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Abstract—Multilevel cell (MLC) memories have been 
advocated for increasing density at low cost in next generation 
memories. However, the feature of several bits on a cell reduces 
the distance between levels; this reduced margin makes such 
memories more vulnerable to defective phenomena and 
parameter variations, leading to an error in stored data. These 
errors typically are of limited magnitude, because the induced 
change causes the stored value to exceed only a few of the level 
boundaries. To protect these memories from such errors and 
ensure that the stored data is not corrupted, Error Correction 
Codes (ECCs) are commonly used. However, most existing codes 
have been designed to protect memories in which each cell stores a 
bit and thus, they are not efficient to protect MLC memories. In 
this paper, an efficient scheme that can correct up to magnitude-3 
errors is presented and evaluated. The scheme is based by 
combining ECCs that are commonly used to protect traditional 
memories. In particular, Interleaved Parity (IP) bits and Single 
Error Correction and Double Adjacent Error Correction 
(SEC-DAEC) codes are utilized; both these codes are combined in 
the proposed IP-DAEC scheme to efficiently provide a strong 
coding function for correction, thus exceeding the capabilities of 
most existing coding schemes for limited magnitude errors. The 
SEC-DAEC code is used to detect the cell in error and correct 
some bits, while the IP bits identify the remaining erroneous bits 
in the memory cell. The use of these simple codes results in an 
efficient implementation of the decoder compared to existing 
techniques as shown by the evaluation results presented in this 
paper. The proposed scheme is also competitive in terms of 
number of parity check bits and memory redundancy. Therefore, 
the proposed IP-DAEC scheme is a very efficient alternative to 
protect and correct MLC memories from limited magnitude 
errors. 

Index Terms—Multilevel cell memories, limited magnitude 
errors, error correction codes, SEC-DAEC codes 

I. INTRODUCTION

N he last decade, computing has been pervasively utilized in 
many systems and applications. This trend is accelerating 

with the Internet of Things (IoT) and the use of advanced 
mobile devices. The number of devices has dramatically grown 
together with requirements of large volume in storage data [1]. 
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Demands on memory have become a very stringent 
requirement to support large storage for data and computational 
growth. Many technologies have been proposed for the next 
generation of memories, such as phase change (PC) memories, 
magneto-electric (ME) memories and memristor-based 
memories [2]-[5]. To achieve larger densities and departing 
from the design of cells for a single bit (as in traditional SRAMs 
or DRAMs), most emerging technologies store several bits per 
memory cell (e.g., octal is already available for PCMs [6]-[9]). 
This is accomplished by dividing the range of the physical 
storage parameter (such as memristance and resistance) for 
storing the value into several levels and assigning a bit pattern 
to each of them.  However, a potential issue when using 
multiple levels is that the separation between them (i.e. the 
margin) is smaller and therefore in addition to process 
variations, deviations on the physical storage parameter can 
cause levels to shift (in either one or both directions), or overlap, 
so creating so-called limited magnitude errors between nearby 
levels [10], [11].  Also, a trend in multilevel cell (MLC) design 
is to reduce the physical size of the non-volatile (NV) memory 
element (for area/power dissipation considerations), often 
resulting in a smaller range of the resistance (as storage 
parameter). This however compounds the negative effects of 
phenomena such as drift, due to the large number of levels (as 
required for a high MLC memory density [7], [9]); in these 
cases, the magnitude of the possible errors also increases.  

A common technique to protect memories is to use Error 
Correction Codes (ECCs) that add redundancy to the data in the 
form of parity bits that are then used to detect and/or correct 
errors [12], [13]. Traditionally, codes for protecting memories 
have focused on single bit error detection/correction (e.g., a 
single parity (SP) bit or Single Error Correction (SEC) codes), 
because these are the most relevant error patterns [14], [15]. In 
the last decade, there has been a growing interest to deal also 
with errors that affect adjacent bits as relevant patterns for 
traditional memories due to technology scaling [16]. A possible 
scheme to deal with adjacent errors is to use interleaving, i.e. to 
place bits that belong to the same word physically apart [17]. 
This ensures that an adjacent error affects bits from different 
words and thus each word suffers only a single bit error. 
Therefore, a SEC code can be used to correct errors. However, 
the use of interleaving has drawbacks, because it complicates 
the layout and interconnections of the memory and may also 
limit its aspect ratio [17]. Another approach is to use ECCs that 
can deal with adjacent bit errors; for example, interleaved 
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parity (IP) bits can detect multiple adjacent bit errors, or codes 
that achieve single error correction and double adjacent error 
correction (SEC-DAEC) can be constructed [14], [17], [18]. 

 Different from traditional (binary) memories in which an 
error on a cell affects only a single bit, the relevant bit error 
patterns for a multilevel cell (MLC) memory depend mostly on 
the mapping of levels to bits and the magnitude of the errors. 
For example, with a binary coding of levels to bits, even 
magnitude-1 errors can cause several bit errors [10], [11]. Gray 
coding of levels to bits can be used to ensure that magnitude-1 
errors affect a single bit and thus, they can be corrected by a 
SEC code. However, this approach has limited benefits when 
dealing with larger magnitude errors. For example, when 
considering magnitude-3 errors, Gray coding can only ensure 
that errors affect at most 3 bits and thus a strong ECC is needed 
to correct them. Therefore, as the magnitude of errors increases, 
the benefits of Gray coding decrease, so making its use less 
attractive. 

Another approach is the use of interleaving by placing bits 
from different words on the same cell, so that an error on a cell 
affects a single bit per word. However, when applied to next 
generation MLC memories, interleaving has additional 
drawbacks to the ones already discussed for traditional 
memories. Consider a memory with cells of b bits and a word of 
w bits that map to the first bit of each cell. A first issue is that 
reading a word now requires reading w cells instead of w/b cells. 
This translates to an increase in power dissipation and support 
circuitry complexity. The scenario is worse for writes to the 
memory because to avoid corrupting the data of other words 
stored on the remaining b-1 bits of the cell, we need to first read 
the cells, modify the relevant bit and then write back the result 
to the cells. This introduces a significant overhead for writes 
that may not be acceptable if the memories are to be used as an 
alternative to SRAMs. The use of interleaving would also 
increase the number of writes made to each cell and thus may 
also impact the lifetime of the memory as next generation MLC 
memories typically can withstand a limited number of write 
operations prior to deterioration and catastrophic failure.  

