
This is a postprint version of the following document :

Aranda, L.A., Reviriego, P. y Maestro J. A. (2020). Toward a 
Fault-Tolerant Star Tracker for Small Satellite Applications. 
IEEE Transactions on Aerospace and Electronic Systems, 56 (5), 
pp. 3421 - 3431.

DOI: https://doi.org/10.1109/TAES.2020.2971289

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/387839923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Towards a Fault-tolerant Star Tracker for
Small Satellite Applications

Luis Alberto Aranda, Pedro Reviriego, and Juan Antonio Maestro.

Abstract—Star trackers are autonomous, high-accuracy elec-
tronic systems used to determine the attitude of a spacecraft.
In recent years, Commercial Off-The-Shelf (COTS)-based star
trackers are growing in importance for low-cost and short-
duration missions, but their fault tolerance against soft errors
has not been studied in detail. In this paper, we propose a self-
healing system protected with ad-hoc techniques that can be used
as the first step to implement a fault tolerant COTS-based star
tracker for smallsat applications.

Index Terms—Error detection and correction, fault tolerance,
soft error, SRAM-based FPGA, star tracker.

I. INTRODUCTION

STAR trackers are widely used in satellites due to their
high-accuracy [1]. This electro-optical device measures

the position and intensity of the stars in the captured image,
and then calculates the spacecraft attitude by comparing this
information to a star catalogue stored in memory [2]. Over
the last decades, major progress in terms of size, weight, and
power consumption reduction has been achieved in order to
enable the use of star trackers in small spacecraft such as
picosats or nanosats [3]–[5].

Small satellites are currently used in earth observation,
interplanetary missions, and on-orbit operations [6]. In addi-
tion, their low cost and small size have also supported the
emergence of multisatellite missions such as those based on
distributed sensing [7]. Several small satellites can be launched
together instead of a bigger and more expensive satellite, so the
specific mission aims can be achieved exploiting the flexibility
and adaptability of the satellite constellation.

Despite the improvements made in small satellites and
star trackers, there are still some issues pending related to
fault tolerance against radiation strikes [8]. Small satellites
are usually built of current commercial off-the-shelf (COTS)
electronic components. This means that they can achieve high
performance levels due to COTS technology miniaturization,
but also their vulnerability to space radiation is higher [9].
For instance, SRAM-based field programmable gate arrays
(FPGAs), which are commonly used as onboard data pro-
cessing devices, provide high processing speed, low cost,
and a practically unlimited number of reconfigurations [10].
However, these FPGAs are sensitive to single event upsets
(SEUs), a type of soft error that changes the content of a flip-
flop or a memory cell. Therefore, a small satellite which uses

L. A. Aranda and J. A. Maestro are with ARIES Research Center, Univer-
sidad Antonio de Nebrija, Madrid 28040, Spain (e-mail: laranda@nebrija.es;
jmaestro@nebrija.es).

P. Reviriego is with Departamento de Ingenierı́a Telemática, Universidad
Carlos III de Madrid, Leganés 28911, Spain (e-mail: previrie@nebrija.es

a COTS-based star tracker made of an SRAM-based FPGA
can experience malfunctions due to space radiation that may
lead to data corruption, or even the loss of communication
with the satellite [11].

One option to reduce the susceptibility of COTS electronic
components to radiation-induced soft errors is to use an ex-
pensive manufacturing process to harden the integrated circuit
from radiation. However, this alternative does not fit with
the low-cost principle of most small satellite missions, so an
SRAM-based FPGA star tracker should be protected using a
different approach to avoid incurring prohibitive costs. The
common and less expensive alternative to the manufacturing
approach is based on detecting and/or correcting errors in the
circuit through some kind of redundancy, what is known as
radiation hardening by design (RHBD).

Several RHBD techniques have been developed over the
years to produce devices and systems of enough hardness to
resist the space environment [12, 13]. Typically, when the
complexity and heterogeneity of the system that is going
to be implemented in the COTS component is high, clas-
sic protection schemes based on spatial redundancy such as
dual or triple modular redundancy (i.e. DMR or TMR) are
chosen to shorten development times. However, this usually
implies higher FPGA resource usage and power consumption
compared to ad-hoc protection techniques based on system
knowledge [14].

In this paper, we present a low-cost fault tolerant image
processing system implemented in an SRAM-based FPGA
that can be used to create a COTS-based star tracker for
small spacecraft applications. This system has been designed
by applying a “divide-and-conquer” approach combined with
ad-hoc protection techniques. The image processing system
has been divided into smaller and less complex modules with
homogeneous properties that have been protected using the
mentioned techniques. These ad-hoc techniques have already
been presented separately in our previous works [15]–[17]
but are also briefly described in this paper for the sake of
completeness. Our techniques exploit specific circuit character-
istics to create an integrated error detection/correction feature
using fewer FPGA resources than traditional redundancy-
based techniques. Therefore, the main contribution of this
paper is the evaluation of the reliability of these techniques
from a system-level point of view when used to create a self-
healing system that can autonomously reconfigure the FPGA
to remove the detected errors.

The rest of the paper is organized as follows. Section II
presents other protection schemes for star tracker systems. In
Section III, the proposed fault tolerant image processing sys-

mailto:laranda@nebrija.es
mailto:jmaestro@nebrija.es
mailto:previrie@nebrija.es


2

tem of a star tracker is explained. The evaluation of the system
as well as the results obtained are described in Section IV.
Finally, the conclusions and future work are summarized in
Section V.

II. RADIATION-INDUCED ERRORS IN STAR TRACKERS

Low-cost fault tolerant imaging systems are essential in
current and future small satellites. These optical systems can
be used as a payload for a wide variety of applications such as
Earth observation or debris detection, or as an onboard attitude
determination and control system such as the star tracker.
Star trackers provide accurate attitude information that can
be used to facilitate pointing or proximity operations, which
are common maneuvers in all satellite missions [18].

