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Abstract: Recognizing the identity of a query individual in a surveillance sequence is the core of
Multi-Object Tracking (MOT) and Re-Identification (Re-Id) algorithms. Both tasks can be addressed
by measuring the appearance affinity between people observations with a deep neural model.
Nevertheless, the differences in their specifications and, consequently, in the characteristics and
constraints of the available training data for each one of these tasks, arise from the necessity of
employing different learning approaches to attain each one of them. This article offers a comparative
view of the Double-Margin-Contrastive and the Triplet loss function, and analyzes the benefits
and drawbacks of applying each one of them to learn an Appearance Affinity model for Tracking
and Re-Identification. A batch of experiments have been conducted, and their results support the
hypothesis concluded from the presented study: Triplet loss function is more effective than the
Contrastive one when an Re-Id model is learnt, and, conversely, in the MOT domain, the Contrastive
loss can better discriminate between pairs of images rendering the same person or not.

Keywords: appearance affinity; triplet model; contrastive loss function; deep convolutional
neural network; re-identification; multi-object tracking

1. Introduction

In the 21st century, security awareness has deeply changed. This is the result of the
evolving global situation and the increasing threat of a wide variety of types of crime, such as
robbery, theft, burglary and inter-personal crime, like bullying, harassment, and assault, and even
terrorism and cross border intrusions. One of the immediate reactions to these threats and citizens’
concerns is the growing implantation of video surveillance systems, in public and private places.
This results in the expansion of the surveillance market across the world [1].

Manual video-surveillance by a human operator is an inefficient solution, due to the high
manpower costs, operators’ limited capacity to monitor a certain number of screens or the limited
attention span [2]. Consequently, Intelligent Surveillance Systems (ISS) [3,4] are emerging to
automatically monitor the environment with less (second generation) [5], or without human
intervention (third generation). These ISS aim to monitor a determinate environment in real-time,
providing an automatic interpretation of the scene and predicting the individuals’ actions and
interactions, based on the data acquired by sensors.

The current research trend seeks to increase the wideness of the monitored areas, as well as the
robustness and scalability of the surveillance systems using the design of distributed architectures [6],
like in PRISMATICA [7] and ADVISOR [8] projects. In distributed surveillance systems, every camera
works as a non-centralized and relatively autonomous entity, which interacts with the others in a
dynamic environment, leading to a network, where each cooperative sensor employs artificial vision
methods, besides the data from the neighboring devices [9].
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These distributed systems state the necessity of efficient algorithms to perform the tracking
of multiple individuals through video streams from multiple and distant camera views, known as
Multi-Target Multi-Camera Tracking (MTMCT). The automatisation of MTMCT is essential to enable
some applications including suspicious activity and anomaly detection, and crowd behavior analysis
in a distributed surveillance system.

In turn, MTMCT is composed of two types of computer vision algorithms: Multi-Object Tracking
(MOT) and Person Re-Identification (Re-Id) algorithms. Multi-Object Tracking consists of finding the
position of multiple people from their visual measurements and conserving their identities in a video
sequence from a certain monitoring point. Person Re-Identification consists of visually recognizing an
individual across non-overlapping camera views at different and distant locations and time, which is
necessary to extend the functionalities of an ISS through several camera views.

In the literature, the tracking automatisation is commonly solved under the “tracking-by-detection”
paradigm, e.g., [10,11]. Once a set of people detections is collected, the tracker performs a data
association task, where the detections at every new frame are assigned to their corresponding tracked
identities. The data association process is mainly composed of an optimization method for seeking
the identities assignment that minimizes the matching cost. In turn, the cost of matching a detection
with a certain identity is computed by a metric that compares the features rendering both the current
detections and the previous tracks.

In the past decades, important research progress has been made in solving the data association
problem [12–14]. However, the final tracking performance is limited by the design of the person
representation and the cost function. Some of the most commonly used features are related to
individuals’ motion, such as location or velocity, [15–17], and even the interactions between agents,
with social force models, e.g., [18,19] and crowd motion pattern models [20,21].

Nevertheless, the presence of frequent individuals’ occlusions and interactions, in unconstrained
and crowded scenarios, makes the use of algorithms relying only on motion cues insufficient,
which boosts the research on modeling individuals’ appearance. Therefore, a primary task in
people tracking is converting raw pixels into higher-level representations. Many objects trackers,
like [22], rely on extracting appearance information from the object pixels using hand-crafted features,
including appearance information via a color histogram [23–25] and texture descriptors [23,26,27],
which are the most popular representation for appearance modeling in MOT.

Recently, deep neural network architectures have been used for modeling appearance [28–30].
In these architectures, high-level features are extracted by Deep Convolutional Neural
Networks (DCNN).

Some tracking algorithms get improvements by modeling every tracked person independently,
e.g., [31,32]. These dedicated models are trained online since there is no previous knowledge about the
individuals to track. The drawback of these approaches is that a certain time is needed until the online
learning catches enough number of samples of a person to learn a reliable pattern. For that reason,
in many association methods, models to compare two observations are learnt. These works explicitly
learn affinity metrics from data. Therefore, the pairwise terms, which connect two observations, can be
weighted by offline trained appearance templates or a simple distance metric between appearance
features, as in the network-flow-based methods proposed in [14,33], respectively. In contrast, in [34],
a simple fixed appearance model is incorporated into a standard Multi Hypotheses Tracking framework.
Then, Leal-Taix’e et al. [29] trained a Siamese neural network to compare the appearance of two
detections and combine this with spatial and temporal differences in a boosting framework.

Similarly to the recent trends in MOT development, the research in person Re-Identification
has been also mainly focused on developing visual appearance-based methods. The reason is that,
usually, in real-world surveillance scenarios, temporal and spatial constraints are difficult to establish,
since cameras are often placed far apart and their fields of view do not always overlap, and fine
bio-metric cues cannot be acquired from distant sensors.
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Concretely, the objective in Single Shot Re-Identification task is to match the person appearing
in an image (probe), with its corresponding representation among a set of images captured from
a different view (gallery). Single-Shot Re-Id allows for reducing the quantity of data transmitted
between neighbors’ cameras, compared with Multi-Shot Re-Id, which relies on the previous tracking of
a person to obtain a tracklet formed by consecutive detections. Therefore, Single-Shot Re-Id speed up
communications in a distributed network of cooperative surveillance sensors. Hence, in Single-Shot
Re-Id, the comparison of two images must provide a prediction of whether they belong to the same
identity or not. A pair of images of the same person is hereinafter called a matched or positive pair.
Analogously, a pair of images of different people is denoted as a mismatched or negative pair.

Therefore, similarly to the data association in MOT, the Person Re-Identification problem can be
treated as a pairwise binary classification task, composed of two main components: features extraction
and the learning of their optimal combination to discriminate positive and negative pairs.

Consequently, earlier methods for Re-Id generally fall into two categories. Firstly, approaches
focused on enhancing the person features designs to represent the most discriminant aspects of
an individual’s appearance, e.g., [35–37]. Then, other methods were meant to learn an effective
discriminative distance to optimally combine the previously extracted visual features, e.g., [38–41].

Recently, there are some works of literature applying neural models to address the Re-Id problem.
These approaches follow a supervised learning framework, [42], whose overall network architecture is
a Siamese network with two branches or a Triplet model with three branches.

The first two works in Re-Id to use deep learning, [43,44], employed a Siamese neural network to
model the similarity between a pair of images. Indeed, the Siamese network had been earlier used
to verify signatures [45]. Siamese Networks consist of two DCNN branches, sharing parameters and
joined in the last layer, where the loss function performs a pairwise verification [44,46–48]. Each branch
computes the feature representation for one of the images of a pair. The distance between the learnt
features measures the affinity between the images. Hence, the objective is to make the distances for
positive pairs smaller than that for negative ones, achieving a binary classification in the distance space.

Traditionally, Siamese networks have been trained through the Contrastive Loss function,
proposed in [49]. This function forces the distance between matched pairs of images to be lower
than a set margin, and higher for mismatched pairs. Then, in [50], a double-margin-based version of
the Contrastive loss was presented. This function, hereinafter called Double-Margin Contrastive loss,
forces the distances between matched pairs to be lower than a first margin, and the distances between
negative pairs to be larger than a second margin. This formulation increases the discriminative capacity
of the learnt features by keeping a distance gap between the classes.