From the previous discussion, it is evident that the use of 
interleaving in next generation MLC memories is problematic. 
Therefore, we consider the use of ECCs. Given the difference 
in error patterns with traditional memories, existing codes (as 
commonly used to protect traditional memories) are in most 
cases not adequate for MLC memories. For example, when 
dealing with single cell errors of magnitude larger than one, the 
SEC codes used for traditional memories are not sufficient, so 
stronger ECCs are needed. However, these ECCs target errors 
on the entire memory word rather than errors in a single cell and 
therefore, they protect against error patterns that are not 
relevant. Hence, protection of MLC memories against limited 
magnitude errors has been considered in recent works. In 
particular, asymmetric errors of magnitude-1 are targeted in [19] 
by noticing that the lowest bit will always be affected by a 
magnitude-1 error when a binary mapping is utilized. Then, a 
SEC Hamming code on the lowest bit is sufficient to detect the 
cell in error; since the magnitude and sign of the error are 
known (asymmetric and magnitude one), then it can be 

corrected with a relatively simple code. More advanced 
schemes that can correct symmetric limited errors have also 
been proposed based on the use of Orthogonal Latin Square 
(OLS) codes [20]; combined with a check of the truth table for 
all possible error patterns, they can provide additional 
protection for errors of any magnitude, but at an increasing cost 
with a large number of parity check bits. Therefore, the 
complexity of the required circuitry increases when the number 
of bits stored in the memory cells is large. Efficient Spotty 
codes [21] have an advantage in terms of number of parity bits. 
Using a Gray mapping of levels to bits, magnitude-1 errors only 
erroneously affect one bit, while magnitude-2 errors only affect 
two bits; limited magnitude errors are converted into single and 
double bit errors in single cells. Spotty codes that can correct 
double bit error patterns per cell have been proposed to deal 
with only single and double bit errors, leading to a low 
redundancy implementation. However, these schemes can only 
correct up to magnitude-2 errors. Some non-binary codes that 
correct single or multiple cell errors have also been studied [22], 
[23]; however, they require a large hardware overhead. In terms 
of limited magnitude error detection, two efficient schemes for 
symmetric errors in MLC memories have been proposed in [24]: 
the One-Bit Parity (OBP) scheme that can detect any 
magnitude-1 error and the Two-Bit Parity (TBP) scheme that 
can detect any magnitude-2 error. As all magnitude-1 
(magnitude-2) errors always corrupt the lowest bit (the second 
lowest bits) of the memory cell, only a single parity bit (two 
parity bits) that covers all lowest bits (and the second lowest 
bits) per cell is needed by the OBP (TBP) scheme. These 
schemes have a significant advantage in terms of memory 
redundancy and decoding speed; however, they have a 
limitation in applications, because they are only applicable to 
systems in which there is an exception handler and only error 
detection is needed. Therefore, an efficient scheme that has a 
strong limited magnitude error correction capability for MLC 
memories with low decoding latency and overhead is needed. 

In this paper, an efficient scheme to correct limited 
magnitude errors on multilevel cell memories is presented. The 
proposed scheme combines the use of a low redundancy 
SEC-DAEC code in the two lowest bits of the cell with IP bits 
to correct up to magnitude-3 symmetric errors. The 
SEC-DAEC code is used to locate the cell in error and correct 
errors on some bits. The IP is used to identify the error pattern 
on the remaining bits. The proposed IP-DAEC scheme provides 
a simple implementation that achieves a low delay with a 
reduced number of parity bits. The proposed scheme has been 
compared to existing schemes that have similar capability 
showing an advantage of memory redundancy, as well as a 
lower encoder/decoder overhead in most cases. 

The rest of the paper is organized as follows. In Section II, 
limited magnitude errors in MLC memories and the features of 
the error patterns are discussed; the IP and SEC-DAEC codes 
are also reviewed. In Section III, the IP scheme combined with 
SEC-DAEC codes for symmetric magnitude-3 errors correction 
is proposed. Two approaches to design low redundancy 
SEC-DAEC codes for the proposed scheme are also presented. 
Section IV compares the proposed schemes with existing 
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schemes in terms of memory overhead and the complexity of 
the encoder/decoder circuitry. Finally, Section V presents the 
conclusion of this paper. 

II. PRELIMINARIES

A. Limited Magnitude Errors in MLC Memories
Different from traditional (binary) memory cells, in MLC

memories (implemented using emerging technologies), the 
range of the physical parameter of a cell is divided by levels 
based on the feature of the storage medium. For example, phase 
change (PC) memories rely on the reversible thermally-assisted 
phase transformation of the chalcogenide alloy Ge2Sb2Te5 
(GST), as occurring between the amorphous phase (with a high 
resistivity) and the poly-crystalline phase (with a low 
resistivity). The large resistance range between these two 
phases (usually fixed by the physical properties of the PC 
material) makes possible that several levels can be established 
by dividing the range, however, the larger the number of levels 
(hence the memory states) the smaller the margin between them 
[25]. Different states are possible and as defined by the levels, 
they correspond to multiple bits of a cell (i.e., 2b levels 
correspond to b bit per cell). A binary coding is commonly used 
for the mapping from levels to bits; for example, Figure 1 
shows a 3-bit MLC memory cell with binary mapping from 
eight states (i.e. an octal memory cell). 

However, a potential issue of MLC memories is that when a 
cell is programmed, or after a number of switching cycles, the 
margins between levels shift, or overlap as result of the 
deterioration of the storage medium. In this case, the stored 
state changes, causing some stored bits to be corrupted too. 
This shift can occur in either one or both directions (e.g., 
unidirectional in PCM cells [25], [26] and bidirectional in 
memristor-based memory cells [11]); this shift increases over 
time or as function of the number of switching cycles, hence 
causing errors of limited magnitude greater than one [11], [27], 
[28], but it is unlikely to cross a large number of levels. 
Therefore, errors in MLC memories are always of a limited 
magnitude. Each MLC memory cell can be affected by errors 
due to the effect of the resistance shift; however, prior work has 
shown that the error rate is low (such as in a PCM with 3-bit 
cells [29]), so the probability of two cell errors occurring at the 

same time is negligible [28]. Hence, this paper targets single 
cell errors, by providing correction at a reasonable cost to 
further reduce the error rate. 

