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Machine Learning-Based Routing and Wavelength
Assignment in Software-Defined Optical Networks

Ignacio Martı́n, Sebastian Troia, José Alberto Hernández, Alberto Rodrı́guez, Francesco Musumeci, Guido Maier,
Rodolfo Alvizu and Óscar González de Dios

Abstract—Recently, Machine Learning (ML) has attracted
the attention of both researchers and practitioners to address
several issues in the optical networking field. This trend has
been mainly driven by the huge amount of available data
(i.e., signal quality indicators, network alarms, etc.) and to
the large number of optimization parameters which feature
current optical networks (such as, modulation format, lightpath
routes, transport wavelength, etc.). In this paper, we leverage
the techniques from the ML discipline to efficiently accomplish
the Routing and Wavelength Assignment (RWA) for an input
traffic matrix in an optical WDM network. Numerical results
show that near-optimal RWA can be obtained with our approach,
while reducing computational time up to 93% in comparison
to a traditional optimization approach based on Integer Linear
Programming. Moreover, to further demonstrate the effectiveness
of our approach, we deployed the ML classifier into an ONOS-
based Software Defined Optical Network laboratory testbed,
where we evaluate the performance of the overall RWA process
in terms of computational time.

Index Terms—Optical WDM Networks; Routing and Wave-
length Assignment; Machine Learning; Deep Neural Networks;
ONOS; Software Defined Networking; Network Automation.

I. INTRODUCTION

The interest in Artificial Intelligence (AI) and, more specifi-
cally, in the area of Machine Learning (ML) has been increas-
ing rapidly in the networking community in recent years. This
is mainly due to the fact that nowadays enormous amounts of
data can be retrieved from telecommunication networks, e.g.,
provided by network telemetry, quality indicators of physical
signals, traffic traces and logs, user profiling, etc. Leveraging
the methodologies of ML, several complex networking tasks
can be performed with high accuracy and with limited or even
without any human intervention. Examples of applications of
ML to the networking area can be found in the following
surveys: [1]–[3].

Such a disruptive paradigm is expected to be applicable
to any kind of telecommunication network, regardless of its
topology, implementation or underlying technology, and may
also benefit from network automation as enabled by the Soft-
ware Defined Networking (SDN) principle [4]. After ten years
of research and development, Software-Defined Networking
(SDN) is finally becoming a reality and offers the opportunity
to re-think and build highly programmable networks.
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Thanks to SDN, global-view networked datasets comprising
forwarding, performance and configuration states can be gath-
ered and further exploited with ML/AI algorithms, offering a
new range of possibilities to continuously improve how net-
work services are provided and network resources allocated.
Indeed, some authors are foreseeing how AI in combination
with SDN will revolutionize telecommunication networks and
mark paradigm shifts to Cognitive Network Management [5] or
even Knowledge Defined Networking [6]. An extensive tutorial
on algorithms, frameworks and applications of Machine Learn-
ing and Artificial Intelligence to networking, including open
challenges and specific examples of Intelligent Networking
may be found in [7].

SDN technology lends itself perfectly to the implementation
of ML algorithms, or more specifically to intelligent algo-
rithms to speed up control actions on the network. The main
strength of this new paradigm is that different network opti-
mization algorithms can be implemented, each of which targets
a different cost function. Moreover, thanks to the centrality of
the control plane, it is possible to simultaneously train different
ML algorithms in off-line mode, i.e. without implementing
the output in the network, and only after generalizing and
testing the model, this can be deployed. This procedure can be
repeated any time the model needs to be retrained, following
the evolution of the network behavior itself. In short, SDN
enables intelligent control and configuration actions in a very
short time and represents a fundamental feature of future
telecommunication networks. Indeed, 5G and the rise of new
services (i.e. IoT, connected vehicles, Augmented and Virtual
Reality AR/VR, etc) is expected to make traffic matrices much
more dynamic than today, thus requiring frequent network
reconfiguration to better adapt the network resources to the
actual traffic needs.

In this article, we investigate how to use ML to target
the Routing and Wavelength Assignment (RWA) problem in
the context of optical WDM networks. Performing RWA
corresponds to assigning physical resources, consisting of
dedicated wavelength(s) along a physical route between two
end-points, to each of the demands in a given traffic matrix.
RWA is typically solved in two major use cases: 1) the design
of an optical network aiming at the dimensioning of necessary
amount of resources to be deployed under some traffic forecast
assumptions; 2) the reconfiguration of the optical network,
where the assignment of the existing network resources is re-
optimized triggered by some dynamic traffic changes, pursuing
some optimization objective which typically aims at avoiding
traffic congestion, resource underutilization, improved energy-
efficiency, etc.
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In small or medium-sized network topologies, RWA is
formulated and solved using Integer Linear Programming
(ILP) that provides optimal (e.g., cost-minimized) solutions
at the expense of complex, time-consuming and intensive
computations since the problem is known to be NP-hard. In
large network topologies, suboptimal heuristic algorithms have
been proposed in the literature to speed up the RWA procedure.
For an extensive overview on RWA the reader is referred to [8].

In this paper we transform the RWA problem into an
ML-based classification problem, where the RWA solution is
provided by a classifier in response to a given input traffic
matrix. To this end, several ML-based classifiers are trained
based on previous data (i.e. optimal RWA for different input
traffic matrices). Once trained, such classifiers are able to
provide the network configuration for newly-incoming traffic
matrices in an online fashion, offering an RWA configura-
tion within a few milliseconds, thus allowing to perform
dynamic network adaptation and reconfiguration in response
to frequently changing traffic patterns. To further show the
applicability of our a ML-based RWA classifier, we report
a proof-of-concept experimental integration of ML and SDN
in a realistic SDN network environment emulated within the
mininet [9] framework.

II. PREVIOUS WORK

Probably, traffic classification was the first networking ap-
plication where ML techniques showed real applicability and
good performance results, either using classical supervised
learning algorithms, fuzzy clustering, or alternative approaches
like the Bag of Flows (BoF) approximation [10]–[13]. How-
ever, the rise of novel algorithms (like Deep Learning and
Deep Reinforcement Learning) in conjunction with the avail-
ability of techniques to analyze Big Data has risen a new wave
of ML applications in computer networks [14], often focused
on automated network management with reduced human in-
tervention [6], [15]. In particular, such novel techniques have
shown applicability in network routing and virtualization [16]–
[21].

