, passenger travel time, and persistent
contrail formation. The optimal trajectory design problem is formulated as a
multiphase mixed integer optimal control problem, which is converted into a
mixed integer non-linear program by first making the unknown switching times
part of the state, then applying a Hermite-Simpson direct collocation method,
and finally introducing binary variables to model the decision making. We solve
the mixed-integer nonlinear program using a branch-and-bound algorithm. The
numerical results show the effectiveness of the approach.

Keywords: Flight 4D trajectory design; Persistent contrails; Climate impact;
Mixed-integer optimal control; Mixed-integer non-linear program.

1. Introduction

Worldwide aviation and the associated greenhouse gas emissions have wit-
nessed significant growth over the past decades. This growing trend is likely
to continue in the foreseeable future [21, 33]. [29] project that the greenhouse
gas emission from the aviation sector will increase by 60% and 300% by 2030
and 2050, respectively. The share of emitted CO2 in the global total is also
expected to become more important, from 2% in 1999 to 3-5% in 2050 [35]. In
terms of anthropogenic radiative forcing, an estimate from the United Kingdom
(UK) Royal Commission of Environmental Pollution (RCEP) suggests that the
aviation sector will be responsible for 6% of the global total by 2050 [36].
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The climate change impact of aircraft operations comes from multiple con-
stituents, with carbon dioxide (CO2) the most known one. Aviation induced
NOx also tends to increase tropospheric ozone and reduce methane. However,
the increase in radiative forcing associated with ozone is largely offset by the
methane reduction, resulting in a relatively small net positive NOx impact com-
pared to the CO2 impact in aviation operations [58]. Another important source
of aviation-induced climate change that has garnered growing attention is the
formation of contrails, which are line-shaped clouds composed of ice particles
and formed in the wake of jet aircraft at high altitude where the ambient tem-
perature is very low. The physics of contrail formation is well documented and
known as the Schmidt-Appleman criterion [39, 2]. A more recent review of the
conditions for contrail formation from aircraft exhausts can be found in [40].

Contrails evaporate quickly if the ambient air is dry, but can persist if the
ambient air is humid enough. Like natural high clouds, persistent contrails
modify the radiation budget of the earth-atmosphere system by reducing the
outgoing terrestrial radiation more than they reflect solar radiation, resulting in
warming of the earth’s surface [57]. Quantifying the climate impact of persistent
contrails has attracted considerable research interests over the past, although
consensus has yet to be achieved. The general conclusion is that the magnitude
of contrail climate impact is non-negligible compared to that of CO2 [35, 41,
28]. At the high end among the existing estimates, the greenhouse effect from
aviation induced contrails is approximately 10 times higher than from CO2

emitted by aircraft [28]. Accounting for the formation of persistent contrails,
therefore, is indispensable to mitigating the overall aviation induced climate
impact.

Persistent contrail can only be formed when aircraft fly into parts of the
airspace in which both the Schmidt-Appleman criterion is met and the atmo-
sphere is sufficient humid.1 In this paper, we term such airspace as Persis-
tent Contrail Formation Areas, or PCFAs. Mitigating aviation induced con-
trail formation therefore involves adjustment of flight profiles -both vertically
and horizontally- in order to avoid PCFAs. Prevailing approaches for model-
ing the spatial adjustment of flight trajectories include mathematical program-
ming, simulation, and optimal control. [54] develops a linear program with
binary decision variables for flight level allocation subject to operational feasi-
bility constraints. Also, a linear program with binary decision variables is used
by [15] to consider a tradeoff between contrail formation and emissions in the
US airspace. Mixed integer programming techniques are employed in [12, 13],
which minimizes aircraft fuel cost while avoiding the formation of persistent
contrails. A more recent effort by [60] formulates a binary integer program that
allows for both altitude and heading modifications while minimizing the total
flying cost in a dynamic, contrail sensitive environment. Using simulation tools,
[20], [14], [49], and [46] model efficient trajectories that minimizes the combined

1in the remainder of the paper, contrail formation always refers to persistent contrail
formation.
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climate impacts of aircraft CO2 emissions and contrails (and oxides of nitrogen
in the latter study), and the tradeoff between the climate impact and aircraft
operating cost. Several other attempts have been made to examine vertical
displacement of flight paths in order to avoid PCFAs [57, 58, 17, 15]. These
studies find altitude adjustment to be an effective strategy to significantly re-
duce contrail production, but with resulting increase in flight separation minima
violations, and add workload for air traffic controllers to resolve the trajectory
conflicts [57] and [56].

While using mathematical programming and simulation techniques in air-
craft trajectory design allows many constraints (e.g., flight separation minima,
maximum workload for air traffic controllers) to be considered, the two ap-
proaches have limited capability to model aircraft dynamics. This deficiency
can be largely overcome by employing the optimal control approach, which pro-
vides control inputs as part of the solution to steer aircraft in the airspace.
Previous attempts in using optimal control focus on horizontal design of flight
paths with the trade-off between persistent contrail formation and aircraft fuel
consumption, under the assumption of constant airspeed and for a range of sep-
arate flying altitudes [45] and [47]. However, for a given flying altitude, it has
been shown that variable airspeed profiles are more efficient than constant air-
speed profiles [34, 18]. Allowing aircraft to alter flight altitude is also important
in order to permit aircraft maneuvering and thus avoid PCFAs. Joint consider-
ation of variable flying speed and allocation of flight levels remain largely absent
in the PCFA-constrained aircraft trajectory literature.

This study contributes to the existing literature by adopting a multiphase
mixed-integer optimal control approach, which incorporates both integer and
continuous variables into an optimal control problem, to determine the optimal
4-D (time plus 3-D space) aircraft trajectory which allows for varying flying
speed and altitude, in the presence of PCFAs. The multiphase mixed-integer
optimal control approach has been recently used, but only for horizontal flight
paths design with waypoint allocation [44, 8, 42]. Altitude change and contrail
formations are not considered in those studies. We formalize the research ques-
tion in the present paper as follows: given an aircraft point mass dynamical
model, a route composed of a sequence of horizontal waypoints, and a vertical
structure of airspace with multiple permitted flight levels, find the control inputs
that steer the aircraft from the initial fix to the final fix following the horizontal
waypoints while performing appropriate step climbs/descents, in order to min-
imize the overall cost of fuel consumption, passenger travel time, and climate
impact from CO2 emission and persistent contrail formation. Binary variables
model decision making processes, which herein involve the optimal allocation
of flight levels. The times at which both the waypoints and the different flight
levels are reached are also obtained within the solution. As part of the model-
ing efforts, this research presents an approach to estimate the unit costs of fuel
consumption, CO2 emission, and persistent contrail formation.

We solve the multiphase mixed-integer optimal control problem through a
multi-step process. First, we reduce the multiphase mixed-integer optimal con-
trol problem (miocp) to a conventional mixed integer optimal control problem
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by making the unknown switching times part of the state [43]. We then apply
a collocation method based on the Hermite-Simpson Gauss-Lobatto quadrature
rules [25] to convert the conventional mixed integer optimal control problem to a
mixed integer non-linear program (minlp). The minlp is solved using a branch
and bound algorithm to obtain the control inputs and optimal flight trajectory.

The paper continues with a general description of a multiphase miocp for-
mulation in Section 2, which is ensued by a proposed solution procedure in
Section 3. We devote Section 4 to exposing aircraft dynamics. A detailed case
study is presented in Sections 5-7, including the problem setup (Section 5),
the determination of various cost factors (Section 6), and the presentation and
discussions of the results (Section 7). Section 8 summarizes and offers future
research directions.

2. Multiphase miocp problem formulation

The multiphase motion of an aircraft can be modeled by a switched dynam-
ical system. A switched dynamical system is composed of a set of differential-
algebraic dynamic subsystems:

Σq =

[

ẋq = fq(xq(t), uq(t), z, t)
0 = gq(xq(t), uq(t), z, t)

]

, q ∈ {0, 1, . . . , n}.

where fq describes the right-hand side of the differential equation ẋq(t) =
fq(xq(t), uq(t), z, t), gq describes the algebraic constraints 0 = gq(xq(t), uq(t), t),
and q = {0, 1, . . . , n} denotes the set of indexes for different dynamical sub-
systems (also referred herein as phases). t ∈ [tI , tF ] ⊂ R is the time variable,
xq(t) ∈ R

nxq is the state vector in phase q and at time t, ẋq(t) ∈ R
nxq its time

derivative, and uq(t) ∈ R
nuq the vector of control inputs in phase q and at time

t, which is assumed to be measurable. z ∈ R
nz denotes a vector of parameters.

In order to control a switched dynamical system, both a control input, uq(t),
q = {0, 1, . . . , n}, and a switching sequence, σ, need to be specified. We assume
that the set of admissible control inputs is a set of piecewise continuous functions
in t ∈ [tI , tF ].