An important observation is that when using binary mapping 
from levels to bits, magnitude-1 and magnitude-2 errors always 
affect the lowest or the second lowest bit. This occurs because 
the difference in values between maginitude-1 levels is “01” 
while between magnitude-2 levels it is “10”. For example, in 
Figure 1 (where “mag” denotes “magnitude”), a magnitude-1 
error causes a pattern of “1” on the lowest bit, and the 
magnitude-2 error causes a “1” on the second lowest bit. This 
observation has been exploited to propose several limited 
magnitude error correction schemes found in the technical 
literature [19], [20], [22]. Similarly, a magnitude-3 error affects 
both the lowest and the second lowest bits because the value of 
the difference between these levels is “11”. Again, in Figure 1, 
the magnitude-3 error causes a pattern of “11” on those two bits. 
All of these features of the errors lead us to propose in this 
paper a new and efficient limited magnitude error correction 
scheme. 

B. Interleaved Parity (IP) Scheme
Interleaved parity (IP) is widely used in conventional binary

memories to detect errors that affect adjacent bits [14]. To 
detect t-bit adjacent errors on a k-bit data, t IP bits are needed to 
cover all data bits; they are calculated by: 

 (1) 

where  is the addition operation in GF(2) and can be 
implemented by using a xor logic gate. p represents the parity 
bit and d the data bits. i and j are integers, and 1≤ i≤ t, j = ⌊k/t⌋.	
For example, the case of t=3 IP bits calculated for k=8 data bits 
“10010111” is shown in Figure 2. 

The calculation process for the IP bits (i.e., Eq. (1)) is 
implemented by an encoder. Then in a write operation, the 
calculated IP bits are stored together with the data bits into a 
memory word, forming an n-bit codeword (i.e., n=k+t). 

In a read operation, the IP bits are recalculated first as per the 
read-out data bits d’, and then compared with the read-out IP 
bits p’ to generate the syndrome bits S; this is given by: 

  (2) 

  (3) 

So if the codeword is error free, the recalculated parity bits 
are the same as the read-out ones, such that the syndrome bits 
are all-zero; otherwise, any error that affects up to t adjacent 
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Figure 1 A 3-bit MLC memory cell with binary mapping 
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bits can be detected by generating a non-zero S. Figure 3 shows 
the cases of error free in (a) and erroneous bits d1’, d2’, d3’ in (b). 
In the first case S=”000” and in the second case S=”111”. 
Therefore, an error detection signal can be obtained if the 
syndrome bits are not all zero. This calculation process for the 
syndrome bits (i.e., Eqs. (2) and (3)) is implemented by a 
decoder. 

As per Eqs. (1)-(3), the error pattern is reflected on the 
syndrome bits. Suppose the error only affects the first data bit, 
i.e., d1’=d1 e, where e is the error pattern (for other bits, e=0). 
In this case, as per Eqs. (1)-(3), then: 

 (4) 

The use of an IP-based scheme can only determine the error 
pattern, but it cannot locate the position of the erroneous bits 
and thus, it is unable to achieve error correction. For example, 
in the case shown in Figure 3 (b), an error affecting d4’, d5’, d6’ 
generates the same syndrome bits of “111”. To correct errors, 
stronger ECCs are therefore required. 

C. SEC-DAEC Codes
As discussed in the introduction, SEC codes are a common

technique to correct single bit errors; SEC-DAEC codes have 
been further developed to correct also double adjacent bit errors 
[17], [18]. In this case, differently from the IP scheme, a 
generator matrix G=[P Ik] (a parity check matrix H=[In-k PT]), 
that is related to each code, is utilized to calculate the parity bits 
for the generation of the n-bit codeword in the encoder (the 
syndrome bits in the decoder). Therefore, the codeword C is 
calculated by Eq. (5) (the syndrome S is calculated by Eq. (6)). 
As operations are done in GF(2) and implemented by using xor 
logic, the number of “1” in the G (H) matrix has an impact on 
the delay to calculate the parity bits (syndrome bits) in the 
encoding (decoding) process. 

As per Eqs. (5) and (6), an error-free codeword (i.e., C’=C) 
always generates an all-zero S, while a codeword with any 
correctable error (i.e., C’=C e) will cause an unique S (i.e., 

). An error locating process is implemented to find 
the position of the error; such process mostly determines the 
complexity of the decoder circuitry. Once the error is located, 
the erroneous bits can be corrected by simply flipping the 
values. The number of parity bits (i.e., n-k), which is equal to 
the number of columns of the P submatrix, can provide 2n-k-1 
available non-zero syndrome patterns. It also determines the 
number of additional memory bits needed per word, as well as 
the number of xor logic gates in the encoder/decoder. This of 
course affects the overhead of the memory and the protection 
circuitry. The smallest value of n-k should be designed for the 
best implementation in terms of overhead when the desired 
error correction capability of the ECCs is accomplished. 
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Figure 3 Syndrome bits calculated as per the read-out codeword: (a) error free 
case; (b) case of erroneous bits d1’, d2’, d3’ 
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For SEC codes, each column in the H matrix that is equal to 
the syndrome for each single bit error (as per Eq. (6)), is unique; 
hence, the syndromes for all single bit errors are distinguishable 
and the error can be corrected. For SEC-DAEC codes, each 
column in the H matrix is unique to achieve single bit error 
correction as for SEC codes. Moreover, the xor of each pair of 
adjacent columns is also unique and different from the columns 
themselves; this ensures that all possible SEs and DAEs on the 
codeword have different syndromes and thus, they can be 
corrected. Therefore, a larger size of the H matrix 
(corresponding to more parity bits) is needed by the 
SEC-DAEC code than the SEC code in some cases when 
protecting data with same length. Table I shows the number of 
parity bits needed by the SEC and SEC-DAEC codes [12], [18]. 

III. PROPOSED SCHEME

A novel limited magnitude error correction scheme is 
proposed in this section. The proposed scheme combines IP 
with SEC-DAEC codes and can correct up to magnitude-3 
errors.  