As stated in the Introduction, COTS electronic components
are vulnerable to radiation-induced soft errors. These radiation
effects can become even more significant in a COTS-based
star tracker since it is an external spacecraft system directly
exposed to the outer space. Consequently, some kind of
protection mechanism has to be adopted in order to mitigate
these undesirable radiation effects. In the BepiColombo space-
craft for example [19], two star trackers are simultaneously
working, while a third one will be used as a back-up in case of
discrepancy. Even so, star trackers can be temporarily blinded
due to solar events, so auxiliary systems such as gyroscopes
are still required [20]. The main problem with the gyroscopes
is that they have a drift, so the longer they are used, the more
the error will grow. This means that the star tracker can be
temporarily disabled (if necessary) since the satellite has back-
up attitude determination systems, but its normal operation has
to be restored as soon as possible to avoid fatal consequences
for the spacecraft as happened in the Hitomi case [11].

The simplest protection technique for the star tracker is the
redundancy-based approach mentioned before. However, there
are other more efficient alternatives based on characterizing
each component independently to determine its vulnerable
parts. Once the component is studied, a protection technique
can be proposed to address the identified issues. Following
this approach, the main components of a star tracker system
illustrated in Fig. 1 have been protected over the years using
different strategies.

Fig. 1. Component-level scheme of a star tracker.

For example in the optical system, which consists of one
or several lenses that focus the incident light from the stars
onto the image sensor, the major concern is the total ionizing
dose since the lenses are made of glass. Therefore, the glass
can be doped with cerium oxide to reduce the radiation-
generated impurities that darken the lens [21]. In the case of

charge-coupled device (CCD) or complementary metal-oxide-
semiconductor (CMOS) image sensors, it is widely known that
space radiation can create a broad variety of effects such as hot
or dead pixels [22], random telegraph signal noise [23], or dark
current increases [24]. To the authors’ best knowledge, there is
no satisfactory solution to completely solve all these problems
in image sensors. In fact, the general approach is to apply
a posteriori hardware and/or software mitigation algorithms
that remove the undesirable noise acquired by the sensor
from the final image. These algorithms are based on image
subtraction, image thresholding, or image filtering operations
and are implemented in the attitude determination device [25].

The attitude determination device of a star tracker converts
the signals read from the image sensor into attitude values.
First, the captured image is streamed pixel by pixel, and then
it is modified using several image processing algorithms to
extract the attitude information from the image. These values
are later transmitted to the actuators to correct the orientation
of the spacecraft. The mentioned hardware/software mitigation
algorithms are integrated within the normal star tracker data
flow, so the attitude determination device plays two important
roles in the system: it extracts the attitude information from
the image captured by the image sensor and, simultaneously,
ensures that this information is not affected by the radiation-
induced defects in the image sensor enumerated before. This
means that soft errors in this device can lead to malfunctions or
image data corruption, so the final attitude values determined
by the star tracker may not be correct.

In a star tracker, the attitude determination device can be a
microprocessor, an FPGA, or a combination of both in a sys-
tem on chip (SoC) [26]. A microprocessor can be used alone
to perform the image processing and star identification algo-
rithms in software, but better results in terms of performance
can be achieved if the microprocessor is combined with an
FPGA and the image processing operations are implemented in
hardware [27]. The FPGA can speed up those operations that
are parallelizable such as the image acquisition or the noise
filtering procedures mentioned before, while the microproces-
sor performs complex tasks such as the centroid calculation
or the star identification algorithms [28]. As explained in
the Introduction, SRAM-based FPGAs are commonly used
as onboard data processing devices in satellites due to their
high densities, processing speed, and low cost. Therefore, this
FPGA technology can also be used to perform the image
processing part of a star tracker. The main problem of using
SRAM-based FPGAs in space applications is that they are
mostly made of SRAM cells, so both configuration memory
and user memory errors may occur due to SEUs. The type
of error induced depends on the component affected by the
incident radiation. If the energetic particles affect the FPGA
configuration memory elements, then the design functionality
may change. These errors are sometimes called persistent since
the design malfunctions persist indefinitely after the upset, but
they can be removed by reloading the original bitstream or
power cycling the device. On the other hand, user memory
errors happen when the content of user-logic memory elements
such as flip-flops or block RAMs (BRAMs) is affected by
the energetic particles. Therefore, user memory errors corrupt



3

the stored pixels processed by the design, while configuration
memory errors modify the behavior of the design itself.

In order to deal with configuration memory and user
memory errors in SRAM-based FPGAs, several protection
techniques can be implemented. In [29] for example, an error-
correcting code (ECC) with bit-interleaving was adopted to
protect the star tracker registers, but there are other standard
RHBD techniques such as TMR and voting, or cyclic redun-
dancy check that can also be applied to star trackers [30].
However, these techniques have a cost since they are not
optimized for each particular star tracker algorithm. Their
use can increase the resource overhead, the delay, or the
overall power consumption of the star tracker, so the added
penalties have to be carefully considered to select the best
protection for each case. In this paper, we propose an image
processing system for a COTS-based star tracker that has been
protected using ad-hoc techniques. These techniques have been
presented in our previous works [15]–[17] and are based on
knowledge of the system, so they are designed to obtain the
right balance between the FPGA resources used and the final
error detection/correction rate achieved. In this paper, these
ad-hoc techniques are evaluated from the system-level point
of view by creating the proposed self-healing system described
below. The evaluation of the entire system is presented in
Section IV.

III. PROPOSED PROTECTED SYSTEM

As stated before, the attitude determination device of a star
tracker can be a microprocessor, an FPGA, or a SoC. In this
paper, the proposed protected image processing system has
been implemented in the SRAM-based FPGA part of a Xilinx
Zynq-7000 SoC device. A SoC device has been chosen to
enable the system to be further extended with future centroid
calculation and star matching algorithms implemented in the
microprocessor part. However, the presence of a microproces-
sor in the same device has been additionally exploited to create
a robust fault tolerant system.

