
This is a postprint version of the following document:

Liu, S., Reviriego, P. y Lombardi, F. (2020). Codes for Limited
Magnitude Error Correction in Multilevel Cell Memories. IEEE
Transactions on Circuits and Systems I: Regular Papers, 67(5), pp.
1615-1626.

DOI: https://doi.org/10.1109/TCSI.2019.2961847

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

1

Abstract—Multilevel cell (MLC) memories have been
advocated for increasing density at low cost in next generation
memories. However, the feature of several bits on a cell reduces
the distance between levels; this reduced margin makes such
memories more vulnerable to defective phenomena and
parameter variations, leading to an error in stored data. These
errors typically are of limited magnitude, because the induced
change causes the stored value to exceed only a few of the level
boundaries. To protect these memories from such errors and
ensure that the stored data is not corrupted, Error Correction
Codes (ECCs) are commonly used. However, most existing codes
have been designed to protect memories in which each cell stores a
bit and thus, they are not efficient to protect MLC memories. In
this paper, an efficient scheme that can correct up to magnitude-3
errors is presented and evaluated. The scheme is based by
combining ECCs that are commonly used to protect traditional
memories. In particular, Interleaved Parity (IP) bits and Single
Error Correction and Double Adjacent Error Correction
(SEC-DAEC) codes are utilized; both these codes are combined in
the proposed IP-DAEC scheme to efficiently provide a strong
coding function for correction, thus exceeding the capabilities of
most existing coding schemes for limited magnitude errors. The
SEC-DAEC code is used to detect the cell in error and correct
some bits, while the IP bits identify the remaining erroneous bits
in the memory cell. The use of these simple codes results in an
efficient implementation of the decoder compared to existing
techniques as shown by the evaluation results presented in this
paper. The proposed scheme is also competitive in terms of
number of parity check bits and memory redundancy. Therefore,
the proposed IP-DAEC scheme is a very efficient alternative to
protect and correct MLC memories from limited magnitude
errors.

Index Terms—Multilevel cell memories, limited magnitude
errors, error correction codes, SEC-DAEC codes

I. INTRODUCTION

N he last decade, computing has been pervasively utilized in
many systems and applications. This trend is accelerating

with the Internet of Things (IoT) and the use of advanced
mobile devices. The number of devices has dramatically grown
together with requirements of large volume in storage data [1].

Manuscript received July 27, 2019; revised November 19, 2019; accepted
December 19, 2019. (Corresponding author: Shanshan Liu).

S. Liu and F. Lombardi are with Northeastern University, Dept. of ECE,
Boston, MA 02115, USA (email: ssliu@coe.neu.edu, lombardi@ece.neu.edu).

P. Reviriego is with Universidad Carlos III de Madrid, Av. Universidad 30,
Leganés, Madrid, Spain (email: revirieg@it.uc3m.es).

Demands on memory have become a very stringent
requirement to support large storage for data and computational
growth. Many technologies have been proposed for the next
generation of memories, such as phase change (PC) memories,
magneto-electric (ME) memories and memristor-based
memories [2]-[5]. To achieve larger densities and departing
from the design of cells for a single bit (as in traditional SRAMs
or DRAMs), most emerging technologies store several bits per
memory cell (e.g., octal is already available for PCMs [6]-[9]).
This is accomplished by dividing the range of the physical
storage parameter (such as memristance and resistance) for
storing the value into several levels and assigning a bit pattern
to each of them. However, a potential issue when using
multiple levels is that the separation between them (i.e. the
margin) is smaller and therefore in addition to process
variations, deviations on the physical storage parameter can
cause levels to shift (in either one or both directions), or overlap,
so creating so-called limited magnitude errors between nearby
levels [10], [11]. Also, a trend in multilevel cell (MLC) design
is to reduce the physical size of the non-volatile (NV) memory
element (for area/power dissipation considerations), often
resulting in a smaller range of the resistance (as storage
parameter). This however compounds the negative effects of
phenomena such as drift, due to the large number of levels (as
required for a high MLC memory density [7], [9]); in these
cases, the magnitude of the possible errors also increases.