Then, another widely used loss to train contrastive models the Triplet loss. The basics of the Triplet
loss computation are presented in [51], where face recognition is addressed. This function is employed
to automatically find salient high-level features from raw images, like in the works presented in [52,53].
In the Triplet model, each training input is a set of three samples, instead of two. Two of the three
images are rendering the same person and the third one, a different identity. Hence, the triplet model
compares a matched and a mismatched pair from each triplet input, so the objective function can
maximize the relative distance between them.

For that reason, some works [54,55] extend the triplet approach to the Re-Id problem with an
efficient learning algorithm and a triplet generation scheme. Wang et al. [54] proposed a model which
involved learning features for fine-grained image retrieval. They pre-trained the neural network
designed by Krizhevsky et al. [56], using soft-max loss function, but they did not clarify whether their
triplet model can be effective without pre-training techniques. Then, Ding et al. [55] demonstrated the
effectiveness of their model using a relatively simple network without pre-training techniques.

Many works build each branch of the triplet model with neural architectures that were
previously designed for different purposes, like the VGG (Visual Geometry Group) architectures,
introduced in [57], by Oxford’s Visual Geometry Group. For instance, Zhuang et al. [53] chose the
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VGG16 model to learnt representative features to solve Face Re-Identification with a triplet model,
and Liu et al. [58] to address Person Re-Identification.

In conclusion, the research on both MOT and Re-Id methods has been recently focused on applying
neural models to measure the appearance affinity between different detections. This approach has been
boosted by the success of Deep Convolutional Neural Networks to automatically find salient high-level
features from the pixels of an image in various vision problems, such as image classification [57,59],
objects detection [60], or face identification [61].

However, although deep learning has been proven to provide successful results in many fields of
application, its potential to learn a unique appearance model, able to represent any anonymous
individual in a scene, has not been sufficiently exploited yet and brings an assortment of new
learning challenges.

The recognition of a certain identity using a neural model presents an intrinsically unbalanced
nature, given the shortage of data about the individuals to identify and the vast number of possible
false associations with surrounding agents. This results in the over-fitting and collapse of the neural
models used to render the visual appearance.

This article assumes that both Multi-Person Tracking and Re-Identification can be similarly
addressed by the learning of appearance affinity models. Indeed, a model to measure the Appearance
Affinity between an image and a set of possible candidates has been trained for Person Re-Identification.
Such a neural model has also been trained for measuring the matching score between two observations
in a data association mechanism for Multi-Object Tracking.

Given the unpredictable nature of the video surveillance task in unstructured scenarios, MOT and
Re-Id algorithms must be versatile to deal with any unknown individual. To achieve this, the idea of
independently modeling any of the appearing individuals’ appearance has been discarded. Instead of
this, a universal model has been designed to measure the Appearance Affinity between two person
images. This model predicts whether the images correspond to the same person or not.

Furthermore, this article performs a study of the effects of the data constraints on the learning
of person features through contrastive neural architectures. A unique DCNN model (base network)
has been to learnt and combine person features for both surveillance tasks, MOT and Re-id.
Nevertheless, the differences in the data constraints presented for each task results in the necessity of
using a specialized learning strategy to train the DCNN network for each purpose. For that reason,
this article presents a comparative analysis of the benefits of choosing the Double-Margin Contrastive
loss or the Triplet loss for learning person features to address MOT or Re-Id problem, whilst keeping the
same base network architecture, concretely a VGG network. The main contributions of this work are:

1. Implementation of a neural model to measure the Appearance Affinity between observations for
addressing both, the MOT, and the Re-Id problem.

2. Study of the differences in data constraints derived from the specifications of each task,
MOT, and Re-Id.

3. Formulation and implementation of mini-batch learning algorithms to train a base network
(concretely with a VGG architecture) under the Siamese and the Triplet model.

4. Comparative analysis of the effects of imposing the Double-Margin-Contrastive Loss and the
Triplet Loss constrains over the MOT and the Re-Id data.

A batch of experiments has been conducted and their meaningful results have been thoroughly
analyzed to extract useful conclusions and guidelines about the learning of affinity models from MOT
or Re-Id data.

The rest of the article is structured as follows: the second section presents the architecture of the
affinity model to train, the comparative study of the MOT and the Re-Id tasks and the implemented
learning algorithm. Section 3 describes the conducted experiments and their results. Section 4 analyzes
and discusses the obtained results, and, finally, Section 5 gives some concluding remarks.
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2. Appearance Affinity Learning

To exploit the visual appearance of a target individual to track and re-identify him/her among
multiple people, a model of Appearance Affinity has been developed.

The measurement of the Appearance Affinity has been formulated as a pairwise binary
classification problem, which consists of the computation of features for a pair of person images
and its comparison through a distance metric, as Figure 1 shows. Consequently, an input pair formed
by images of the same person is considered as a positive pair, and a pair consisting of images of different
people is taken as a negative pair. Hence, instead of modeling a specific individual’s appearance
pattern, the situations of similarity and dissimilarity are discriminated in two classes.

Figure 1. Structure of the neural Appearance Affinity model.

Due to the contrastive essence of this pairwise approach, the measured distance can be
understood as the probability of a pair of images belonging to the dissimilarity class. In addition,
the complementary probability, as their Appearance Affinity.

Instead of computing the distances directly over the raw images, these are calculated from some
feature embeddings. Therefore, it is necessary to model a feature function, F(I), to map an input
image, I, to a feature space, such that the distances between samples rendering the same person are
smaller than those between different people in that feature space. This feature embedding has been
modeled by a DCNN. Therefore, the feature representation for an image, I, is given by the output of
the DCNN, FW(I), which relies on its weights values, W.

2.1. Base Neural Network

The transformation of every image, I, to its corresponding representation in the feature space,
FW(I), has been performed by a DCNN with a well-known architecture. Concretely, a version of
the architecture presented as the A version of a set of Very Deep CNN in [57]. This is a 11-layered
network, hereafter called VGG11. The architecture VGG16 has been widely used to implement face
recognition models, e.g., [53]. However, the initial experiments conducted with re-identification data
demonstrated that the architecture VGG11 provide slightly better performance since it reduces the
model over-fitting thanks to the lower number of parameters to train. The layers specifications for the
proposed VGG11-based embedding are listed in Table 1.

The original VGG11 presents eight convolution layers, three fully connected layers, and a SoftMax
final layer. The SoftMax layer has been removed to get a feature array as output, instead of a
classification probability value. Hence, its output is a point in a 1000-dimensional feature space,
F(I) ∈ Rn (n = 1000) .Furthermore, the original input size has been modified to adapt its value to the
dimensions of the people detections in surveillance sequences. The input size has been standardized.
Therefore, the input of the proposed DCNN is an RGB image of 64 × 128 pixels, which is a common
size in Re-Id datasets. All hidden layers use the ReLU activation function [56].
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Table 1. Structure of the used VGG11-based model. The input and output sizes are described in #rows
× #cols × # f ilters; the kernel, in #rows × #cols × # f ilters, stride, or #outputs for FC layers.

Layer Input Size Output Size Kernel

Conv-1-1 128 × 64 × 3 128 × 64 × 64 3 × 3 × 3
Pool-1 128 × 64 × 64 64 × 32 × 64 2 × 2 × 64, 2

Conv-2-1 64 × 32 × 64 64 × 32 × 128 3 × 3 × 64
Pool-2 64 × 32 × 128 32 × 16 × 128 2 × 2 × 128, 2

Conv-3-1 32 × 16 × 128 32 × 16 × 256 3 × 3 × 128
Conv-3-2 32 × 16 × 256 32 × 16 × 256 3 × 3 × 256

Pool-3 32 × 16 × 256 16 × 8 × 256 2 × 2 × 256, 2
Conv-4-1 16 × 8 × 256 16 × 8 × 512 3 × 3 × 256
Conv-4-2 16 × 8 × 512 16 × 8 × 512 3 × 3 × 512

Pool-4 16 × 8 × 512 8 × 4 × 512 2 × 2 × 512, 2
Conv-5-1 8 × 4 × 512 8 × 4 × 512 3 × 3 × 512
Conv-5-2 8 × 4 × 512 8 × 4 × 512 3 × 3 × 512

Pool-5 8 × 4 × 512 4 × 2 × 512 2 × 2 × 512 ,2
FC-6 4 × 2 × 512 1 × 1 × 4096 4096
FC-7 1 × 1 × 4096 1 × 1 × 4096 4096
FC-8 1 × 1 × 4096 1 × 1 × 1000 1000

2.2. Analysis of Multi-Object Tracking and Re-Identification Challenges: Differences on Data

There are differences in the limitations and the characteristics of the training data for MOT and
Re-Id. These differences are the consequence of the specifications of each target task:

• Camera view. In an MOT system, the identification of a certain individual is performed through
a video sequence that is captured from a certain camera. Therefore, the compared observations
of the query person are captured from the same monitoring point. On contrary, by definition,
Person Re-identification is the recognition of an individual across images that are captured from
different and non-overlapping camera views. This results in extended periods of occlusion and
large changes of viewpoint and illumination across different fields of view.