The main idea behind using a SoC device is to inform the
microprocessor of the radiation-induced errors that occur in
the configuration memory of the SRAM-based FPGA part
to enable a self-healing behavior. In order to do that, the
image processing system implemented in the FPGA has been
protected using ad-hoc error detection techniques whose “error
detected” signals have been connected to the microprocessor.
This way, once a configuration memory corruption is detected
in the FPGA by the protection techniques, a software inter-
ruption programmed in the microprocessor is automatically
triggered to perform the reconfiguration of the FPGA and thus
remove the detected error.

As previously stated, the SRAM-based FPGA part of the
proposed system has been protected against radiation-induced
SEUs using ad-hoc protection techniques. These techniques
have been developed by dividing the image processing system
into functional modules to study and protect them more easily.
Following this “divide-and-conquer” approach, the overall
system complexity is decreased to facilitate the evaluation
of each module. The “divide-and-conquer” strategy applied
consists of the next steps:

1. Divide the image processing system into smaller and
less complex functional modules.

2. Study the structure and behavior of each functional
module individually to find its main properties.

3. Develop an ad-hoc protection technique for each module
exploiting the homogeneous properties found in the
previous point.

4. Evaluate the ad-hoc technique in terms of error detection
and FPGA resource usage.

5. Iterate the previous steps to refine the FPGA resource
usage vs. fault tolerance trade-off of the solution found.

Using this “divide-and-conquer” approach, the proposed
protected star tracker system illustrated in Fig. 2 has been
implemented in the Zynq-7000 SoC device, which combines
an SRAM-based FPGA and a microprocessor.

Fig. 2. Overview of the protected image processing system.

In this figure, the image processing system in the FPGA
receives an 8-bit grayscale image captured by the image
sensor in pixel-stream format and the following operations are
performed:

• Acquisition Module: the acquisition module prepares the
input pixels for the noise filtering process by buffering
them using a first in, first out (FIFO) pipeline.

• Noise Filtering Module: the buffered pixels are filtered
in groups to remove the noise captured by the sensor.
In particular, a median filter has been chosen to remove
impulsive noise.

• Threshold Module: after the noise filtering operation, the
image is thresholded to separate the pixels that belong to
stars from those that are part of the background. This
module sets to zero those pixels that are not required for
the centroid calculation or the star matching algorithms
(i.e. the background pixels).

• Image Storage Module: the thresholded pixels are stored
in the FPGA BRAMs to share the final processed image
with the microprocessor.

All these FPGA modules have been protected against SEUs
using ad-hoc techniques except for the threshold module,
which has been protected using a standard technique (as will
be explained later). As can be observed in Fig. 2, the error
signals of the acquisition, noise filtering, and threshold mod-
ules have been connected to the microprocessor. These three



4

module-generated error signals are used to trigger an FPGA
reconfiguration using the microprocessor software interruption
mentioned before. Therefore, the proposed system behavior
can be defined by two states:

• Operation in the absence of errors: in an error-free
environment, the error signals Error1, Error2, and Error3
are equal to zero and the system behaves normally. The
sky images captured by the star tracker are processed by
the FPGA and sent to the microprocessor for subsequent
star identification algorithms.

• Operation in the presence of errors: when a configu-
ration memory error is detected by the FPGA modules
(Error1 or Error2 or Error3 = 1), the captured image is
discarded and a reconfiguration of the FPGA is performed
by the microprocessor to remove the persistent error.
The reconfiguration clears and rewrites the content of the
FPGA configuration memory returning the system to the
correct behavior.

Apart from that, it is worth noting that the image storage
module depicted in Fig. 2 does not have any “error detected”
signal. This is because this module mainly consists of BRAMs,
which are vulnerable to user memory errors that corrupt the
stored image instead of configuration memory errors that
modify the design structure. For this reason, and because the
proposed protection technique for this module can detect and
correct user memory errors on-the-fly (as will be explained
later), there is no “error detected” signal connected to the
microprocessor. Some examples for each of the previously
listed modules along with their protection schemes are detailed
in the following subsections. It should be mentioned that the
algorithms within these modules could be replaced by other
algorithms that perform similar tasks. However, other ad-hoc
protection techniques would have to be developed to achieve
the desired resource usage vs. fault tolerance trade-off.

A. Protection technique for the acquisition module

This protection technique has been individually evaluated
in detail in our paper [15]. As mentioned before, each 8-bit
grayscale image captured by the image sensor is sent in pixel-
stream format. This means that the image pixels are received
one at a time column by column and row by row every clock
cycle. Point operations such as brightness adjustment or image
thresholding, in which the output pixel is only a function of
the corresponding input pixel value, can be easily integrated
into this pixel stream flow. However, certain local operations
such as median or rank filters, in which the output pixel is
a function of the input pixel and its surrounding neighbors,
need to process the image locally instead of pixel by pixel
(as illustrated in Fig. 3). Hence, a pixel caching mechanism is
required.

In the previous figure, gray-shaded pixels on the input image
represent a 3x3 square window that feeds the local filter. The
resulting filtered pixel replaces the center pixel of the window.
In order to generate the output filtered image, the window must
be moved along the entire image to process each input pixel.
In software, this algorithm can be easily implemented using
loops but, in hardware, the movement of the square window

Fig. 3. Local filtering process.

should be done using a special structure made of FIFO buffers
and registers [31]. This structure is illustrated in Fig. 4.

Fig. 4. Line buffer pipeline structure [31].

The structure shown in the previous figure consists of nine
registers and two FIFO buffers that temporarily store two
rows of the image and the first three pixels of the third row
to “simulate” the 3x3 window movement along the image
mentioned before. Once the entire pipeline is filled with pixels,
the nine pixels of the window are outputted simultaneously
every clock cycle to the local filter module. Then, the desired
local filtering operation can be performed.

Studying the line buffer pipeline in detail, it can be observed
that it is a long delay line with two parallel branches (from R0
to R2 and from R3 to R5). Therefore, if there is no malfunc-
tion, any pixel fed to the pipeline should be outputted through
R2, R5 and R8 but in different time periods. Following this
structural property of the design, a malfunction in the pipeline
can be detected by temporarily storing the pixels outputted
through R2 and R5 and comparing them against the pixel
outputted through R8 at this precise moment. In order to create
this ad-hoc decimated comparison, a couple of 8-bit detection
registers, a counter, and a three-input comparator have to be
added to the original structure. Fig. 5 illustrates the proposed
protection technique in which the Error1 signal is connected
to the microprocessor as presented before in Fig. 2.