However, for ML algorithms to be successful, these need to
be fed with large quality training datasets, which is sometimes
difficult to obtain. Some studies have pointed in this direction
reporting the lack of data in networking scenario [22], the need
for creating standardized datasets [6], the challenges arising
from the collection of high-quality networking data [23] or
showing the opportunity for upcoming technologies, such as
SDN, to introduce network monitoring systems aware of the
ML needs [24].

Concerning optical WDM networks, the use of AI and ML
tools has the potential to provide solutions at the physical
layer; examples include to estimate optical signal quality of
transmission, characterize and operate transmitters, mitigate
nonlinearities at receivers, detect link failures or recommend
wavelength assignments with low power excursions [25], [26].

In the specific case of the RWA problem, exact Integer Lin-
ear Programming (ILP) formulations for its optimal solution
exist since long ago [27]. In spite of the cost-minimized solu-
tions provided by ILPs, they suffer from high computational

complexity, often requiring minutes or even hours to solve
medium-size network topologies. A large number of Heuristic
algorithms have also been proposed in the literature, offering
faster-than-ILP solutions but rather sub-optimal.

Complex mathematical optimization models have also been
used in other applications, such as routing in multicast SDN
networks [28] and virtual network embedding [29]. Authors
in [28] have introduced an ILP and an approximation algorithm
to design NFV-enabled multicast trees based on SDN. An
important outcome of this work regards the comparison of
the execution of run time between the two algorithms. When
the fan-out of the multicast trees increases, the run time of
the approximation algorithm becomes much lower than that of
ILP. Authors in [29] have proposed an ILP formulation to solve
the online virtual-network embedding problem. The paper
compares the ILP with virtual-network embedding heuristics
published so far by other authors. Simulation experiments
showed how far the state of the art heuristics are from an
ILP-based optimization method. The difference between the
virtual-network request acceptance-ratio of the heuristics and
the proposed ILP is at least 30%.

In this work, we introduce the idea of using supervised
classification algorithms to address the RWA problem. Es-
sentially, a classifier which is trained with already labeled
RWA configurations (solved either with an ILP or a heuristic
algorithm) is capable of reporting optimal or near-optimal
RWA configurations much faster than ILPs and Heuristics.
To the best of our knowledge, this is the first study that
shows how to map the RWA problem into a supervised
classification problem that can be tackled with well-known
ML algorithms like Logistic Regression or Deep Neural Net-
works. We show that, once trained, the ML model can be
queried to solve RWA within a few microseconds (Logistic
Regression) or milliseconds (Deep Neural Network). Other AI-
based studies have addressed the RWA problem using Genetic
Algorithms [30] or Reinforcement Learning [31], but these
are also computationally costly and slow to converge. We
have further implemented this ML-based RWA methodology
in an ONOS-based lab test to show real applicability in SDN
scenarios.

The remainder of this work is organized as follows: Sec-
tion III reviews how RWA can be modeled as a supervised
classification problem to be trained in an offline fashion,
and further shows its applicability in an ONOS-based SDN
scenario. Section IV provides a summary of the experiments
carried out and the results obtained, both from a ML perspec-
tive and networking viewpoint. Finally, Section V concludes
this paper with a summary of its main contributions.

III. METHODOLOGY

A. A review on RWA algorithms

Routing and Wavelength Assignment (RWA) in optical
networks is typically modeled as a multi-commodity flow
problem. In such a problem, a directed graph is used to
represent the optical network physical topology, consisting of
a set of Reconfigurable Add/Drop Multiplexers or ROADMs
(i.e., the nodes in the graph), interconnected by optical fiber
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links (i.e., the links in the graph). For a given set of traffic
demands between node pairs in the physical topology, solving
the RWA consists of deciding, for each traffic demand, both
the route and wavelength to be used through the network,
subject to a set of different main constraints, namely: 1) flow
conservation, i.e., at each node the amount of incoming flows
is equal to the amount of outgoing flows, excluding the traffic
inserted/terminated at that node; 2) capacity constraint, i.e., in
each link, the number of wavelengths used must not exceed a
given threshold W ; 3) wavelength usage, that is, in each link
a given wavelength can be assigned to only one flow (i.e., one
traffic demand).

Additionally, other constraints can be considered depending
on other technological aspects, such as: 4) wavelength conti-
nuity, which must be ensured whenever no optical-electronic-
optical (OEO) conversion with wavelength switching is al-
lowed in transit nodes; 5) maximum optical reach, which may
be enforced to limit the optical path length, due to physical-
layer impairments affecting the optical signal quality level.

Typical objective functions adopted when solving the RWA
pursue the minimization of the number of wavelengths used,
the number of optical fibers to be deployed (e.g., under a
scenario where multiple fibers per link are allowed), the num-
ber of transponders (i.e., receiving/transmitting devices), the
energy consumption, etc. Exact mathematical models to opti-
mally solve the RWA problem are typically based on Integer
Linear Programming (ILP), however this approach is known to
be NP-hard and particularly slow in large-topology scenarios
with multiple wavelengths W and under high-load conditions.
To alleviate such computational complexity, a number of
heuristic algorithms have been proposed in the literature to
speed up finding near-optimal RWA network configurations
in a more scalable way. Such heuristics are mainly based
on the decomposition of the RWA problem into two steps:
first routing, then wavelength assignment, or vice-versa. In
turn, several approaches can be adopted to solve each of these
two sub-problems. On one hand, to perform the routing step,
pre-computed fixed routes can be assigned to each demand,
based on shortest-path. However, such an approach may lead
to a high number of required wavelengths or even unfeasible
solutions in case the number of wavelengths is constrained.
Therefore, other approaches consider fixed alternate routes to
be selected for each of the given demands, or even adaptive
routing, where demands are sorted and routed one after the
other. On the other hand, to perform wavelength assignment,
several methods exist, taking into account either the most-
used or the least-used wavelength, or even considering simpler
approaches such as random assignment, first-fit, etc. For a
more comprehensive overview of such approaches, the reader
is referred to [8].

In this paper, we consider a version of the RWA problem
in which no wavelength conversion (i.e., O-E-O) is allowed
at transit nodes, and where lightpath route-length is not con-
strained, namely, we consider the flow conservation, capacity,
wavelength usage, and wavelength continuity constraints men-
tioned above. As for the optimization objective, we consider
the minimization of the total number of transponders.