• Number of samples of each individual. In a Single-Shot Re-Identification system, identity recognition
is performed from only two images of every individual, one per camera view. However, in a tracking
sequence, there are so many samples of a person as frames where the person appears.

The exposed differences in the tasks specifications results in a number of particular characteristics
of the available data for each task, which are listed as follows:

1. Intra-class variations. In the Re-Id frame, intra-class variations are caused by the significant and
unknown cross-view feature distortion between two different capturing points. The differences
between the camera characteristics and point of view of two different monitoring points cause
large changes in perspective, illumination, background, pose, scale, and resolution. This results
in dramatically different appearances and consequently different representations of the same
person. In MOT sequences, every detection of an individual is captured from the same device,
so the intra-class variation is smaller. However, the data can also present certain appearance
variations due to temporal occlusions, the presence of fast-moving people or the use of moving
camera platforms, which vary the pose, illumination, and background between observations.

2. Inter-class ambiguity. Inter-class ambiguities are produced by the existence of different
individuals with almost identical shape and wearing similar clothes and hairstyles.
These ambiguities are more accused in Re-Id data, where the representation of a person is
compared with that across view variations, so it can be more similar to the representation of
another person than himself/herself.
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3. Local features alignment. The variations of viewpoints and poses cause misalignment in the
compared human shapes. These misalignments are caused by occlusions and moving cameras
in MOT domain, and by the different location of the camera views in Re-Id domain, where the
variations are more pronounced.

4. Binary classification balance. The number of samples of a query individual is very reduced,
specifically when compared with the huge amount of potentially available detections of different
people. The Single-Shot Re-Identification task is especially affected by the unbalanced nature
of its underlying data (two samples per person). In an MOT system, the number of samples
of a certain individual is equal to the number of frames where the query person has appeared,
which is reduced when new individuals enter in the field of view of the surveillance camera.

The consequence of these differences in the data characteristics is that the distribution of the MOT
training data in a prior feature space differs from that of the Re-Id data, as Figure 2 shows. In Figure 2,
a simple bidimensional feature space is rendered to exemplify the general trends in data distribution,
where each color point renders a sample from a certain identity. The smaller intra-class variations and
inter-class ambiguities in MOT data allow a clearer clustering of the samples of a certain individual in
the feature space. Moreover, the number of samples in each identity cluster is much higher than that
in Re-Id data, where there are only two images per person.

Figure 2. Scheme of the distribution of MOT (a) and Re-Id (b) samples representations in a
bidimensional feature space. Each color renders an identity. In MOT domain (a), samples can be
easier clustered, although detections after long-term occlusion or fast-moving camera platforms can
cause the dispersion of some samples. The number of samples of each identity is variable. In the Re-Id
domain (b), the strong intra-class variations and inter-class ambiguities make the distance from one
sample to its match pair similar or even larger than to different individuals’ samples.

The objective of the affinity model is to measure a distance metric, dm, between a pair of samples
and discriminate whether the pair is positive (images of the same person) or negative (images of
different people). The distance between the features measures dissimilarity between the images
so the objective is to get smaller distances for positive pairs than for negative ones, achieving a
binary classification in the distance space. Nevertheless, the high intra-class variations and inter-class
ambiguities in the data are translated to a notable sparsity of the data in the distance metric space.
This effect hampers the discrimination in two classes, especially in Re-Id data, as Figure 3 shows.

A model meant to perform a certain task must be trained on data with a similar distribution to the
target data with which the model is supposed to deal. Therefore, the differences in the specifications of
the MOT and Re-Id data call for the training of the proposed affinity model on two different training
set types: those generated from Re-Id shots, and those, from MOT sequences. Both types of training
sets have been generated by a data combination tool (The data generation tool is a set of C++ functions,
which are publicly available under http://github.com/magomezs/dataset_factory.)

http://github.com/magomezs/dataset_factory
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Figure 3. Scheme of the distribution of MOT (a) and Re-Id (b) samples representations in the metric
distance space. Points in green render the distance resulting of comparing a positive pair of images,
and points in red, a negative pair.

The Re-Id training sets have been generated by forming positive and negative pairs of images
from two Single-Shot Re-Id datasets: PRID2011 [62] and VIPeR [63], which are described in detail
in Section 3.1. In both datasets, only one image per person and per view is given. Figure 4 shows
examples of matched pairs (in each column) from these datasets. Every pair is formed by images that
were captured from two different cameras views (cam a and cam b).

Figure 4. Examples of matched pairs belonging to PRID2011 (a), and VIPeR dataset (b).

The MOT training sets have been generated by extracting and combining people detections
from the MOT17 dataset. This dataset includes fourteen variate real-world surveillance sequences.
Seven of these sequences provide their MOT ground truth with the bounding boxes of the people
detections in every frame and their identification numbers. All the detections of every individual
throughout each sequence have been extracted thanks to the ground truth information, as Figure 5
shows. Subsequently, positive and negative pairs have been generated from the extracted samples.
The samples composing a positive pair do not have to be consecutive in time, but a certain time step
between the frames from which they come has been allowed. The negative pairs can be formed by
detections from different sequences of the MOT17 dataset.

The differences between each type of training set arise the necessity of employing different loss
functions, and, consequently, the implementation of adapted learning algorithms, as the following
subsection describes.
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Figure 5. Examples of individuals detections throughout sequences of the MOT17 dataset.

2.3. Double-Margin-Contrastive Loss vs. Triplet Loss

To compute the proposed Appearance Affinity metric, a feature embedding, F(I), has to be
previously modeled by a DCNN. The general aim is to learn a transformation from the raw image
to the feature space, such it leads the representations for the same person near, and far away from
different people’s representations. The weights of this DCNN are trained to minimize a certain loss
function which mathematically defines the sought objective. Therefore, the chosen loss function
determines the learning process evolution, its convergence, and the discriminative capacity of the
finally learnt feature embedding.

The Double-Margin-Contrastive loss function (The Double-Margin-Contrastive loss function
is implemented in a Caffe python layer, which is publicly available under http://github.com/
magomezs/N2M-Contrastive-Loss-Layer), f2MCL, presented in [50], is based on two margins to
establish the separation between the objective values of the metric distances for positive and negative
samples. The traditional Contrastive Loss function, presented in [49], was based in only one margin.
In comparison, the result of using two margins is an increment in the discriminative capacity of the
learnt features, since positive and negative pairs move away from each other in the feature space.
Both classes of pairs, positive and negative ones, are not simply separated by one boundary value
(one margin) in the distance space, but by a gap defined by two fixed boundaries (two margins).
Therefore, the Double-Margin-Contrastive loss function reduces the inter-class ambiguities.

The formulation of the Double-Margin-Contrastive loss function is described by Equation (1)
for a batch of B pairs. This function measures the half average of the error computed for every pair,
with respect to the constant margins, m1 and m2. NDM(ndm1, . . . , ndmB) is an array, where every
element, ndmi, is the normalized distance metric for one of the pairs of the treated batch in one learning
iteration. That means that, for every sample i of the batch, the distance metric, dm, is previously
normalized by Equation (2), where e is Euler’s number. In turn, the distance metric, dm, is computed
by the squared Euclidean distance between the features of the query pair sample Xi = 〈Ia, Ib〉,
as Equation (3) defines. Finally, Y is an array, where every element, yi, is the value given by the labeler
function for the pair i. The labeler function, y(Ia, Ib), takes value 1 for positive pairs, and 0, for negative
ones, according to Equation (4):

f2MCL(NDM, Y) =
1

2B

B

∑
i=1

[yi ·max(ndmi −m1, 0) + (1− yi) ·max(m2 − ndmi, 0)] (1)

ndm = 2
(

1
1 + e−dm − 0.5

)
(2)

http://github.com/magomezs/N2M-Contrastive-Loss-Layer
http://github.com/magomezs/N2M-Contrastive-Loss-Layer
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dm(Xi) = ‖FW(Ia
i )− FW(Ib

i )‖2
2 (3)

y(Ia, Ib) =

{
1 if ID(Ia) = ID(Ib)

0 if ID(Ia) 6= ID(Ib)
(4)

Therefore, an effective training process leads the ndm to be lower than m1 for positive samples and
higher than m2 for negative ones. According to Equation (1), positive samples with a distance value
lower than the first margin, m1, and negative samples with a distance higher than the second margin,
m2 do not cause any loss value. The setting of the margins depends on the range of values presented
by the distances, dm. Nevertheless, this range varies along the training process. For that reason,
the distances are normalized within the range of values [0, 1). Eventually, the margin parameters have
been set with the values m1 = 0.3 and m2 = 0.7.

