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Abstract Radial basis functions (RBFs) have become a popular method for the solution of partial differential
equations. In this paper we analyze the applicability of both the global and the local versions of the method for
elastostatic problems. We use multiquadrics as RBFs and describe how to select an optimal value of the shape
parameter to minimize approximation errors. The selection of the optimal shape parameter is based on analytical
approximations to the local error using either the same shape parameter at all nodes or a node-dependent shape
parameter. We show through several examples using both equispaced and nonequispaced nodes that significant
gains in accuracy result from a proper selection of the shape parameter.

Keywords Meshless · Radial basis function (RBF) · RBF–FD · Shape parameter

1 Introduction

The finite-element method (FEM) has become the standard method to numerically solve solid mechanics problems.
It is very well suited for problems with irregular geometries that are solved using unstructured grids. However, in
recent years considerable efforts have been devoted to meshless methods that operate with nodes instead of meshes.
Their main advantage is that no mesh generation is required, thereby eliminating one of the most complex steps in
the solution procedure. Meshless methods are especially well suited for problems with large deformations, moving
discontinuities, or problems that require frequent remeshing.

Radial basis functions (RBFs) are a very successful meshless method that is based on a global interpolation
using translated RBFs. It was first used as an efficient technique for interpolation of multidimensional scattered data
(see [1, Chaps. 1 and 2] and references therein), and later it became popular as a truly mesh-free method for the
solution of partial differential equations (PDEs) on irregular domains [2,3]. To overcome some of the drawbacks
of this global RBF method, a local RBF method was independently proposed by several authors [4–6]. In this case,
the approximation is local, so that it is carried out within a small domain of influence instead of a global one. As a
consequence, the resulting linear system is sparse, overcoming the ill-conditioning often associated with the global
method, at the cost of losing its spectral accuracy.
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Zhang et al. [7] were the first authors to investigate the capabilities of the global RBF method for the solution of
elasticity problems. They considered both globally supported RBFs, such as multiquadrics and thin-plate splines,
and compactly supported RBFs, such as Wendland’s functions [8]. Later, Tolstykh and Shirobokov [5] applied the
local RBF method to the same elasticity problems analyzed in [7] (cantilever beam, plate with a circular hole).
Both the global [7] and local [5] approaches are based on the strong formulation of the linear elasticity equations.
A third alternative use of RBFs for elasticity problems was proposed by Liu and coworkers [9,10]. It combines the
Galerkin weak form and RBFs to form a radial point interpolation method (RPIM). Its performance was analyzed
by solving problems involving cantilever beam and a plate with a circular hole.

In recent years, the RBF method has been successfully used to solve a large variety of solid mechanics problems
using the global method [11–17], the local method [18–20], or RPIM [21,22]. In most of these works, multiquadrics
were used as RBF, and it is well known that accuracy is strongly dependent on the value of the shape parameter. In
the case of the local RBFmethod, we recently proposed an efficient procedure to compute both the optimal constant
shape parameter [23] (the same for all nodes) and the optimal variable one [24] (a different shape parameter at each
node). The objective of this work is to apply these procedures to elasticity problems and show how the accuracy
can be significantly increased by efficiently tuning the values of shape parameters.

The paper is organized as follows: in Sect. 2 we describe the formulation of the global and local RBF method
for the solution of plane stress problems. In Sect. 3 we apply these methods to the solution of Timoshenko’s beam
problem and to the problem of an infinite plate with a circular hole. These problems are solved both with structured
and unstructured nodes using either a constant or a variable shape parameter.

2 Formulation

In the case of plane stress problems, the equations of elasticity, written in terms of displacements are,
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These equations must be solved with appropriate boundary conditions. Once these equations are solved for the
displacements, the corresponding stresses can be obtained through
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2.1 Global RBF method

In the global RBF method [2,3] we look for an approximate solution in the space spanned by a set of translated
RBFs. Thus,

u(x) =
N∑

k=1

akφk(rk(x), cu), (3a)

v(x) =
N∑

k=1

bkφk(rk(x), cv), (3b)
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where rk(x) = ||x − xk || is the distance to the RBF center, || · || is the Euclidean norm, xk is a set of N RBF centers,
and φk(rk(x), c) is an RBF function centered at xk . The unknown coefficients, ak and bk , are the coordinates of the
approximate solution in the functional space spanned by the RBFs.