B. Turning RWA into a supervised classification problem
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Fig. 1. Schematics of the proposed 5-node network for RWA modeling. The
network models both offline training phase and online prediction phase

Consider the 5-node network topology of Fig. 1 and let us
assume that each link is equipped with a number of optical
transponders allowing the use of W wavelengths per link each
one operating at C Gbps (in what follows, W lambdas @ C
Gbps).

Let us also consider a 5 × 4 Traffic Matrix (TM) whose
elements dij (in Gbps) denote the traffic demand from source
i to destination node j (i 6= j). The RWA algorithm produces
a list mapping each traffic demand dij (input) to a sequence
of links and wavelength assignments (output). In the network
of Fig. 1, such a routing and wavelength configuration may
for instance be:

d12 → (e12, λ1)

d13 → (e13, λ1)

...
d24 → (e23, e34, λ2)

...
d54 → (e52, e23, e34, λ3)

which states that demand d12 from source node 1 to destination
node 2 uses direct link e12 and the first wavelength λ1.
Similarly, demand d54 goes through the route defined by links
e52−e23−e34 and uses the third wavelength λ3. This routing
and wavelength configuration (RWC) applies only to that
particular demand matrix. In other words, the RWA receives
as input a serialized traffic matrix with all source-destination
traffic demand requests and outputs its optimal RWC list:

• Input: TM1 = {d12, d13, . . . , d54}
• Output: RWC1 = {(e12, λ1), . . . , (e52, e23, e34, λ3)}
The output label y1 = RWC1 is obtained by solving the

RWA ILP for that particular Traffic Matrix TM1. If the ILP is
run again for a second traffic matrix TM2, then a new optimal
RWC, namely y2 = RWC2 should be obtained, but perhaps
the previous RWC1 is also valid to satisfy all traffic demands
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while meeting the RWA constraints. In general, if 10, 000
different traffic matrices are fed to the ILP, up to 10, 000
different optimal RWCs could be potentially produced by
the ILP. However, in practical scenarios, many RWCs are
applicable to several input traffic matrices, thus reducing the
space of RWC under consideration.

Consequently, the RWA problem can be transformed into a
multi-class classification problem where the input variables are
the elements of a serialized traffic matrix and the output labels
are the full network routing and wavelength configuration
(RWC) set as obtained from solving the ILP. This dataset can
then be used to train a classical supervised ML algorithm.
Essentially, when fed with sufficient data examples (both
traffic matrices and the associated optimal RWCs), the ML
algorithm should be able to generalize and produce an optimal
RWC upon a new unseen traffic matrix, thus performing RWA
accurately without the need for solving the ILP. Furthermore,
the ML model should learn from the input data provided, i.e.
if instead of providing RWC solutions from an ILP, the ML
model is fed with data manually configured from an operator
or from any other algorithm (i.e. heuristics), the ML algorithm
should also be able to reproduce that way of solving RWA,
thus mimicking the algorithm from which it learnt.

Concerning the number of RWC classes, having too many
of them may prevent the ML algorithm from correctly learning
the data patterns due to the so-called curse of dimensionality.
Hence, aiming at reducing the number of RWCs in use, we
performed a forward evaluation of RWC to reduce the number
of classes by re-assigning TMs with more frequent RWC
as long as they provide a feasible solution and meet some
minimum requirements in terms of average network load and
hop count.

C. Dataset generation with Netgen and Net2Plan

To generate RWA datasets, we have developed the Netgen
tool, built upon Net2Plan1 planner tool [32]. Net2Plan is
an open-source Java tool designed for planning, optimization
and evaluation of communication networks. For that, the
tool provides a both a Graphical User Interface (GUI) and
a Command Line Interface (CLI) that allows the design of
abstract representations of networks and provides a diverse set
of optimization algorithms for different networking scenarios.
In particular, both ILP and several heuristic-based algorithms
for RWA are available in Net2Plan.

Netgen2 gives users the ability to leverage Net2plan’s fea-
tures to be used in a highly scalable and efficient setting that
enables synthetic dataset generation. Netgen is composed by
three modules, aiming to cover three different phases in the
dataset generation process:

• The first module in Netgen is the Traffic Matrix genera-
tor. When invoked, the program reads the topology and
a canonical traffic matrix which is then modified (adding
random noise) to generate a new TM for RWA solving by
Net2Plan. Random noise is introduced through statistical
distributions centered at the canonical value of the matrix

1See http://www.net2plan.com, last access April 2019
2Available at: https://github.com/ignmarti/Netgen, last access: April 2019

and with configurable variability. Currently, Gaussian and
Uniform noise distributions are supported.

• Next, the Net2Plan Wrapper invokes Net2Plan to solve
the desired algorithm for the input traffic matrices in
parallel. Indeed, Netgen acts as a scheduler and manager
of a pool of Net2Plan instances aiming at a better
execution performance through parallelization.

• The final component of Netgen is the Result Parser,
which reads the output of Net2Plan, parses it and outputs
a Comma-Separated Values (CSV) file suitable for ML
processing.

D. ML models: LR and DNN

Once the datasets have been generated, two of the most
popular ML algorithms have been trained and tested, namely:
Logistic Regression (LR) and feed-forward Deep Neural Net-
work (DNN).

Logistic Regression [33] is a simple linear classifier that
adjusts a linear regression to the data together with a softening
sigmoid function that approximates class probability. Logistic
Regression classifiers are very fast to train and interpret but
prone to underfitting due to their linear nature. In contrast,
Deep Neural Networks [34] have shown great performance in
a large number of scenarios thanks to the fact that they stack
linear layers of neurons paired with non-linear activations, thus
producing non-linear classifiers.

In particular, our DNN configuration comprises six fully
connected layers, with dropout in the first and fourth layers
and `2 regularization in the third and fifth layers. Activation is
performed using the well-known rectified linear unit (ReLU)
and hyperbolic tangent (tanh) functions. The optimization
process for the training phase has been performed using
Tensorflow’s Stochastic Gradient Descent (SGD)3 aiming at
minimizing softmax cross-entropy as the classification loss
function. Specifically, the network performs 16, 000 training
steps (each step uses 400 training samples as batch size)
with a learning rate of 0.02. Such a DNN architecture has
been obtained after multiple trial and error experiments until
satisfactory generalization results were obtained by checking
the classification error in the train, test and validation sets,
along with stable accuracy and loss results. Such a manual
inspection process aimed at producing a DNN architecture as
simple as possible. Regularization and dropout were added to
make the model robust against noise and overfitting.