It should be noticed that the detection registers DR1 and



5

Fig. 5. Protected acquisition module [15].

DR2 depicted in Fig. 5 are different from the registers
within the 3x3 window. The detection registers are also 8-bit
registers but controlled by a counter module, which enables
their reading/writing operations, instead of by the global clock
signal of the system. The counter is required to perform the
comparison of the content of DR1, DR2, and R8 at particular
time periods. For example, a pixel that enters in the pipeline
at time t is stored both in R0 and FIFO Buffer 1, then, at
time (t+3) the pixel is outputted through R2 and the counter
enables the writing of DR1 to store it. The same pixel will
be stored in DR2 at (t + 3+line buffer length) and, finally,
the pixel will also be outputted through R8 (t + 3 + 2·line
buffer length) clock cycles later. The comparison of the content
of DR1, DR2, and R8 has to be performed at this precise
moment to compare the same pixel value. If the pixel value
changes in some parts of the pipeline due to a configuration
memory error, a comparison mismatch will occur and Error1
signal will be triggered. This decimated comparison approach
is based on the fact that configuration memory errors modify
permanently the structure of the design so, once the pipeline is
altered, most of the subsequent pixel values that pass through
this point will be corrupted.

B. Protection technique for the noise filtering module

This protection technique has been individually evaluated
in detail in our paper [16]. In image processing, the noise
filtering operation is usually the next step to image acquisition.
This order is followed to avoid propagating the undesirable
noise captured by the image sensor to other modules. This
input noise can be Gaussian, periodic, or impulsive depending
on the source. Impulsive noise is harmful to star trackers
since it can create new false stars in the image or modify the
centroid/intensity of the stars already in the image. For this
reason, we have included an impulsive noise filtering module
in the image processing system. In particular, a median filter
has been selected due to its robustness and its capabilities to
remove the noise while preserving the edges of the stars in
the image.

The median filtering operation consists in sorting the pixels
outputted by the acquisition module to obtain the median
value. Using the median, the pixel in the original image that
corresponds to the center of the current 3x3 window position

(see Fig. 3) is replaced to remove any impulsive noise in this
pixel. In order to filter the entire image, the median filtering
operation has to be performed for each window position along
the image. In hardware, the median filter can be implemented
using an exchange network scheme as the one shown in Fig. 6.

Fig. 6. Hardware implementation of a 3x3 median filter [32].

As mentioned before, this scheme receives the nine pixels
from the acquisition module and determines their median
value. Each box numbered from 1 to 19 is an identical
exchange node that performs a two-input sorting using an
8-bit comparator and two 2:1 multiplexers. The two inputs
are internally compared and the higher (H) and the lower (L)
values are obtained as illustrated in Fig. 7. The lower output
of the node number 14 is the median of the inputs.

Fig. 7. Internal diagram of one exchange node [16].

Again, as was done for the previous module, the median
filter structure has been studied to find a specific property that
can be exploited to create a protection technique. Looking
at Fig. 6, it can be observed that there are unused outputs
in some exchange nodes. These outputs are, by definition,
higher or lower than the median value, so they can be used
to create a dynamic range. If the median is out of this range,
then a malfunction has occurred. Consequently, this dynamic
range can be used to activate an error signal (Error2 from
Fig. 2) when a configuration memory error is detected. Then,
a reconfiguration of the FPGA can be performed to remove
the error. Fig. 8 illustrates our protection technique presented
in [16].

This technique is based on adding the gray-shaded blocks
shown in Fig. 8 to the original median filter scheme. These
blocks are used to create the mentioned range with the non-
median outputs. The range is dynamically determined for each
nine pixel group using identical exchange nodes as the one
shown in Fig. 7. The upper value of the range (H3 low output)
is calculated as the lower value of the four higher input values,
while the lower value of the range (L3 high output) is obtained
using the higher value of the four lower input pixel values.



6

Fig. 8. Protected noise filtering module [16].

Once the range is calculated, two 8-bit comparators check if
the median is within the range. If the median value is above
H3 or below L3, then Error2 signal is triggered.

C. Protection technique for the threshold module

After the noise filtering operation, the threshold module per-
forms a background subtraction to facilitate the star centroid
determination algorithm. Basically, the threshold module in a
star tracker replaces those pixels that are below a fixed value
(the threshold) by a black pixel, and leaves unmodified the rest
of the pixels. In this way, the intensity of the star pixels is not
altered and can be used later in the star matching process.

The threshold module can be implemented in hardware
using combinational logic, so it can be directly connected in
series to the pixel stream to process each pixel as it arrives
from the previous filtering module. The FPGA implementation
of the threshold module is depicted in Fig. 9.

Fig. 9. Internal diagram of the threshold module.

The input pixel is compared to the user-defined constant
threshold value. The output signal of this comparison is
connected to the 2:1 multiplexer control signal in the figure.
This means that, if the pixel value is lower than the threshold
value, the ground input will be selected, but if the pixel value is
above the threshold, then the input pixel is outputted normally.
Looking at the previous figure, it can be observed that the
threshold circuit consists of a couple of components so, in this
case, a custom protection technique has not been developed for
this module. In fact, a classic DMR scheme has been directly
used to protect it as illustrated in Fig. 10.

Fig. 10. Protected threshold module.

The approach presented in this figure has been followed
since the increment in terms of FPGA resource usage will be

negligible for this small design. Finally, it is worth noting that
the Error3 signal is connected to the microprocessor in Fig. 2.