A switching sequence σ in [tI , tF ] is defined as the timed sequence of n + 1
active dynamical systems

σ = [(t̃0,Σ0), (t̃1,Σ1), . . . , (t̃n,Σn)], (1)

where 0 ≤ n <∞, and Σq represent the dynamical subsystem for q ∈ {0, 1, . . . , n}.
Let

t̃1 ≤ t̃2 ≤ · · · ≤ t̃n−1 ≤ t̃n (2)

be the switching times between phases. Let also tI = t̃0 and tF = t̃n+1 be the
initial and final time, respectively. Notice that tI = t̃0 ≤ t̃1 and t̃n ≤ t̃n+1 = tF .
In Equation (1), the pair (t̃q,Σq) indicates that at time t̃q the dynamic equation
of the switched system changes from q− 1 to q, with t̃0 = tI and t̃n+1 = tF . As
a consequence, in the time interval [t̃q, t̃q+1) the system evolution is governed
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by the dynamic subsystem Σq. In the interval [t̃n, t̃n+1] the active dynamic
subsystem is Σn. The phenomena that trigger the switching instants can be
either due to capture conditions, in which case the switch is referred to as
internally forced or autonomous switch, or in response to the control law, in
which case the switch is referred to as externally forced or controlled switch [9]
and [59].

Let us define n + 1 vectors of binary variables vq ∈ {0, 1}
nvq to model

decision making processes within phase q, q = {0, . . . , n}. A decision making
process consists in the selection of one option among a set of alternatives, e.g.,
the selection of one flight level among a set of possible flight levels during one
phase of the flight.

The multiphase miocp can be stated as follows:

min J(xq, uq, vq, z, t) =

n
∑

q=0

[

∫ t̃q+1

t̃q

Lq[xq(t), uq(t), z, t]dt+

Eq[xq(t̃q), vq , z],
]

(3)

subject to

ẋq(t) = fq[xq(t), uq(t), z, t], t ∈ [t̃q, t̃q+1], (4)

gq[xq(t), uq(t), z, t] = 0, t ∈ [t̃q, t̃q+1], (5)

cq[xq(t), uq(t), z, t] ≤ 0, t ∈ [t̃q, t̃q+1], (6)

x(tI) = xI , (7)

ψ(x(tF )) = 0, (8)

req[xq(t̃q), vq, z] = 0, (9)

rineq[xq(t̃q), vq, z] ≤ 0, (10)

xq+1(t̃q+1) = Gq[xq(t̃q+1), uq(t̃q+1), z], (11)

for q ∈ {0, . . . , n}. Notice that in this particular form of multiphase miocp
binary decision variables are only present in the objective function (3), (9)
and (10). A more general form can be consulted in [37] and [38].

The objective function (3) is in Bolza form and contains a Lagrange term

∫ t̃q+1

t̃q

Lq[xq(t), uq(t), z, t]dt

and a Mayer term Eq[xq(t̃q), vq, z]. Both Lq and Eq are assumed to be Lipschitz-
continuous and their derivatives are also Lipschitz-continuous in their argu-
ments. The Lagrange term represents a running cost, whereas the Mayer terms
represent a terminal cost. As an illustration, a classical Lagrange objective
function is to minimize the total amount of energy during a process; a classical
Mayer objective function is to minimize the final time. The presence of binary
variables in the Mayer terms denotes that the decision-making process involves
different terminal costs for the different alternatives.
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(4) and (5) with fq ∈ R
nfq and gq ∈ R

ngq represent the differential-
algebraic equations for the switched system in phase q. (6) with cq ∈ R

ncq

are the inequality constraints in phase q. (7) and (8) denote the initial and
final boundary conditions of the problem. (9) with req ∈ R

nreq and (10) with
rineq ∈ R

n
rineq represent the equality and inequality interior point constraints

respectively, which are assumed to be twice differentiable. The presence of
binary variables in (9) and (10) implies that there might be a set of alterna-
tive interior point equality and inequality constraints per phase. The decision
making process would be to select one of the alternatives in each phase. (11) de-
scribes the transition conditions between phases to ensure continuity, which are
usually of the form xq+1(t̃q+1) = xq(t̃q+1). It should be noted that the dimen-
sions nxq

, nuq
, nvq , ncq , nrineq , nreq , nfq , ngq are not necessarily identical for each

phase. The solution to this problem is composed of xq(t), uq(t), t ∈ [tq, tq+1],
the switching times t̃1, . . . , t̃n, and vq.

As an illustration: (4) and (5) represent the differential-algebraic equation
system that governs the motion of the dynamical system, e.g., an aircraft; (6)
models the physical limits of performance of the dynamical system, typically
expressed as upper and lower bounds on both states and control variables; (7)
and (8) denote the boundary (initial and final, respectively) conditions of the
process in which the system is involved; (9) models equality constraints to be en-
forced during the process (not at the boundaries), e.g., to reach a mid-position,
and (10) models inequality constraints to be enforced also during the process,
e.g., to enforce that the above mentioned mid-position is reached within a pre-
scribed time window; (11) is only to ensure that the state variables that describe
the evolution of the system evolve continuously. The presence of binary vari-
ables in (9) and (10) denotes that the definition of interior point equality and
equality constraints involves a decision-making process, i.e., there might be a
set of alternative mid-positions to be reached with their corresponding time
windows. The particular expressions for the elements of the miocp in the case
study herein exposed are stated in Sections 4-6.

3. Multiphase miocp solution approach

The miocp solution approach is a multi-step process as illustrated in Fig-
ure 1.

3.1. Problem reformulation

We tackle the multiphase miocp problem by first making the unknown
switching times part of the state and then introducing a new independent vari-
able τ which determines the switching times to be fixed. The new formulation
results in a conventional miocp problem. A linear relation exists between the
new variable τ and time t, but the slope of this linear relation changes on each
interval between two switches. These slopes, which are part of the solution to
the multiphase miocp problem, are time scaling factors that determine the opti-
mal switching times. The mathematical details of this formulation can be found
in [43]. Appendix A briefly summarizes the fundamentals of this reformulation.
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multiphase
miocpmiocp minlp Solution

Reformulation Hermite-Simpson nlp based Bb

Figure 1: Solution approach flow chart.

3.2. Hermite-Simpson Gauss-Lobatto collocation method

A collocation approach is used to deal with the differential constraints and
the Lagrange term in the objective function. After applying the technique
described in the previous section, (3) and (4) are modified, and the switching
times are included in the state vector.

Collocation methods enforce the dynamic equations through quadrature
rules or interpolation [25]. A suitable interpolating function, or interpolant,
is chosen such that it passes through the state values and maintains the state
derivatives at the nodes spanning one interval, or subinterval, of time. The
interpolant is then evaluated at points between nodes, called collocation points.
At each collocation point, a constraint equating the interpolant derivative to the
state derivative function is introduced to ensure that the equations of motion
are approximately satisfied across the entire interval of time [55].

In particular, the Hermite-Simpson Gauss-Lobatto integration scheme is
used in the present study [25]. The motivation behind the use of this integration
scheme is related to its order of accuracy which is a measure of the effectiveness
of a numerical method to approximate a solution. The Hermite-Simpson Gauss-
Lobatto integration scheme has an order of accuracy 4 whereas, for instance,
the trapezoid (the 2nd degree Gauss-Lobatto integration scheme) has an order
of accuracy 2. The greater is the order of accuracy, the greater is the reduction
in error if the stepsize is made smaller. Therefore, as the order of accuracy
increases, a specified accuracy may be achieved with larger stepsizes, i.e., with
a smaller number of variables. Nevertheless, increasing the order of accuracy
results in more complicated quadrature rules, and thus a compromise between
accuracy and complexity must be found. Even though there exist higher degree
methods, e.g., the fourth and fifth degree Gauss-Lobatto collocation methods
[26], their application to multiphase problems with high number of phases is
computationally very intense. Overall, using the Hermite-Simpson collocation
method will reduce the number of variables drastically (at relatively low com-
plexity), thus improving the computation times in solving the resulting minlp
problem.

Summing up, by using this class of numerical method, the miocp problem
is converted into a minlp problem. Interested readers can refer to [25] for
mathematical details. Appendix B briefly summarizes the fundamentals of
this method.
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3.3. minlp solution approach

In theory, minlp problems are nondeterministic polynomial time hard (NP-
hard) to solve, and represent one of the most challenging problems in compu-
tational optimization. In addition, due to aircraft dynamics and constraints,
the feasible set of the minlp problem is not convex and highly nonlinear. A
simple algorithm for determining the mode sequence is to enumerate all possi-
ble values for vq, solve the associated optimal control problems, and pick the
best solution. However, this approach becomes impractical for more than a few
binary variables. A common, alternative method to solve larger problems is to
perform an implicit enumeration using the branch and bound algorithm [5]. We
provide a sketch of this implicit enumeration method below and highlight the
particularities that arise when applying the method to solve the miocp.

The branch and bound algorithm is a divide-and-conquer method. The
problem is divided by partitioning the set of feasible solutions into smaller and
smaller subsets. The conquering is done by computing bounds on the cost of the
best feasible solution in each subset and discarding subsets whose lower bound
exceeds a known feasible solution. The branch and bound algorithm produces an
exact optimal solution when the bound used in each subproblem is a valid lower
bound. In our case, we relax the binary variables to find a lower bound for the
multiphase miocp, i.e. we let vq ∈ [0, 1] and solve the associated nlp program.
However, obtaining a true lower bound on the value of the multiphase miocp
is a difficult task due to presence of nonconvex dynamics and constraints in the
nlp. As a consequence, the approach does not rely on a true lower bound but
rather uses approximate solutions. In that case the procedure is heuristic (i.e.
does not return the exact optimal solution). The quality of the final solution
depends on the quality of the approximation. To the best of our knowledge,
there is no theoretical guarantee on the quality of the approximation. More
details on the heuristic algorithm are given in Appendix C.