Thanks to softmax, for a given input TM, both ML algo-
rithms output an array of values between 0 and 1 that can
be interpreted as the probability for an RWC to satisfy such
TM. Then, the RWC class with largest likelihood, i.e. the
most suitable RWC for that TM according the ML algorithm,
is checked for feasibility to verify whether it does indeed
satisfy all source-destination demands. If it does not (i.e.
such first-ranked RWC is unfeasible), then the second largest
probability RWC class is selected as potential candidate and
checked for feasibility. This is repeated for the top-10 RWC.
Remark that a given RWC is feasible for a network setting

3See TensorFlow’s main website https://www.tensorflow.org/, last access
April 2019
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(i.e. TM and network topology) in an optical WDM scenario
if all the next three conditions are met:

• All traffic demands are allocated meeting the wavelength
continuity constraint

• All link occupations (link loads) are below 100% occu-
pation

• No link is used more than once per wavelength

E. ML performance assessment

In supervised classification learning, the ML model learns a
function g that best maps input X and output y as y = g(X)
from a set of training examples with labeled data {Xi, yi}Ntr

i=1.
In our case, yi refers to the RWC for a given input traffic
matrix TMi (i.e. Xi) and Ntr is the number of data samples
used for training. ML algorithms are in charge of constructing
such function g(X) from the training set that separates all
RWC classes with minimum error.

Once a model is obtained, the following stage consists on
testing its ability to predict the result of unobserved data
samples, i.e. evaluate the model’s generalization capabilities.
Classification performance is evaluated making use of the
well-known Precision, Recall and F-score metrics [35].

Precision measures the fraction of events when the ML
algorithm correctly assigned the appropriate RWC over the
total cases assigned to that particular RWC. Recall quantifies
the number of samples from each RWC class that were
identified correctly. In a multi-class classification problem with
up to M RWC classes, the following confusion matrix C
with true classes as rows and modeled classes as columns
characterizes the effectiveness of the ML algorithm:

C =


tp11 fn12 . . . fn1M
fp21 tp22 . . . fn2M

...
...

...
...

fpM1 fpM2 . . . tpMM

 (1)

where (TP, FP, TN, FN) refer to True/False Positive/Negative
respectively. Precision and Recall for the j-th RWC is com-
puted from the matrix elements as:

Precj =
cjj∑
k cjk

Recallj =
cjj∑
k ckj

(2)

The average Precision and Recall values can be computed over
all M classes as:

Prec =
Precj
M

Recall =
Recallj
M

(3)

Finally, the F-score metric trades off Precision and Recall by
computing their geometrical mean:

F-score = 2× Prec · Recall
Prec + Recall

(4)

F. Time complexity of ML algorithms

The time complexity of ML for both training and testing
datasets varies significantly across different algorithms. For
example, Decision Trees employing C4.5 takes complexity
of O(mn2) where m is the number of features and n is
the number of data samples. Logistic Regression and Support

Vector Machines can be solved in general with O(mn) and
O(n3) operations respectively. Others like kNN (Nearest
Neighbors) requires O(nlog(n)) for training while prediction
requires O(klog(n)) for k the number of neighbors. Finally,
stochastic gradient descent (SGD) used in DNNs requires
O(enp), where n is the number of training samples, e is the
number of iterations (epochs) and p is the average number of
non-zero attributes per sample. The reader is referred to [36],
[37] for a good summary on the time complexity of most
popular ML algorithms.

In general, finding an optimal set of weights for a classical
NN is NP-complete, as demonstrated in [38]. However, it is
possible to learn good NN parameters using the so-called back-
propagation algorithm, in particular the Stochastic Gradient
descent (SGD) iterative method, which is faster and easier
to program than most optimization methods. Indeed, the
computational complexity of back-propagation through SGD
is polynomial time.

Essentially, back-propagation adjusts the weights of the
neurons in a top-down approach comparing the output with
the expected value and computing derivatives of the error with
respect to each parameter [39]. In particular, the Stochastic
Gradient descent (SGD) method iteratively adjusts the weights
in the direction reducing the error size, making the training
process relatively simple and yielding a time complexity of
O(N

∑L
l=1 slsl−1) for a minibatch of N data points and layer

size sl (L total layers), i.e. approximately O(N3) [40].
In conclusion, neural networks and machine learning in gen-

eral are not intended to solve NP-complete problems like the
RWA ILP. However, ML algorithms are effective techniques
for finding patterns from data which applies in our use-case.
In other words, the next experiments show that a training set
with some thousand traffic matrices and their optimal RWCs
contain enough patterns that can be effectively learnt with a
DNN. This DNN model offers ILP-like RWA solutions within
milliseconds, hence mimicking the behavior of the ILP from
which it learnt the patterns but in a much shorter time.

G. Deployment of Machine Learning classification models in
an emulated SDN network scenario

In addition the proposal of an ML-based method to solve
the RWA problem, we have further implemented the model
described in Section III-D to work in an SDN context.
Implementing a network optimization algorithm inside an
SDN network means implementing a software application that
interacts with the control plane in order to deploy the RWA
configurations in the network automatically. In Fig. 2 we show
a typical SDN architecture composed by the data, control and
application plane. In particular, the application that implements
the algorithms described in Section III-D is called Machine
Learning Routing Computation (MLRC) component.

In this light, the 5-node network topology of Fig. 1 has
been implemented in an ONOS-based [41] SDN architecture,
as shown in Fig. 2. In this scenario, the MLRC application is
capable of reading data, training and applying both ML models
(i.e. LR and DNN) to determine the optimal network config-
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Fig. 2. Machine Learning-aware SDN network architecture composed by three
layers. The infrastructure plane represents the dataplane of the network com-
posed by 5 nodes and 4 servers; the control plane represents the framework
in which the routing configurations are performed. It has been realized with
ONOS controller and uses the Openflow protocol to communicate directly
with the nodes (OvS); finally, the application plane represents the intelligence
of the network. The whole set of network configuration decisions are taken
in this layer exploiting specific API and REST API libraries to interact with
the control plane.

uration upon distinct traffic matrices. Using REST APIs4, it
captures traffic matrices with variable granularity (e.g., every
5 seconds) and trains the ML models continuously in order
to keep it updated. The purpose of MLRC is to acquire and
classify traffic matrices by means of a supervised learning
algorithm trained with a set of optimal routing solutions. Once
the MLRC module is trained, it may be queried to provide real-
time decisions upon the detection of changes in the network
traffic matrix.

