
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a postprint version of the following published document:

Sevilla-Escoboza, R., Buldú, J. M., Boccaletti, S., Papo, D., 
Hwang, D.-U., Huerta-Cuellar, G., Gutiérrez, R. (2016). 
Experimental implementation of maximally synchronizable 
networks. Physica A: Statistical Mechanics and Its 
Applications, 448, 113–121

DOI: https://doi.org/10.1016/j.physa.2015.12.086

© Elsevier, 2016

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.physa.2015.12.086


Experimental implementation of maximally synchronizable networks
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Maximally synchronizable networks (MSNs) are acyclic directed networks that maximize synchronizability.
In this paper, we investigate the feasibility of transforming networks of coupled oscillators into their correspond-
ing MSNs. By tuning the weights of any given network so as to reach the lowest possible eigenratio λN/λ2,
the synchronized state is guaranteed to be maintained across the longest possible range of coupling strengths.
We check the robustness of the resulting MSNs with an experimental implementation of a network of nonlinear
electronic oscillators and study the propagation of the synchronization errors through the network. Importantly,
a method to study the effects of topological uncertainties on the synchronizability is proposed and explored both
theoretically and experimentally.

PACS: 89.75.Hc, 89.75.Fb

INTRODUCTION

Synchronization is a paradigmatic example of collective
behavior in physical and biological sciences. The scientific
study of synchronization started with the pioneering obser-
vations on the dynamics of pendulum clocks hanging from a
common beam by Christiaan Huygens in the 17th century [1],
and continue these days with studies showing different forms
of synchronization in networks of both regular and chaotic
self-oscillating dynamics. Throughout the years, evidence of
synchronized behavior has been found in mechanical, elec-
tronic and neuronal systems, as well as in chemical reactions
and biological rhythms, to name but a few examples. A flurry
of interest in synchronization started in the mid 1990s, with
some earlier breakthroughs such as the Kuramoto model [2]
paving the ground for it. The results of those fruitful years of
research are reviewed in [1, 3].

Since the beginning of the previous decade, the focus has
been moving from the study of the synchronized dynamics of
just two or a few dynamical system, towards the study or large
ensembles of oscillators with complex coupling arrangements.
In this regard, the development of network theory [4, 5] al-
lowed for a fruitful interaction between a dynamical point of
view and a more topological perspective that has led to the
present-day field of the synchronization of complex networks
[4, 6].

Among these new developments, the master stability func-
tion (MSF) approach [7, 8] is a cornerstone of network syn-
chronization research, and it provides the language in which
the ideas we develop are written. The MSF describes the sta-
bility of the synchronized state of a set of N coupled dynam-
ical units as a function of the coupling parameter σ and the
topology of the network under study. Given a network of N

dynamical systems, the evolution (in isolation) of the state of
each node is described by a set of n-dimensional differential
equations ẋi = F(xi), where xi ∈ Rn is the dynamic state
vector of node i. If nodes have a certain interaction between
them, the evolution of the coupled systems is given by:

ẋi = F(xi)− σ
N∑
j=1

LijH(xj), i = 1, . . . , N (1)

where σ is the coupling strength, H(x) : Rn → Rn is a
vectorial coupling function and Lij are the elements of the
network Laplacian matrix. We here consider weighted net-
works: the connectivity is given by a weighted adjacency
matrix whose elements Wij are real numbers giving the link
weights between nodes i and j if they are connected and
zero otherwise. Equivalently, the coupling can be represented
(as in Eq. 1) by a weighted Laplacian matrix defined as
Lij = δij

∑
kWik − Wij . Note that Eq. (1) is equivalent

to a diffusive coupling between the nodes of the network, the
weight of the coupling contained in Wij . Due to the zero-
row sum property of the Laplacian matrix (