A large variety of functions can be used as RBFs. In the rest of the paper we will use Hardy’s multiquadric [25],

φk(||x − xk ||, c) =
√

(x − xk)2 + (y − yk)2 + c2, (4)

where c is the shape parameter,which has an important effect in the shape of theRBF.As c increases, themultiquadric
becomes flatter, and it is well known that the accuracy of the solution increases exponentially with increasing c
until a minimum error is reached for a certain optimal value of c.

The unknown coefficients, ak, bk, are computed by collocation of Eq. (1) at a set of interior nodes and collocation
of the boundary conditions at boundary nodes. For conveniencewewill use the same set ofRBFcenters as collocation
nodes. Let us define a vector z of length 2N containing the unknowns

{
zk = ak,

zk+N = bk,
k = 1, . . . , N ,

and a vector f containing the forcing terms such that

{
fk = fx (xk),

fk+N = fy(xk),
k = 1, . . . , N .

Substituting Eqs. (3a)–(3b) into Eq. (1) leads to the following linear system:

Az = f, (5)

where the elements of matrix A corresponding to an interior node k are, for i = 1, . . . , N ,
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For boundary collocation nodes the elements of matrix A depend on the boundary condition. For instance, in the
case of Dirichlet boundary conditions,

Ak, i = φk(||xi − xk ||, cu), fk = ue(xk),

and

Ak+N , i+N = φk(||xi − xk ||, cv), fk+N = ve(xk).

Solution of Eq. (5) yields the vector z and, therefore, the coefficients ak and bk of Eqs. (3a) and (3b), which
are used to compute the horizontal and vertical displacements u and v, respectively. In addition, the stresses are
computed from (2a)–(2c) with
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2.2 Local RBF method

In the local RBFmethod (also known as the RBF finite differencemethod, RBF–FD)we approximate the differential
operator L[·] at a node x = x j by a linear combination of the values of the unknown functionw at n scattered nodes
surrounding x j , which constitute its stencil. Thus,

L[w(x j )] ≈
n∑

i=1

α j iw(xi ), (7)

where α j i are the weighting coefficients. In standard finite differences (FDs), these coefficients are computed using
polynomial interpolation. In the RBF–FD formulation, they are computed using interpolation with RBFs. Thus,

w(x) =
n∑

i=1

λi φ(ri (x), c). (8)

Substituting (8) into (7) we can determine the unknown weighting coefficients α j i by solving the system of linear
equations

L[φ(rk(x j ), c)] =
n∑

i=1

α j iφ(rk(xi ), c), k = 1, . . . , n. (9)

Thus, the coefficients α j i depend on the distances from x j to the other nodes in the stencil and on the shape
parameter c.

Consider, for instance, the second derivative of horizontal displacement with respect to x, uxx , appearing in
Eq. (1). With the local RBF method this derivative at x j is approximated by

∂2u

∂x2
(x j ) ≈

n∑
i=1

α j i u(xi ), (10)

where the coefficients α j i are computed by solving the linear system

B j ᾱ j = q j . (11)

B j is an n × n matrix whose element in row i column k is given by φi (ri (xk ), cuxx  ), and q j is a vector whose 
i component is ∂2φi (ri (x j ), cuxx  )/∂x2. The coefficients to approximate u yy, uxy, vxx  , vyy , and vxy  are similarly 
computed. Note that in principle six shape parameters must be chosen (cuxx  , cuyy, cuxy, cvxx  , cvyy, cvxy).
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3 Numerical examples

3.1 Cantilever beam

As a first example we consider a cantilever beam of thickness D, length L , and unit width, which is fully fixed to a
support at x = 0 and carries an end load P . We use a coordinate system with the y-axis centered at the midplane of
the beam. Thus, the upper and lower surfaces of the beam are located at y = ±D/2. The analytic solution of this
problem is given by Timoshenko and Goodier [26, Chap. 3] as

ue = − P
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2

) [
(6L − 3x)x + (2 + ν)

(
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)]
, (12a)
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4
+ (3L − x)x2

]
, (12b)

where E isYoung’smodulus, ν is Poisson’s ratio, and I is the secondmoment of area of the cross section (I = D3/12
for a narrow rectangular beam of unit width). The stresses corresponding to the preceding displacements are

σxx = − P(L − x)