A common technique to protect memories is to use Error
Correction Codes (ECCs) that add redundancy to the data in the
form of parity bits that are then used to detect and/or correct
errors [12], [13]. Traditionally, codes for protecting memories
have focused on single bit error detection/correction (e.g., a
single parity (SP) bit or Single Error Correction (SEC) codes),
because these are the most relevant error patterns [14], [15]. In
the last decade, there has been a growing interest to deal also
with errors that affect adjacent bits as relevant patterns for
traditional memories due to technology scaling [16]. A possible
scheme to deal with adjacent errors is to use interleaving, i.e. to
place bits that belong to the same word physically apart [17].
This ensures that an adjacent error affects bits from different
words and thus each word suffers only a single bit error.
Therefore, a SEC code can be used to correct errors. However,
the use of interleaving has drawbacks, because it complicates
the layout and interconnections of the memory and may also
limit its aspect ratio [17]. Another approach is to use ECCs that
can deal with adjacent bit errors; for example, interleaved

Codes for Limited Magnitude Error Correction
in Multilevel Cell Memories

Shanshan Liu, Member, IEEE, Pedro Reviriego, Senior Member, IEEE, and Fabrizio Lombardi, Fellow,
IEEE

I

2

parity (IP) bits can detect multiple adjacent bit errors, or codes
that achieve single error correction and double adjacent error
correction (SEC-DAEC) can be constructed [14], [17], [18].

 Different from traditional (binary) memories in which an
error on a cell affects only a single bit, the relevant bit error
patterns for a multilevel cell (MLC) memory depend mostly on
the mapping of levels to bits and the magnitude of the errors.
For example, with a binary coding of levels to bits, even
magnitude-1 errors can cause several bit errors [10], [11]. Gray
coding of levels to bits can be used to ensure that magnitude-1
errors affect a single bit and thus, they can be corrected by a
SEC code. However, this approach has limited benefits when
dealing with larger magnitude errors. For example, when
considering magnitude-3 errors, Gray coding can only ensure
that errors affect at most 3 bits and thus a strong ECC is needed
to correct them. Therefore, as the magnitude of errors increases,
the benefits of Gray coding decrease, so making its use less
attractive.

Another approach is the use of interleaving by placing bits
from different words on the same cell, so that an error on a cell
affects a single bit per word. However, when applied to next
generation MLC memories, interleaving has additional
drawbacks to the ones already discussed for traditional
memories. Consider a memory with cells of b bits and a word of
w bits that map to the first bit of each cell. A first issue is that
reading a word now requires reading w cells instead of w/b cells.
This translates to an increase in power dissipation and support
circuitry complexity. The scenario is worse for writes to the
memory because to avoid corrupting the data of other words
stored on the remaining b-1 bits of the cell, we need to first read
the cells, modify the relevant bit and then write back the result
to the cells. This introduces a significant overhead for writes
that may not be acceptable if the memories are to be used as an
alternative to SRAMs. The use of interleaving would also
increase the number of writes made to each cell and thus may
also impact the lifetime of the memory as next generation MLC
memories typically can withstand a limited number of write
operations prior to deterioration and catastrophic failure.

From the previous discussion, it is evident that the use of
interleaving in next generation MLC memories is problematic.
Therefore, we consider the use of ECCs. Given the difference
in error patterns with traditional memories, existing codes (as
commonly used to protect traditional memories) are in most
cases not adequate for MLC memories. For example, when
dealing with single cell errors of magnitude larger than one, the
SEC codes used for traditional memories are not sufficient, so
stronger ECCs are needed. However, these ECCs target errors
on the entire memory word rather than errors in a single cell and
therefore, they protect against error patterns that are not
relevant. Hence, protection of MLC memories against limited
magnitude errors has been considered in recent works. In
particular, asymmetric errors of magnitude-1 are targeted in [19]
by noticing that the lowest bit will always be affected by a
magnitude-1 error when a binary mapping is utilized. Then, a
SEC Hamming code on the lowest bit is sufficient to detect the
cell in error; since the magnitude and sign of the error are
known (asymmetric and magnitude one), then it can be