∑
j Lij = 0) the

synchronization manifold x1 = x2 = ... = xN ≡ xs, with
ẋs = F (xs), is an invariant set of the dynamics. Under these
conditions, the MSF approach provides a framework for the
study of the stability of synchronization in which the topology
and the dynamics are in some sense uncoupled. The stability
of the synchronized dynamics or synchronizability is estab-
lished by computing the maximum Lyapunov exponent of a
suitably modified kernel that depends on a parameter ν, which
is proportional to the coupling strength in the network ν = σλ
[7]. This Lyapunov exponent can be seen as the parameter
giving the exponential divergence/convergence of perturba-
tions orthogonal to the synchronization manifold, and when
parameterized in terms of ν gives the MSF curve, which we
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denote as Λ(ν). The proportionality constant λ represents one
of the nonzero eigenvalues of the graph Laplacian matrix. The
graph Laplacian matrices of the networks considered in this
work have a real and non-negative spectrum, with eigenvalues
0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN , where N is the number
of nodes (dynamical units) of the network. Moreover, as the
networks are connected, only one eigenvalue is zero, and thus
the ν corresponding to the different oscillation eigenmodes
will be positive. For those values of ν for which the MSF
is negative, perturbations transversal to the synchronization
manifold damp out exponentially fast. For an uncoupled net-
work, ν = 0, the MSF corresponds to that of the autonomous
dynamics at each node, and is therefore either zero (for regu-
lar dynamics) or positive (for chaotic dynamics). As ν is var-
ied, the MSF may become negative in some regions, and it is
of specially interest to study the boundaries of those regions.
When Λ(ν) is negative for all σλi with i = 2, 3, . . . , N , the
synchronization manifold is stable and the network is said to
be synchronizable [7].

For a given dynamical system and coupling function, three
categories can be defined according to the classification pro-
posed in Ref. [4]: Class I systems have a non-negative
MSF (and are therefore not synchronizable), class II systems
are those that have an unbounded synchronizability region
(Λ(ν) < 0 for ν > νc, where νc represents the only zero of
the MSF) and class III systems are those that have a bounded
synchronizability region (Λ(ν) < 0 for ν ∈ (ν1, ν2), where ν1

and ν2 are the two zeros of the MSF). In practice, only a finite
range of ν that is expected to cover all the cases of interest is
considered, and the classification is applied in this restricted
sense. If one considers larger ν ranges, MSFs with more than
two zero crossings are indeed possible, and some complicated
MSF curves have been reported for example in [9].

Of these three main classes, class I and class II are, in some
sense, trivial. Class I is not synchronizable, while class II sys-
tems are always synchronizable for large enough σ, specifi-
cally for σ > νc/λ2. However, the conditions for class III
systems to be synchronizable, λ2σ > ν1 and λNσ < ν2, im-
ply that a topology such that λN/λ2 > ν2/ν1 is not synchro-
nizable for any value of σ. In fact, whatever the system, if it
is class III, a topology with a smaller eigenratio R ≡ λN/λ2

is easier to synchronize as the different ν2 ≤ · · · ≤ νN that
have to be accommodated within the synchronization region
are bunched together more closely. Following this argument,
the optimal case is that for which λ2 = λ3 = · · · = λN ,
in which all the relevant values of ν for the given topology,
namely σλi for i = 2, 3, . . . , N , become equal, and the eigen-
ratio R reaches its minimum R = 1, leading to an optimal
synchronizability (i.e., the one being stable for a larger range
of σ). Networks with this particular structure are known as
maximally synchronizable networks (MSN) [10].

In this paper, we investigate the feasibility of transforming a
given network into its MSN and test its robustness to noise and
parameter mismatch in real systems. While some publications
have shown the possibility of enhancing the synchronizability
of networks by rearranging the links [11, 12], in many cases

the creation or deletion of links is not available due to exper-
imental restriction. Here, we consider the architecture under-
lying the network topology to be fixed (nodes are connected
or disconnected once and for all), and try to achieve the graph
that optimizes the stability of the synchronized state by tuning
the link weights. We design an experimental implementation,
by means of electronic circuits, of the MSN and investigate
its stability as a function of the coupling strength. Interest-
ingly, we observe how the synchronization error is propagated
through the network when the system is close to the synchro-
nization boundaries. Next, we analyze the effects of the devia-
tions from the optimal topology on the synchronization of the
whole system, and show the interplay between the topological
noise with the coupling strength of the whole network.

MAXIMALLY SYNCHRONIZABLE NETWORKS:
EXPERIMENTAL IMPLEMENTATION

In this section we discuss the experimental implementation
of MSNs and the corresponding results. It is divided into three
subsections: in the first one, we describe the algorithm that
produces MSNs out of arbitrary topologies; then we describe
the dynamical system of use, and the experimental setup based
on electronic circuits; finally, we discuss the experimental re-
sults.