We use the open-source solver Bonmin [6] which implements several differ-
ent algorithms to solve minlp programs. We call Bonmin through the Ampl
modeling language. Reference [8] provides further details about the nlp branch
and bound algorithm employed in this paper. Appendix C briefly summarizes
the fundamentals of the algorithm.

4. Aircraft Dynamics

In designing optimal aircraft trajectories, it is common to consider a 3 degree-
of-freedom dynamic model that describes the point variable-mass motion of the
aircraft over a spherical flat-earth model. We consider a symmetric flight, i.e.,
there is no sideslip and all forces lie in the plane of symmetry of the aircraft.
Wind is included in the model due to its considerable effects on fuel consumption
and flight time. The equations of motion of the aircraft are:
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Figure 2: Aircraft state and forces

In the above, the three kinematic equations are expressed in a ground based
reference frame (xe, ye, ze) and the three dynamic equations are expressed in
an aircraft-attached reference frame (xw , yw, zw), as shown in Figure 2. The
states are: λe, θe, he referring to the aircraft 3D position (longitude, latitude,
altitude); V , χ, γ, m referring to the true airspeed, heading angle, flight path
angle, and the mass of the aircraft, respectively. R is the radius of earth and η
is the speed dependent fuel efficiency coefficient. T is the thrust and µ is the
bank angle. Lift L = CLSq̂ and drag D = CDSq̂ are the components of the
aerodynamic force, where S is the reference wing surface area; q̂ = 1

2ρV
2 is the

dynamic pressure; CL and CD are the lift and drag coefficients. A parabolic
drag polar CD = CD0 +KC2

L, where CD0 is the parasite coefficient of drag and
K is the induced coefficient of drag, and a standard atmosphere are assumed.
CL is a known function of the angle of attack, α, and the Mach number, M .
Wx, Wy, andWy denote the components of the wind vector,W = (Wx,Wy,Wz),
expressed in a ground based reference frame (xe, ye, ze). The aircraft position
in 2D is approximated as xe = λe · (R+ he) · cos θe and ye = (R+ he) · θe. The
bank angle µ, the engine thrust T , and the coefficient of lift CL are the inputs,
i.e., u(t) = (T (t), µ(t), CL(t)). Notice that the specific fuel flow η is a speed
dependent function as illustrated in (27).

4.1. Wind Model

The wind velocity is often considered as the sum of two terms: a deter-
ministic component which represents the meteorological predictions available
to the ATC, and a stochastic component which represents the uncertainty in
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these predictions. In the scope of this framework, the wind is considered as
deterministic.

The meteorological predictions are obtained from the Rapid Update Circle
(RUC), a numerical model developed at the National Oceanic and Atmospheric
Administration (NOAA) forecasts system laboratory [4] and [3]. Forecasts are
provided via GRIded Binary (GRIB) files. Data are provided four times a day
into a 1◦ × 1.25◦ grid and 14 different barometric altitudes. The wind field is
assumed to be stationary, i.e., its evolution over time has not been considered.

In particular, GRIB files provide wind forecasts giving the three components
(west, north and vertical) of the wind velocity vector, W = (Wx,Wy,Wz),
at each node of the grid. GRIB data are given in spherical coordinates, i.e.,
longitude (λe), latitude (θe) and altitude (he). An analytical representation of
wind data is needed, for which multiple polynomial regression analysis is used
within this framework.

The general form of a polynomial regression model for m independent vari-
ables is

Y = β0 + β1X1 + β2X2 + . . .+ βmXm + ε, (13)

where β0, β1, . . . , βm are the regression coefficients that need to be estimated
and ε is the error component reflecting the difference between an individual’s
observed response Y and the true average response µY |X1,X2,...,Xm

.
In order to estimate the coefficients of the multiple polynomial regression

equation, least-squares are considered. Thus, the estimated regression equation
can be expressed as:

Ŷ = β̂0 + β̂1X1 + β̂2X2 + . . .+ β̂mXm,

In order to estimate the wind velocity vector, in principle a three-dimensional
multiple variable polynomial regression should be used. We assume that the
vertical component of the wind vector is negligible (which is essentially true
according to GRIB data), i.e., Wz ≈ 0, and that the two horizontal compo-
nents of the wind velocity vector, i.e., Wx, Wy, are not correlated. Under these
assumptions, two independent multivariete polynomial regressions as described
previously are performed to estimate the east-west and south-north wind com-
ponents.

In such a form, the wind velocity east-west component can be expressed as:

Wx = pxm(r) + εx = βx
000 + βx

100xe + βx
010ye + βx

001ze + βx
200x

2
e + βx

110xeye

+ βx
020y

2
e + βx

101xeze + βx
011yeze + · · ·+ βx

00mz
m
e + εx, (14)

The wind velocity south-north component can be expressed as:

Wy = pym(r) + εy = βy
000 + βy

100xe + βy
010ye + βy

001ze + βy
200x

2
e + βy

110xeye

+ βy
020y

2
e + βy

101xeze + βy
011yeze + · · ·+ βy

00mz
m
e + εy, (15)

We refer interested reader to [42, Chapter 4] for a deeper insight into this
method, including justification of the assumptions, discussion about other ap-
proaches, e.g., splines interpolation, and in-depth analysis of the goodness-of-fit
tests.
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4.2. Flight Modes

In the en-route portion of a flight, unless there is an Air Traffic Control
(ATC) requirement to deviate the flight from its nominal paths in order to
avoid a potential conflict, aircraft typically fly horizontal segments connecting
waypoints and perform step climbs/descents to modify their flight levels. We
consider different flight dynamics as the modes of the switched system. A 3-D
flight plan can be subdivided into a sequence of modes pertaining to different
flights segments, i.e., cruising at constant altitude between waypoints or ascend-
ing/descending to change flight level. We characterize these maneuvers by two
modes: control speed and heading (mode H) for the cruising at constant altitude,
and control altitude (mode V) for the ascent/descent to change flight level.

Under mode H (control speed and heading), the aircraft is considered as
flying into a horizontal plane with variable speed and variable heading. γ, γ̇,
and ḣ are set to zero. Thus, the following algebraic constraint applies: L cosµ =
mg. The engine thrust and the bank angle are the control inputs, i.e., u(t) =
(µ(t), T (t)).

Under mode V (Control altitude), the aircraft is considered as flying into
vertical plane, performing a leveled-wing climb/descent. Therefore, the bank
angle µ is set to zero. Without loss of generality, we let χ = 0. The thrust and
the lift coefficients are the control inputs, i.e., u(t) = (T (t), CL(t)).

4.3. Flight Envelope Constraints

Flight envelope constraints refer to constraints due to the geometry of the
aircraft, structural limitations, engine power, and aerodynamic characteristics.
They are derived from aircraft performance limitations. Typically, these con-
straints can be expressed as upper and lower bounds on both states and controls.
We use the BADA performance limitations model and parameters [32]:

0 ≤ h(t) ≤ min[hM0, hu(t)], γmin ≤ γ(t) ≤ γmax,
M(t) ≤MM0, mmin ≤ m(t) ≤ mmax,

V̇ (t) ≤ āl, CvVs(t) ≤ V (t) ≤ VMo,
γ̇(t)V (t) ≤ ān, 0 ≤ CL(t) ≤ CLmax

,
Tmin(t) ≤ T (t) ≤ Tmax(t), µ(t) ≤ µ̄,

where hM0 is the maximum reachable altitude; hu(t) is the maximum operative
altitude at a given mass (it increases as fuel is burned); γmin and γmax are the
minimum and maximum recommended flight path angles, respectively; mmin

and mmax are the minimum and maximum aircraft mass, respectively; M(t) is
the Mach number and MM0 is the maximum operating Mach number; Cv is the
minimum speed coefficient, Vs(t) is the stall speed, and VM0 is the maximum
operating calibrated airspeed; ān and āl are respectively the maximum normal
and longitudinal accelerations for civilian aircraft, respectively; CLmax

is the
maximum coefficient of lift; Tmin and Tmax correspond to the minimum and
maximum available thrust, respectively; µ̄ corresponds to the maximum bank
angle due to structural limitations.
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Additionally, the following operational constraints apply: ḣ ≥ 0 [ft/min],
during step climbs; ḣ ≤ 0 [ft/min], during step descents; climbs/descent de-
scents are limited to a maximum duration of 4 minutes.

Note that several flight envelope constraints are nonconvex.

5. Case Study: Problem set up

We consider a B757-200 BADA 3.6 [32] model aircraft performing the en-
route part of a flight San Francisco (SFO) - New York (JFK) between the
waypoint2 Peons as initial fix and the waypoint Magio as final fix. The route
is composed of a series of waypoints, as shown in Table 1. All pairs formed by
two consecutive waypoints are connected by bi-directional airways. Along the
air route, multiple flight levels are available for flying with vertical separation
of 1000 feet between two neighboring ones. In air traffic practice, flights flying
opposite directions are assigned two non-overlapping set of flight levels. In this
study, we assume that eastbound flights are assigned odd flight levels separated
2000 feet. The aircraft can fly at any of the following flight levels:

{FL270, FL290, FL310, FL330, FL350, FL370, FL390, FL410} (16)

Notice that according to the path constraints stated in Section 4.3, in practical
terms it results in a limitation of performing step climbs up/down to three levels
at a time.