D. Protection technique for the image storage module

This protection technique has been individually evaluated in
detail in our paper [17]. After the previous image processing
steps, the final image will be almost noise-free and entirely
black, except for small star regions that are above the threshold
(see Fig. 11). Now, the final image can be stored in an internal
or external memory to share it with the microprocessor that
will perform the centroid calculation and the star matching al-
gorithms. In our case, we have chosen internal Xilinx BRAMs
since they are embedded memories with low access latency
and, moreover, the number of BRAMs in the FPGA part of
the Zynq-7000 SoC is enough to store a 640x480 image,
which is the standard VGA resolution. However, the main
drawback of Xilinx BRAMs is that they are highly sensitive to
radiation-induced user memory errors due to their high density
in the newer 7-series technologies, so the stored pixels can be
corrupted by SEUs.

Fig. 11. Example of final preprocessed star tracker image.

Analyzing the properties of the final star images that will
be stored in the BRAMs and according to [33], it can be
concluded that a typical 640x480 image will usually contain
less than 500 star pixels since the number of stars per image
is usually between 4 to 6 and each star is spread over a
small region of 9x9 pixels. This means that the percentage of
pixels in the image that belong to stars will be less than 0.2%.
Our protection technique exploits this particular feature of the
stored data to detect and correct transient errors in the stored
pixels. In particular, the correction of the corrupted pixels in
the proposed scheme is achieved thanks to the use of a back-up
memory which contains a copy of the star pixels. The proposed
protection scheme for the image storage module is illustrated
in Fig. 12.

In addition to the back-up memory mentioned before, an
encoding/decoding operation has to be performed to be able
to distinguish between star and background pixels after the
effect of an SEU. For a better understanding of the scheme
presented in Fig. 12, the encoding and decoding procedures
are explained separately.

• Encoding operation: First, each median pixel from the
filtering module is classified as star or background using
the threshold module. If the pixel is below the threshold,
it is considered background and set to zero, and in the
encoding stage its parity is also set to zero. Conversely,
if the pixel is above the threshold, it is considered part of



7

Fig. 12. Protected image storage module [17].

a star and, in the proposed technique, the pixel is dupli-
cated. One copy of the star pixel is stored unmodified in
the back-up memory and, at the same time, the other copy
is encoded and stored in the main memory. The star en-
coding procedure replaces the Least Significant Bit (LSB)
of the pixel by ‘1’, leaving the other seven bits unaltered.
Then, the parity of the star pixel is calculated using these
seven bits to create a minimum Hamming distance of
three between a star and a background pixel. This way,
the capability to differentiate between a corrupted star
pixel and a corrupted background pixel during the read
operation is enabled. Finally, the encoded star pixel and
its parity are stored in the main memory.

• Decoding operation: the decoding operation consists of
two multiplexers, a star counter, and a “pixel check”
block. The “pixel check” block is used to determine
whether the read pixel is background or star. If the read
pixel is background, the “Star” signal is zero and then
the output pixel is set to zero as well, removing every
possible SEU in the background pixel. Otherwise, the
pixel is star, and then the “Star” signal is set to one. In this
case, the parity of the seven MSBs of the pixel is checked.
If the parity check is correct, the “Error in star” signal is
set to zero and the pixel is outputted normally but, if an
error is detected during the parity check, then this signal
is set to one and an uncorrupted copy of the pixel is
retrieved from the backup memory. In order to determine
the current back-up memory address, the “Star” signal
is also used to increment the address of the star counter
block. Finally, the internal scheme of the “pixel check”
block is depicted in Fig. 13 for the sake of completeness,
but a detailed description and evaluation of the protection
technique explained in this subsection can be found in our
previous work [17].

After presenting each protected module, the image process-
ing system of our SRAM-based FPGA star tracker has been
evaluated in the next section. The behavior of the ad-hoc
techniques has also been analyzed to validate them from the
system-level point of view.

Fig. 13. Internal scheme of the “pixel check” block [17].

IV. SYSTEM EVALUATION

As mentioned at the beginning of the previous section, a
“divide-and-conquer” strategy has been used to find modules
with homogeneous properties in the image processing system
of the star tracker. These modules have been studied and
protected individually against configuration memory or user
memory errors with the ad-hoc techniques explained before.
The main purpose of this module-level division is to reduce
the overall complexity of the whole star tracker system to
apply ad-hoc techniques more easily. In this manner, the fault
tolerance of the system can be improved by increasing the
fault tolerance of its individual modules.

In this section, the behavior of the complete system pre-
sented in Fig. 2 has been analyzed to evaluate the correctness
of the “divide-and-conquer” approach and the protection tech-
niques from the system-level point of view. In order to do that,
configuration memory errors have been exhaustively injected
using the Xilinx Soft Error Mitigation (SEM) Intellectual
Property (IP) controller [34]. User memory errors in BRAMs
have not been injected since the image storage module, which
is the only module that uses BRAMs in the system, has already
been tested in our work [17], and the results show that the
technique is able to detect and correct these errors in the stored
pixels on-the-fly. Therefore, only configuration memory errors
have been injected to test the complete system.

The results obtained for the proposed protected system
have been put into perspective by comparing them against
the results obtained by a system protected with a traditional
redundancy-based technique. A redundancy-based system has
been chosen as the closest neighbor because, as mentioned
in the Introduction, these schemes are typically followed to



8

shorten development times when the complexity and hetero-
geneity of the system that is going to be implemented in the
COTS device is high. In particular, a system protected with
DMR schemes for each module has been chosen. DMR has
been chosen as protection technique instead of, for example,
TMR, because DMR can be used to create a system with
a similar error detection behavior to the proposed system.
The total FPGA resource usage, the fault tolerance, and the
reconfiguration rate of both ad-hoc and DMR-based systems
are presented in the following subsections.

A. Resource usage

Both proposed and DMR-based systems have been imple-
mented in the SRAM-based FPGA part of a Xilinx Zynq-7000
SoC together with an unprotected version of the star tracker
image processing system to measure the FPGA resource
overhead. The number of look-up tables (LUTs) and flip-flops
(FFs) is summarized in Table I as well as the percentage of
overhead added to the unprotected star tracker.