As shown in Fig. 3, the MLRC module comprises five sub-
modules, namely: Traffic Matrix Acquisition, Data Storage,
Model training, Classification model and Routing computa-
tion.

Traffic Matrix Acquisition. This is the first phase of the
module, that is, the acquisition of traffic matrices from the
network. Every 5 seconds, the amount of bytes on each traffic
flow is extracted from the switches.

Data Storage. The data storage receives the traffic matrices
in order to make them available to the other sub-modules. It
has the goal of storing not only the traffic matrices but also
the trained classification models.

Model training. In this sub-module the machine learning
algorithm is trained. This represents the heart of the whole
proposed application. It implements the classification models

4See: https://wiki.onosproject.org/display/ONOS/ (Appendix B of the De-
veloper Guide), last access: April 2019
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Step 3

Step 4

Fig. 3. Machine learning Routing Computation module workflow. The Traffic
Matrix Acquisition is the first stage of the module. In order to train the MLRC,
we need to collect a lot of data, in terms of traffic matrices (Step 1). They
are stored in a Data Storage, useful for the other sub-modules. Then the
model start to be trained in the Model Training sub-module (Step 2). Once
the training is over, the Classification Model will update the classifier with
the trained model (Step 3). In the end, the Routing Computation module will
be called in order to instantiate the flow rules inside the OvS switches (Step
4).

explained in the previous section. The goal of this sub-module
is to learn how to classify traffic matrices that share the same
routing configuration.

Classification model. This sub-module hosts the last updated
classifier that is actually used to classify the input traffic
matrix. It restores the model from the data storage and provides
the optimal routing scheme that is passed to the Routing
computation module. The subdivision between Model training
and Classification model was made to have a scalable model,
as it is possible to add other classification algorithms, and
always updated, as the training is done continuously.

Routing computation. Finally, the routing scheme obtained
by the classifier is appropriately translated into flow rules
for network switches. After that it overwrites the old flows
with those just obtained, avoiding memory over-flow of the
switches.

IV. EXPERIMENTS

A. Scenario setup

For the experiments, we will consider the two network
settings in Fig. 4. The former 5-node topology is the same one
as previously depicted in Figs. 1 and 2; the latter comprises
the well-known US Abilene network topology with 12 nodes
and 15 bidirectional links.

All nodes in both topologies are assumed to have the same
type of transponders with the same wavelength configura-
tions each time. In the 5-node topology, the population of
each node is associated with population of the corresponding
city in Spain (namely Madrid, Barcelona, Valencia, Zaragoza
and Seville) and the distance (in kilometers) is computed
from real GPS coordinates. The canonical traffic matrix has
been obtained using the so-called population-distance (aka
gravity) model where the traffic demands between each two
cities is proportional to their population size and distance.
The population-distance network traffic model was proposed
in [42].
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(a) 5-NODE

(b) ABILENE

Fig. 4. Network topologies for Experiments.

Starting from a base or canonical traffic matrix obtained
with such population-distance model, Netgen generates 10,000
new traffic matrices by adding white Gaussian noise with
zero mean and squared coefficient of variation equals to 0.15
(i.e. the standard deviation of each source-destination pair is
obtained as 0.15 times the mean traffic demand (in Gb/s). This
way, the dataset has been augmented up to 10, 000 different
Traffic Matrices (TM), which are then labeled with the help of
Netgen and Net2Plan. Concisely, the 10,000 TMs were solved
by the ILP providing some thousand optimal RWCs; these
were further downsized to a few tens or hundreds RWCs al-
lowing a tolerance of 0.3 in average hop count. Following this
process, four different datasets have been generated allowing
different optical configurations in the network (i.e. lambdas
and capacity), namely: 5@400, 5@100, 8@40 and 10@40
datasets. Remark that 5@400 refers to 5 lambdas per fiber
link each one operating at 400 Gb/s.

In the Abilene topology, instead of using the population-
distance model along with Gaussian noise, a number of 48,096
real traffic matrices collected every five minutes during six
months are publicly available at SNDlib5. For this topology,
different optical configurations have also been fed along to
Netgen for data generation: 20@400, 40@100 and 20@100
Gb/s.

B. ML performance results for the 5-node network topology

The datasets for the 5-node network have been used to train
the three ML models described in Section III-D, namely LR
with Lasso and Ridge regularization and DNN. The first two
models are examples of simple linear models with typical poor
classification performance (due to underfitting) but offering
interpretable results, while the third one represents a more
advanced and accurate non-linear model.

Lasso and Ridge regularization schemes (i.e. �1 LR and
�2 LR respectively) have been selected as they are the most

5See http://sndlib.zib.de/home.action for further details, last access April
2019.

commonly used and stablished regularization schemes. For
further reference, the work in [43] provides a comparison
between both approaches. The regularization constant for
logistic regression algorithm is determined through 10-fold
cross-validation, where training data is split into 10 chunks
and each is used once as testing set with different candidate
parameters. A hold-out validation set is kept aside for final
validation.

Concerning the DNN model, no cross-validation is per-
formed and instead regularization and dropout hyper-
parameters are set by heuristics, which are validated through
the hold-out set reported as validation along with stable
accuracy and loss results (see next sections).

For the elaboration of the probability ranking, the ML
models are set up to produce class probability estimates and
consider the top 10 most likely RWC solutions. If none of
these provide a feasible solution (that is, satisfy demands and
requirements for the traffic matrix), that particular data sample
is considered unfeasible.

Table. I shows the experimental results for all algorithms
and optical configuration pairs together with the ILP solution
provided by Net2Plan. The table provides evaluation results
both in terms of ML and networking metrics. Regarding ML
metrics, which summarize how well each ML model performs
at classifying, F-score values for the training, test and valida-
tion sets are shown. Concerning networking-related metrics,
the table shows average and bottleneck Link Loads (ave LL
and max LL), average and maximum number of hops per
demand (ave hops and max hops), number of wavelength-link
resources used (wl used) and percentage of feasible solutions
obtained by the ML algorithm in both training and validation
sets.