Meanwhile, the Triplet loss function, presented in [51], establishes a relative distance relationship.
Every i sample of the training dataset, X, is constituted by a triplet of person images, Xi = 〈Ia

i , Ip
i , In

i 〉,
where Ia

i is an anchor image, Ip
i renders the same person than the anchor image, and In

i is a different
person’s image. Therefore, Ia

i and Ip
i form a positive pair of samples, and they present the same

identification number. The identification number of In
i is different, so the pair formed by this image

and the anchor image, Ia
i , is a negative pair. The triplet model tries to maximize the relative distance

between the distance metric values for the positive and the negative pair. A batch formulation of the
Triplet loss, fTL, is defined by Equation (5), where B is the number of elements in a batch of triplets,
Xt = Xi. For a certain triplet of images, the triplet loss requires the squared Euclidean distance for the
negative pair to be larger than that for the positive one by a predefined margin, τ:

fTL
(
Wt; Xt) = 1

2B

B

∑
i=1

[max(τ + ‖Fw(Ia
i )− Fw(Ip

i )‖
2
2 − ‖Fw(Ia

i )− Fw(In
i )‖2

2, 0)] (5)

To fairly compare the performance of the Double-Margin-Contrastive loss and the Triplet one.
The parameter, τ has been set with value 0.4, which is the difference between the chosen margins
values for the Contrastive loss.

Both loss functions can be used to train a binary pair-wise classifier, like the proposed Appearance
Affinity model. Nevertheless, there exist differences between their formulations that affect the learning
of the model.

Even though the magnitude of the margin used by the Triplet loss function is constant, the extreme
boundaries separating the classes are not. The distance between positive and negative pairs is relative.
Conversely, the Contrastive loss function classifies positives and negatives pairs in an independent
way, without considering the relative distance between positive and negative instances of a given
identity. Therefore, the fixed boundaries (margins) separating similarity and dissimilarity classes are
fixed on the Double-Margin-Contrastive loss function, as Figure 6 renders.

The relative essence of the comparison made by the triplet loss function makes it flexible and
adaptative to deal with the situation of different people with similar appearance, which produces
small values of the distance for negative pairs, and the occurrence of high distance values for positive
pairs due to quite different representations of the same individual (see Figure 3). In the presence of
the mentioned situations, which are quite common in Re-Identification, in contrast to the triplet loss,
the contrastive loss value is prone to suffer from strong oscillations and slow convergence.

The Double-Margin-Contrastive loss function cannot compare positive and negative samples
between them. Instead of that, positive and negative samples are independently compared with
fixed boundaries, and these constraints could be too demanding in the first learning iterations.
However, the smaller intra-class variation and inter-class ambiguity among the people detections
from tracking sequences make the application of the Contrastive loss in the MOT domain suitable.
In the MOT frame, the discriminative capacity of the Double-Margin-Contrastive loss can be exploited
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without falling in the convergence problem of a too demanding objective function, since, a priori,
the MOT data are easier to cluster than the Re-Id data, as Figure 2 shows.

Figure 6. Scheme of the constraints imposed by the Double-Margin-Contrastive loss (a) and the Triplet
loss (b) over the data in the metric distance space. Points in green renders the distance resulting of
comparing the images of a positive pair, and points in red, a negative pair.

2.4. Learning Algorithm Implementation

The selection of the Double-Margin-Contrastive loss function or the Triplet one determines the
general architecture of the learning model and the formulation of the employed learning algorithm.
The use of the Contrastive function translates into a Siamese configuration, where the DCNN to
train is duplicated. Analogously, the Triplet loss calls for a triplet architecture, where the DCNN is
triplicated. Therefore, in the Siamese model, every training input is composed of a pair of images,
while in the Triplet model, of a triplet of them. Two versions of the Mini-batch Gradient Descent
algorithm have been implemented, each one of them adapted to a type of input data, pairs or triplets.
In both models, the DCNN branches are forced to share the same weights. This means that the learnt
weights, W, are identical in all the branches, so a unique feature embedding is learnt.

The two branches of the Siamese model are joined in the final layers, where the affinity is measured,
by comparing the obtained features with a distance metric, as Figure 7 shows.

Figure 7. Architecture of the Siamese model.

The input of the Siamese model is a pair of images, Ia and Ib, where the indexes a and b refer
to the branch receiving each image. The order of the inputs can be commuted without effects on the
result. Moreover, each image is accompanied by an identification number, ID(I), since a supervised
trained has been conducted.

The descriptor defined by the DCNN is computed twice (once per image) in the forward
propagation of the network. Once the person features for an input pair of images, (FW(Ia), FW(Ib)),
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have been computed, they must be compared by the squared Euclidean distance to get the distance
metric, dm.

Finally, in the last layer, the loss function measures the deviation of the computed distance
value with respect to the established objective values for positive (y = 1) and negative pairs (y = 0).
Therefore, in every iteration, the loss value measures how the classification made by the forward
propagation of the network differs from the correct one, given by the label y. The loss value is
consequently used by the back-propagation method [64] to force the weights in both branches to get
values which make the distance metric, dm, get closer to the objective. For that reason, the loss function
plays a crucial role in the learning process.

Instead of duplicating the DCNN in two branches, as the Siamese model does, Triplet model
triplicates it, as Figure 8 shows. The first branch of the triplet model receives an anchor sample, Ia

i ,
the second one takes an image, Ip

i , rendering the same person than the anchor image, and the input
of the third branch is a different person’s image, In

i . The triplet model tries to maximize the relative
distance between the distance metric values for the positive, dm+ and the negative pair, dm−.

Figure 8. Architecture of the Triplet model.

A feature descriptor is computed for every input by the forward propagation of the DCNN.
The affinity between the anchor images, Ia

i , and the positive and negative inputs, Ip
i , In

i , is measured by
computing the squared Euclidean distance between the features arrays of the images, FW(Ia

i ), FW(Ip
i ),

FW(In
i ). Then, the distances are contrasted by the Triplet Loss function.
In both domains, MOT and Re-Id, the available quantity of data about each individual is very

poor in comparison with the huge amount of possible different identities in a scene. Although this
lack of data are more accused in Re-Id task, in general, the available data are not enough to adopt an
individual-meant training approach, which clusters the same person samples close from each other
and distant to another person identity cluster. By contrast, the proposed affinity model treats all
the possible positive pairs as a set rendering the condition of similarity. Analogously, negative pairs
represent the dissimilarity situation.

The discrimination between similarity and dissimilarity has been learnt using comparing every
positive pair with all the possible negative pairs. In that way, the network is trained to be able to
identify a person between a huge number of negative samples. This global comparison approach calls
for the use of a Batch learning algorithm. However, the huge amount of possible pairs and triplet
combinations composing the training set, and the limitations in processing memory resources, have led
to implementing a Mini-Batch learning algorithm. In the performed training processes, the chosen
batch size was that as large as the available memory resources make possible (B = 128 in the Siamese
learning, and B = 64 in the Triplet learning).
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A Pair and a Triplet version of the Mini-Batch Gradient Descent learning algorithm have been
implemented to train the VGG network over MOT and Re-Id data. Their main procedures are shown
by Algorithms 1 and 2, respectively.

Algorithm 1 Pair-based Mini-Batch Gradient Descent Learning Algorithm.

Require: Batches of pairs, Xt =
{

Xt
i
}

.
Ensure: The network parameters WT =

{
WT

j

}
.