TABLE I
FPGA RESOURCE OVERHEAD COMPARISON

Unprotected DMR Proposed

LUTs 456 957 (109.9%) 578 (26.8%)
FFs 127 260 (104.7%) 181 (42.5%)
BRAMs 75 76 (1.3%) 76 (1.3%)

It can be noticed that the DMR-based system requires more
than 100% of LUTs and FFs, as expected. They are not exactly
100% because the system also requires comparators to check
the outputs of the duplicated modules. Conversely, our pro-
posed protected system adds a low overhead to the unprotected
system. This is because the ad-hoc protection techniques have
been designed to achieve a high error detection rate at the
minimum resource usage cost. Finally, it can also be observed
that the increase in BRAMs is low and equal in both cases.
This is because the proposed protection technique for the
image storage module has been applied to both systems since
a DMR of this module does not fit in the selected Zynq-7000
SoC.

B. Fault tolerance

In this subsection, the behavior of the proposed protected
system and the DMR-based system in terms of error detection
capabilities has been evaluated with the SEM controller. The
SEM controller is a Xilinx IP block that can be used to inject
configuration memory errors in the design. Loading the SEM
controller in the FPGA along with the system under test and
using a serial port communication script, an automated fault
injection campaign can be executed. Before starting the fault
injection campaign, a golden simulation has to be performed
to verify the proper operation of the system under test. For
the experiments, 8-bit grayscale 640x480 star tracker images
have been generated using a Matlab program created by E.
Palombo from the European Space Research and Technology

Centre (ESTEC) in the Netherlands. In the golden simulation,
these input images are processed by the system in the absence
of errors, obtaining the golden output images that are later used
to assess the correctness of the final images obtained during
the fault injection campaign. This campaign consists of a fault
injection/correction loop, in which one configuration memory
bit is flipped in each iteration. After comparing the new final
image to the golden final image, the erroneous configuration
memory bit is flipped again to correct the error and a new
injection/correction loop iteration is performed until all the
configuration bits are tested. Therefore, it can be considered
an “exhaustive” fault injection campaign in which the single-
error model of the system under test is checked.

Based on the effect that the bit flip produces in the image
outputted by the system, a classification has been made as
follows:

• Corrupted image: the current image outputted by the
system is considered as “corrupted” when it is different
from the golden image obtained in the absence of errors.
The effects of the injected error can be observed and
measured in the corrupted image. Two cases can be
distinguished:

1. Detected error: an error is considered as “detected”
when (at least) one “error detected” signal of the
system (Error1, Error2, or Error3) is high and the
output of the design is different from the golden
output. This means that a malfunction in the system
has been detected by a protection technique. In this
case, this will imply discarding the corrupted image
and reconfiguring the FPGA to assure the reliability
of the system.

2. Undetected error: this is the opposite case. The
injected bit flip produces a malfunction that modifies
the outputted image but the protection technique
does not detect the error (all the “error detected”
signals are low).

• Uncorrupted image: in this case the current image
outputted by the system matches the golden image. This
means that the injected error has been masked and does
not affect the final image. Two cases can be distinguished:

3. False positive: at least one “error detected” signal is
high, but the final image matches the golden image.
False positives normally happen when the bit flip
affects a protection technique itself, triggering the
“error detected” signal. The behavior of the system
in this case will be the same as in 1., discarding the
image and reconfiguring the FPGA to recover the
error detection capabilities.

4. Normal operation: in this case the bit flip does not
affect the proper operation of the system and the
protection techniques does not detect any error. This
case can happen when the injected error affects an
SRAM cell that is unused by the design. The bit flip
will have no impact in the system performance.

Using this classification, a reliability report can be generated
to compare both systems between them. In order to perform
the exhaustive fault injection campaigns, a fixed FPGA region



9

has been selected to test each design individually. This re-
gion contains 255,517 bits, so 255,517 injections have been
performed to cover the entire region. The following results
summarized in Table II have been obtained after performing
the exhaustive fault injection campaign procedure explained
before.

TABLE II
ERROR DETECTION COMPARISON

DMR Proposed

Corrupted images 25,518 18,555

1. Detected errors 23,119 (90.6%) 15,743 (84.8%)
2. Undetected errors 2,399 (9.4%) 2,812 (15.2%)

Uncorrupted images 229,999 236,962

3. False positives 17,765 (7.7%) 1,735 (0.7%)
4. Normal operations 212,234 (92.3%) 235,227 (99.3%)

MSE (Undetected) 73 76

Analyzing the results in Table II, it can be observed that
the percentage of detected errors in the DMR-based system
is higher than the proposed protected system. However, it can
also be noticed that this percentage is not 100% as should be
expected. This phenomenon is due to configuration memory
errors that affect the input/output routing connections of the
modules by changing the input/output pixel values. These
errors are not detected by the protection techniques since they
occur before or after the module, so the “error detected” signal
is not triggered. However, the comparison against the golden
image mismatches, so the error is classified as undetected.
These input/output routing errors have been included in the
results because they are common in FPGAs as they are part of
the implemented design. It can be observed that the percentage
of these undetected errors for the proposed system is higher
than the DMR-based system but, in absolute numbers, this
value is close in both systems.

In order to evaluate the effect of the undetected errors
in the final image, two approaches have been followed. A
quantitative approach, in which the averaged mean square
error (MSE) of the corrupted pixels in the images, which can
be used to estimate the changes in the pixel values between
the golden uncorrupted image and the corrupted images, is
calculated. And a qualitative approach, in which some images
were outputted for a visual inspection. About the quantitative
approach, it can be observed in Table II that the MSE values
are similar in both designs. This indicates that the pixel
values in the images with undetected errors are close to their
original uncorrupted values, so both protected systems behave
in the same way. Consequently, the undetected corrupted
image should not heavily impact the later star identification
algorithms. Following the qualitative approach, both images
with detected and undetected errors were analyzed to draw
some conclusions. An example of these images is shown in
Fig. 14.