5.1. Wind data

The forecast wind of March 17, 2014 in the Northern America region has been
considered. Using nonlinear regression, wind tabular data have been converted
to analytic functions, which are valid within a domain covering continental US,
i.e., λe ∈ [-120◦,-70◦] and θe ∈ [30◦, 50◦]. Then, the resulting polynomials P x

m

and P y
m

3 in functions (14)-(15) have been included in the set of equations (12).
The goodness-of-fit, measured by R2, yielded 0.84 for Wx and 0.95 for Wy.
Figure 3 shows both forecast tabular data (blue dots) and analytic functions
(surfaces) for Wx and Wy at 200 [Hpa] (h=38612 [ft]). Note that the regression
analysis provides satisfactory results in terms of R2 only in the horizontal plane
(at a given altitude), polynomials fitting the whole 3D space (longitude, latitude,
and altitude) provide less satisfactory model fit with R2 values below 0.5. In
this study, we make the approximation that wind is equal for all flight levels.

5.2. PCFA regions

As already discussed in the introduction, persistent contrail can only be
formed when aircraft fly into parts of the airspace in which both the Schmidt-
Appleman criterion is met and the atmosphere is sufficient humid.

2Waypoints may be a simple named point in space or may be associated with existing
navigational aids, intersections, or fixes.

3The estimates β are available upon request.

Page 12

https://doi.org/10.1016/j.trc.2014.08.009


Accepted version of paper with DOI: https://doi.org/10.1016/j.trc.2014.08.009 Soler, Zou, and Hansen

−110
−100

−90
−80

30

40

50

20

40

60

80

θe λe

W
x

(a) Wx(λe, θe)

−110
−100

−90
−80

30

40

50
−40

−20

0

20

θe λe

W
y

(b) Wy(λe, θe)

Figure 3: Wind forecast tabular data (blue dots) and analytic functions (surfaces) for Wx and
Wy at 200 [Hpa] (h=38612 [ft]).

Table 1: Route’s waypoints, navaids and fixes.
Name Type Longitude Latitude

Peons Waypoint (Rnav) -119.1674◦ 38.5035◦

Inslo Waypoint (Rnav) -117.2981◦ 38.6791◦

Dta VOR-TAC (Navaid) -112.5055◦ 39.6791◦

Mtu VOR-DME (Navaid) -110.1270◦ 40.1490◦

Che VOR-DME (Navaid) -107.3049◦ 40.5200◦

Hanki Reporting Point -102.9301◦ 41.6319◦

Kates Reporting Point -96.7746◦ 42.5525◦

Fod VOR-TAC (Navaid) -942947◦ 42.6111◦

Kg75m Nrs-Waypoint -88◦ 42.5◦

Daflu Reporting Point -82.7055◦ 42.3791◦

Jhw VOR-DME (Navaid) -79.1213◦ 42.1886◦

Magio Reporting Point -76.5964◦ 41.5373◦

Following the Schmidt-Appleman criterion, contrails form in the regions
of airspace that have ambient relative humidity with respect to water (RHw)
greater than a critical value rcontr. Regions with RHw greater or equal than
100% are excluded because clouds are already present [23]. Contrails will persist
when the environmental relative humidity with respect to ice (RHi) is greater
than 100% [16]. Thus, persistent contrail formation areas are defined as the
regions of airspace that have: rcontr ≤ RHw < 100% and RHi ≥ 100%.

Following [15], the estimated critical relative humidity for contrail formation
at a given temperature T (in degrees Celsius) can be calculated as:

rcontr =
G(T − Tcontr) + eliqsat(Tcontr)

eliqsat(T )
, (17)

where eliqsat(T ) is the saturation vapor pressure over water at a given temperature.
The estimated threshold temperature (in degrees Celsius) for contrail formation
at liquid saturation is:

Tcontr = −46.46 + 9.43 log(G− 0.053) + 0.72 log2(G− 0.053), (18)
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Figure 4: Air temperature and relative humidity June the 30th, 2012 at time 18.00 Z
and for an barometric altitude of 250Hpa. Image provided by Physical Sciences Division,
Earth System Research Laboratory, NOAA, Boulder, Colorado, from their Web site at
http://www.esrl.noaa.gov/psd/.

where

G =
EIH2OCpP

ǫQ(1− η)
. (19)

In equation (19), EIH2O is the emission index of water vapor, Cp is the isobaric
heat capacity of air, P is the ambient air pressure, ǫ is the ratio of molecular
masses of water and dry air, Q is the specific heat combustion, and η is the
average propulsion efficiency of the jet engine.

RHi is calculated by the following formula [1]:

RHi = RHw

6.0612 exp
18.102T

249.52+T

6.1162 exp 22.577T
237.78+T

, (20)

where T is the temperature in degrees Celsius.
The construction of PCFA regions is based on atmospheric data of air tem-

perature and relative humidity on June 30, 2012, which are retrieved from the
NCEP/DOE AMIP-II Reanalysis data provided by the System Research Labo-
ratory at the National Oceanic & Atmospheric Administration (NOAA)4. The
data have a global longitude-latitude grid resolution of 2.5◦×2.5◦. Regarding
the vertical resolution, the data are provided in 17 pressure levels (hPa): 1000,
925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10. Figure 4
shows the values of air temperature and relative humidity for June 30, 2012 at
time 18.00 Z5 (10.00 a.m. PDT).

To identify the PCFA regions, we first compute the latitude-longitude grid
points that are favorable to the formation of persistent contrails at differ-
ent barometric altitudes (defines the pressure). This is done using the data
on air temperature and relative humidity and formulas (17-20) with the fol-
lowing parameter values: EIH2O = 1.25; Cp = 1004 [J/kgK]; ǫ = 0.6222;

4The data have been downloaded from NOAA website @ http://www.esrl.noaa.gov/psd/
5Z-hour corresponds to Universal Time Coordinates (UTC). The Pacific Daylight Time

(PDT) is given by UTC - 8 hours.
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(f) P = 100 Hpa

Figure 5: Longitude-latitude grid points that present favorable conditions for persistent con-
trail formation for different barometric altitudes.

Q = 43x106 [J/kg]; and η = 0.15. The longitude-latitude grid points with fa-
vorable conditions for persistent contrail formation are represented as red dots
in Figure 5 for different barometric altitudes.

The PCFA information based on the barometric altitudes above cannot be
directly used in our trajectory optimization model, which uses flight levels.
What we need is air temperature and relative humidity values for the flight levels
defined in set (16). To this end, we use the International Standard Atmosphere
(ISA) equations to convert altitude into barometric altitude, and then run a
linear interpolation using the data of air temperature and relative humidity
corresponding to the 17 pressure levels for the desired flight levels (already
converted into barometric altitude). We then apply formulas (17-20) to derive
the PCFA regions. The PCFA coverage over the continental US at the different
flight levels appears later on in Figure 8.

5.3. Problem Statement

A flight plan is prepared on the ground before take-off and provides informa-
tion on the route composed of waypoints, flight levels, speeds, times, and fuel
for different flight phases, alternative airports, and other relevant data for the
flight, so that the aircraft properly receives support from ATC and executes safe
operations. In the trajectory optimization problem under study in this paper,
the solution to the problem would result in the intended flight plan.

Consider a switched system as described in Section 2 with the switching
sequence (1). Following Table 1, the aircraft is constrained to start at the initial
waypoint Peons, pass through the subsequent nwp waypoints, and eventually
arrive at the final waypoint Magio. For simplicity, we assume that the aircraft
can only perform step climbs/descents right after reaching a waypoint, and
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that a maximum of four step climbs/descents are allowed during the flight, i.e.,
nsc = 4. Given that nwp + nsc = n, n + 1 phases will be identified during the
motion of the aircraft.

Each phase starts either when the aircraft position coincides with a waypoint
on the route given in Table 1, or when the aircraft reaches one of the nfl flight
levels specified in set (16) (nfl = 8) when a step climb/descent is permitted.
Because the waypoints are prescribed, the decision making is over the set of
flight levels that represents alternative capture conditions for switching, i.e., all
switchings herein considered are internally forced (autonomous) switches.

As is already described in Section 3.1, the switchings are considered fixed
(time invariant) with respect to the new independent variable τ . Thus, time
invariant binary variables can be used to model the decision making processes.
Let v be a nsc × nfl dimensional binary variable vector. Each of the binary
variables vi,j , i = 1, . . . , nsc, j = 1, . . . , nfl, is set to one if the flight reaches
flight level FLj after performing step climb/descent i. The constraints on the
flight levels can be expressed as follows:

h(t̃i) =

nfl
∑

j=1

vi,j · FLi,j , i = 1, . . . , nsc. (21)

In addition,

nfl
∑

j=1

vi,j = 1, i = 1, . . . , nsc. (22)

(21) means that, if vi,j = 1, then h(t̃i) = FLi,j , i.e., the aircraft will reach flight
level j after performing step climb/descent i at time t̃i. (22) stipulates that the
aircraft must select a single flight level, FLi,j , after every step climb/descent.