Maximally synchronizable network algorithm

Any undirected (connected) network can be converted into
a MSN by the following procedure [10]:

1. Select any node of the network as the initial node (from
now on, node 1).

2. Number the k1 neighbors of node 1 sequentially (i.e.,
give the numers 2, 3, . . . , k1 + 1 to them).

3. Repeat the process with the second neighbors (i.e. the
neighbors of 2, 3, . . . , k1 + 1), third neighbors (i.e. the
neighbors of the neighbors of 2, 3, . . . , k1 + 1). and
so on, until we have numbered to all the nodes of the
network.

4. Transform the links into unidirectional links pointing
from the node that has been assigned the lower number
to the node with the greater number.

5. Give a weight of 1/kini to all incoming links of nodes
i = 2, . . . , N , kini being the in-degree of node i (i.e. the
number of neighbors whose links point to it), so that the
total incoming weight of all nodes will be one, with the
exception of node 1 (which is zero).

By following these steps, we obtain a directed weighted
network with a weighted adjacency matrix such that Wij =
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FIG. 1. Construction of Maximally Synchronizable Network
(MSN). (a) Starting from a weighted undirected network, (b) the first
step is the numbering process, which consists in selecting an initial
node and sequentially numbering its first neighbours. The process is
repeated for successive layers of neighbors until the whole network
has been numbered. (c) Next, directions are given to the links with
arrows pointing from the node with the lower number to the node
with the higher number. (d) Finally, the weights of the links pointing
to node i are set to 1/kini .

1/kini if there is a link (j → i) or zero otherwise. The pro-
cedure is equally applicable whether the original network is
weighted or not, as only the basic structure as given by the un-
weighted (binary) adjacency matrix is used. The correspond-
ing elements of the resulting Laplacian matrix are

Lij =

 1 if i = j > 1
−1/kini if j < i and i and j are connected
0 otherwise

(2)

The full Laplacian matrix therefore is a lower triangular ma-
trix

L =


0 0 0 · · · 0
−1 1 0 · · · 0
−1/kin3 (0) −1/kin3 (0) 1 · · · 0
...

...
...

. . .
...

−1/kinN (0) −1/kinN (0) −1/kinN (0) · · · 1

 (3)

where the element Lij for j < i being denoted as −1/kini (0)
means that it can be either −1/kini if there is a link from j to
i or zero if there is not. As the network is connected, node
1 must have at least one neighbor, and therefore there must
be a link from 1 to 2, and that is why we do not apply this
notation to L21, which is known to be −1. The procedure and
the resulting Laplacian matrix are illustrated in Fig. 1. As the

FIG. 2. Experimental setup. Electronic implementation of a net-
work of Rössler oscillators. The three variables of a Rössler chaotic
circuit are recoded by means of an analog-to-digital card (ADC) and
recorded in a computer. The same circuit is used to simulate all nodes
of the network, whose coupling matrix (and weights) is sent from the
computer to the circuit through a digital-to-analog card (DAC). A
digital line (DO), controls the coupling strength and the gain product
of perturbations by means of digital potentiometers. See the Ap-
pendix for a detailed description of the circuit parameters.

spectrum of a triangular matrix is given by the elements along
the main diagonal, it is obvious that the matrix corresponds to
a MSN.

Experimental realization with non-linear electronic circuits

The procedure described above can be applied experimen-
tally to arbitrary large networks of electronic circuits by adapt-
ing the methodology first developed in Ref. [13]. In simple
terms, a large unidirectional network of nonlinear circuits is
obtained by the sequential recording of the time series of suc-
cessive layers of neighbors and the weighted reinjection of
the data from previous layers using just one electronic circuit.
The technical details are discussed in the Appendix, and an
illustration of the experimental setup is provided in Fig. 2.

Our experimental system is a network of piecewise linear
Rössler-like electronic circuits, as illustrated in Fig. 2. The
dynamics of node i is given by the following equations [14]:

ẋ = −α1i

(
xi + βyi + Γzi + σψ

∑N
j=1 Lijxj

)
,

ẏ = −α2i (−γxi + [1− δ]yi) ,
ż = −α3i (−g(xi) + zi) ,

(4)

where x, y and z are the oscillator state variables. The piece-
wise linear function g(x) defined as

g(xi) =

{
0 xi ≤ 3,

µ (xi − 3) xi > 3,
(5)

introduces the nonlinearity in the system that leads to a chaotic
behavior. The parameter values are α1 = 500, α2 = 200,
α3 = 10000, β = 10, Γ = 20, γ = 50, δ = 10.0402,
ψ = 20 and µ = 15. The parameter σ is the coupling strength,
which can be adjusted. For a detailed study of this dynamical
system, whose attractor is sketched in Fig. 2, see Refs. [14–
16]. Concerning the initial topologies of the networks, we
next report results obtained with scale-free networks, as this
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is a very relevant case from an experimental point of view.
The network size considered is N = 200.