Fig. 14 (a) shows a corrupted image that is undetected by the
proposed protected system and Fig. 14 (b) a corrupted image
that is detected by the protected system. First, it can be noticed

Fig. 14. Example of corrupted final images. (a) Corrupted image undetected
by the system and (b) corrupted image detected by the system.

that the undetected image is quite similar to the one shown
in Fig. 11. This is because, in this case, the error is slightly
modifying the values of the pixels in the image, but not enough
to observe a visual impact. This can be due to the limitation
of the proposed protection technique for the noise filtering
module, which cannot detect errors when the median value is
within the range. About the corrupted image that is detected
by the protection techniques (Fig. 14 (b)), it can be observed
that the upper part of the image is damaged by only injecting
one configuration memory error. This is because the image
processing system is a long pipeline so, if a configuration
memory error creates a malfunction in the structure, most
of the pixels that pass through this damaged part will be
corrupted. This corrupted image, which is detected by our
design, would have significantly more impact in the centroid
calculation than Fig. 14 (a). Therefore, from the qualitative
and the quantitative points of view, it can be said that the
fault tolerance of the system has been improved.

Finally, it can also be observed that fewer errors occur
in the proposed protected system. This is because fewer
FPGA resources were used during the design process. This
is particularly noticeable in terms of false positives. In this
case, our system has 10 times fewer false positive detections
than the DMR-based system since it requires fewer FPGA
resources to perform the error detection. Consequently, fewer
reconfigurations will be performed in our protected system as
will be shown in the next subsection.

C. Reconfiguration rate

As has been explained during this paper, the “error detected”
signals (Error1, Error2, and Error3) have been connected to
the microprocessor part of the SoC to trigger the complete
reconfiguration of the FPGA and thus remove the detected
configuration memory error. Analyzing the behavior of the
system presented in the previous subsection, it can be deduced
that the FPGA will not only be reconfigured when an error is
detected by the protection technique, but also when a false
positive detection occurs due to errors in the detection part of
the design. Therefore, the total number of reconfigurations can
be obtained for each protected system by adding the number
of detected errors and false positives from Table II. Then,
the number of reconfigurations for the DMR-based system is
40,884 and 17,478 for the proposed system.



10

By comparing these two values, it can be determined that
the DMR-based system is reconfigured 2.3 times more than the
proposed protected system. This higher number of reconfigura-
tions means that the DMR-based system will be available less
time. This is because the ad-hoc protection techniques have
been designed having the resource overhead minimization in
mind, which directly impacts in the reconfiguration rate.

In conclusion, after the evaluation performed in this sec-
tion, it can be said that the “divide-and-conquer” strategy
followed to analyze and protect the image processing system
has provided adequate results. The use of ad-hoc protection
techniques has implied a slightly higher number of undetected
errors. However, the corrupted images due to these errors have
a low MSE value, so their corrupted pixels are close to their
uncorrupted values. Moreover, fewer FPGA resources were
used during the design of the ad-hoc protection techniques, so
fewer errors may occur. At the same time, this small resource
overhead has contributed to reduce the number of false positive
detection and thus the reconfiguration rate of the system.

V. CONCLUSIONS AND FUTURE WORK

The use of COTS components in space applications implies
a reduction in the overall cost of the satellite. However, it
also results in a reduction of the system reliability against
radiation-induced errors. Typically, when the complexity of
the system is high, traditional protection approaches based
on modular redundancy are usually implemented to shorten
development times. In order to facilitate the development of
custom techniques, a “divide-and-conquer” strategy has been
followed in this paper to reduce the complexity of the entire
system. Using this approach and the knowledge of the system,
several ad-hoc techniques have been developed to protect the
image processing system of a COTS-based star tracker. In
this paper, the evaluation of these ad-hoc techniques from the
system-level point of view is presented.

Experimental results have demonstrated a satisfactory be-
havior of the system in terms of FPGA resource usage, error
detection rate, and reconfiguration rate since the individual
techniques were developed to obtain a good balance be-
tween the FPGA resource usage and the final fault tolerance
achieved. Based on the results, it can be said that the “divide-
and-conquer” strategy combined with ad-hoc techniques can
provide us with good results by reducing the complexity of
the system and thus the development time. Following this
approach, a self-healing system that automatically reconfigures
the FPGA when an error is detected has been proposed. This
system can be used as the first step to implement a low-cost
fault tolerant star tracker based on COTS components for small
spacecraft applications.

As a natural extension of our system, we will implement
the centroid calculation and star matching algorithms in the
microprocessor part in future works. In addition, some soft-
ware protection techniques will be studied to protect these
algorithms.

ACKNOWLEDGEMENT

The authors would like to thank E. Palombo from
ESA/ESTEC in Noordwijk, the Netherlands, for providing the

star tracker images used in this paper.

REFERENCES

[1] G. J. Zhang, Star Identification. Methods, Techniques and Algorithms,
National Defense Industry Press, Beijing, 2017.

[2] J. Roshanian, S. Yazdani, and M. Ebrahimi, “Star identification based
on euclidean distance transform, voronoi tessellation, and k-nearest
neighbor classification,” IEEE Trans. Aerosp. Electron. Syst., vol. 52,
no. 6, pp. 2940-2949, 2016.

[3] R. Zenick and T. J. McGuire, “Lightweight, Low-Power Coarse Star
Tracker,” in 17th Ann. AIAA/USU Conf. on Small Satellites, 2003.

[4] A. Joachim, “Star Imager for Nanosatellite Applications,” M.S. thesis,
Dept. Electron. Eng., York Univ., Toronto, ON, 2017.

[5] S. A. Rawashdeh and J. E. Lumpp, “Image-based attitude propagation
for small satellites using RANSAC,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 50, no. 3, pp. 1864-1875, 2014.

[6] A. Nanjangud, P. C. Blacker, S. Bandyopadhyay, and Y. Gao, “Robotics
and AI-Enabled On-Orbit Operations With Future Generation of Small
Satellites,” Proc. IEEE, vol. 106, no. 3, pp. 429-439, 2018.