In the first dataset, the three ML models show good per-
formance in terms of networking metrics, while the DNN
outperforms LR in terms of ML metrics. In this scenario, the
ML models have to choose between 15 optimal RWC config-
urations. Essentially, the DNN is very accurate at selecting the
right RWC (F-score 0.787) while LR fails more often (F-score
0.606 and 0.604). However, since the ML algorithms produce
a top-10 list, it often happens that there is one RWC in the
top-10 which is suitable, feasible and does not have a large
impact regarding link load, average hop count or wavelengths
used. Thus, an RWC classification error may still be a good
solution in terms of networking metrics, slightly suboptimal
only from the right RWC. Finally, it is worth remarking that
this first dataset comprises a low-load scenario (13% load).

In the second dataset, the average link load is 35% with
some links fully utilized (max load is one), and the RWA ILP
generates more RWC classes, up to 69 different RWC for the
ML models to choose from. We observe that LR models have
a clear performance decrease since they are unable to select
the right RWC (F-score 0.542) while the DNN achieves high
F-score values up to 0.952. Regarding networking metrics,
again the DNN reaches nearly 100% feasibility and similar
networking metrics than the ILP.

Finally, in the third and fourth datasets, we observe the same
behavior as before: the DNN is both good at selecting the right
RWC (F-score above 0.8 with 215 and 197 RWC classes re-
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TABLE I
5-NODE TOPOLOGY: ML RESULTS

DATASET #1 5@400 (M = 15 RWC classes, 70 wavelenght-link resources)
ML Metrics - F-score Network Metrics

Algo. Train Test Val avg LL max LL ave hops max hops wl used Feas train Feas val
ILP - - - 0.130 0.51 2.05 4 41 100% -
`1LR 0.613 0.604 0.606 0.129 0.51 2.05 4 41 99.9% 99.9%
`2LR 0.616 0.600 0.604 0.129 0.51 2.05 4 41 99.9% 99.9%
DNN 0.807 0.804 0.787 0.130 0.51 2.05 4 44 100% 100%

DATASET #2 5@100 (M = 69 RWC classes, 70 wavelength-link resources)
ML Metrics - F-score Network Metrics

Algo. Train Test Val avg LL max LL ave hops max hops wl used Feas train Feas val
ILP - - - 0.36 1 1.77 3 49 100% -
`1LR 0.549 0.540 0.542 0.32 1 1.69 3 50 99.05 % 99.30%
`2LR 0.545 0.511 0.542 0.37 1 1.78 3 48 62.22% 61.30%
DNN 0.954 0.949 0.952 0.36 1 1.77 3 49 99.98% 99.88%

DATASET #3 10@40 (M = 215 RWC classes, 140 wavelength-link resources)
ML Metrics - F-score Network Metrics

Algo. Train Test Val avg LL max LL ave hops max hops wl used Feas train Feas val
ILP - - - 0.50 1 1.89 4 98 100% -
`1LR 0.399 0.327 0.361 0.50 1 1.87 3 95 85.37% 83.80%
`2LR 0.395 0.318 0.295 0.49 1 1.86 4 94 80.10% 81.00%
DNN 0.815 0.801 0.808 0.49 1 1.86 3 97 99.45% 97.16%

DATASET #4 8@40 (M = 197 RWC classes, 112 wavelength-link resources)
ML Metrics - F-score Network Metrics

Algo. Train Test Val avg LL max LL ave hops max hops wl used Feas train Feas val
ILP - - - 0.55 1 1.65 3 84 100% -
`1 LR 0.400 0.330 0.350 0.45 1 1.87 3 81 81.45% 82.00%
`2 LR 0.390 0.329 0.319 0.51 1 1.78 3 68 85.32% 85.80%
DNN 0.851 0.837 0.854 0.52 1 1.63 3 82 99.63% 96.88%

spectively) and show networking performance metrics similar
to those provided by the ILP. Linear models are again far from
the DNN in terms of ML performance and feasibility.

In summary, the Deep Neural Network model is very good
at replicating the results obtained by the ILP solution, resulting
in a very high feasibility score and showing comparable link
load and hop count metrics to the ILP. Concisely, neural
networks achieve almost complete feasibility, being in all
datasets above 95% of the data samples. Similarly, logistic
regression algorithms may be suitable in some scenarios (low
load and few RWC to choose from), but far worse than
the DNN model. In the next section, only DNN models
are considered, this time trained with both ILP and First-Fit
heuristic-based RWCs.

C. ML performance results for the Abilene network

Table. II shows the results obtained for the DNN in the
Abilene network topology assuming different capacity and
wavelength configurations. In this case, we consider training
a DNN with the output result of both optimal ILP and first-
fit heuristic RWA of Net2Plan. We observe that in all ILP
cases, the number of RWC classes is about 1, 500 for 48, 096
training points, and the results are very good both in terms of
F-score and network related metrics (link load, hop count and
wavelength-link resources), i.e. very similar to ILP solutions.
Concerning feasibility, values around 95% are obtained in all
DNN (ILP) cases.

Concerning the First Fit Heuristics (FF-Heur) results, we
observe below-100% feasibility cases in the second and third
datasets which suggests the existence of some blocked source-
destination demands. Concerning the DNN trained with such

FF-Heur RWCs, we observe poor results in the second and
third datasets both concerning F-score values and feasibility.
Essentially, the number of classes is too large (5 and 11
thousand respectively), thus making the DNN model not
able to learn and generalize well (F-score values below 0.5).
However, in the first dataset, where the Heuristic algorithm
produces good results and the number of RWC labels is small
enough (only 133 classes), the DNN trained with the Heuristic
dataset provides outstanding results.

In conclusion, this experiment shows that DNN models can
learn the patterns of both datasets, those generated after solv-
ing the RWA using an ILP or a First-Fit Heuristic. However,
for the DNN to outperform, it is necessary that sufficient data
is provided and the number of possible RWC classes is kept
small, otherwise the ML model cannot accurately capture the
patterns within the data.

D. DNN accuracy and loss per training step

This section aims at evaluating the accuracy and cross-
entropy loss function of the DNN models for the 5-node and
Abilene network topologies, on attempts to show that the DNN
models have been well designed and trained.