Experimental results and a comparison with MSF predictions

We capture the dynamics of the x(t) variable of each circuit
and compute the overall synchronization error in the network,
〈e〉 =

∑
i,j Dxixj/N

2, where Dxixj = 〈|xi(t)− xj(t)|〉 and
the angular brackets stand for a time averaging. Times series
have a length of 50000 points after a transient of 5000 is disre-
garded. The synchronization error 〈e〉 is shown in Fig. 3 (a),
where points corresponding to six different dynamical realiza-
tions of the same MSN are shown, and the continuous line is
the average. If we focus on the lower values of e to study when
the system is the closest to complete synchronization, we can
see that the system is synchronized from, roughly, σ = 0.40
to σ = 2.40. The fact that the system becomes unsynchro-
nizable for low and high values of σ indicates that the Rössler
system coupled through the x variable is a class III system.
This fact is confirmed when the MSF corresponding to Eq. 4
is calculated numerically, as shown in Fig. 3 (b). This cal-
culation is performed by linearizing the equations of motion
according to the reasoning described in [7]. The calculation
of the maximum Lyapunov exponent, which is based on the
time evolution of a vector in the tangent space that is periodi-
cally renormalized, follows the method proposed in [17]. The
justification for the use of such a method to calculate the Lya-
punov exponent of a piecewise-linear system representing the
macroscopic behavior of electronic systems, such as the one
given by Eq. 4, is provided in [18].

Since the MSN has λ2 = · · · = λN = 1, one can identify ν
with σ. We can see that while the second zero ν2 = 2.337 is
close to the upper boundary of the synchronization region in
the experimental results of Fig. 3 (a), the first zero ν1 = 0.137
is significantly smaller than the lower boundary in relative
terms. To further investigate this discrepancy we have ob-
tained the subgraph synchronization error 〈e〉sub around the
values of ν1 and ν2, computed as the synchronization error
within the subgraph given by a node and the next M nodes in
increasing order as given by the node labelling. Fig. 4 (a) and
(b) show the values of 〈e〉sub as a function of the subgraph size
M and the coupling strengths surrounding the corresponding
values of ν1 and ν2. We can observe how at the boundaries of
the synchronization region, 〈e〉sub increases with M , which
indicates that the experimental error is propagating through
the network.

We conclude that the system size dependence of the syn-
chronization region that is found experimentally can be at-
tributed to the accumulation of synchronization error across
the network layers. While one could be tempted to attribute
this effects to the 12-bit resolution of the analog-to-digital ac-
quisition card (ADC) combined with a sampling of 100 kS/s
(kilosamples per second), which leads to truncation errors
which are amplified due to the chaotic dynamics of the sys-
tem, or to drifts in the electronic component properties that

FIG. 3. Synchronization error and MSF of the system. (a) Syn-
chronization error 〈e〉 of experimental MSN for 6 different realiza-
tions (black dots) and the average across realizations (red continuous
line). (b) Numerically obtained MSF for the system described in Eq.
4. Dashed lines indicate the values of ν1 = 0.137 and ν2 = 2.337.

FIG. 4. Subgraph synchronization error 〈e〉sub around the values
of ν1 and ν2. (a) Subgraph synchronization error 〈e〉sub around the
first zero ν1 = 0.137 of the MSF for different subgraph sizes M . (b)
The same as in (a) but around the second zero ν2 = 2.337.
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make the nodes effectively more different as time goes by, in-
deed these experimental uncertainties are not at the origin of
these effects. The fact that the synchronization error propa-
gates in a very similar way in numerical data (not shown here)
obtained from the numerical integration of the system with
a Runge-Kutta algorithm (where resolution errors are much
smaller), indicates that this propagation exists also in the ab-
sence of those experimental issues. Moreover, the pattern of
the synchronization error propagation is clear enough (both in
the numerical and the experimental results) to suggest a quite
compelling dynamical origin, as we now explain.