[7] S. Bandyopadhyay, R. Foust, G. P. Subramanian, S. J. Chung, and
F. Y. Hadaegh, “Review of formation flying and constellation missions
using nanosatellites,” Journal of Spacecraft and Rockets, vol. 53, no. 3,
pp. 567-578, 2016.

[8] A. Poghosyan and A. Golkar, “CubeSat evolution: Analyzing CubeSat
capabilities for conducting science missions,” Progress in Aerospace
Sciences, vol. 88, pp. 59-83, 2017.

[9] D. Bekker et al., “The COVE Payload - A Reconfigurable FPGA-Based
Processor for CubeSats,” in AIAA/USU Conf. on Small Satellites, 2011.

[10] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Availability analysis
for satellite data processing systems based on SRAM FPGAs,” IEEE
Trans. Aerosp. Electron. Syst., vol. 52, no. 3, pp. 977-989, 2016.

[11] A. Witze, “Software error doomed Japanese Hitomi spacecraft,” Nature,
533, 2016.

[12] R. Ladbury, “Radiation hardening at the system level,” in IEEE Nuclear
and Space Radiation Effects Conference Short Course Notebook, 2007.

[13] J. W. Gambles, G. K. Maki, and S. R. Whitaker, “Radiation hardening
by design,” Int. Journal of Electronics, vol. 95, no. 1, pp. 11-26, 2008.

[14] S. Liu, G. Sorrenti, P. Reviriego, F. Casini, J. A. Maestro, and
M. Alderighi, “Increasing Reliability of FPGA-based Adaptive Equal-
izers in the Presence of Single Event Upsets,” IEEE Trans. Nucl. Sci.,
vol. 58, no. 3, pp. 1072-1077, 2011.

[15] L. A. Aranda, P. Reviriego, and J. A. Maestro, “Protecting Image
Processing Pipelines Against Configuration Memory Errors in SRAM-
based FPGAs,” Electronics, vol. 7, no. 11, p. 322, 2018.

[16] L. A. Aranda, P. Reviriego, and J. A. Maestro, “Error Detection
Technique for a Median Filter,” IEEE Trans. Nucl. Sci., vol. 64, no.
8, pp. 2219-2226, 2017.

[17] L. A. Aranda, P. Reviriego, R. G. Toral, and J. A. Maestro, “Protection
Scheme for Star Tracker Images,” IEEE Trans. Aerosp. Electron. Syst.,
doi: 10.1109/TAES.2018.2849919.

[18] M. Aung et al., “An Overview of Formation Flying Technology Devel-
opment for the Terrestrial Planet Finder Mission,” in Proc. of the IEEE
Aerospace Conf., Piscataway, NJ, 2004, pp. 2667–2679.

[19] R. J. Wilson and M. Schelkle, “The BepiColombo Spacecraft, Its Mis-
sion to Mercury and Its Thermal Verification,” in Lunar and Planetary
Science Conf., The Woodlands, TX, 2015, p. 1058.

[20] S. Janson and R. Welle, “The NASA Optical Communication and Sensor
Demonstration Program,” in AIAA Small Satellite Conf., 2013.

[21] R. H. White and G. R. Wirtenson, “Radiation Induced Darkening of the
Optical Elements in the Startracker Camera,” Lawrence Livermore Na-
tional Laboratory Report, UCRL-ID-113713, University of California,
Livermore, CA, 1993.

[22] B. R. Hancock et al., “CMOS active pixel sensor specific performance
effects on star tracker/imager position accuracy,” in Int. Society for
Optics and Photonics Symp. on Integrated Optics, 2001, pp. 43-53.

[23] P. Martin-Gonthier, V. Goiffon, and P. Magnan, “In-pixel Source Fol-
lower Transistor RTS Noise Behavior under Ionizing Radiation in CMOS
Image Sensors,” IEEE Trans. Electron. Devices, vol. 59, no. 6, pp. 1686-
1692, 2012.

[24] V. Goiffon et al., “Identification of Radiation Induced Dark Current
Sources in Pinned Photodiode CMOS Image Sensors,” IEEE Trans.
Nucl. Sci., vol. 59, no. 4, pp. 918-926, 2012.

[25] B. Jahne, “Applications and Tools,” in Digital Image Processing, 6th
ed., Berlin, Germany: Springer, 1991, ch. 1, sec. 3, pp. 14-16.



11

[26] E. Jalabert et al., “Optimization of Star Research Algorithm for Esmo
Star Tracker,” in 8th International ESA Conference on Guidance, Navi-
gation and Control Systems, Karlovy Vary, Czech Republic, 2011.

[27] I. Bahri, L. Idkhajine, E. Monmasson, and M. E. A. Benkhelifa,
“Hardware/software Codesign Guidelines for System on Chip FPGA-
based Sensorless AC Drive Applications,” IEEE Trans. Ind. Informat.,
vol. 9, no. 4, pp. 2165-2176, 2013.

[28] X. Iturbe et al., “Towards a Generic and Adaptive System-onchip
Controller for Space Exploration Instrumentation,” in 2015 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), 2015, pp. 1-8.

[29] X. Wei et al., “Development of a radiation-hardened SRAM with EDAC
algorithm for fast readout CMOS pixel sensors for charged particle
tracking,” Journal of Instrumentation, vol. 9, no. 8, pp. 1-14, 2014.

[30] Y. Bentoutou, “A Real Time EDAC System for Applications Onboard
Earth Observation Small Satellites,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 48, no. 1, pp. 648-657, 2012.

[31] D. G. Bailey, “Local Filters,” in Design for Embedded Image Processing
on FPGAs, 1st ed., Asia: John Wiley & Sons, 2011, ch. 8, sec. 1, pp.
233-239.

[32] J. L. Smith, “Implementing Median Filters in XC4000E FPGAs,” Xcell,
vol. 23, no. 4, p. 16, 1996.

[33] C. C. Liebe, “Accuracy Performance of Star Trackers - A Tutorial,”
IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 2, pp. 587-599, 2002.

[34] Xilinx, Soft Error Mitigation Controller, LogiCORE IP Product Guide,
v4.1, 2015.


	Página en blanco