Fig. 5 depicts the evolution of accuracy and cross-entropy
loss for training (blue) and test sets (red) for the two network
scenarios (5-node and Abilene). Each of the points in the x
axis represents 2, 000 steps, where each step comprises a pass
over a batch of training data (400 points batch size). The figure
shows how the test curve flattens in the range between 10,000
and 20,000 steps while the training accuracy curve continues
growing, suggesting that using more steps may cause the DNN
overfit the data. Recall that while the accuracy is roughly near
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TABLE II
NUMERICAL RESULTS OBTAINED FOR THE ABILENE NETWORK

DATASET #1 20@400, 600 wavelength-link resources
ML Metrics - F-score Network Metrics

Algo. Train Test Val avg LL max LL ave hops max hops wl used Feas train Feas val RWCs
ILP - - - 0.025 0.421 2.640 6 349 100 - -

DNN(ILP ) 0.886 0.883 0.884 0.025 0.416 2.643 6 349 97.77 98.08 1,470
FFHeur - - - 0.029 0.422 3.007 8 397 100 - -

DNN(FFHeur) 0.987 0.984 0.979 0.028 1 3.007 8 397 99.92 99.86 133
DATASET #2 40@100, 1200 wavelength-link resources

ML Metrics - F-score Network Metrics
Algo. Train Test Val avg LL max LL ave hops max hops wl used Feas train Feas val RWCs
ILP - - - 0.0594 1 3.064 7 413 100 - -

DNN(ILP ) 0.748 0706 0.712 0.057 1 3.056 7 413 94.67 94.65 1,775
FFHeur - - - 0.047 1 2.503 5 334 97.25 - -

DNN(FFHeur) 0.456 0.423 0.422 0.047 1 2.503 5 334 85.07 84.38 5,868
DATASET #3 20@100, 600 wavelength-link resources

ML Metrics - F-score Network Metrics
Algo. Train Test Val avg LL max LL ave hops max hops wl used Feas train Feas val RWCs
ILP - - - 0.111 1 3.000 6 406 100 - -

DNN(ILP ) 0.771 0.731 0.725 0.110 1 3.003 6 405 95.55 94.87 1,462
FFHeur - - - 0.093 1 2.503 5 332 84.33 - -

DNN(FFHeur) 0.425 0.389 0.389 0.090 1 2.503 5 332 71.33 71.41 11,128

0.7, the feasibility of this model (in terms of network metrics)
is over 90%, hence providing excellent performance results
from a networking point of view.

E. Fast RWA reconfiguration time of ML models

Due to the definition of the classification problem and its
ranking approach solution, whenever the ML classifier selects
one feasible RWC from the top-10, that network setting can
be directly implemented in the network. In case that none
of the top-10 RWCs are feasible, then the ILP/heuristic is
invoked for solving that particular TM. The previous exper-
iments have demonstrated that the DNN model accurately
selects feasible solutions in the first attempt for a large amount
of cases and, therefore, reduces noticeably the RWA solution
time with respect to the ILP or Heuristic.

In this light, we measure the total time employed by such
a hybrid RWA approach taking into account both the cases
where the ML produces a fast-and-feasible solutions combined
with the cases where none of the top-10 RWC are valid and a
slow invocation to the ILP or Heuristic needs to be performed.
In mathematical terms, we use the following equation to
measure the improvement with respect to the ILP by using
a hybrid approach:

Impr =
tILP − (Nfeasible ∗ tML +Nunfeasible ∗ tILP)

tILP
(5)

where tILP and tML correspond to the configuration time of the
ILP and the ML prediction respectively and Nfeasible (i.e. Feas
val in Tables I and II) and Nunfeasible determine the percentage
of feasible/unfeasible cases.

Table III illustrates the completion times for training and
prediction of the ML models and datasets, along with the
time improvement values with respect to running the ILP in
Net2Plan. Besides, the time proportion imputed to feasible
(ML) and unfeasible (ILP) solutions is displayed as well.
These values have been obtained by running the experiments

TABLE III
TRAINING AND PREDICTION TIMES WITH AMOUNT OF TIME

IMPROVEMENT IN A HYBRID ML-ILP/HEUR SETTING

5-Node `1 LR
Dataset Train. tML tILP Impr.(ILP)
5@400 2.0 s 0.6 µs 478 ms 99.89%
5@100 8.4 s 1.6 µs 393 ms 99.29%
10@40 21.0 s 2.6 µs 436 ms 83.79%
8@40 19.6 s 2.3 µs 470 ms 81.99%

5-Node `2 LR
Dataset Train. tML tILP Impr.(ILP)
5@400 2.2 s 0.7 µs 478 ms 99.89%
5@100 2.8 s 8.1 µs 393 ms 61.22%
10@40 2.8 s 3.7 µs 436 ms 80.99%
8@40 3.7 s 2.2 µs 470 ms 85.79%

5-Node ILP DNN
Dataset Train. tML tILP Impr.(ILP)
5@400 15.1 mins 1.1 ms 478 ms 99.81%
5@100 15.5 mins 1.6 ms 393 ms 99.63%
10@40 16.5 mins 3.3 ms 436 ms 96.74%
8@40 16.3 mins 1.8 ms 470 ms 96.65%

Abilene ILP DNN
Dataset Train. tML tILP Impr.(ILP)
20@400 17.2 mins 8.8 ms 861.8 ms 97.08%
40@100 16.5 mins 10 ms 1382.1 ms 93.96%
20@100 18.2 mins 3.5 ms 1899.2 ms 94.69%

Abilene Heuristic DNN
Dataset Train. tML theur Impr.(heur)
20@400 12.3 mins 2.6 ms 256 ms 98.90%
40@100 21.5 mins 5.9 ms 237 ms 82.28%
20@100 33.6 mins 14 ms 262 ms 67.60%

on an Intel Xeon E5-2630 server with 24 cores and 190 GB
of RAM memory. In particular, the ML algorithms execute
TensorFlow for DNNs and Python’s Scikit Learn for Logistic
Regression while the ILP resolution of Net2Plan uses the
CPLEX optimization toolbox [44].

As shown in the table, linear models like LR are fast
to train (seconds) and query for prediction (microseconds),
while the DNN models require a few minutes to train and
milliseconds for prediction (in line with Section III-F). Still,
both approaches are well below the hundreds of milliseconds
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Fig. 5. Accuracy and Cross-entropy loss for the 5-node and Abilene network
topologies.

required by the ILP to optimally solve a given traffic matrix. In
addition, linear ML models may be faster than DNNs but they
often report unfeasible solutions requiring to run the ILP with
subsequent penalties ; in this sense, the DNN is more accurate
at providing feasible solutions so it is not often penalized with
the computational time of running the ILP. In addition, the
DNN model also shows 1 - 2 orders of magnitude faster times
than the First-Fit Heuristic in the Abilene topology (see final
rows of the Table).