A. IP Combined with SEC-DAEC (IP-DAEC) Scheme
As discussed in section II-A, symmetric magnitude-3 errors

(i.e. errors occur in both directions) will always corrupt at least 
one of the lowest and second lowest bits. By considering these 
bits in each cell as a pair of double adjacent bits, the corrupted 
bit(s) in the erroneous cell is transferred to a single bit or double 
adjacent bit error. Therefore, a SEC-DAEC code that covers the 
lowest and second lowest bits per cell can locate the erroneous 

cell, as well as correcting errors on those bits. However, 
magnitude-3 errors can also affect some upper bits; for example, 
in Figure 1 a magnitude-2 error affects the second and third 
lowest bits causing a pattern of “110”. To handle errors on the 
upper bits in the erroneous cell, the IP scheme that covers those 
bits in each cell, is utilized to provide the error pattern for those 
bits in the IP syndromes. Therefore, by combining IP with 
SEC-DAEC codes, the proposed scheme can always guarantee 
correct data under symmetric magnitude-3 errors. Next, the 
encoder and decoder for the proposed scheme are described. 

Encoder circuitry: As the proposed scheme combines two 
ECC techniques (IP and SEC-DAEC), the encoder includes the 
following two parity computational blocks: 

� The IP bits are calculated as per Eq. (1). In our case, t is
equal to the number of bits stored in the MLC memory
cells as we target single cell errors. Then t-2 IP bits (i.e.,
1≤ i≤ t-2 in Eq. (1)) are calculated based on the upper
bits of each cell.

� The SEC-DAEC parity bits are calculated as per Eq. (5).
In our case, k is equal to twice the number of memory
cells, because in each cell two data bits are covered by
the codes. Then n-k SEC-DAEC parity bits are obtained
(they can be found in Table I).

Decoder circuitry: The proposed decoder mainly includes 
the following blocks: two syndrome generation blocks, an error 
locator and an error corrector. 

� In the IP syndrome generation block, syndromes are
obtained as per Eqs. (2) and (3) (again, 1≤ i≤ t-2).

� In the SEC-DAEC syndrome generation block,
syndromes are obtained as per Eq. (6).

� In the error locator, the SEC-DAEC syndrome bits are
compared with all correctable error patterns to
determine the erroneous memory cell.

� In the error corrector, an xor operation is implemented
between the data bits read from the incorrect memory
cell and the IP syndrome bits.

The implementation of the proposed limited magnitude error 
correction scheme for a 32-bit MLC memory with 3-bit cells is 
shown in Figure 4. The (28, 22) SEC-DAEC code of [18] with 
the H matrix shown in Figure 5 is utilized. In this case, one IP 
bit pIP (i.e., 3-2=1) and six SEC-DAEC parity bits p1 to p6 (as 
per Table I) are needed. The SEC-DAEC parity bits can only be 
stored on the lowest and second lowest bits of each cell, such 
that all magnitude-3 errors can corrupt at most two adjacent bits 
of the SEC-DAEC codeword; else, miscorrections may occur. 
For example, if the first three parity bits are stored in the same 
cell, an error that affects all these bits, could generate a 
syndrome of “111000”, which is the same as for the error on the 
6th data bit; hence, a correct data bit would be flipped. Therefore, 
in Figure 4 three memory cells need to be added to each word 
for storing the parity bits, i.e. fourteen cells per word in total. 

The flowchart of the proposed limited magnitude error 
correction scheme is shown in Figure 6. In a write operation, 
the original data is first provided as input to the encoder. The IP 
bits and the SEC-DAEC parity bits are calculated, and then 
written together with the data bits into memory, thus a 
codeword is stored as memory word. In a read operation, the 

TABLE I  
NUMBER OF PARITY BITS NEEDED BY DIFFERENT ECCS 

Data 
length ECC # parity 

bits 
# correctable 

errors 
# available 
syndromes 

4-bit
SEC 4 8 15 

SEC-DAEC 4 15 15 

6-bit
SEC 4 10 15 

SEC-DAEC 5 19 31 

7-bit
SEC 4 11 15 

SEC-DAEC 5 23 31 

8-bit
SEC 4 12 15 

SEC-DAEC 5 25 31 

9-bit
SEC 4 13 15 

SEC-DAEC 5 27 31 

11-bit
SEC 5 16 31 

SEC-DAEC 5 31 31 

14-bit
SEC 5 19 31 

SEC-DAEC 6 39 63 

16-bit
SEC 5 21 31 

SEC-DAEC 6 43 63 

22-bit
SEC 5 27 31 

SEC-DAEC 6 55 63 

26-bit
SEC 6 32 63 

SEC-DAEC 7 65 127 

32-bit
SEC 6 38 63 

SEC-DAEC 7 77 127 

43-bit
SEC 6 49 63 

SEC-DAEC 7 99 127 
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codeword is read out from the memory and then input to the 
decoder. Once the decoder receives the codeword, the IP and 
SEC-DAEC syndrome bits are generated. If all syndrome bits 
are zero, the data is then directly provided as output, because it 
is error free; a valid signal correct_data that identifies a correct 
output, is generated (equal to “1” (“0”) when the data is error 
free (erroneous)). Otherwise, the SEC-DAEC syndrome bits 
that cover the lowest and second lowest data bits per cell can be 
used to identify if the error is correctable. If the syndrome bits 
are non-zero (so a correctable error occurs on a single memory 
cell), then the SEC-DAEC syndrome bits are compared with 
that of all considered single and double adjacent bit errors in 
each cell to determine the position of the erroneous cell, as well 
as the error pattern on the lowest and second lowest bits. Once 
the erroneous cell is located, an xor operation between the IP 
syndrome bits and the error pattern (determined by the 
SEC-DAEC syndrome bits) with the data bits read from the 
erroneous cell is performed to correct the error. Finally, the 
decoder outputs the corrected data, as well as generating a valid 
signal correct_data (i.e., equal to “1”) because the error has 
been corrected. If not all of the syndrome bits are zero but the 
SEC-DAEC ones are zero, an uncorrectable error is detected. In 
this case, the data received by the decoder is immediately 
provided as output; the signal correct_data is then given by “0”, 
i.e. the data is incorrect. Figure 7 illustrates an example of
correcting a limited magnitude 1-error in the first data cell of a
32-bit data “11...1011” stored in a memory word with 3-bit
cells (as shown in Figure 4). The erroneous data cell is
identified by the SEC-DAEC code and the DAE on the two
lowest data bits is corrected by the SEC-DAEC code; the SE on
the remaining data bit of the erroneous cell is corrected by the
IP. In this case, the signal correct_data is given by “1”.