I

(
y − D

2

)
, (13a)

σyy = 0, (13b)

τxy = − P

2I

(
y2 − Dy

)
. (13c)

This problem has been widely used to demonstrate the capabilities of adaptive procedures in FEMs, meshless meth-
ods, and other numerical techniques. In many cases, however, the boundary conditions necessary to match the exact
solution are not used, and therefore conclusions based on errors computed using those solutions are questionable.
This fact was recently pointed out by Augarde and Deeks [27]. These authors remark that the displacements given
in Eqs. (12a) and (12b) are an exact solution of the plane stress equations only if the load is distributed parabolically
[as in Eq. (13c)] and if essential boundary conditions are applied at x = 0 according to Eqs. (12a) and (12b).

To be specific, let us consider the displacements of a beam of length L = 12, width D = 2, Young’s modulus
E = 1,000, and Poisson ratio ν = 0.3, to which a vertical force P = 10 per unit length is applied at its free end.
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Fig. 1 Exact solution of cantilever beam (12a), (12b) for the case L = 12, D = 2, E = 1,000, ν = 0.3. a horizontal displacement u.
b Vertical displacement v
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(a) (b)

Fig. 2 x stress in the case L = 12, D = 2, E = 1,000, ν = 0.3. a σxx (13a) distribution for exact solution. b σxx distribution for
boundary conditions u = v = 0 at x = 0 and P ′ = 5 per unit length at x = L

(a) (b)

Fig. 3 Shear stress in the case L = 12, D = 2, E = 1,000, ν = 0.3. a τxy (13c) distribution for exact solution. b Shear stress τxy
distribution for boundary conditions u = v = 0 at x = 0 and P ′ = 5 per unit length at x = L

The solution given by Eqs. (12a) and (12b) is shown in Fig. 1. According to [27], this is the exact solution of
the problem with free boundary conditions at y = 0 and y = D, Dirichlet boundary conditions at x = 0 given by
(12a)–(12b), and parabolic load at y = L:

P ′ = −6P

D3 (y2 − Dy),

D∫

0

P ′dy = P.

However, the Timoshenko beam problem is often solved with other boundary conditions. For instance, a common 
boundary condition used is full fixity at the support and uniform load P at the vertical surface at x = L . The solution 
in terms of displacements with these boundary conditions is very similar to the solution shown in Fig. 1. However, 
the solution in terms of stresses is quite different, as can be observed in Figs. 2 and 3. These results were obtained 
using FEMs with a mesh of 6,985 nodes and 13,568 triangular elements. Figure 2 compares the distribution of σxx  
of the exact solution (13c) (left part) with the corresponding distribution of σxx  for the problem with fully fixed 
boundary conditions at x = 0 (u = v = 0) and uniform load P ′ = 5 per unit length at x = L (right part). Notice 
that both solutions are quite similar except near x = 0, where they differ significantly due to stress concentrations 
near the borders.

The results for shear stress in Fig. 3 show even greater differences. Notice that the shear stress distribution 
exhibits singularities at the top and bottom corners that lead to significant differences with the Timoshenko beam 
solution [Eqs. (13a)–(13c)] throughout the beam.



Optimal shape parameter 121

0

4

8

12

0

0.5

1

1.5

2
−2

−1

0

1

2

x 10
−3

xy 0

4

8

12

0

0.5

1

1.5

2
−2

−1

0

1

2

x 10
−3

xy

(a) (b)

Fig. 4 Error of FEM solution with 132 nodes and 212 elements. a Error distribution for horizontal displacement Ēu . b Error distribution
for vertical displacement Ēv

Other boundary conditions frequently used for the Timoshenko beam problem are as follows:

A. u = v = 0 at x = 0 and P ′ = 5 per unit length at x = L (Figs. 2 and 3).
B. u and v given by Eqs. (12a) and (12b) at x = 0 and P ′ = − (6 P)/D3) (y2 − D y) at x = L .

Only boundary conditions B produce exactly the solution in Eqs. (12a) and (12b). In the rest of the paper we will use
Dirichlet boundary conditions given by (12a) and (12b) in all boundaries of the beam x = 0, x = L , y = 0, y = D,
and in this way we will be able to use the exact solution for displacements (12a) and (12b) and stresses (13a)–(13c)
when computing numerical errors with the proposed RBF methods.