corrected with a relatively simple code. More advanced
schemes that can correct symmetric limited errors have also
been proposed based on the use of Orthogonal Latin Square
(OLS) codes [20]; combined with a check of the truth table for
all possible error patterns, they can provide additional
protection for errors of any magnitude, but at an increasing cost
with a large number of parity check bits. Therefore, the
complexity of the required circuitry increases when the number
of bits stored in the memory cells is large. Efficient Spotty
codes [21] have an advantage in terms of number of parity bits.
Using a Gray mapping of levels to bits, magnitude-1 errors only
erroneously affect one bit, while magnitude-2 errors only affect
two bits; limited magnitude errors are converted into single and
double bit errors in single cells. Spotty codes that can correct
double bit error patterns per cell have been proposed to deal
with only single and double bit errors, leading to a low
redundancy implementation. However, these schemes can only
correct up to magnitude-2 errors. Some non-binary codes that
correct single or multiple cell errors have also been studied [22],
[23]; however, they require a large hardware overhead. In terms
of limited magnitude error detection, two efficient schemes for
symmetric errors in MLC memories have been proposed in [24]:
the One-Bit Parity (OBP) scheme that can detect any
magnitude-1 error and the Two-Bit Parity (TBP) scheme that
can detect any magnitude-2 error. As all magnitude-1
(magnitude-2) errors always corrupt the lowest bit (the second
lowest bits) of the memory cell, only a single parity bit (two
parity bits) that covers all lowest bits (and the second lowest
bits) per cell is needed by the OBP (TBP) scheme. These
schemes have a significant advantage in terms of memory
redundancy and decoding speed; however, they have a
limitation in applications, because they are only applicable to
systems in which there is an exception handler and only error
detection is needed. Therefore, an efficient scheme that has a
strong limited magnitude error correction capability for MLC
memories with low decoding latency and overhead is needed.

In this paper, an efficient scheme to correct limited
magnitude errors on multilevel cell memories is presented. The
proposed scheme combines the use of a low redundancy
SEC-DAEC code in the two lowest bits of the cell with IP bits
to correct up to magnitude-3 symmetric errors. The
SEC-DAEC code is used to locate the cell in error and correct
errors on some bits. The IP is used to identify the error pattern
on the remaining bits. The proposed IP-DAEC scheme provides
a simple implementation that achieves a low delay with a
reduced number of parity bits. The proposed scheme has been
compared to existing schemes that have similar capability
showing an advantage of memory redundancy, as well as a
lower encoder/decoder overhead in most cases.

The rest of the paper is organized as follows. In Section II,
limited magnitude errors in MLC memories and the features of
the error patterns are discussed; the IP and SEC-DAEC codes
are also reviewed. In Section III, the IP scheme combined with
SEC-DAEC codes for symmetric magnitude-3 errors correction
is proposed. Two approaches to design low redundancy
SEC-DAEC codes for the proposed scheme are also presented.
Section IV compares the proposed schemes with existing

3

schemes in terms of memory overhead and the complexity of
the encoder/decoder circuitry. Finally, Section V presents the
conclusion of this paper.

II. PRELIMINARIES

A. Limited Magnitude Errors in MLC Memories
Different from traditional (binary) memory cells, in MLC

memories (implemented using emerging technologies), the
range of the physical parameter of a cell is divided by levels
based on the feature of the storage medium. For example, phase
change (PC) memories rely on the reversible thermally-assisted
phase transformation of the chalcogenide alloy Ge2Sb2Te5
(GST), as occurring between the amorphous phase (with a high
resistivity) and the poly-crystalline phase (with a low
resistivity). The large resistance range between these two
phases (usually fixed by the physical properties of the PC
material) makes possible that several levels can be established
by dividing the range, however, the larger the number of levels
(hence the memory states) the smaller the margin between them
[25]. Different states are possible and as defined by the levels,
they correspond to multiple bits of a cell (i.e., 2b levels
correspond to b bit per cell). A binary coding is commonly used
for the mapping from levels to bits; for example, Figure 1
shows a 3-bit MLC memory cell with binary mapping from
eight states (i.e. an octal memory cell).