Let X̄ = {x̄1, . . . , x̄nwp
}, with x̄k = (λk, θk), be the set of waypoints

{Inslo, Dta, Mtu, Che, Hanki, Kates, Fod,Kg75m,

Daflu, Jhw, Magio}, (23)

whose locations were given in Table 1.
We express the constraints on the waypoints as follows:

x̄(t̃k) = x̄k, k = 1, . . . , nwp, (24)

which states that the aircraft must overfly position x̄ at time t̃k.
Table 2 presents the elements assumed to be known in the flight plan with

nsc = 4, nfl = 8, and nwp = 10.6 The first column denotes the phases, which
indicates the ordered sequence of step climbs/descents and passing through

6Note that leg in aeronautical terminology refers to a segment of the flight, typically a
track joining two waypoints.
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Table 2: Flight plan model.
Phase Name Σq Trigger

1 leg 1 Mode H Inslo

2 Step Climb/Descent 1 Mode V
∑nfl

j=1 v1,jFL1,j

3 leg 2 Mode H Dta
4 leg 3 Mode H Mtu

5 Step Climb/Descent 2 Mode V
∑nfl

j=1 v2,jFL2,j

6 leg 4 Mode H Che
7 leg 5 Mode H Hanki

8 Step Climb/Descent 3 Mode V
∑nfl

j=1 v3,jFL3,j

9 leg 6 Mode H Kates
10 leg 7 Mode H Fod

11 Step Climb/Descent 4 Mode V
∑nfl

j=1 v4,jFL4,j

12 leg 8 Mode H Kg75m
13 leg 9 Mode H Daflu
14 leg 10 Mode H Jhw
15 leg 11 Mode H Magio

different waypoints, as interpreted by column 2. The aircraft flies each phase
under either Mode H or Mode V as defined in Subsection 4.2. The specific
mode, displayed in column 3, is determined by the aircraft dynamics equations
and constraints presented in Section 4. The forth column shows the trigger
conditions for switching. Because these trigger conditions correspond to capture
conditions, the switchings are internally forced (autonomous) and modeled as
interior point constraints as stated in equations (21) and (24). Notice that
the decision making is performed over the set of flight levels that represent
alternative capture conditions for switching.

The objective function to be minimized, stated in its more general form in
equation (3), is given in the Bolza form as follows:

J = Ct · tf + (CF + CCO2) ·

[ n
∑

q=0

∫ t̃q+1

t̃q

ṁq(t) dt

]

+D, (25)

where Ct represents in-flight travel time cost over all passengers per unit of
time in [$/s] and tf represents the total flight time; ṁq(t) is the fuel flow of
the aircraft during phase q and CF and CCO2 correspond to the unit fuel and
CO2 emission cost, both measured in dollars per kilogram of fuel consumed.
Therefore, the first two terms on the right hand side of (25) represent time,
fuel and CO2 emission cost, which are continuous. The second term D denotes
the persistent contrail formation cost, which is discrete because it can only be
generated when the aircraft flies into a PCFA region. The explicit form of D
can be expressed by:
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D = δI · CC(FLI) · (t̃1 − tI) +
2

∑

k=1

nfl
∑

j=1

δkj · CC(FL1,j) · v1,j · (t̃k+1 − t̃k)+

4
∑

k=3

nfl
∑

j=1

δkj ·CC(FL2,j)·v2,j ·(t̃k+1− t̃k)+
6

∑

k=5

nfl
∑

j=1

δkj ·CC(FL3,j)·v3,j ·(t̃k+1− t̃k)+

nwp
∑

k=7

nfl
∑

j=1

δkj · CC(FL4,j) · v4,j · (t̃k+1 − t̃k). (26)

Two points are worth mentioning for (26). First, we neglect the effects of
contrail formation cost during step climbs/descents, and only consider contrail
formation cost while the aircraft flies between waypoints. That is also why we
use time index k in (26). Second, a factor δ ∈ [0, 1] is introduced when applying
the contrail cost numbers that depend on the flight level, i.e. CC(FL), and
appear later in Table 4, to account for the extent of PCFA coverage during a
given flight phase. Specifically, if a leg k at a certain flight level j is entirely
covered by a PCFA, δkj = 1; if a leg k at a certain flight level j does not overlap
at all with a PCFA region, δkj = 0; in other cases, we consider the great circle
distance between waypoints and set δkj as the proportion of track that is covered
by PCFAs. Notice that the unit cost is given in $/s and therefore it must be
multiplied by the overflying time.

The initial boundary conditions of the problem are set as follows: V (tI) =
220 [m/s], γ(tI) = 0◦, χ(tI) = 0.115 [rad], m(tI) = 76160 [Kg], and the initial
waypoint PEONS, i.e,, x̄(tI) = {−119.1674◦, 38.5035◦}. The initial time tI ,
without any loss of generality, is set to zero. The final boundary conditions are
specified by reaching the waypointMAGIO, i.e., x̄(t̃F ) = {−76.5964◦, 41.5373◦}.
Notice that we do not impose constraints on when the final waypoint MAGIO
is reached.

The selection of the number of samples for the collocation method explained
in Section 3.2 is done by comparing solutions to minlp problem computed with
increasing number of subintervals in each phase until a negligible change in
the objective function is achieved. Also, smooth functions for both states and
controls are sought. Based on these criteria, the Hermite-Simpson collocation
method is applied with a discretization using a total of n = 180, with nq = 12,
q = 1, . . . , 15.

6. Case Study: Cost factor determination

Whereas there is little doubt about the importance of appropriate estimates
for different climatic and cost components in identifying optimal flight strategies,
research in this area remains limited. [12] assumes infinite cost when a flight flies
into PCFAs. This is certainly inconsistent with reality, in which airlines care
about cost associated with fuel consumption and CO2 emissions. [58] argue that
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changing altitudes to avoid PFCAs is justified if the radiative forcings from CO2

and contrails are of comparable magnitude. This justification could be fine-
tuned when more accurate climate impact estimates from CO2 and contrails
become available.

The Williams et al. study further gives rise to the issue of appropriate met-
ric(s) to use for comparing the climate impact of CO2 and persistent contrails.
As admitted by [57] and [50], using radiative forcing as the measure for climate
impact must be done with caution since radiative forcing includes the impact of
all historic flights and does not account for the timescales of emissions. Given
the distinct physical characteristics of different greenhouse gas agents, Global
Warming Potential (GWP) and Global Temperature Potential (GTP) represent
better metrics to quantify the true climate impact of different gases. While con-
trail is not categorized as a gas agent per se, we follow [60] by choosing GWP
to unify the climate impact of CO2 and contrail formation.7 We incorporate it
together with the cost of fuel consumption into the flight planning design. In
what follows, the unit cost impacts from fuel consumption, CO2 emission, and
contrail formation are estimated.

6.1. Fuel cost

Fuel consumption is determined based upon the differential equation ṁ =
−T · η in set (12), where η is the specific fuel consumption in kg

N ·s and can be
expressed following BADA 3.6 [32] as:

η =
Cf1

60000
· (1 +

3600 · V

1852 · Cf2
), (27)

where Cf1 and Cf2 are BADA parameters, and V represents the true airspeed.
Clearly, fuel consumption rate depends upon the true airspeed. In order to

associate fuel consumption with cost, one simply needs to consider the amount
of fuel consumed and the cost of jet fuel. Using the average kerosene price and
its typical density, unit fuel cost is estimated to be:

CF = $1.30048 /(kg of fuel consumed). (28)

6.2. CO2 emissions cost

The unit CO2 cost is obtained by multiplying the fixed ratio of CO2 emis-
sions and jet fuel consumption (in kg of CO2 per kg of fuel consumed), and the
social cost of CO2. We follow [52] and [24], and use $35 as the mean social cost
for one ton of CO2 emitted. For each kilogram of fuel consumed, the associated
CO2 emission cost is:

CCO2 = $0.11 /(kg of fuel consumed) (29)

7[31] use GWP to unify the effect of CO2, H2O, and NOx emissions, but not contrail
formation. Independent of our study, [48] employ average GTP to assess the climate impact
of contrails and CO2 in air traffic operations.
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6.3. Passenger travel time

The travel cost per unit time for all passengers onboard is the product of
passengers‘ value of time (VOT), aircraft seat capacity, and load factor. Fol-
lowing the U.S. Department of Transportation guidance on the economic value
of passenger travel time [51], we use wage rate as a proxy for passenger VOT.
The mean wage rate of $21.35/hr in the U.S. in 2010 is used [10]. Assuming
200 seats in a typical B757 configuration with a factor of occupancy of 80%, the
unit travel time cost Ct for all passengers onboard amounts to $ 0.9488/sec.

6.4. Contrail formation cost

As already mentioned in the beginning of this section, we use GWP to
quantify the climate impact of different greenhouse gas agents. Under its general
definition, GWP for trace gas i is defined as the time-integrated commitment
to radiative forcing from the instantaneous release of one kg of gas i relative to
that of one kg of CO2, i.e.:

GWPi(H) =

∫H

0
RFi(t)dt

∫ H

0
RFCO2(t)dt

=

∫H

0
aici(t)dt

∫ H

0
aCO2cCO2(t)dt

, (30)

where H represents the time horizon and t is the time. RFCO2(t) and RFi(t)
denote the radiative forcing of CO2 and gas i (in [ W

m2Kg
]) at time t respectively.

aCO2 and ai denote the instantaneous radiative forcing from one kg emission of
CO2 and gas i respectively. cCO2(t) and ci(t) denote the remaining abundance
of CO2 and gas i (due to decay) from their respective impulse of one [Kg] of
CO2 and gas i at time t. Clearly, GPWi is a dimensionless measure.

To be consistent with the International Panel on Climate Change (IPCC)
recommendations, we consider three time horizons for H : 20, 100, and 500 years
[19]. The use of different time horizons can be interpreted as a discount rate,
and reflect different value judgements about the importance of emission impacts
that may occur in the near and far future.