3.1.1 FEM solution

For comparison purposes, we will first compute the solution using FEMs on a mesh of 132 nodes and 212 elements.
We denote the solution in horizontal and vertical displacements as uFEM and vFEM and the corresponding errors as

Ēu = uFEM − ue and Ēv = vFEM − ve.

Figure 4 shows the error in the horizontal and vertical displacements (Ēu and Ēv) resulting from solving the
Timoshenko beam problem with Dirichlet boundary conditions using a FEM. The infinity norm of the error in u
is ||Ēu ||∞ = 2.544 × 10−3 and the Euclidean norm is ||Ēu ||2 = 5.147 × 10−3. The corresponding values for the
vertical displacements are ||Ēu ||∞ = 2.881 × 10−3 and ||Ēu ||2 = 6.931 × 10−3.

3.1.2 Global RBF solution

We can compute the solution with the global RBF method using as RBF centers exactly the same nodes of the FEM
mesh. For convenience we will use the same value of the shape parameter both for horizontal, u, and vertical, v,
displacements (cu = cv = c). We will use the following measure of error:

Eu = u − ue and Ev = v − ve,

so that

E = ||Eu ||∞ + ||Ev||∞. (14)

Figure 5 shows the sum of the infinity norms of the errors in horizontal and vertical displacements of the global
RBF solution as a function of the shape parameter c. The solid line shows the results obtained with the same
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Fig. 5 Error of global RBF
solution, E , as a function of
the shape parameter c.
Solid: N = 132
nonequispaced RBF centers;
dashed: N = 19 × 7 = 133
equispaced nodes
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Fig. 6 Error of global RBF solution for cu = cv = 6 and  N = 132 RBF centers. a Error distribution for horizontal displacement Eu . 
b Error distribution for vertical displacement Ev

N = 132 unequally spaced nodes used in the FEM solution, and the dashed line shows the results obtained on 
an equally spaced mesh of N = 19 × 7 = 133 equally spaced nodes. Notice that both curves exhibit exponential 
convergence of the error with increasing c. Also notice that for shape parameter values larger than approximately 
6 the resulting matrix becomes ill-conditioned, and convergence is no longer a smooth function. It should be 
pointed out that for the same number of nodes the global RBF solution is significantly more accurate than the FEM 
solution. For instance, the results for a value of the shape parameter c = 6 are shown in Fig. 6. Notice that there 
is approximately three-order-of-magnitude increase in accuracy if one compares Fig. 6 to the error of the FEM 
solution shown in Fig. 4. In fact, the infinity norm of the error in u is ||Eu ||∞ = 1.868 × 10−5 and the Euclidean 
norm is ||Eu ||2 = 6.348 × 10−5. The infinity norm of the error in v is ||Ev||∞ = 2.872 × 10−6 and the Euclidean 
norm is ||Ev||2 = 1.027 × 10−5. However, it should be pointed out that the linear system that must be solved in 
order to compute the numerical solution with the global RBF method is dense, whereas in the case of the FEM it 
is sparse. Thus, for the same number of nodes, the computational cost of the global RBF method is higher than the 
computational cost of the FEM.
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Fig. 7 Error of RBF local
solution, E, as a function of
c. Equispaced grid of
N = 19 × 7 = 133 nodes
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3.1.3 Local RBF solution

To compute the solution with the RBF local method we have to select a set of N nodes and for each node a stencil
of n surrounding nodes. For convenience we will use a grid of equispaced nodes and, for each node (xi , yi ) a
stencil of three adjacent nodes (xi , yi ), (xi − 	x, yi ), (xi + 	x, yi ) in the horizontal direction to approximate
∂xx , three nodes in the vertical direction (xi , yi ), (xi , yi − 	y), (xi , yi + 	y) to approximate ∂yy, and five nodes
(xi , yi ), (xi − 	x, yi − 	y), (xi + 	x, yi − 	y), (xi + 	x, yi + 	y), (xi − 	x, yi + 	y) to approximate ∂xy .