W0 =
{

W0
j

}
2: while t < T do

t← t + 1;
4:

∂ f2MCL(Wt ,Xt)
∂Wt

j
= 0;

for all training pair Xt
i = (Ia, Ib) of the batch set Xt do

6: Calculate FWt(Ia), and FWt(Ib) by forward propagation;
Calculate ndmi by Equations (2) and (3);

8: end for
Calculate f2MCL

(
Wt, Xt) by Equation (1);

10: for all training pair Xt
i = (Ia, Ib) of the batch set Xt do

Calculate ∂ndmi
∂Wt

j
, by Equation (9);

12: Calculate
∂FWt (Ia)

∂Wt
j

, and
∂FWt (Ib)

∂Wt
j

, by back propagation;
end for

14: Calculate ∂ f2MCL(Wt ;Xt)
∂Wt

j
according to Equations (10) and (11);

Update parameters according to Adagrad method [65];
16: end while

Algorithm 1 computes the features of each pair of images from the training batch by forward
propagation, and the distance between them, ndm by Equations (2) and (3). Then, the value of the loss
function f2MCL is obtained with Equation (1).

Subsequently, the back-propagation of the two neural branches is performed to obtain
∂FWt (Ia)

∂Wt
j

,

and
∂FWt (Ib)

∂Wt
j

for every sample of the batch. From these derivatives, the distance derivative, ∂ndm
∂Wt

j
,

is computed, using Equation (9). This equation is the result of defining ∂ndm
∂Wt

j
as Equation (6),

and substituting each term by its formulation, given by Equations (7) and (8) and by the definition of
dm, Equation (3). The term given by ∂ndm

∂dm has been obviated in practice since this is a factor bounded
between 0 and 0.5. Thus, it has a similar effect as the learning rate, α, whose value is properly adapted
by the Adagrad method, [65]. In addition, this factor does not affect the gradient descent direction,
and its estimation is computationally expensive.

Finally, the partial derivatives of the Double-Margin-Contrastive loss function, with respect to
the set of learnt weights, W =

{
Wj
}

, are defined by Equations (10) and (11). Then, both processes,
forward and back-propagation, are repeated until achieving the pre-established maximum number of
iterations, T:

∂ndm
∂Wt

j
=

∂ndm
∂dm

· ∂dm
∂Wt

j
(6)

∂ndm
∂dm

=
2e−dm

(e−dm + 1)2 =
2e−‖FW (Ia

i )−FW (Ib
i )‖

2
2

(e−‖FW (Ia
i )−FW (Ib

i )‖
2
2 + 1)2

(7)

∂dm
∂Wt

j
=

∂dm
∂FW(Ia

i )
·

∂FW(Ia
i )

∂Wt
j

+
∂dm

∂FW(Ib
i )
·

∂FW(Ib
i )

∂Wt
j

= 2 ·
(

FW(Ia
i ) ·

∂FW(Ia
i )

∂Wt
j
− FW(Ib

i ) ·
∂FW(Ib

i )

∂Wt
j

)
(8)

∂ndm
∂Wt

j
=

2e−‖FW (Ia
i )−FW (Ib

i )‖
2
2

(e−‖FW (Ia
i )−FW (Ib

i )‖
2
2 + 1)2

· 2 ·
(

FW(Ia
i ) ·

∂FW(Ia
i )

∂Wt
j
− FW(Ib

i ) ·
∂FW(Ib

i )

∂Wt
j

)
(9)



Electronics 2020, 9, 1757 14 of 28

∂ f2MCL
∂Wj

=
1

2B

B

∑
i=1

h1 (10)

h1 =


∂ndmi
∂Wj

if yi = 1∧ ndmi > m1

− ∂ndmi
∂Wj

if yi = 0∧ ndmi < m2

0 otherwise

(11)

Analogously, Algorithm 2 computes the features of each triplet of images from the training
batch by forward propagation, to get the value of the loss function, fTL with Equation (5).
Then, the partial derivatives of the loss function, given a set of learnt weights, W =

{
Wj
}

, defined by
Equations (12) and (13), are computed using Equations (14)–(16).

The back-propagation of the three neural branches is performed to obtain
∂FWt (Ia)

∂Wt
j

,
∂FWt (Ip)

∂Wt
j

and

∂FWt (In)

∂Wt
j

for every sample of the batch. Both processes, forward and back-propagation, are repeated

until achieving the pre-established maximum number of iterations, T.
In the experiments where the network was trained over MOT data, the model weights W were

initialized using the Xavier method [66]. However, when the training data came from Re-Id datasets,
to alleviate the Re-Id data problem, the network weights, W0 =

{
w0

j

}
, were initialized with values

that were pre-trained on MOT domain as is detailed in [67].

Algorithm 2 Triplet-based Mini-Batch Gradient Descent Learning Algorithm [67].

Require: Batches of triplets, Xt =
{

Xt
i
}

.
Ensure: The network parameters WT =

{
WT

j

}
.

1: W0 =
{

W0
j

}
2: while t < T do
3: t← t + 1;
4:

∂ fTL(Wt ,Xt)
∂Wt

j
= 0;

5: for all training triplet Xt
i = (Ia, Ip, In) of the batch set Xt do

6: Calculate FWt(Ia), FWt(Ip) and FWt(In) by forward propagation;
7: end for
8: Calculate fL

(
Wt; Xt) by Equation (5);

9: for all training triplet Xt
i = (Ia, Ip, In) of the batch set Xt do

10: Calculate ∂ fC(Wt ;Xt
i )

∂FWt (Ia)
, ∂ fC(Wt ;Xt

i )

∂FWt (Ip)
and ∂ fC(Wt ;Xt

i )

∂FWt (In)
by Equations (14)–(16);

11: Calculate
∂FWt (Ia)

∂Wt
j

,
∂FWt (Ip)

∂Wt
j

and
∂FWt (In)

∂Wt
j

, by back propagation;
12: end for
13: Calculate ∂ fL(Wt ;Xt)

∂Wt
j

according to Equations (12) and (13);
14: Update parameters according to the Adagrad method [65];
15: end while

∂ fL(Wt; Xt)

∂Wt
j

=
1

2B

B

∑
i=1

[
∂ fC(Wt; Xt

i )

∂Wt
j

]
(12)

∂ fC(W; Xi)

∂Wj
=

∂ fC(W; Xi)

∂FW(Ia)
· ∂FW(Ia)

∂Wj
+

∂ fC(W; Xi)

∂FW(Ip)
· ∂FW(Ip)

∂Wj
+

∂ fC(W; Xi)

∂FW(In)
· ∂FW(In)

∂Wj
(13)

∂ fC(W; Xi)

∂FW(Ia)
=

{
2(FW(In)− FW(Ip)) i f dm− − dm+ < τ

0 otherwise
(14)
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∂ fC(W; Xi)

∂FW(Ip)
=

{
2 (FW (Ip)− FW (Ia)) i f dm− − dm+ < τ

0 otherwise
(15)

∂ fC(W; Xi)

∂FW (In)
=

{
2 (FW (Ia)− FW (In)) i f dm− − dm+ < τ

0 otherwise
(16)

3. Results

The objective of this work is to demonstrate how the same DCNN (concretely, the VGG
architecture) can be trained over MOT and Re-Id data using the Siamese and the Triplet model,
and how the constraints imposed by Double-Margin-Contrastive loss and the Triplet loss are more or
less appropriate to deal with the characteristics of the data distribution in each one of the mentioned
domains: MOT and Re-Id.

This section evaluates not only the performance of the learnt models but also the effectiveness of
the conducted learning processes. The next subsections describe the used target datasets, the metrics
employed to evaluate the learnt affinity models, the conducted experiments and their results.

3.1. Datasets Protocol

The data from three bench-marked datasets have been taken to conduct experiments. One of
them is a Multi-Object Tracking dataset, the MOT17 dataset. The other two datasets, PRID and VIPeR
datasets, are Single-Shot Person Re-identification datasets.

• The MOT17 dataset belongs to the MOTchallenge (MOTChallenge is a Multiple Object Tracking
Benchmark which provides a unified framework to standardise the evaluation of MOT methods.
This is published under https://motchallenge.net/) and includes fourteen variate real-world
surveillance sequences, meant to train and test Multi-Person Tracking algorithms, which were
released in 2017. This benchmark contains challenging video sequences captured from static
and moving cameras in unconstrained environments. The MOT17 dataset contains the same set
of sequences as MOT16 [68], but with an extended more accurate ground truth. Seven of the
sequences are accompanied by its corresponding ground-truth files and have been used to extract
person images, to obtain samples of the identities appearing in those sequences.