Figure 5 (a), (b) and (c) illustrates the propagation of the er-
ror by plotting the pairwise error between all pairs of nodes for
different values of σ: from values lower than ν1 to higher val-
ues, moving across the synchronization region. The synchro-
nization error of these maps is normalized by the maximum
achieved at any element of the matrix to facilitate comparisons
between them. While in the completely asynchronous regime
the propagation of the error does not have any significant ef-
fect, it is clear that within and around the synchronized regime
the effect is quite visible, since nodes that are topologically
further apart have a significantly larger synchronization error
between them. In panel (d), the average synchronization error
between node 1 and the nodes that are at a given topological
distance from it (its first neighbors being separated a distance
1, its second neighbors a distance 2,...) is reported, which
further confirms this finding, as do numerical results, where
a similar increase in the error as a function of the topologi-
cal distance is observed in almost synchronous states (while
perfectly synchronous states, which cannot exist in the exper-
iment, simply show zero error for all topological distances).
All this points to a dynamical origin of the propagation of er-
rors. Close to the synchronization region, or even within it in
an experimental realization (where perfect synchronization is
never achieved), as node 1 tries to impose its state upon its
first neighbors, it fails to do so, leaving its first neighbors in
a nearby dynamical state. The same thing happens between
these nodes and those neighbors to which they are linked, and
therefore the discrepancies with respect to the state of node 1
(or any other reference node) are only expected to increase as
one moves across the network layers to more distant nodes. In
short, our results suggest that near the perfectly synchronized
state, topologically close nodes are more synchronized than
distant nodes by the unidirectional coupling structure of the
MSN tree.

TOPOLOGICALLY PERTURBED MAXIMALLY
SYNCHRONIZABLE NETWORK

So far we have been dealing with ideal MSN topologies,
where R = 1 holds exactly (within the small experimental
errors because the electrical components have a 5% tolerance,
the temperature is not a constant, and the recording equipment
has a finite precision due to the analog-digital conversion).
Nevertheless, in experimental realizations, or real technolog-

FIG. 5. Pairwise synchronization error for different coupling
strengths. Pairwise synchronization matrices for (a) σ = 0.0455,
(b) σ = 0.1364, (c) σ = 1.1818. The values of the coupling strength
σ in (c) fall within the synchronization region. In these cases, the col-
ored maps show the formation of clusters, as indicated by the rise of
the pairwise error with increasing distance between the nodes. When
the dynamics is not synchronous, (a), the effect of the error accumu-
lation is negligible. In all cases the matrices have been normalized
by its largest element. In panel (d) we show the average pairwise
synchronization error between node 1 and its first, second, third...
neighbors for the several σ values (including those shown in the other
panels). The propagation is monotonically increasing in and close to
the synchronization region.

ical networks, noise is always at play and one cannot expect
such idealized model to reflect realistic conditions in less care-
fully controlled environments. Not only is the intrinsic dy-
namical noise of the system present, but also deviations from
the optimal topology can be expected (i.e., link weights could
be affected by perturbations). In this section we propose some
theoretical estimates about effect of topological noise on syn-
chronizability in the first subsection, and then, in the second
subsection, validate these predictions experimentally. More-
over, as frequently a very detailed knowledge of the topology
may not be readily available, or may be extremely cumber-
some to deal with if the network is very large, we favor an
approach to the study of this issue based on a very limited
knowledge of the system topology.

Estimating the effect of topological noise on network
synchronizability

Let us assume the link weights in the MSN are uniformly
perturbed with additive noise. The perturbation that affects the
link between nodes i and j (assuming i and j are connected)
is denoted ε(i,j). The Laplacian matrix of a generic perturbed
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MSN is therefore

L′ =


0 0 · · · 0
−1− ε(2,1) 1 + ε2 · · · 0
−1/kin3 − ε(3,1)(0) −1/kin3 − ε(3,2)(0) · · · 0
...

...
. . .

...
−1/kinN − ε(N,1)(0) −1/kinN − ε(N,2)(0) · · · 1 + εN


(6)

where εi ≡
∑
j<i ε(i,j) considering ε(i,j) = 0 for uncon-

nected i and j, and ε2 = ε2,1. The Laplacian spectrum is
given by diag(L′) = {0, 1 + ε2, 1 + ε3, . . . , 1 + εN}. For a
given perturbed topology (i.e., for a given realization of ε(i,j)
for all i and j), we define εmax = max{ε2, ε3, · · · , εN}, and
εmin analogously. The perturbed graph eigenvalues that affect
the synchronizability properties of the system are therefore
λpert

2 = 1 + εmin and λpert
N = 1 + εmax.