Finally, it is worth remarking that the DNN training times
can be further reduced with the use of specialised hardware
(i.e. GPUs) or even training the DNN with an already close-
to-optimal setup where the DNN architecture and weights are
initialised from an existing past optimal configuration. In the
experiments, both ILP, Heur and DNN have been initialised
with random numbers for a fair comparison on the numbers.

F. Experiments with SDN’s MLRC module on the 5-node
topology

In order to test the ML models in an SDN context, we
have developed a test-bed in which we test the proposed
ML-based classification algorithms. First of all, as shown
in Section III-G, we proceed with the acquisition of traffic
matrices in order to collect a large enough historical dataset
to start training the model. After that, when the training step
is complete, we run the test and generalize the model to
provide the RWA configurations for the 5-node network under
consideration. The advantage of this approach is that we can
keep training our model with new data and only when it passes
the testing phase, it can be deployed and replace the previous
one.

We exploited a virtualized lab created with Mininet [9].
Mininet is a network emulator that runs a collection of end-
hosts, switches and links on a single Linux kernel. In Fig. 2
we show the 5-node network topology composed by 5 Open
vSwitches6 and 4 end hosts/servers.

The control plane is deployed with the ONOS SDN con-
troller [41] (version 1.12). Via the Northbound interface, it
provides REST APIs to the application plane. ONOS is a
carrier-grade SDN controller that consists of applications that
manage several network functions, such as: host mobility,
Packet-Optical integration, proxy ARP, etc. Moreover, the
Southbound interface is used by the ONOS controller to
implement communication with the infrastructure plane. We
use the OpenFlow [45] protocol that gives access to the
forwarding plane of the Open vSwitches. Furthermore, ONOS
provides a graphical user interface (GUI) from which the
network topology and installed routing paths can be observed.

Packet-based traffic is generated by the four hosts using the
Distributed Internet Traffic Generator (D-ITG) tool [46]. D-
ITG is a platform capable of producing packet-based traffic,
emulating various stochastic processes for both IDT (Inter
Departure Time) and PS (Packet Size) random variables (e.g.,
with Exponential, Uniform, Cauchy, Normal, Pareto, etc.).
D-ITG supports both IPv4 and IPv6 traffic generation and
it is capable to generate traffic at network, transport, and
application layer.

To demonstrate the performance of dynamic reconfiguration
of the routing plan given by the machine learning module, we
run several experiments on the described testbed. Assuming
that the ML model is continuously trained with the traffic
matrices extracted from the network, it collected 2, 000 traffic
matrices and provided the configuration for each one of them.
A summary of the stages described in Section III-G and Fig. 2
(i.e. data acquisition, storage, classification model and routing
computation) along with the ONOS and OpenFlows messages
is depicted in Fig. 6. The MLRC app is a python module
that uses Python’s Pandas data frames to work with machine
learning functions.

ML-based routing improves the ONOS Native Path Com-
putation Module (ONPC), because in addition to proposing
a routing scheme based on traffic history, it minimizes net-

6Open vSwitch is an open-source implementation of a distributed virtual
multilayer switch. See https://www.openvswitch.org/, last access April 2019
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phase.

TABLE IV
MLRC AND ONPC MODULE TIMES PERFORMANCE

Machine Learning Routing Computation (MLRC) module performance
Traffic Matrix Acquisition ∼2 ms

Classification Model ∼4 ms
Routing Computation ∼73 ms

Full Matrix Reconfiguration ∼80 ms
ONOS Native Path Computation (ONPC) module performance

Full Matrix Reconfiguration ∼180 ms

work congestion in a dynamic way. Furthermore, the machine
learning module takes about 80 ms to perform the whole
loop, i.e. to acquire the traffic matrix, obtain the configuration,
and install the flow rules (see Table IV). Comparing the last
result with the ONPC module performance, the MLRC module
clearly enables real-time network reconfiguration.

V. SUMMARY AND DISCUSSION

In summary, this work has presented a machine learning-
aware methodology to enhance optical WDM networks in
three phases: data generation, modeling and SDN implemen-
tation.

For the data generation phase, we have presented NetGen,
a scalable tool for the creation of networking labeled datasets.
This tool wraps the normal functioning of the Net2Plan tool
to scale and speed up its behavior.

Concerning Machine Learning, we have transformed the
well-known Routing and Wavelength Assignment problem into
a Supervised Learning problem that can be addressed using
classical ML algorithms. In particular, we have trained logistic
regression and Deep Neural Networks with a ground-truth
dataset of thousands traffic matrices and their associated RWA
solutions provided by the RWA ILP or First-Fit heuristic (the
labels in our classification problem).

In general, DNNs provide useful non-linear learning struc-
tures applicable for learning RWA structures associated with
traffic matrices in the context of an optical WDM network. For
these DNNs to effectively learn to apply RWA configurations,
they need to be fed with sufficient data examples and a
reduced number of RWA classes to avoid the so-called curse
of dimensionality.

Since the network scenario we are referring to is that of a
long-haul WAN network with stable traffic patterns that may
often suffer from sudden changes, the DNN is capable of
learning the patterns of the training data offering outstand-
ing classification results, providing almost perfect feasibility
(that is, network applicability) for network configuration at
a time cut of more than 93% with respect to classic ILP
approaches. That ensures a vey high effectiveness of our
approach in sparing total computational time comparing to ILP,
without degrading the RWA performance. These results are
supported with experiments that have considered a small five-
node network with synthetic population-distance based traffic
matrices, but also a large topology (Abilene) with real data
measurements collected every five minutes for six months.

Finally, we have demonstrated how SDN and ML can come
together through the Machine Learning Routing Computation
Module (MLRC) to drive the provisioning of paths into an
SDN Network. Using this module, we are capable of delivering
the Routing and Wavelength Configurations obtained via ML
into an SDN network rapidly. As a result, we have advanced
in the combination of Machine Learning and SDN paradigms
to facilitate traffic-aware and responsive networks, capable
of reacting to changes very fast and implementing such
configuration changes easily through SDN. Indeed, our results
show how the required network configuration update time is
considerably reduced with our approach.
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