The GWP metric was initially developed to quantify the climate impacts
between different gas agents with CO2 as the reference gas. However, when it
comes to contrails the use of GWP becomes less straightforward since contrail
is not a type of physical gas. To address this issue, [19] relates the total forcing
due to contrails to the total emissions of CO2 by the aviation fleet and calculates
the average GWP for the present-day fleet on a per kg of CO2 basis, assuming
a 5-hour lifetime of contrails. The GWPcontrail(H) is given by:

GWPcontrail(H) =

∫H

0 RFT
contrail(t)dt

MCO2

∫H

0 RFCO2(t)dt
, (31)

where RFT
contrail(t) is the total RF in a year from all aviation-induced contrails

at time period t; MCO2 represents the total CO2 (in kg) emitted in the same
year. The first row in Table 3 reports the estimated GWPcontrail values from
[19], for three time horizons: 20, 100, and 500 years.
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In the subsequent analysis, we use the above aggregated GWPcontrail(H) as
representative values given the limited body of literature on contrail formation
at the individual flight level. On the other hand, persistent contrails can only be
produced within PCFA regions, whereas CO2 is emitted as long as the aircraft
flies in the air. To compare the unit climate impact between contrail and CO2

when the aircraft flies in a PCFA region, the GWPcontrail(H) in (31) needs to
be scaled up to reflect the actual amount of time flights spent in PCFAs. To
this end, we introduce an adjusted GWP ∗

contrail(H) as below:

GWP ∗
contrail(H) =

GWPcontrail(H)

ν
, (32)

where ν is the aggregate portion of time the global fleet spends in PCFAs.
Previous estimates report that airlines cruise 10-20% of the time in air masses
that are humid enough for the formation of persistent contrails [30, 41, 22]. In
light of these estimates, we choose ν = 15%. The resulting GWP ∗

contrail(H)
values are shown in the second row of Table 3.

Table 3: GWP for contrail with different time horizon choices

H=20 Years H=100 Years H=500 Years

GWPcontrail(H) 0.74 0.21 0.064
GWP∗

contrail(H) 4.93 1.40 0.423

To further convert the climate impact of contrails to dollar values, we assume
that GWP ∗

contrail(H) equals the ratio of the social cost of formed contrails over
that of emitted CO2 per unit of time when the aircraft flies inside PCFAs.
The unit contrail formation cost [$/s] is the unit CO2 emission cost [$/Kg]
in equation (29) multiplied by the GWP ∗

contrail(H) values and the nominal
fuel flow [Kg/s] at a given altitude, the latter of which is the fuel flow at the
nominal speed for a given altitude and obtained from BADA 3.6 [32]. Because
the nominal fuel flow varies by altitude, the contrail formation cost is a function
of the flying altitude, in addition to the choice of time horizons (Table 4). The
total contrail cost when the flight flies through a PCFA is the product of the
unit contrail cost of the flight and the time spent in the PCFA region.

Table 4: Contrail cost [$/s] with different time horizon choices.
CC(FL) [$/s]

FL Fuel Flow [Kg/min] H=20 Years H=100 Years H=500 Years

270 60.7 0.883 0.2337 0.0706
290 61.7 0.8976 0.2375 0.0718
310 62.7 0.9121 0.2414. 0.0729
330 62.2 0.9049 0.2395 0.0724
350 60.1 0.8743 0.2314 0.0699
370 58.7 0.8539 0.2260 0.0683
390 58.1 0.8452 0.2237 0.0676
410 58.0 0.8438 0.2233 0.0675
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Table 5: Computational times.
H=20 Years H=100 Years H=500 Years Min. Operational cost

Computational time [s] 235.87 120.72 686.14 730.04

7. Case study: Solution procedure and results

The resulting problem is a non-convex minlp program. The existing off-the-
shelf MINLP solvers can solve problems to optimality but are typically limited to
a small number of variables.8 In this study we use a two-step heuristic approach
implemented in the solver Bonmin. In the first step, the integer values are
relaxed to continuous domain [0,1], and the resulting nlp subproblems are solved
to local optimality using the non-linear solver Ipopt. Then, using a branch-and-
bound framework, we seek a solution that satisfies the integer requirements
among the different subproblems. The branching rules are heuristics to reduce
the size of the tree search: we do not explore the whole tree of solutions, only
those branches in which good enough9 solutions are expected.

We consider four different experiments. The first three experiments consider
contrail cost and use time horizons of 20, 100, and 500 years, respectively,
and the fourth one does not take into account the cost of persistent contrail
formation, but only the cost of passenger travel, fuel and CO2 emissions. The
last case provides a minimum operational cost baseline.

With regard to computational issues, the problem has 2976 variables (32
integer), 2352 equality constraints, and 1252 inequality constraints. Table 5
shows computational times for the different experiments. Computations were
performed on a Mac OS X 2.56 GHz laptop with 4 GB RAM. In order to
improve computational time we have properly scaled the differential equations.
We have also ordered them in the proper way so that the resulting Jacobian and
Hessian matrixes are sparse. In addition, we have fed the minlp program with
an improved initial guess that can be calculated, for instance, based on standard
aircraft performances. As a result, computational time is relatively low, always
within less than 15 minutes. Typically, the more important cost related to
binary variables is, i.e., contrail cost in this case, the less computational time the
algorithm employs. This is due to the fact that during the branching process,
if the algorithm detects groups (branches) of solutions that differ a lot from
others (in this case, due to the existence of different discrete cost associated
with contrail formation) it is able to rapidly discard the least efficient ones. For
more information on this point, the reader is invited to the discussion on the
sensitivity of the algorithm to discrete costs in [8].

Figure 6 displays the horizontal profile of the obtained optimal path, which
connects all predetermined waypoints in sequence, and it is identical for all four
cases by construction.

8For example, we have tried to use Couenne solver which did not yield any solution.
9Please, refer to Appendix C for a more rigorous explanation.
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Figure 6: Horizontal profile.

Table 6: Flight level allocation.
H=20 Years H=100 Years H=500 Years Min. Operational cost

Step Climb 1 FL350 FL350 FL370 FL370
Step Climb 2 FL370 FL370 FL410 FL410
Step Climb 3 FL350 FL350 FL410 FL410
Step Climb 4 FL290 FL290 FL410 FL410

FL270

FL290

FL310

FL330

FL350

FL370

FL390

FL410

 

 

Min Operational cost

H−20

H−100

H−500

h
[F

L
]

t [s]
0 5000 10000 15000

Figure 7: Vertical profiles: square-green line corresponds to H-20; diamond-blue line corre-
sponds to H-100 (H-20 and H-100 share the same vertical profile); triangle-black corresponds
to H-500; circle-red line corresponds to minimum operational cost (H-500 and minimum op-
erational cost share the same vertical profile). The markers correspond to the computed
samples.
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Table 6 reports, for the different experiments, the flight levels that are
achieved by the aircraft after each of the four permitted step climbs/descents.
The corresponding vertical flight profiles are illustrated in Figure 7. The min-
imum operational cost (which includes passenger travel time, fuel, and CO2

costs) seeks to fly as high as possible (subject to altitude constraints10) in order
to consume less fuel and be able to fly faster as the speed of sound decreases with
altitude. The scenario H-500 present the same vertical profiles. In this case,
the cost due to contrail is small enough to permit the aircraft to fly in PFCA
regions while saving fuel and time. On the contrary, H-20 and H-100 scenarios
present a different vertical profile. In these cases, the flight would spend less
time at higher altitude, avoiding the most significative PCFA regions.

Looking at Figure 8, one can observe that most of the route goes into PCFA
regions if one flies at FL390 or FL410. This is what the minimum operational
cost and H-500 trajectory would do, precisely because cost due to contrails is
either not considered or very little. However, when one considers cost due to
contrails for time horizons of 20 and 100 years, the first step climb is performed
up to FL350 in both cases. This is the highest flight level at which the air-
craft would not fly into a PCFA region before reaching the waypoint Mtu.
Thereafter, the aircraft would follow vertical profiles that incur some contrail
impact in exchange for reduced CO2 emissions, fuel burnt, and reduced flight
time (notice that FL370 and FL350 during tracks joining Mtu and Fod go into
PCFA regions). The formation of persistent contrails, which depends on the
time horizon, clearly has a substantial impact on the optimal vertical profile.

Values of the objective function, fuel consumption, flight time, and total con-
trail cost can be consulted in Table 7. For more detailed breakdown information,
the switching times (labeled Swt. times), cumulative fuel consumption (labeled
con.) by the end of each leg, and contrail formation cost (labeled CC) for each
leg are documented in Table 8. For instance, by comparing H-20 and H-100
scenarios with H-500 and minimum operational cost examples, we can quantify
that the contrail mitigation strategy costs in approximately 300-350 kg of ex-
tra consumed fuel (together with its correspondent extra CO2 emissions) and
1100 sec more flight time. Notice that, even though we have two pairs (H-20
and H-100 on the one hand; H-500 and min. operational cost on the other) of
experiments, each resulting in almost the same solution, slightly different fuel
consumptions and flight times are observed. This difference is attributed to the
different contrail costs incurred when flying into PCFA regions. Since the unit
cost is expressed in dollars per time unit, with higher contrails costs it makes
sense to accelerate the aircraft. This can be particularly observed in phase 7
when comparing H-20 and H-100 flight times.