In order to be able to make some concrete predictions, one
has to assume a particular distribution for the noise terms.
Let us make the reasonable assumption that ε(i,j) for all i
and j are independent and identically distributed Gaussian
random variables of zero mean and standard deviation Σ,
which we denote G(0,Σ) (our predictions can be, in princi-
ple, adapted to other probability densities). Here, Σ plays the
role of the topological noise strength. From the well-known
properties of the sums of Gaussian random variables, εi for
i = 0, · · · , N − 1 are therefore random variables distributed
according to G(0,

√
kiΣ). We assume the only knowledge on

the topology we have access to is a suitably defined typical
degree ktyp of the network. In regular random graphs such
as Erdös-Rényi graphs, it makes sense to consider the mean
degree, ktyp ∼ 〈k〉; however, in scale-free networks where
〈k〉 may be so much affected by the very large connectiv-
ity of some of the hubs, the median of the degree distribu-
tion may be a better choice ktyp ∼ k̃. This very rudimen-
tary knowledge can prove quite useful in giving estimates to
the effect of noise, if one has also some information about
the noise strength. A typical node is perturbed by a noise
ε̄ distributed according to G(0,

√
ktypΣ), and we define the

probability to obtain a value of ε̄ that is larger than ∆ > 0
as p∆ ≡ (1/

√
2πktypΣ)

∫∞
∆
dx exp

(
−x2/2ktypΣ2

)
. Obvi-

ously, the probability that ε̄ is smaller than −∆ is also p∆. As
the noise affecting different nodes is stochastically indepen-
dent, if p∆ ≥ 1/(N − 1) holds, we may expect to have on
average at least one node with noise intensity equal or greater
than ∆ in absolute value.

The procedure we propose consists in inverting the previous
chain of reasoning. For a network of sizeN and typical degree
ktyp, one first obtains the value ∆ > 0 such that the inequality
above is exactly satisfied as an equality, pδ = 1/(N − 1).
We denote this value as δ, while pδ denotes the probability
that a random variable distributed according to G(0,

√
ktypε)

takes on values larger than δ. We expect that there will be on
average one node in the network that is affected by a noise
term greater than δ and also another one that is affected by
a noise term smaller than −δ. Thus, we expect εmax ' δ and
εmin ' −δ, and therefore λpert

2 ' 1−δ and λpert
N ' 1+δ. Given

the simplicity of the approximation, which is based only on
knowledge of N , ktyp and ε, one cannot expect the estimates
that result from it to be very precise. Nevertheless, we will
see in the next subsection that it usefully predicts the effect
of topological noise on the network synchronizability quite
satisfactorily.

Experimental observation of the effect of topological noise on
network synchronizability

One has to consider that when a relatively weak noisy sig-
nal is injected to an electronic system in a controlled fashion to
study its effects, the precise noise strength existing in the sys-
tem is hard to determine, due to the intrinsic (dynamical) noise
present in electronic circuitry and other experimental equip-
ment that somehow add up to the noisy signal. A similar re-
mark can be made about topological noise. The experimental
study of the effects of topological noise on the synchronizabil-
ity was designed with N = 50 piecewise Rössler oscillators
coupled through a MSN scheme obtained from a scale-free
network following the procedure described above (see Fig 1).
We average 20 independent realizations for coupling strengths
around the area of the first zero ν1 of the MSF. Two Gaussian
noise strengths are considered, Σ = 0.015 and 0.030, together
with the case without topological noise (Σ = 0.000).