As in the flowchart of Figure 6, the two schemes are 
combined (i.e., IP and SEC-DAEC); they are implemented in 
parallel for both the encoding and the decoding. Therefore, the 
critical path of the proposed scheme is mostly due to the 
SEC-DAEC codes, which have a more complex decoding 
process than the IP scheme. This leads to a low latency for 
correcting limited magnitude errors, because in this case, the 
SEC-DAEC codes deal with a small data length (twice the 
number of data cells). However, the proposed scheme may 
incur in a large number of additional memory cells to store the 
parity bits, because we combine two ECCs and the number of 
SEC-DAEC parity bits stored in each cell is limited to 2. To 
address this issue, two approaches for low redundancy 
SEC-DAEC codes used for the proposed scheme are proposed 
in the next subsection. 

B. Low Redundancy SEC-DAEC Codes
To reduce the number of parity bits needed for the proposed

scheme, two approaches are presented next for designing low 
redundancy SEC-DAEC codes (i.e., with a smaller number of 
parity bits) that can be used in the proposed scheme. 

Approach 1: As discussed before, all magnitude-3 errors 
affect at least one of the lowest and second lowest bits in a 
memory cell, therefore any error on these bits is a correctable 
single or double adjacent bit error if these bits are protected by 
SEC-DAEC codes to locate the erroneous cell. As single cell 
errors are considered in this paper, double adjacent bit errors 
can only occur in the same memory cell (rather than the entire 
word). This leads to a smaller number of relevant double 
adjacent bit error patterns. These patterns are dependent on the 
number of memory cells (i.e., at most one DAE in each cell), 
while for the entire word, it is equal to the word length minus 1 
bit (i.e., n-1 DAEs on the n-bit codeword). For example, in the 
32-bit MLC memory with 3-bit cells shown in Figure 4, 28
single bit errors and 27 double adjacent bit errors can be
corrected by the (28, 22) SEC-DAEC code; however, only 28
single bit errors and 14 double adjacent bit errors in all memory
cells need to be taken into account. Therefore, the conventional
SEC-DAEC codes provide correction for some patterns that are
not relevant to our case. A strategy to obtain more efficient
SEC-DAEC codes with low redundancy is to design the H

Figure 5 H matrix of the (28, 22) SEC-DAEC code 

Figure 4 Implementation of the proposed scheme to protect a 32-bit MLC memory with 3-bit cells 

H  =

1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0
0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1
0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0
0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1
0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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matrices that generate distinguishable syndromes only for the 
single bit errors and double adjacent bit errors without sharing 
any bit (i.e., errors on the 1st bit and 2nd bit, 3rd bit and 4th bit, 5th 
bit and 6th bit and so on). In this case, the size of the H matrices 
will be smaller than conventional SEC-DAEC codes in most 
cases, thus the number of needed syndromes is reduced. A 
memory cell may also be saved with a lower decoding latency, 
because the error location process is simplified. 

Approach 2: In the proposed scheme, the SEC-DAEC parity 
bits can only be stored on the lowest and second lowest bits of 
each memory cell. If there are more than two parity bits (found 
at the lowest and second lowest bit positions) stored in a cell, 
limited magnitude errors that can corrupt more than these two 
bits in a cell may cause an uncorrectable error pattern on the 
parity bits. If this uncorrectable error has the same syndrome as 
any single bit error or double adjacent bit error, a miscorrection 
will occur. This can be remedied if the H matrix is carefully 
designed. To store more SEC-DAEC parity bits in the same cell 
(thus reducing the number of additional cells and lowering 
memory redundancy), a strategy for code design is to ensure 
that the H matrices generate different syndromes for all 
possible errors on the parity bits (stored in the same memory 

cell) for all correctable errors. The syndromes for additional 
errors on those parity bits do not need to be different from each 
other, because they are only used to avoid miscorrections rather 
than correcting those errors (only the correctness of the data 
bits needs to be guaranteed). In this case, more parity bits can 
be stored in a single memory cell without introducing a 
miscorrection; moreover, the number of parity bit cells can be 
also reduced. A potential issue is that the number of parity bits 
may increase, because more syndrome patterns are considered 
when using this second approach. However, this is unlikely to 
occur, because the number of additionally considered 
syndromes is limited and can also be avoided by a suitable 
placement of the stored parity bits. 

Low redundancy SEC-DAEC codes have been designed by 
combining the two approaches presented above and meeting 
the following constraints in the H matrices. 

1) The total number of “1” is reduced (so resulting in a low
complexity of the encoder/decoder circuitry);

2) The largest number of “1” per row is reduced (so
resulting in a reduction of the critical path for
encoding/decoding);

3) All single columns are unique and also different from
any xor result on each pair of the 1st column and 2nd

column, 3rd column and 4th column, 5th column and 6th

Figure 6 Flowchart of the proposed limited magnitude error correction scheme

Figure 7 An example when utilizing the proposed scheme to correct limited 
magnitude errors.
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column and so on (this ensures that the erroneous cell in 
which magnitude-3 errors occur can be located and 
errors on the lowest and second lowest bits of such cell 
can be corrected); 

4) The xor results on any combination of the columns that
relate to the parity bits stored in a same memory cell,
are different from the columns/results found in
constraint 3) above (so avoiding miscorrection on data
bits from errors on the parity bits).

A Matlab program has been used to find the H matrices for 
low redundancy SEC-DAEC codes employed in the proposed 
scheme. Compared to the conventional SEC-DAEC codes 
given in Table I, one parity bit can be saved when the data size 
is 6-bit and 26-bit. In the example shown in Figure 4, the (28, 
22) SEC-DAEC code with the H matrix shown in Figure 5 can
be improved to the (28, 22) SEC-DAEC code with the H matrix
shown in Figure 8. Even if in this case the number of parity bits
may not be reduced, a memory cell per word can be saved as
shown in Figure 9 (from 14 cells in Figure 5 to 13 cells in
Figure 9) because more parity bits can be stored in the same
cell.