• PRID2011 (PRID2011 dataset is publicly available under https://www.tugraz.at/institute/icg/
research/team-bischof/lrs/downloads/prid11/) [69] is a Single-Shot Re-Id dataset that was
captured from two different, static surveillance cameras, placed outdoors. This is composed of
two sets of images, where all the images from one set, A, were captured from the same camera
view, and all the samples from the other set, B, were acquired from a second camera view different
from the first one. Set A contains 385 individuals and set B, 749. 200 of the captured individuals
are rendered in both sets. In addition, 100 of them have been used to train the model. The test
set has been formed by following the procedure described in [69], i.e., the images of set A for
the 100 remaining individuals with representation in both sets have been used as the probe set.
The gallery set has been formed by 649 images belonging to set B (all images of set B except the
100 corresponding to the training individuals).

• VIPeR (VIPeR dataset is publicly available under https://vision.soe.ucsc.edu/node/178) [63] is
a Single-Shot Re-Id dataset where the images were captured from arbitrary viewpoints under
varying illumination conditions, even inside the same set, but maintaining the assumption that
the representation of a person in set A was captured from a different camera view than that from
which its representation in the set B was captured. This dataset presents 632 pedestrians, each one
with representation in both sets. For evaluation, the procedure described in [63] has been followed.
The pairs have been randomly grouped into two sets of 316 pairs to train and test the model.
Therefore, the gallery set is formed by 316 images from set A, and the probe set by their matching
images from set B.

https://motchallenge.net/
https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid11/
https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid11/
https://vision.soe.ucsc.edu/node/178
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From each one of these datasets, a training set formed by positive and negative pairs has been
generated by the method proposed in [70], where the difference between the number of possible
positive and negative pairs is balanced until achieving a proportion of 1:4. These pair-based sets are
used to train the Siamese model. Instead, the triplet model is fed by a training set formed by triplets
that were created with the permutation method presented in [71].

3.2. Evaluation Methodology: Metrics

An appearance affinity model has been trained over MOT and Re-Id data with two different
purposes: the first one is to measure the cost of associate an identity to a certain detection in the data
association process of a tracking algorithm, and the second one is to obtain a model able to recognize
an identity among a group of candidates, across different camera views. For that reason, the affinity
models trained over MOT data have been evaluated as a binary classifier, to test their performance to
discriminate between positive and negative pairs of samples. Instead of that, the ranking capacity of the
models trained over Re-Id data has been measured. In both cases, the evaluation has been conducted
over the samples of a test set, formed by pairs of images. Moreover, in particular, the training over
Re-Id data are especially complicated due to the lack of training data, and, for that reason, the learning
evolution has also been observed through the experiments.

• Evaluation of binary classification capacity. A ROC (Relative Operating Characteristic) [72] curve
has been used to visualize the capacity of the learnt models to properly classify the pairs samples
of the test set. This curve renders the diagnostic ability of a binary classifier as its discrimination
threshold, th, is varied. th defines the value until which the classifier output is considered as
the prediction of a positive pair, and from which it is considered as a negative pair. The ROC
curve plots the True Positive Rate (TPR), also called Sensitivity or Recall, against the False
Positive Rate (FPR), also known as the fall-out rate. The TPR and FPR metrics are defined by
Equations (17) and (18), respectively, where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and FN is the number of false negatives.

TPR =
TP

TP + FN
(17)

FPR =
FP

FP + TN
(18)

Other metrics widely used to measure the performance of binary classifiers are Positive Predictive
Value, PPV (also called Precision), F1 score, and Accuracy, A, defined by Equations (19)–(21),
respectively. F1 score provides a trade-off between precision and recall. The accuracy value,
which is the proportion of well-classified pairs is not an appropriate metric for the case of
having skewed classes In the case of identifying a person when he/she is compared with many
people images, the ratio of positive samples to negative ones is very low. However, to provide
a fair evaluation through the accuracy metric, the test set has been formed by the same number
of positive as negatives pairs, presenting a completely balanced proportion of samples from
each class.

PPV =
TP

TP + FP
(19)

F1 =
2 · PPV · TPR
PPV + TPR

(20)

A =
TP + TN

TP + FP + TN + FN
(21)

• Evaluation of the Re-Id ranking capacity. The test set is formed by two groups of images, the set
of probe images and the galley. The capacity of the model to rank the gallery images according to
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their affinity with a query probe image has been evaluated through the Cumulative Matching
Characteristic (CMC) curve [73].

To obtain the CMC curve, a query probe image is coupled with all the images from the gallery
and the distance metrics, dm, between them are computed. The obtained distance metrics,
dm, are ranked, and this process is repeated for each one of the probe images. The rank
value, i.e., the position of the correct match in the rank, is calculated for each probe image
and, subsequently, the percentage in which each rank appears. Then, the CMC curve renders
the expectation of finding the correct match within the top r matches, for different values of r,
called ranks. The computed percentages are cumulative.

All the gallery images must be ranked in order of decreasing appearance affinity w.r.t. the probe
image and the correct match must occupy the first position on the ranking. This is an extremely
arduous task, since, even under the human criteria, the probe image can be visually more similar
to gallery images from different people than to the corresponding one because of the inter-class
ambiguities and the intra-class variations. Moreover, the person rendered in one probe image must
be recognized among multiple gallery images. For instance, in PRID dataset, a probe individual
must be found among 649 images. For that reason, CMC curves are not comparable to ROC curves,
since the first ones represent the ranking capacity of a method instead of its classification capacity.

• Evaluation of the learning evolution. The evolution of every training process is evaluated by
analyzing their learning curves, which is the representation of the loss function value throughout
the learning process. This allows for checking the model convergence. The convergence of the
Mini-Batch Gradient Descent cannot be guaranteed by an arithmetical method, but experimentally
observing the progression of the learning curve of the training process. The Mini-Batch learning
algorithm performs frequent parameters updates with a high variance that cause the objective
function to fluctuate heavily, resulting in a learning curve with oscillations. Despite the oscillations,
the convergence of the learning algorithms is proved by the decreasing tendency of their learning
curves that eventually are stabilized around a certain value.

3.3. Experiments

Four experiments have been conducted. The presented base network has been trained and
tested in each one of them. The differences among the experiments lie in the training data source,
MOT or Re-Id databases, and in the chosen loss function, Double-Margin-Contrastive or Triplet,
as Table 2 depicts. The loss function selection determines the training architecture, the training samples
format and the learning algorithm. Therefore, Exp.MOT.Contrast and Exp.ReId.Contrast trained
the base network with a Siamese architecture, feeding it with pairs of images, using Algorithm 1.
Analogously, Exp.MOT.Triplet and Exp.MOT.Triplet learnt the features under a Triplet model,
where the training inputs were triplets of images, employing Algorithm 2.

Table 2. Experiments settings.

Experiments
Description

Data Source Loss Function Other Settings

Exp.MOT.Contrast MOT
domain

Double-Margin-Contrastive loss, f2MCL,
Equation (1) VGG11 architecture.

Euclidean distance metric.

Adagrad optimizer.

L2 regularization, wd = 0.0005.

Exp.MOT.Triplet Triplet loss, fTL, Equation (5)

Exp.ReId.Contrast Re-Id
domain

Double-Margin-Contrastive loss, f2MCL,
Equation (1)

Exp.ReId.Triplet Triplet loss, fTL, Equation (5)
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The visual appearance differences between a certain detection and its previously
tracked observations can be successfully involved in their matching cost formulation.
Through Exp.MOT.Contrasts and Exp.MOT.Triplet, the performance of the Contrastive and the Triplet
loss functions to train an affinity model able to deal with MOT data have been compared. The results
obtained with each one of them are presented by Tables 3 and 4. These tables show the scores of several
binary classification metrics for different values of the classification threshold, th. Moreover, Figure 9
present the ROC curves of the obtained Appearance Affinity models. The modeled Appearance
Affinity metric has been tested over pairs and triplets of images with a wide time step between them.

The classification test proves the high capacity of the proposed Appearance Affinity model to
discriminate between positive pairs of images, belonging to the same person, and negative ones,
corresponding to different people.

The results provided by both experiments are quite similar. The use of the
Double-Margin-Contrastive loss offers slightly better results, with a larger area under the ROC curve,
and higher values of F1 score and Accuracy. This is because the Double-Margin-Contrastive loss
imposes more stringent discrimination between positive and negative pairs of images.

The results show that choosing the value 0.2 for th, the model trained with the Contrastive loss
achieves an accuracy value of 91.7% and with a th value of 0.25, the F1 score achieves 91.9%, which are
considered good values for a challenging task as appearance identification in a MOT sequence.