Figure 7 shows the error as a function of the shape parameter for a grid of N = 19 × 7 = 133 equispaced
nodes. In this case we have taken the shape parameters for all the derivatives appearing in (1) as being equal
(cuxx = cuyy = cuxy = cvxx = cvyy = cvxy = c). Notice that the exponential convergence of the global method
has been lost and that the error E of the localmethod decreases as c−2. This behavior should be expected according to
the formulas for the error of the RBF local method derived in [28]. In fact, the formula for the error in approximating
the second derivative with respect to x using three equispaced nodes (see Eq. 14 in [28]) is

ε3(uxx ) = (	x)2

12

∂4u

∂x4
+ (	x)4

c2
∂2u

∂x2
− 3 (	x)2

4 c4
u + · · · .

Similarly,

ε3(uyy) = (	y)2

12

∂4u

∂y4
+ (	y)4

c2
∂2u

∂y2
− 3(	y)2

4c4
u + · · · .

Because the solutions for u and v of the Timoshenko beam problem [Eqs. (12a) and (12b)] are polynomials of third
degree, uxxxx , uyyyy, vxxxx , and vyyyy are zero. Thus, the errors in approximating the second derivatives of u and
v approach zero as c approaches infinity. In fact, it is well known that RBF–FD formulas approach standard FDs
when c → ∞. Therefore, for this particular problem standard FDs yield the exact solution of the problem, and the
RBF–FD error approaches zero as c → ∞ (E ≈ O(c−2)).

3.2 Plate with a hole

Let us consider the problem of an infinite plate with a hole of radius a loaded by a traction σ0 at infinity in the x
direction [26, p. 76]. This problem has been used often as a test case to assess the accuracy of different meshless
methods [5,7,29]. In Cartesian coordinates the exact solution can be written as

ue = σ0a

8G

[
x

a
(κ + 1) + 2a(1 + κ)

x

x2 + y2
+ 2a

x3 − 3xy2

(x2 + y2)2

(
1 − a2

x2 + y2

)]
, (15a)

ve = σ0a

8G

[
y

a
(κ − 3) + 2a(1 − κ)

y

x2 + y2
+ 2a

3yx2 − y3

(x2 + y2)2

(
1 − a2

x2 + y2

)]
, (15b)
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Fig. 8 RBF global solution for the case N = 174, cu = cv = 2. a Horizontal displacement u. b Vertical displacement v
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2 (1 + ν)
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The corresponding stresses are
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2
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3.2.1 Global RBF solution

We solve the problem with σ0 = 1, E = 1,000, Lx = 4, L y = 4, a = 1, ν  = 0.3 and Dirichlet boundary 
conditions. We use a set of 174 RBF centers that coincide with the nodes of a triangular mesh used to compute the 
solution with the FEM. Figure 8 shows the RBF numerical solution for horizontal (Fig. 8a) and vertical (Fig. 8b) 
displacements using cu = cv = 2. Also shown are the nodes used as RBF centers.

Figure 9 shows the error (14) of the global RBF solution as a function of the shape parameter (cu = cv = c) for  
two different sets of RBF centers. In the case N = 633, the error exhibits exponential convergence until a value 
of c ≈ 1.6 is reached for which the matrix becomes ill-conditioned and roundoff errors deteriorate the accuracy 
of the solution. The exponential convergence can also be observed in the case N = 174. However, in this case, 
ill-conditioning occurs for values of the shape parameter larger than those shown in the figure.

It is also possible to use a minimization routine (we used the fminsearch function in MATLAB) to find 
values of cu and cv that minimize the error. For the coarser grid (N = 174) the error E is at a minimum for 
cu = 2.8803, cv = 1.5480 (||Eu ||∞ = 1.72 × 10−5, ||Ev||∞ = 1.26 × 10−5). For the finer grid (N = 653) the 
error is at a minimum for cu = 1.6364, cv = 1.4401 (||Eu ||∞ = 1.21 × 10−6, ||Ev||∞ = 9.10 × 10−7).
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Fig. 9 Error (14) as a function of shape parameter c. Solid line:
N = 174 RBF centers; dashed line: N = 653 RBF centers

Fig. 10 Stress σxx as a function of y at left boundary (x = 0)
obtained using global RBF method. Solid line: exact solution.
Open circle: 174 RBF centers. Asterisk: 653 RBF centers

Figure 10 shows the stress σxx along the left boundary (x = 0) for two sets of RBF centers. For N = 174 RBF
centers there are significant discrepancies with the analytical solution, especially in the vicinity of the hole (y ≈ 1).
For N = 653 RBF centers the RBF solution is very accurate for all values of y.