10Notice that, due to operational constraints, aircraft have an operational ceiling that in-
creases as fuel is burnt. Moreover, the aircraft is only permitted to ascent/descent three flight
levels at a time. In this sense an aircraft might not be able to reach a determined FL at the
beginning of the flight, but however, reach it later on when the weight of the aircraft is smaller
due to fuel burnt.
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(a) FL = 270
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(c) FL = 310
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(d) FL = 330
 130

°
 W  120

°
 W  110

°
 W  100

°
 W   90

°
 W   80

°
 W   70

°
 W 

 20
°
 N 

 25
°
 N 

 30
°
 N 

 35
°
 N 

 40
°
 N 

 45
°
 N 

 50
°
 N 

 55
°
 N 

(e) FL = 350
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(g) FL = 390
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(h) FL = 410

Figure 8: Favorable regions of contrail formation over USA at different flight levels. The
horizontal route is depicted to illustrate how the same horizontal route under different flight
levels might increase/reduce potential persistent contrail generation.
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Table 7: Objective, consumption, flight time, and contrail cost values.
H=20 Years H=100 Years H=500 Years Min. Operational cost

Objective [$] 28283 27900 26997 26358
Consumption [kg] 10513 10474 10229 10215
Flight time [s] 13636 13689.4 12574 12598

Contrail Cost [$] 516.5 138.9 638.7 -

Table 8: Switching times [s], Fuel Consumed [kg], and Contrail Costs [$].

H-20 H-100 H-500 Min. Operational cost
Swt. times Con. CC Swt. times Con. CC Swt. times Con. CC Swt. times Con.

t̃1 = 622.1 464.2 0 t̃1 = 622 464.3 0 t̃1 = 620.8 471.4 0 t̃1 = 620.8 470.59
t̃2 = 756.6 660.5 − t̃2 = 756.5 660.6 − t̃2 = 819.6 760 − t̃2 = 819.9 759.2
t̃3 = 2104.7 1775.1 0 t̃3 = 2104.4 1775.3 0 t̃3 = 2061.4 1819.6 22.7 t̃3 = 2064.4 1816.3
t̃4 = 2850.6 2420.4 0 t̃4 = 2850.6 2417.8 0 t̃4 = 2783.7 2454.9 16.3 t̃4 = 2788.9 2451
t̃5 = 2921 2515.6 − t̃5 = 2921.3 2510.1 − t̃5 = 2978.7 2683.6 − t̃5 = 2985.5 2680.3
t̃6 = 3685.7 3185.2 94 t̃6 = 3695.5 3171.1 25.2 t̃6 = 3611.2 3206.3 55.8 t̃6 = 3616.9 3202.2
t̃7 = 5049.7 4426.3 294.7 t̃7 = 5088.6 4388.7 79.6 t̃7 = 4997.9 4344.2 32.4 t̃7 = 5003.6 4340
t̃8 = 5289.7 4574.1 − t̃8 = 5328.6 4537.5 − t̃8 = 4997.9 4344.2 − t̃8 = 5003.6 4340
t̃9 = 6973.5 5974.4 127.3 t̃9 = 7027.3 5932.1 33.9 t̃9 = 6844.3 5842.1 124.6 t̃9 = 6850 5838.1
t̃10 = 7736.7 6579.7 0 t̃10 = 7790.4 6538.8 0 t̃10 = 7560.1 6417.9 48.3 t̃10 = 7565.9 6413.8
t̃11 = 7976.7 6635.5 − t̃11 = 8030.4 6584.7 − t̃11 = 7560.1 6417.9 − t̃11 = 7565.9 6413.8
t̃12 = 9831.2 7986.5 0 t̃12 = 9884.7 7946.2 0 t̃12 = 9358.8 7852 121.4 t̃12 = 9364.5 7848.1
t̃13 = 11571.5 9210.7 0 t̃13 = 11624.7 9171 0 t̃13 = 10831.5 9013.7 99.4 t̃13 = 10838.7 9006.6
t̃14 = 12731.4 9999.8 0 t̃14 = 12784.5 9960.4 0 t̃14 = 11806.2 9772.7 65.8 t̃14 = 11821.8 9758.6
t̃15 = 13636.2 10513 0 t̃15 = 13689.2 10474 0 t̃15 = 12574.8 10229 51.9 t̃15 = 12594.2 10216

Analyzing the velocity profiles, in Figure 9 we observe how velocity slightly
decreases as fuel is burnt. This is because the optimal cruising speed (in terms
of minimum fuel consumption) is reduced as the aircraft loses weight due to
fuel consumption. Notice that the optimal cruising speed depends on the state
of the aircraft, mainly on altitude and mass. Indeed, for both H-500 and min.
operational cost, the state of the aircraft is such that the optimal cruising speed
exceeds the maximum Mach number, and this explains the constant velocity
profile at FL410. It is worth mentioning that this behavior is anomalous, since
BADA 3.6 aerodynamic model does not consider compressibility effects.11 This
modeling issue leads to lower than real drag at high Mach numbers, resulting
in higher than real optimum speeds.

The evolution of the remaining state and control variables, i.e., heading
angle, flight path angle, mass, bank angle, thrust, and coefficient of lift, is
provided in Appendix D. In general, these variables follow similar patterns
across all four cases.

We have shown that solving a rather complete aircraft dynamic model such
as Eq. (12) is feasible and requires low computation time in our study. Nonethe-
less, one might be interested in comparing the performance of such a dynamic
model with that of a simplified version. To this end, we also consider the fol-

11Compressibility effects refer to any of the effects that result from changes in the flow
field about an airplane when the velocity at some point in the field reaches the local speed of
sound. In particular, these effects modify dramatically the distribution of pressures over the
airfoil/wing resulting in an important increase in drag force.

Page 26

https://doi.org/10.1016/j.trc.2014.08.009


Accepted version of paper with DOI: https://doi.org/10.1016/j.trc.2014.08.009 Soler, Zou, and Hansen

100

120

140

160

180

200

220

240

260

280

 

 

Min Operational cost

H−20

H−100

H−500

t [s]

V
[m

/s
]

0 5000 10000 15000

Figure 9: velocity: square-green line corresponds to H-20; diamond-blue line corresponds to H-
100; triangle-black corresponds to H-500; circle-red line corresponds to minimum operational
cost . The markers correspond to the computed samples.

lowing simplified dynamic model for aircraft performance
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

. (33)

In this model, the lateral navigation is enforced to follow the nominal path,
i.e., the minimum distance path between waypoints. This distance is denoted
s. Therefore, the bank angle does not act as a control anymore, and one can
assume χ and θe to be known. Indeed, this is a 2DOF aircraft dynamic model.

If one does not take into consideration the effects of wind, it is certainly true
that the simplified model in Eq. (33) might be more appropriate. (it provides
essentially the same solutions with computational times always below 120 sec.)
This is in part due to the fact that the optimal path coincides with the minimum
distance path (Great Circle Distance (GCD) path).

However, when wind effects are taken into consideration, the optimal path
does not necessarily coincide with the GCD path. In the case that the trajectory
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is constrained through the overfly of several waypoints (as it is the case herein),
both paths can still slightly differ. In this case, the solutions to the problem
using the simplified model in Eq. (33) are similar to the ones obtained using the
complete dynamic model in Eq. (12), with computational times always below
160 sec. Therefore, when the effects of wind substantially modify the optimal
path, e.g., in free routing airspaces, a complete 3DOF model is preferred. In
areas of highly constrained airspace, one might think of using the simplified
model to reduce computational efforts. The simplified model may also be more
appropriate for modeling trajectories of multiple aircraft. On the other hand,
given the operational trends of allowing more areas of free routing, the advantage
of using the complete 3DOF model would become more manifested.

8. Conclusions

This study presents a promising beginning towards understanding the opti-
mal flight trajectories in the presence of contrail formations. The multiphase
miocp approach provides a solution to the problem combining both discrete
and continuous elements, which was an unsolved issue in aircraft trajectory op-
timization. By analyzing trade-offs between passenger travel time, fuel, CO2
emissions, and contrail-based costs, we obtain the discrete sequence of flight
levels, the continuous optimal control law, the complete continuous state of the
aircraft over time domain, including the 4D optimal trajectory, and the overfly-
ing times over waypoints and after performing step climbs/descents. Therefore,
the solution to the problem provides a powerful tool for designing more efficient
trajectories within a future, environmentally friendlier air navigation system.

Results show identical vertical profiles for min. operational cost and H-
500 scenarios, which may suggest that the contrail formation cost under H-500
becomes so small that trajectories will not be affected. On the contrary, by
comparing the H-20 and H.100 scenarios with the minimum operational cost
example, we conclude that the contrail mitigation strategy costs approximately
300-350 kg of extra consumed fuel (together with its correspondent extra CO2

emissions) and 1100 sec of extra flight time. Therefore, this study is a step
toward developing flight planning policies that include climate-based (contrails
and emission sources) cost within operational costs.

Future efforts are headed towards extending the application to multi-aircraft
scenarios. This would be of interest in order to assess the viability of this
approach in terms of flow management, sector capacity or controllers workload.
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Appendix A. Reformulation

The multiphase optimal control problem is converted into a conventional
optimal control problem by making the unknown switching times part of the
state and then introducing a new independent variable with respect to which
the switching times are fixed. In this reformulated problem, there is a linear
relation between the new variable and time, but the slope of this linear relation
changes on each interval between two switches. These slopes, which are part of
the solution to the optimal control problem, are actually time scaling factors
that determine the optimal switching times. See Figure A.10.

t

τt1

t2

tn

tn+1

0
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(n+1)
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(n+1)
n

(n+1) 1

Figure A.10: Relation between scaled time, τ , and real (unscaled) time t.