C. Advantages of the Proposed Scheme
Based on the observation that errors of limited magnitude up

to 3 levels always affect at least one of the lowest and second 
lowest bits in a memory cell, the proposed scheme uses 
SEC-DAEC codes to determine which cell is in error. In this 
case, the error locating process (which accounts for most of the 
complexity of the decoder) is significantly simpler, because it is 
applicable to only single bit errors and a partial number of 
double adjacent bit errors (rather than all possible patterns) as 

caused by the limited magnitude errors. This leads to the 
following advantages of the proposed scheme: 

� As the number of considered error patterns in the error
location process (related to the number of 
distinguishable syndromes) is small, the SEC-DAEC 
codes used in the proposed scheme require a small 
number of parity bits. Even if several IP bits are 
additionally needed; the proposed scheme has an 
advantage in terms of memory redundancy when 
compared to existing schemes at the same error 
correction capability. 

� The small number of considered error patterns also
makes the proposed scheme efficient in terms of
decoding latency compared to schemes that also
implement syndrome-checking in the decoding process.

These advantages will be confirmed by the evaluation results 
presented in the next section. 

IV. EVALUATION

The evaluation of the proposed scheme is considered in this 
section; it consists of two parts: memory redundancy and the 
encoder/decoder overhead. Data words of 8, 16, 32, 64-bit 
stored in MLC memories with 3, 4, 5-bit cells are considered in 
the evaluation. Existing limited magnitude error correction 
schemes in the technique literature and the conventional 
Reed-Solomon (RS) codes that can correct single symbol errors 
are summarized in Table II; they are also evaluated for a 
comprehensive comparison. To show the overhead introduced 
by error correction over only error detection, the TBP scheme 
of [24] is also included in the comparison. 

Figure 8 H matrix of the low redundancy (28, 22) SEC-DAEC code used for 
the proposed scheme 

TABLE II  
ERROR CORRECTION CAPABILITIES OF DIFFERENT SCHEMES 

Scheme Error correction capability 
Hamming scheme [19] Asymmetric magnitude 1 error 

Spotty codes [21] Symmetric magnitude 2 error 
OLS scheme [20] Symmetric magnitude 3 error 
SSEC* RS [12] Single symbol error 

Proposed IP-DAEC Symmetric magnitude 3 error 
*SSEC stands for Single Symbol Error Correction

Figure 9 Implementation of the improved design to protect a 32-bit MLC memory with 3-bit cells 
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0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 
0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0
0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1
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A. Memory Redundancy
When using ECCs to protect memories, redundant cells are

added to each word to store the parity bits of the codes; this has 
an impact on memory overhead in terms of area and power. As 
each multilevel memory cell can store several bits, ECCs that 
have different number of parity bits, may need the same number 
of cells per word depending on their word length. 

Table III shows the number of parity bits needed by different 
schemes, as well as word-length in terms of number of cells. 
The proposed scheme always needs more parity bits than the 
TBP scheme of [24] and the Hamming scheme of [19] 
(regardless of data size), also the Spotty codes of [21] and the 
SSEC RS codes [12] in several cases. In terms of word-length, 
(that largely affects memory redundancy), the proposed scheme 
only introduces one cell more than the TBP scheme (that 
detects magnitude-2 errors) in most cases (two cells in other 
cases); however, the proposed scheme can correct up to 
magnitude-3 errors. Compared to the Hamming scheme of [19] 
and the Spotty codes of [21], the proposed scheme needs the 
same or one more cell, but providing a stronger error correction 

capability. For the same error correction capability 
(magnitude-3 errors), the proposed scheme has a significant 
advantage in terms of memory redundancy over the OLS 
scheme of [20] that can also correct magnitude-3 errors. This 
occurs because the SEC-DAEC codes used in the proposed 
scheme are designed with low redundancy strategies, while 
traditional OLS codes used in [20] usually require a significant 
larger number of parity bits. Compared to the SSEC RS codes, 
the proposed IP-DAEC scheme needs the same number of cells 
in nearly all cases. 

Memories in most cases account for a significant fraction of 
the circuit area of modern digital chips, so this makes the 
proposed scheme very attractive for protecting MLC memories. 

B. Encoder and Decoder Overhead
To evaluate the overhead introduced by protection circuits of

different schemes, encoders and decoders have been designed 
and implemented in HDL and mapped to a 65nm library from 
TSMC using the Synopsis Design Compiler. The synthesis tool 
has been set to area and delay optimization in the circuitry to 
obtain the best results for these metrics. The synthesis results 

TABLE III 
NUMBER OF PARITY BITS AND WORD-LENGTH NEEDED BY DIFFERENT SCHEMES

Data 
size 

#bits 
/cell 

# parity bits Word-length (cells) 

TBP 
[24] 

Hamming 
scheme 

[19] 

Spotty 
codes 
[21] 

OLS 
scheme 

[20] 

SSEC 
RS 
[12] 

Proposed 
IP-DAEC 

TBP 
[24] 

Hamming 
scheme 

[19] 

Spotty 
codes 
[21] 

OLS 
scheme 

[20] 

SSEC 
RS 
[12] 

Proposed 
IP-DAEC 

8 
bits 

3 2 3 5 11 6 5 4 4 5 7 5 5 
4 2 3 6 9 8 6 3 3 4 5 4 4 
5 2 3 6 9 10 7 2 3 3 4 4 3 

16 
bits 

3 2 4 6 15 6 6 6 7 8 11 8 8 
4 2 3 6 12 8 7 5 5 6 7 6 6 
5 2 3 7 12 10 8 4 4 5 6 6 5 

32 
bits 

3 2 4 7 21 6 7 12 12 13 18 13 13 
4 2 4 7 18 8 8 9 9 10 13 10 10 
5 2 4 8 17 10 9 7 8 8 10 9 9 

64 
bits 

3 2 5 8 30 6 8 22 23 24 32 24 24 
4 2 5 8 24 8 9 17 18 18 22 18 19 
5 2 5 9 24 10 9 14 14 15 18 15 15 

TABLE IV 
SYNTHESIS RESULTS OF AREA (um2) FOR ENCODERS AND DECODERS

Data 
size 

#bits 
/cell 

Encoder Decoder 

TBP 
[24] 

Hamming 
scheme 

[19] 