3.2.2 Local RBF solution

The solution of the plate-with-a-hole problem [Eqs. (15a) and (15b)] is no longer a polynomial, and therefore its
solution with standard FDs is no longer exact. We will use RBF–FD formulas to compute the solution both on an
equispaced grid and on a nonequispaced grid.
Equispaced nodes For simplicity, wewill start by using an equispaced gridmade up of nodes that are in the boundary
or in the interior of the plate.We denote by N the number of such nodes in the interior or in the boundary of the plate.
To compute second derivatives, we use three node stencils, (xi , yi ), (xi −	x, yi ), (xi +	x, yi ), to approximate uxx

andvxx , andweuse (xi , yi ), (xi , yi−	y), (xi , yi+	y) to approximateuyy andvyy . To compute crossedderivatives,
we use five node stencils, (xi , yi ), (xi −	x, yi −	y), (xi −	x, yi +	y), (xi +	x, yi −	y) (xi +	x, yi +	y),
to approximate uxy and vxy . We consider as interior nodes those whose six neighbors belong to the set of nodes and
as boundary nodes those that have at least one neighbor that does not belong to the set of nodes. At interior nodes
we apply the RBF–FD formulation, and at boundary nodes we apply Dirichlet boundary conditions given by (15a)
and (15b).

Figure 11 shows the error as a function of the shape parameter for three different grids: 21×21 (N = 419), 31×31
(N = 909), and 41 × 41 (N = 1,595). In all cases the error increases for very small values of c, then decreases
exponentially with increasing c, and approaches a constant for larger values of c. This constant corresponds to the
error resulting from standard FD.

In a recent paper [28] we showed that frequently there is an optimal value of the shape parameter such that
the local approximation error resulting from RBF–FD formulas is at a minimum. We also showed [23,24] that
using at each node the corresponding optimal shape parameter may lead to very significant improvements in
accuracy. In what follows, we will apply this technique to compute accurate solutions of the plate-with-a-hole
problem.
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Fig. 11 Error (14) as a
function of shape parameter
c with local method. Solid
line: 21 × 21 (N = 419)
nodes; dashed line: 31 × 31
(N = 909); dotted line:
41 × 41 (N = 1,595); long
horizontal lines: error (14)
using the optimal,
node-dependent shape
parameter: short horizontal
lines: Error (14) using
generalized multiquadrics
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For simplicity of the resulting formulas, we add a constant term to the RBF interpolation space [30], so that
Eq. (8) is replaced by

w(x) =
n∑

i=1

λiφ(ri (x), c) + β.

In [28] we derived an approximate equation for the local error resulting from RBF–FD formulas for second
derivatives using three equispaced nodes (see Eq. 14 in [28]]. Adding the constant term, the error formula for uxx

is modified to

ε̂3(x, y) ≈ (	x)2

12

∂4u

∂x4
+ 5

4

(	x)2

c2
∂2u

∂x2
. (16)

Therefore, the error is zero for

c∗ =
√

−15uxx

uxxxx
.

This is the optimal value that we use at each node to approximate second derivatives. Notice that if the expression
inside the square root is not positive, then there is no real value of c that makes the local approximation error null.

Analogously, for the cross derivative, the local approximation error using an equispaced five node stencil is

ε̂5 ≈ 1

6

(
∂4u

∂x3∂y
(	x)2 + ∂4u

∂x∂y3
(	y)2

)
+ 3

2c2
∂2u

∂x∂y

(
(	x)2 + (	y)2

)
. (17)

In the case 	x = 	y, the optimal shape parameter (ε̂5 ≈ 0) is

c∗ =
√

− 18uxy

uxxxy + uxyyy
. (18)

Applying these formulas with the derivatives appearing in them computed from the exact solution (15a), (15b) at  
each node of the grid, we can compute the optimal shape parameter to approximate each of the derivatives of u and 
v appearing in (1). In real applications, when the exact solution is not known, the derivatives appearing in (18) are  
estimated using the procedure described in [23,24].

Figure 12 shows the nodes for which an optimal shape parameter exists for uxx  (Fig. 12a) and uyy . These results 
correspond to the grid of 31 × 31 (N = 909) nodes. Notice that there is a large number of nodes for which no 
optimal shape parameter exists. In those nodes we use standard FD. Similar results apply to the optimal shape 
parameter corresponding to vxx  , vyy, uxy  and vxy .