As we can observe in Fig. 6, the onset of synchronization
is seen to occur for larger σ as the noise strength is increased,
as one would expect by the fact that the smallest eigenvalue
is expected to decrease with respect to the MSN case (see the
explanation above). Moreover estimates of the effect of noise
on the onset of synchronization based on the previous reason-
ing were also obtained (using the median of the degree distri-
bution k̃ as the only topological information, which plays the
role of ktyp), showing that indeed the method outlined above is
useful in predicting the effects of topological perturbations on
the network synchronizability. In the experiment, it is difficult
to establish a well-defined onset of synchronization, as com-
plete synchronization is never perfectly reached, and the level
of synchronization achieved for any σ is dependent on Σ. We
consider the synchronization threshold to be 〈e〉 = 0.1, which
indicated with a black vertical dashed line for Σ = 0. The as-
sociated increase in the coupling strength σ that is needed to
reach the first zero of the MSF (considering σ = ν1/(1− δ))
is 4% (for Σ = 0.015) and 8.4% (for Σ = 0.030). These
estimates are indicated with vertical lines in Fig. 6

CONCLUSIONS

In summary, we have presented a strategy applicable to
a generic connected and undirected network, which trans-
form it into its directed, maximally synchronizable, config-
uration. Our approach, indeed, allows tuning the directions
and weights of the links of any given network, so as to reach
the lowest possible eigenratio λN/λ2, which guarantees on
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FIG. 6. Synchronization error around the first MSF zero for dif-
ferent topological noise strengths. Experimental study of the syn-
chronization error for Σ = 0.000, 0.015, 0.030 with N = 50. The
results here reported are averages of 20 independent realizations. In-
set: same results for the full coupling range that has been experimen-
tally explored (σ ∈ [0, 0.2]).

its turn maintenance of the stability of the synchronous state
across the longest possible range of coupling strengths in class
III systems.

Far from constituting a merely theoretical proposition, we
have proved the feasibility, effectiveness and robustness of the
method by means of an experiment with chaotic electronic
oscillators, this way validating the technique also in the case
of non perfectly identical systems. Furthermore, our experi-
ment allowed to monitor the propagation of the synchroniza-
tion error throughout the network, as the system approaches
the synchronization boundaries, as well as to analyze the ef-
fects of deviations from the optimal topology (the maximally
synchronizable configuration) elucidating the crucial inter-
play between topological noise and the coupling strength of
the whole network.

Our results are therefore useful as a guide for implementa-
tion of the method in other networked dynamical systems, as
well as for engineering topologies of specific subgraphs of a
larger network wherein one would desire synchronization dy-
namics to be supported and kept across a large variability of
global parameters, such as the coupling strength.
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APPENDIX - ELECTRONIC IMPLEMENTATION OF AN
ACYCLIC COMPLEX NETWORK

The experimental design is similar to that reported in
[13]. It consists of an electronic array, a card of acquisi-
tion/generation data, and a computer, as shown in Fig. 2. The
whole experimental process is controlled from a virtual inter-
face developed in Labview 2012, which can be considered as a
state machine adapted to the study of complex networks with
unidirectional fixed topology. As a first step, it is necessary
to load the desired network topology so that the interface can
define the links connecting the nodes. Then, the time series of
all variables of an isolated Rössler oscillator circuit (σ = 0)
is recorded via an analogue-digital converter (ADC), with a
sampling rate of 100 kS/s (kilosamples per second) and a 12
-bit resolution. This circuit is called node 1. Once the time se-
ries of the three variables of the system (x,y and z, as shown
in Eq. 4) have been stored, they are converted into electrical
signals through a digital-analogue converter (DAC) and sub-
sequently reinjected to the electronic circuit, which is called
node 2, via a coupler circuit (XDCP) and the response of the
circuit is stored. Note that node 1 and node 2 are, in fact,
the same electronic circuit, but the inputs and outputs of both
systems are different. Thus, by using just one oscillator, the
coupling is effectively made between a pair of nodes through
the ADC and we obtain the dynamics of nodes 1 and 2 in the
network. For the rest of the neighbors of node 1 (if they exist),
the process is repeated as for node 2. Next, the same proce-
dure is applied for the second neighbors, third neighbors, etc.
The variables of all nodes of the network are stored in the
computer since, in principle, they could be use as input sig-
nals of subsequent nodes. The only requirements are, first,
that the network must be acyclic and, second, that the output
of a node must be injected into a node with higher number-
ing, both conditions fulfilled by the MSN. Importantly, the
interface digitally performs the sum of the different signals
entering a given node, after multiplying each of these by the
appropriate link weight (Wij) and network strength (σ) ac-
cording to the connectivity matrix previously defined. It is
worth mentioning that the coupling circuit has a digital control
stage, which allows changing the coupling between nodes au-
tonomously, thus conducting experiments with networks with
a large number of elements is possible and only limited by the
storage capacity on the hard drive of the computer.
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