Table 3. Binary classification metrics for the Appearance Affinity model learnt with the
Double-Margin-Contrastive loss function.

th TN FN FP TP TPR
[%]

FPR
[%]

PPV
[%]

F1 [%] A [%]

0.00 20, 000 20, 000 0 0 0 0 - - 50.000
0.05 19, 777 5758 223 14, 242 71.21 3.73 98.46 82.646 85.048
0.10 19, 441 3614 559 16, 386 81.93 13.40 96.70 88.705 89.568
0.15 18, 943 2498 1057 17, 502 87.51 29.73 94.31 90.780 91.113
0.20 18, 377 1702 1623 18, 298 91.49 48.81 91.85 91.671 91.688
0.25 17, 780 1106 2220 18, 894 94.47 66.75 89.49 91.910 91.685
0.30 17, 240 667 2760 19, 333 96.67 80.54 87.51 91.859 91.433
0.35 16, 771 378 3229 19, 622 98.11 89.52 85.87 91.583 90.983
0.40 16, 289 238 3711 19, 762 98.81 93.97 84.19 90.916 90.128
0.45 15, 774 149 4226 19, 851 99.26 96.59 82.45 90.074 89.063
0.50 15, 262 99 4738 19, 901 99.51 97.95 80.77 89.164 87.908
0.55 14, 648 59 5352 19, 941 99.71 98.91 78.84 88.053 86.473
0.60 13, 900 32 6100 19, 968 99.84 99.48 76.60 86.689 84.670
0.65 13, 150 16 6850 19, 984 99.92 99.77 74.47 85.340 82.835
0.70 12, 187 5 7813 19, 995 99.98 99.94 71.90 83.647 80.455
0.75 11, 213 0 8787 20, 000 100.0 100.0 69.48 81.989 78.033
0.80 9868 0 10, 132 20, 000 100.0 100.0 66.38 79.789 74.670
0.85 8498 0 11, 502 20, 000 100.0 100.0 63.49 77.667 71.250
0.90 7509 0 12, 491 20, 000 100.0 100.0 61.56 76.204 68.773
0.95 6047 0 13, 953 20, 000 100.0 100.0 58.91 74.139 65.118
1.00 0 0 20, 000 20, 000 100.0 100.0 50.00 66.667 50.000
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Table 4. Binary classification metrics for the Appearance Affinity model learnt with the Triplet
loss function.

th TN FN FP TP TPR
[%]

FPR
[%]

PPV
[%]

F1 [%] A [%]

0.00 20000 20000 0 0 0 0 - - 50.000
0.05 19, 997 14, 727 3 5273 26.37 0.02 99.94 41.723 63.175
0.10 19, 990 11, 599 10 8401 42.01 0.09 99.88 59.139 70.978
0.15 19, 984 9516 16 10, 484 52.42 0.17 99.85 68.748 76.170
0.20 19, 970 7879 30 12, 121 60.61 0.38 99.75 75.401 80.228
0.25 19, 936 6542 64 13, 458 67.29 0.97 99.53 80.294 83.485
0.30 19, 878 5428 122 14, 572 72.86 2.20 99.17 84.003 86.125
0.35 19, 765 4540 235 15, 460 77.30 4.92 98.50 86.623 88.063
0.40 19, 600 3849 400 16, 151 80.76 9.41 97.58 88.375 89.378
0.45 19, 441 3370 559 16, 630 83.15 14.23 96.75 89.435 90.178
0.50 19, 264 2968 736 17, 032 85.16 19.87 95.86 90.193 90.740
0.55 19, 030 2646 970 17, 354 86.77 26.83 94.71 90.565 90.960
0.60 18, 785 2340 1215 17, 660 88.30 34.18 93.56 90.855 91.113
0.65 18, 499 2082 1501 17, 918 89.59 41.89 92.27 90.911 91.043
0.70 18, 166 1861 1834 18, 139 90.70 49.63 90.82 90.756 90.763
0.75 17, 727 1612 2273 18, 388 91.94 58.51 89.00 90.445 90.288
0.80 17, 093 1387 2907 18, 613 93.07 67.70 86.49 89.658 89.265
0.85 16, 344 1166 3656 18, 834 94.17 75.82 83.74 88.6510 87.945
0.90 15, 356 863 4644 19, 137 95.69 84.33 80.47 87.422 86.233
0.95 13, 751 430 6249 19, 570 97.85 93.56 75.80 85.423 83.303
1.00 0 0 20, 000 20, 000 100.0 100.0 50.00 66.667 50.000

Figure 9. ROC curves for the Appearance Affinity model learnt with the Double-Margin-Contrastive
loss and the Triplet loss.

Analogously, through Exp.ReId.Contrasts and Exp.ReId.Triplet, the performance of the
Contrastive and the Triplet loss functions to train an affinity model able to Re-identify people across
different camera views have been compared. Table 5 presents the CMC scores of the models learnt with
these experiments, over two Re-Id datasets, and Figure 10 their corresponding CMC curves, in ease
of exposition.

Table 5. CMC scores (%) of the Appearance Affinity model trained with the Double-Margin-Contrastive
loss and the Triplet loss on PRID2011 and VIPeR dataset.

Dataset PRID2011 VIPeR

Rank 1 5 10 20 50 100 1 5 10 20 50 100
Exp.ReId.Contrast 0 4 9 13 19 27 4 13 17 26 42 60
Exp.ReId.Triplet 4 14 20 33 58 77 11 35 54 69 90 96
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Figure 10. CMC curves of Appearance Affinity model trained with the Double-Margin-Contrastive
loss and the Triplet loss over (a) PRID2011 and (b)VIPeR dataset.

The use of the Triplet loss function offers remarkably better results in the Re-Id task, showing a
higher ranking performance. In addition, the Triplet loss function presents smaller oscillations through
the learning process, causing a faster convergence, as Figure 11 shows. The relative essence of the
comparison made by the triplet loss function makes it more effective for ranking problems, such as
Person Re-Identification, as it was expected according to the previous theoretic analysis.

Figure 11. Learning curves of training with Double-Margin-Contrastive and Triplet loss over PRID2011
and VIPeR.

One of the main goals of this article is to provide a justified election of the loss function to
learn a Re-Identification model. The final purpose is to make the performance of the deep Re-Id
model overcomes state-of-the-art methods based on the design of hand-crafted features and metric
distance learning. This achievement is shown by Tables 6 and 7, where an extensive list of method’s
performances are compared with the CMC scores obtained for the model presented in the previous
section, evaluated over PRID2011 and VIPeR, respectively. The results can be taken as proof of concept
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to verify that, despite the data problem, deep learning can be exploited to solve the Single-Shot
Re-Id task.

Table 6. Comparison of CMC rates (in [%]) of Re-Id methods on PRID2011 dataset, ‘-’ indicates no
result was reported.

Method
Rank

1 5 10 20 50 100

Proposed Method 4 14 20 33 58 77

PSFI+PRDC [74] 3 9 16 24 39 -
PRDC [75] 3 10 15 23 38 -
PSFI+RankSVM [74] 4 9 13 20 32 -
RankSVM [76] 4 9 13 19 32 -
LDA [77] 4 - 14 21 35 48
GFI [78] 4 - 10 17 32 -
Euclidean [79] 3 - 10 14 28 45
LDML [80] 2 - 6 11 19 32
PSFI [74] 1 2 4 7 14 -

Table 7. Comparison of CMC rates (in [%]) of Re-Id methods on VIPeR dataset, ‘-’ indicates no result
was reported.

Method
Rank

1 5 10 20 50 100

Proposed Method 11 35 54 69 90 96
PRDC [75] 16 38 54 70 87 97
PSFI+PRDC [74] 16 38 51 66 - -
PSFI+RankSVM [74] 16 38 51 66 - -
RankSVM [76] 15 37 50 65 - -
ELF [63] 12 31 41 58 - -
PSFI [74] 10 22 31 43 - -
GFI [78] 9 - 27 34 - -
LDA [77] 7 - 25 37 61 79
Euclidean [79] 7 - 24 34 55 73
LDML [80] 6 - 24 35 54 72
TFLDA [81] 6 17 26 40 - -
TCA [82] 5 11 16 25 - -

To study the benefits of a deep learning approach to extract the proper features, Tables 6 and 7
show the performance of the method presented in [79]. This algorithm uses hand-crafted low-level
features based on colour and texture and directly applies the Euclidean distance to compare them.
The proposed model also uses the Euclidean distance, but the compared features have been learnt
by a deep neural model. The proposed deep learning algorithm provides an automatic selection of
features that considerably improves the Re-Id performance compared with the traditional computation
of low-level features.