Figure 13 shows the spatial distribution of the optimal shape parameter for the cross derivative of the vertical 
displacement, vxy . The results correspond to a grid of 41 × 41 (N = 1,595) nodes. At nodes where no c∗ exists,
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Fig. 14 Error (14) as a function of theshape parameter c with the
local method. Solid line: n = 174 nodes; dashed line: n = 653
nodes; thin lines: different shape parameters for each derivative

we have assigned a value c∗ = 6. For such a large value of c the RBF–FD formulas are equivalent to standard FDs.
Notice that the optimal shape parameter varies smoothly and its minimum value is 0.1810.

The error measures (14) resulting from applying the RBF–FD method with the optimal shape parameter at each
node are shown as long horizontal lines in Fig. 11 for the three grids analyzed. Notice that there are significant
accuracy improvements with respect to the results obtained with a constant shape parameter for all nodes and all
derivatives.

In Ref. [24] it was observed that the increase in accuracy resulting from the use of an optimal shape parameter
at each node strongly depended on the percentage of nodes for which the optimal shape parameter existed. Hence,
we proposed [24] the use of generalized multiquadrics to ensure that the RBF–FD local approximation error was
zero to leading order at all nodes. In fact, the generalized multiquadric

φk((||x − xk ||, c, β) =
[
(x − xk)

2 + (y − yk)
2 + c2

]β/2
(19)
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has an additional parameter β (node-dependent) that can be chosen such that an optimal value of the shape parameter
exists at every node. Implementing this procedure to the solution of problem (15a)–(15b) results in the errors shown
with a short horizontal line in Fig. 11. As expected, this procedure leads to significant improvements in accuracy. For
instance, in the case of N = 1,595 the error (14) with FD is 3.94×10−6, the error with the optimal shape parameter
using standard multiquadrics is 1.97 × 10−6, and the error with the optimal shape parameter using generalized
multiquadrics is 4.52 × 10−7. Similar improvements are observed for N = 419 and 909.
Nonequispaced nodes We can also solve the problem with the local method using nonequispaced nodes. For each
node, we select a stencil made up of the five nearest neighbors (n = 6 stencils), and for each differential operator
and each node we compute the coefficients α j i of the stencil by solving the 6× 6 linear system defined in Eq. (11).
Figure 14 shows the error (14) as a function of the shape parameter c for the grid of N = 174 nodes shown in Fig. 8
(solid line). Also shown is the error as a function of c for a grid of N = 653 nodes (dashed line) obtained by refining
the initial mesh. Notice that the error dependence with c of the nonequispaced case is similar to that observed for
the equispaced case (Fig. 11): the error decreases with increasing c and approaches a constant for large values of
c. However, the errors for the nonequispaced case are significantly smaller than those of the equispaced case. The
reason for this is that the nodes in the vicinity of the inner circle, where the errors are larger, are better distributed in
the nonequispaced case than in the case of a regular equispaced grid. Also shown (thin lines) are the errors resulting
from using a different shape parameter for each derivative. In the case N = 175, the optimal shape parameters
for uxx , uyy, vxx , vyy, uxy , and vxy are 14.2323, 1.7069, 1.4298, 1.9374, 5.3884, and 13.0723, respectively. In
the case N = 653, the corresponding values of the shape parameters are 8.6361, 1.5943, 5.0336, 1.2891, 9.9104,
and 8.1346, respectively. These values are obtained using the fminsearch function in MATLAB to minimize
the error. Notice the slight improvement in accuracy.

4 Conclusions

In this paper we described the global and local versions of the RBF method and analyze their applicability to
the solution of two standard elastostatic problems: the Timoshenko beam problem and the problem of an infinite
plate with a circular hole. The objective of our work was to show how accuracy could be significantly increased
by efficiently tuning the values of shape parameters. We used multiquadrics as RBFs both for the global and local
methods, and we described how to select an optimal value of the shape parameter to minimize approximation errors.
For the local method, the selection of the optimal shape parameter was based on analytical approximations to the
local error that we derived recently [28] using either the same shape parameter at all nodes [23] or a node-dependent
shape parameter [24]. We used both equispaced and nonequispaced nodes, and we showed that significant gains in
accuracy resulted from a proper selection of the shape parameter.
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