Spotty 
codes 
[21] 

OLS 
scheme 

[20] 

SSEC 
RS 
[12] 

Proposed 
IP-DAEC 

TBP 
[24] 

Hamming 
scheme 

[19] 

Spotty 
codes 
[21] 

OLS 
scheme 

[20] 

SSEC 
RS 
[12] 

Proposed 
IP-DAEC 

8 
bits 

3 24.4 24.8 59.6 42.4 325.2 35.2 33.6 56.0 147.6 126.0 3758.4 139.2 
4 20.8 20.0 60.8 34.4 414.8 25.2 29.6 42.0 179.2 442.4 4818.4 116.8 
5 16.0 20.0 67.2 34.4 512.8 24.4 22.4 42.0 188.4 380.8 5940.4 110.4 

16 
bits 

3 56.0 56.4 129.6 95.2 352.4 80.8 65.6 116.4 315.6 251.6 3936.0 283.2 
4 48.8 45.2 129.6 73.6 416.0 66.0 57.6 83.6 344.0 854.4 4951.6 231.2 
5 40.8 45.2 152.4 64.0 514.8 62.0 50.4 83.6 442.0 1004.4 6094.4 226.4 

32 
bits 

3 124.4 120.8 288.0 216.8 356.4 214.0 133.6 210.0 676.8 502.8 4216.4 585.6 
4 105.6 97.6 312.0 166.4 440.4 187.2 114.4 174.4 685.2 1732.0 5270.4 526.0 
5 89.6 89.6 311.2 132.8 522.8 155.6 99.2 159.2 846.0 2126.0 6421.2 470.4 

64 
bits 

3 256.8 258.4 493.2 480.4 402.4 344.4 265.6 442.8 1216.0 1042.8 4895.6 952.8 
4 217.6 206.8 687.6 380.8 482.4 348.0 227.2 284.0 1420.4 3144.0 6056.0 884.8 
5 191.2 183.6 632.0 309.2 542.0 332.4 200.8 229.6 1741.6 4574.0 7059.6 845.2 
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for area, delay and power consumption for the encoders and 
decoders are given in Tables IV-VI. 

Consider first the overhead introduced by error correction 
over only error detection. From Tables IV-VI it can be seen that 
compared to the detection-only TBP scheme [24] the proposed 
scheme introduces overheads in area, delay and power for the 
encoder and decoder in all cases. This is expected, because the 
number of parity bits needed by the proposed scheme (that 
combines two ECCs) is larger than the TBP scheme, leading to 
a higher complexity of the encoder and the syndrome 
generation block in the decoder. Moreover, the error locating 
process and error correcting process also introduces additional 
hardware overhead compared to detection only. 

Consider the schemes that can correct limited magnitude 
errors. Compared to [19] that uses Hamming codes to correct 
only asymmetric magnitude-1 errors, the proposed introduces 
overhead in all cases due to the additional parity bits (Table III) 
to account for correction and the stronger coding function. For 
example, the proposed scheme requires 43.3% more area, 23.1% 
more delay and 50.0% more power for the encoder, and 143.3% 
more area, 44.7% more delay and 155.6% more power for the 

decoder than the Hamming scheme for a 16-bit memory with 
3-bit cells. Compared to the Spotty codes of [21] that correct
magnitude-2 errors, the proposed scheme (that corrects
magnitude-3 errors, so a stronger coding function) requires a
lower hardware overhead for the encoder and decoder. For
example, for a 16-bit memory with 3-bit cells, the savings are
37.7% area, 11.1% delay and 33.3% power for the encoder, and
10.3% area, 2.9% delay and 4.2% power for the decoder. For
the scheme of [20] with the same correction capability (i.e.
magnitude-3 errors), traditional OLS codes are used to cover
three bits per cell to correct errors on those bits. Then, the
corrected three bits are checked by using a truth table that lists
all possible errors to identify the direction and magnitude of the
error, thus the error pattern on the remaining bits is found and
corrected. This decoding process is more complex than the
proposed scheme for a memory with more than 3-bit per cell.
For example, for a 32-bit memory with 4-bit cells, 69.6% area,
18.9% delay and 79.9% power for the decoder are saved by
using the proposed scheme. When the number of bits per cell is
3, the OLS scheme of [20] incurs in a lower overhead, because
in this case the OLS codes cover all bits and their majority logic

TABLE VI 
 SYNTHESIS RESULTS OF POWER (mW) FOR ENCODERS AND DECODERS

Data 
size 

#bits 
/cell 

Encoder Decoder 

TBP 
[24] 

Hamming 
scheme 

[19] 

Spotty 
codes 
[21] 

OLS 
scheme 

[20] 

SSEC 
RS 
[12] 

Proposed 
IP-DAEC 

TBP 
[24] 

Hamming 
scheme 

[19] 

Spotty 
codes 
[21] 

OLS 
scheme 

[20] 

SSEC 
RS 
[12] 

Proposed 
IP-DAEC 

8 
 bits 

3 0.01 0.01 0.05 0.03 0.17 0.02 0.02 0.04 0.10 0.09 2.81 0.10 
4 0.01 0.01 0.05 0.02 0.14 0.02 0.02 0.03 0.16 0.39 2.71 0.09 
5 0.01 0.01 0.04 0.02 0.17 0.02 0.01 0.03 0.16 0.38 3.25 0.09 

16 
bits 

3 0.04 0.04 0.09 0.07 0.35 0.06 0.04 0.09 0.24 0.20 4.69 0.23 
4 0.03 0.03 0.09 0.05 0.28 0.04 0.04 0.07 0.33 1.24 4.19 0.20 
5 0.03 0.03 0.11 0.04 0.35 0.04 0.03 0.07 0.39 1.29 5.02 0.19 

32 
bits 

3 0.09 0.09 0.23 0.18 0.64 0.18 0.10 0.18 0.60 0.49 8.10 0.54 
4 0.08 0.07 0.24 0.12 0.59 0.17 0.09 0.16 0.61 2.39 7.49 0.48 
5 0.07 0.07 0.24 0.10 0.62 0.10 0.08 0.11 1.24 3.00 7.98 0.41 