Some methods consist of finding the optimal combination of features to represent a person,
such as the one presented in [63], based on an ELF (Ensemble of Localized Features), and RankSVM
(Ranking Support Vector Machines) [76]. In addition, other approaches use general metric learners,
like PRDC (Probabilistic Relative Distance Comparison), [75], LDML (Logistic Discriminant Metric
Learning) [80], and LDA (Linear Discriminant Analysis) [77]. In essence, these methods learn a metric
distance once a set of features have been previously extracted. Instead of that, the proposed learning
framework simultaneously find salient features and their optimal combination, providing comparable
or even better results.
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Liu et al. [74] present a PSFI (Prototype-Sensitive Feature Importance) method to adaptively
weight features according to different groups of population. Conversely, Loy et al. [78] propose a
GFI (Global Feature Importance) approach, consisting of learning a global weighting that is invariant
to the population. The proposed method does not perform any population discrimination and
implicitly and automatically learns a general weighting of features to create a global person descriptor.
The proposed model outperforms the previously cited methods and even the combination of some of
them (PSFI+PRDC and PSFI+RankSVM) in the PRID2011 dataset and provides similar results in the
VIPeR dataset.

In addition, to compare the performance enhancement obtained by the proposed transference
of learning from MOT domain, the scores for the methods presented in [81,82] are listed
in Table 7. Pan et al. [82] perform domain adaptation through TCA (Transfer Component Analysis),
and Si et al. [81] present subspace TFLDA (Transference to Fisher Linear Discriminant Analysis).

4. Discussion

Both loss functions, the Double-Margin-Contrastive and the Triplet, have been used to train
a binary pair-wise classifier which measures the Appearance Affinity between a pair of images.
The affinity model can be trained to measure the cost of assigning a certain identity to a recently
captured detection in a Multi-Object Tracking algorithm or Re-Identify a person across non-overlapped
and distant camera-views. The differences in the specifications of these two surveillance tasks are
reflected in the characteristics and limitations of the available data to perform each one of them,
as Section 2.2 analyzes.

The mathematical analysis of the differences in the constraints imposed by the
Double-Margin-Contrastive loss and the Triplet loss function (conducted in Section 2.3) has led
to assert that the Double-Margin-Contrastive loss function is more effective than the Triplet one, in the
MOT domain, and the reverse occurs in the Re-Id domain. This assertion has been demonstrated by
the conducted experiments.

The discrimination imposed by the Double-Margin-Contrastive loss function, where the classes
are forced to be separated not by a unique boundary, but by two fixed margins, allows the learning of
more discriminative descriptors as long as the intra-class variations and inter-class ambiguities in the
prior data distribution are low. For that reason, the affinity model learnt with this loss function shows a
high performance over MOT data, where the observations of a certain person do not suffer from strong
variations along a video sequence. In mono-camera Multi-Object Tracking, the variations among the
images of the same person even after temporary disappearances, are not so wide as in Re-Identification.
Therefore, in the MOT domain, the Double-Margin-Contrastive loss leads to the convergence of a
model able to perform the discrimination of the pairs of samples in two well-differentiated groups,
positive and negative pairs, better than the Triplet loss.

Conversely, the Triplet Loss is more effective than the Contrastive one when a Re-Id model is
learnt since Triplet loss relies on a relative distance that makes it more flexible against the images’
variations, caused by their capture from different camera views.

Even though the magnitude of the margin used by the Triplet loss function is constant, the extreme
boundaries separating the classes are not. The distance between similarity and dissimilarity classes is
relative. The relative essence of the comparison made by the triplet loss function makes it flexible and
adaptive to deal with intra-class variations and inter-class ambiguities in the data. In the presence of
the mentioned circumstances, which are quite common in Re-Identification, in contrast to the triplet
loss, the contrastive loss value suffers from strong oscillations and slow convergence, as Figure 11
shows. Contrastive loss function cannot compare positive and negative samples between them.
Instead of that, positive and negative samples are independently compared with fixed boundaries,
and these constraints are too demanding in the first learning iterations causing big oscillations of the
learning curve.
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Therefore, the Triplet loss has shown to be more effective for ranking problems, like the Person
Re-Identification challenge, where gallery images are ranked in order of increasing similarity to a
certain probe image. Moreover, the Triplet loss imposes a softer constraint over the learning data,
which pitches the learning of features in adverse data distribution, like that presented by Single-Shot
Re-Id datasets, where only two samples per identity are available and they present high intra-class
variations, misalignment, and inter-class ambiguities. This allows the convergence of the training in
an Appearance Affinity model able to Re-Identify people.

5. Conclusions

This article states the learning of a neural model to measure the Appearance Affinity
between people images to perform Multi-Person Tracking (MOT) and Re-Identification (Re-Id).
Elementary comparison of images to identify people only works for consecutive and well-aligned
detections. To deal with the acquisition of images from multiple surveillance points or long-term
occlusions after which the representation of a person changes, deep learning has been used to
automatically find the most salient features of the individuals’ appearance.

Within this context, the main goal of this article is to provide a theoretical analysis of the
characteristic distribution of the data in both domains, MOT and Re-Id, to study the suitability
of the Double-Margin-Contrastive and the Triplet loss to address the learning of the appearance model
in each one of the mentioned domains.

The performed research and the conducted experiments have led to pose and demonstrate
this hypothesis: Triplet loss function is more effective than Double-Margin-Contrastive one
when a Re-Id model is learnt since Triplet loss relies on a relative distance that makes it more
flexible against the images’ variations, caused by their capture from different camera views.
However, in mono-camera Multi-Object Tracking, the variations among the images of the same
person even after temporary disappearances, are not so wide as in Re-Identification. Therefore, in the
MOT domain, the Double-Margin-Contrastive loss can perform the discrimination of the pairs of
samples in two well-differentiated groups, positive and negative pairs, better than the Triplet model.
The work presented in this document explains, evaluates, and discusses this hypothesis.

Eventually, the evaluation results prove the capacity of the learnt Appearance Affinity models to
perform the surveillance tasks of Multi-Object Tracking and Single-Shot Person Re-identification.

The learnt Appearance Affinity metric can be included as part of the association process of a
Multi-Object Tracking algorithm, since it can measure the cost of assigning a certain identity to a person
detection, from the appearance point of view, even in the case of temporal occlusions. The designed
identification model is versatile and robust against multiple situations since it has been evaluated
over sequences presenting outdoors and indoors scenarios, and from fixed and moving cameras,
from different perspectives. This metric has been tested over pairs of images from the MOT17 datasets,
with a wide time step between them, and it has achieved a classification accuracy of 92%.

Furthermore, the proposed Affinity model has also been trained and tested over two challenging
Re-Id datasets: PRID2011 and VIPeR, proving its capacity to perform Single-Shot Re-Identification
despite the lack of available data about the individuals. The experiments have proved the effectiveness
of the model in two different Re-Id settings, when images come from only two fixed cameras
(PRID2011), or when they are taken from multiple views (VIPeR).

To conclude, the study presented in this article evaluates two learning algorithm formulations,
giving a prior vision of their convergence according to the selected application domain, contributing to
the development of Deep Neural Networks for modeling individuals’ appearance.
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Abbreviations

The following abbreviations are used in this manuscript:

CMC Cumulative Matching Characteristic
DCNN Deep Convolutional Neural Network
ELF Ensemble of Localized Features
FPR False Positive Rate
GFI Global Feature Importance
ISS Intelligent Surveillance System
LDA Linear Discriminant Analysis
LDML Logistic Discriminant Metric Learning
MOT Multi-Object Tracking
MTMCT Multi Target Multi Camera Tracking
PPV Positive Predictive Value
PRDC Probabilistic Relative Distance Comparison
PRID2011 Person Re-IDentification 2011
PSFI Prototype-Sensitive Feature Importance
RankSVM Ranking Support Vector Machines
Re-Id Person Re-Identification
ROC Relative Operating Characteristic
TCA Transfer Component Analysis
TFLDA Transference to Fisher Linear Discriminant Analysis
TPR True Positive Rate
VGG Visual Geometry Group
VIPeR Viewpoint Invariant Pedestrian Recognition
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