Without loss of generality, we can assume that tI = t0 = 0 and tF = tn+1 =
1. The first step is to introduce the new state variables, xnx+1, . . . , xnx+n, which
correspond to the switching times, tq, q ∈ {1, 2, . . . , n}, i.e., xnx+q = tq, with
ẋnx+q = 0.

We then introduce the new independent variable, τ . The relation between τ
and t changes on each interval [tq, tq+1]. We establish piecewise linear correspon-
dence between time, t, and the new independent variable, τ , so that for every
chosen fixed point, τq, q = 1, . . . , n, t equals tq. Any monotonically increasing
sequence of n numbers on interval [0, 1] could be used. We set τq = q/(n+ 1).
As a result we obtain the following expression
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By introducing the new independent variable, τ , the differential equation in (2)
on the interval [tq, tq+1] becomes:

x′ = (n+ 1)(xnx+q+1 − xnx+q)f̂q(x, u, τ), (A.1)

where (·)′ denotes the derivative of (·) with respect to the new independent
variable, τ , and

f̂q(x, u, τ) = fq(x, u, t(τ)).

Let x̂ be the extended state vector

x̂ = [x1, . . . , xn, xnx+1, . . . , xnx+n]
T ,

Then, define on each interval q
n+1 < τ ≤ q+1

n+1

L̂(x̂, u, τ) = (n+ 1)(xnx+q+1 − xnx+q)L(x, u, t(τ)).

We can rewrite the objective functional (considering the Mayer term only applies
at the final state value) as follows:

J = E (x̂(1)) +

∫ 1
n+1

0

L̂(x̂, u, τ)dτ + · · ·+

∫ 1

n
n+1

L̂(x̂, u, τ)dτ =

E (x̂(1)) +

∫ 1

0

L̂(x̂, u, τ)dτ, (A.2)

and the task is to minimize J in the extended state space, subject to the param-
eterized system given in (A.1), and to the corresponding path constraints. The
new equivalent problem is a conventional optimal control problem. The last
n components of the optimal solution of this problem, x̂∗, will be the optimal
switching times tq, q = 1, . . . , n.

Appendix B. Hermite-Simpson Gauss-Lobatto collocation method

For the Hermite-Simpson Gauss-Lobatto integration rule the root of the cor-
responding Jacobi polynomial (the collocation point) is 0, yielding the following
approximate integration rule:

∫ ti+1

ti

f(t)dt ≈
hi
6
[f(ti) + 4f(ti,C) + f(ti+1)], (B.1)
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which has an order of accuracy of 4.
For the sake of clarity in the exposition, consider the differential equa-

tion dx
dt

= f(x). Simpson’s rule in equation (B.1) is formulated considering
a quadratic approximation of the integrand, and thus the state as a function of
time x(t) must be approximated by a cubic polynomial. Moreover, the polyno-
mial used to interpolate f(x) at the endpoints and center points of the subinter-
val is obtained as an integration of the above mentioned cubic polynomial. In
this case, parameters representing the state at the endpoints xi and xi+1 are used
to formulate a constraint. Knowing xi, xi+1, fi = f(xi) and fi+1 = f(xi+1),
a Hermite-cubic polynomial representing the state x(t) between the endpoint
times ti and ti+1 can be constructed such as both the values and first derivatives
of the interpolant polynomial coincide with the values and first derivatives of
function f(x) at the extremes of the subinterval. Figure B.11 illustrates it. Such
polynomial is used to generate an internal collocation point xi,C per subinterval,
whose numerical expression is

xi,C =
1

2
(xi + xi+1) +

hi
8
(f(xi)− f(xi+1)), (B.2)

where xi,C is a discrete approximation for x(t) at ti,C = ti+ti+1

2 and i =
0, . . . , Nd−1. The Simpson’s system constraint is then formulated using xi,C to
evaluate the system equation resulting in a discrete value at center point of the
subinterval fi,C = f(xi,C). Then, by enforcing fi,C to be equal to the first time
derivative of the Hermite-cubic interpolant polynomial at the center point of the
subinterval, i.e., ẋi,C = fi,C , one defect equation per subinterval is generated:

cSi (xi, xi+1) = xi − xi+1 +
hi
6
(f(xi) + 4f(xi,C) + f(xi+1)) = 0, (B.3)

with i = 0, . . . , Nd− 1. These constraints are known as Hermite-Simpson defect
constraints [25].
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Figure B.11: Hermite-Simson collocation scheme.

Appendix C. MINLP approach

The heuristic algorithm employed to solve the resulting non-convex minlp
can be described as follows:

Approximations are computed by using the relaxed integer optimal control
problem (Riocp), where the constraints vq ∈ {0, 1} are relaxed to vq ∈ [0, 1],
for q = 0, . . . , n. A locally optimal solution to the Riocp can be computed with
a nonlinear programming algorithm, for instance the interior point algorithm
implemented by Ipopt [53]. The branch-and-bound framework is then used
to find a solution that satisfies also the integrity requirements vq ∈ {0, 1},
q = 0, . . . , n. This variant of branch-and-bound is usually called nlp based
branch-and-bound or nlp Bb for short [7].

The first step of the branch-and-bound algorithm is to solve the Riocp. If
the solution obtained by solving the Riocp is integer feasible (all variables vq

take value 0 or 1) it specifies a sequence of points and the algorithm stops. If
no solution to the Riocp is found the algorithm stops. If an upper bound βU
on the value of the optimal solution is known and the value of the solution of
the Riocp is above βU , the algorithm also stops (fixing the infeasibility of the
solution should increase the objective value of the solution). Otherwise, the
algorithm divides the feasible region in two by fixing one of the variables vq

such that v̂q 6∈ {0, 1} to 0 and to 1 successively.
Applying the above steps recursively, yields to a tree T of partial assignment

for the binary variables. At each node of this tree, a subset L of the variables
vq are fixed to 0 and a subset U of the variables vq are fixed to 1, and a local
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optimum of the restriction of the Riocp where the variables in L and U are fixed
is to be sought. This restricted relaxed optimal control program is referred to as
Riocp(L,U). The value of the upper bound βU is initially +∞ and is updated
whenever a new integer feasible solution is found such that the cost is improved.

The pseudo-code of the nlp Bb is given in Algorithm 1. Several solvers
implement this algorithm for example minlp Bb [27] and Sbb [11]. In this
paper, the solver bonmin is used [6]. bonmin is an open-source minlp solver
implementing several different algorithms for solving mixed integer nonlinear
optimization problems. Source code and binaries of bonmin are available from
Coin-or (http://www.coin-or.org). bonmin is called through the Ampl
modeling language.

Two critical steps for the practical efficiency of algorithm 1 which have not
been explicated are the selection of the next subproblem to evaluate (step 2),
and the choice of the variable to divide the feasible region (step 5). For these
two steps standard rules implemented in bonmin are used. The subproblem
selected in step 2 is always the one with lowest βq (best-bound rule). Whereas
for choice of the variable v̂q, a default strategy in bonmin is used which is a
combination of strong-branching and pseudo-costs [7].

Algorithm 1 Nlp Bb

0. Initialize.

T ← {(∅, ∅)}. βU =∞. vq∗ ← NONE.
1. Terminate?

Is T = ∅? If so, stop and return the sequence described by vq∗.
2. Select.

Choose and delete a problem N l = (Ll,U l) from T .
3. Evaluate.

Solve the Riocp(Ll, U l). If no solution can be found go to step 1, else let
βR
Ll,U l be its objective function value and v̂q be the values for the relaxed

binary variables.
4. Prune.

If βR
Ll,U l ≥ βU go to step 1. If v̂q 6∈ {0, 1}n+1 × {0, 1}nvq go to step 5, else

let βU ← βR
L,U , v

q∗ ← v̂q, and delete from T all problems with βq
L ≥ βU .

Go to step 1.
5. Divide.

Create two new nodes N |T |, and N |T |+1. Choose q̂ such that v̂q̂ 6∈ {0, 1}.
Let β|T | ← β|T |+1 ← βR

L,U and add the problem N |T | = (Ll ∪ vq̂,U l) and

N |T |+1 = (Ll,U l ∪ vq̂). Go to 1.
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Appendix D. State and Control Variables

−30

−20

−10

0

10

20

30

 

 

Minimum Fuel

H−20

H−100

H−500

t

χ
[d
e
g
]

0 5000 10000 15000

(a) χ

−3

−2

−1

0

1

2

3

 

 

Min Operational cost

H−20

H−100

H−500

t

γ
[d
e
g
]

0 5000 10000 15000

(b) γ

Figure D.12: State and control variables: square-green line corresponds to H-20; diamond-blue
line corresponds to H-100; triangle-black corresponds to H-500; circle-red line corresponds to
minimum operational cost . The markers correspond to the computed samples.
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Figure D.13: State and control variables: square-green line corresponds to H-20; diamond-blue
line corresponds to H-100; triangle-black corresponds to H-500; circle-red line corresponds to
minimum operational cost . The markers correspond to the computed samples.
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Figure D.14: State and control variables: square-green line corresponds to H-20; diamond-blue
line corresponds to H-100; triangle-black corresponds to H-500; circle-red line corresponds to
minimum operational cost . The markers correspond to the computed samples.
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