64 
bits 

3 0.19 0.19 0.42 0.41 1.43 0.34 0.20 0.39 1.43 1.37 17.52 1.32 
4 0.18 0.17 0.61 0.38 1.25 0.35 0.20 0.23 2.20 4.50 15.70 1.29 
5 0.18 0.16 0.57 0.23 1.30 0.25 0.19 0.20 2.40 6.10 14.82 1.24 

TABLE V 
 SYNTHESIS RESULTS OF DELAY (ns) FOR ENCODERS AND DECODERS

Data 
size 

#bits 
/cell 

Encoder Decoder 

TBP 
[24] 

Hamming 
scheme 

[19] 

Spotty 
codes 
[21] 

OLS 
scheme 

[20] 

SSEC 
RS 
[12] 

Proposed 
IP-DAEC 

TBP 
[24] 

Hamming 
scheme 

[19] 

Spotty 
codes 
[21] 

OLS 
scheme 

[20] 

SSEC 
RS 
[12] 

Proposed 
IP-DAEC 

8 
 bits 

3 0.20 0.20 0.31 0.22 2.61 0.26 0.25 0.41 0.58 0.35 4.55 0.57 
4 0.14 0.22 0.31 0.22 1.62 0.25 0.23 0.34 0.62 0.88 3.80 0.57 
5 0.11 0.22 0.33 0.22 1.60 0.25 0.19 0.34 0.67 0.82 4.00 0.56 

16 
bits 

3 0.25 0.26 0.36 0.26 4.92 0.32 0.30 0.47 0.70 0.40 7.52 0.68 
4 0.22 0.25 0.37 0.24 3.48 0.32 0.27 0.45 0.71 0.89 5.64 0.65 
5 0.20 0.25 0.39 0.22 3.16 0.26 0.25 0.45 0.76 0.94 5.88 0.64 

32 
bits 

3 0.33 0.37 0.45 0.27 9.68 0.43 0.36 0.55 0.82 0.46 12.22 0.80 
4 0.27 0.32 0.49 0.28 7.04 0.39 0.34 0.52 0.85 0.95 9.90 0.77 
5 0.26 0.31 0.49 0.27 5.88 0.36 0.31 0.51 0.88 0.98 8.82 0.73 

64 
bits 

3 0.43 0.42 0.53 0.32 19.85 0.51 0.44 0.68 0.92 0.49 22.32 0.90 
4 0.39 0.37 0.55 0.33 13.44 0.44 0.40 0.61 0.95 1.03 19.44 0.86 
5 0.38 0.36 0.55 0.27 11.05 0.43 0.38 0.59 0.97 1.06 14.25 0.82 
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decoder is fast and simple [12],[30]. For example, in a 32-bit 
memory with 3-bit cells, 16.5% more area, 73.9% more delay 
and 10.2% more power for the decoder are required by the 
proposed scheme. For the encoder, as the OLS codes need more 
parity bits but each parity bit covers a smaller number of data 
bits than the proposed scheme, a larger overhead of area and 
power consumption is introduced by the OLS encoder in most 
cases, while a lower delay is achieved. For a 16-bit memory 
with 4-bit cells, 10.3% less area, 33.3% more delay and 20.0% 
less power are introduced by the proposed scheme.  

Finally, when compared to the SSEC RS codes, the proposed 
IP-DAEC scheme incurs in a significantly lower overhead in all 
cases for area, delay and power dissipation. 

To further show the advantage of the proposed scheme over 
the scheme that has the same error correction capability, the 
normalized combined metric of PADP (i.e., the Power Area 
Delay Product) results for the encoders and the decoders of the 
proposed scheme and the OLS scheme of [20] for different 
configurations are plotted in Figure 10 and Figure 11 
respectively. As the decoders mostly determine the complexity 

of the protection circuitry (because they are the most complex 
block), the proposed scheme has a significant advantage 
(saving up to 97.7% of PADP) for MLC memories with more 
than 3-bits per cell. 

For memory cells of a smaller size (i.e., 3-bit per cell) for 
which the proposed scheme has a larger PADP, the value of the 
PADP can be compensated by the reduction in parity bits 
because the parity bits account for a significant part of the 
overhead in large memories (they are added per word while the 
encoder and decoder are added to the entire memory). 

V. CONCLUSION

In this paper, an efficient scheme (referred to as IP-DAEC) 
that corrects up to symmetric magnitude-3 errors in multilevel 
cell (MLC) memories has been proposed; this scheme is based 
on the use of two simple ECCs: Interleaved Parity (IP) bits and 
Single Error Correction and Double Adjacent Error Correction 
(SEC-DAEC) codes. As all magnitude-3 errors always affect 
one of the lowest and second lowest bits in the cell, a 
SEC-DAEC code that covers these bits in each cell is used to 
locate the erroneous cell and correct the errors on these bits. 
The IP bits are used to identify the errors on the upper bits in the 
erroneous cell. By converting limited magnitude errors at 
different levels into single and double adjacent bit errors in the 
cell, the proposed scheme very efficiently corrects errors at a 
very low decoding complexity. Moreover, two approaches to 
design low-redundancy SEC-DAEC codes for the proposed 
scheme have also presented to further reduce the number of 
parity bits. 

The advantages of the proposed IP-DAEC scheme have been 
verified by comparing it with existing schemes that also deal 
with limited magnitude errors. Evaluation results show that the 
proposed scheme significantly reduces memory redundancy 
(up to 25.0%), as well as the encoder (up to 34.6% of PADP) 
and decoder overhead (up to 97.7% of PADP) over existing 
magnitude-3 error correction schemes based on OLS codes. 
When compared to Spotty codes that can only correct 
magnitude-2 errors, the proposed scheme also performs better 
in terms of both memory redundancy and hardware overhead in 
most cases. These advantages make the proposed scheme 
attractive for utilization in MLC memories. 

The proposed scheme can also be extended for a stronger 
limited magnitude error correction capability. For example, if 
we use codes that can correct 3-bit burst errors to cover the 
lowest, second lowest and third lowest bits per cell (instead of 
the SEC-DAEC codes in the proposed IP-DAEC scheme), 
symmetric magnitude-7 errors can be corrected by combining 
the codes with IP bits because those errors will always affect at 
least one of the bits covered. This extension is left for the future 
work.  
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Figure 10 Normalized PADP results for the encoders 

Figure 11 Normalized PADP results for the decoders 
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