However, a potential issue of MLC memories is that when a
cell is programmed, or after a number of switching cycles, the
margins between levels shift, or overlap as result of the
deterioration of the storage medium. In this case, the stored
state changes, causing some stored bits to be corrupted too.
This shift can occur in either one or both directions (e.g.,
unidirectional in PCM cells [25], [26] and bidirectional in
memristor-based memory cells [11]); this shift increases over
time or as function of the number of switching cycles, hence
causing errors of limited magnitude greater than one [11], [27],
[28], but it is unlikely to cross a large number of levels.
Therefore, errors in MLC memories are always of a limited
magnitude. Each MLC memory cell can be affected by errors
due to the effect of the resistance shift; however, prior work has
shown that the error rate is low (such as in a PCM with 3-bit
cells [29]), so the probability of two cell errors occurring at the

same time is negligible [28]. Hence, this paper targets single
cell errors, by providing correction at a reasonable cost to
further reduce the error rate.

An important observation is that when using binary mapping
from levels to bits, magnitude-1 and magnitude-2 errors always
affect the lowest or the second lowest bit. This occurs because
the difference in values between maginitude-1 levels is “01”
while between magnitude-2 levels it is “10”. For example, in
Figure 1 (where “mag” denotes “magnitude”), a magnitude-1
error causes a pattern of “1” on the lowest bit, and the
magnitude-2 error causes a “1” on the second lowest bit. This
observation has been exploited to propose several limited
magnitude error correction schemes found in the technical
literature [19], [20], [22]. Similarly, a magnitude-3 error affects
both the lowest and the second lowest bits because the value of
the difference between these levels is “11”. Again, in Figure 1,
the magnitude-3 error causes a pattern of “11” on those two bits.
All of these features of the errors lead us to propose in this
paper a new and efficient limited magnitude error correction
scheme.

B. Interleaved Parity (IP) Scheme
Interleaved parity (IP) is widely used in conventional binary

memories to detect errors that affect adjacent bits [14]. To
detect t-bit adjacent errors on a k-bit data, t IP bits are needed to
cover all data bits; they are calculated by:

 (1)

where is the addition operation in GF(2) and can be
implemented by using a xor logic gate. p represents the parity
bit and d the data bits. i and j are integers, and 1≤ i≤ t, j = ⌊k/t⌋.	
For example, the case of t=3 IP bits calculated for k=8 data bits
“10010111” is shown in Figure 2.

The calculation process for the IP bits (i.e., Eq. (1)) is
implemented by an encoder. Then in a write operation, the
calculated IP bits are stored together with the data bits into a
memory word, forming an n-bit codeword (i.e., n=k+t).

In a read operation, the IP bits are recalculated first as per the
read-out data bits d’, and then compared with the read-out IP
bits p’ to generate the syndrome bits S; this is given by:

 (2)

 (3)

So if the codeword is error free, the recalculated parity bits
are the same as the read-out ones, such that the syndrome bits
are all-zero; otherwise, any error that affects up to t adjacent

2i i i t i t i j tp d d d d+ + + ×= Å Å Å Å!

Å

2'' ' ' ' 'i i i t i t i j tp d d d d+ + + ×= Å Å Å Å!

' ''i i iS p p= Å

Figure 1 A 3-bit MLC memory cell with binary mapping

Figure 2 t=3 IP bits calculated for k=8 data bits
Mag-1 error pattern: 011

Mag-2 error pattern: 110

111

011

010

001

000

8 levels

A 3-bit cell

101

100

110
Mag-3 error pattern: 011

1
1

1

1 0 0 1 0 1 1 1
• 8 • 7 • 6 • 5 • 4 • 3 • 2 • 1

• 1• 2• 3

4

bits can be detected by generating a non-zero S. Figure 3 shows
the cases of error free in (a) and erroneous bits d1’, d2’, d3’ in (b).
In the first case S=”000” and in the second case S=”111”.
Therefore, an error detection signal can be obtained if the
syndrome bits are not all zero. This calculation process for the
syndrome bits (i.e., Eqs. (2) and (3)) is implemented by a
decoder.

As per Eqs. (1)-(3), the error pattern is reflected on the
syndrome bits. Suppose the error only affects the first data bit,
i.e., d1’=d1 e, where e is the error pattern (for other bits, e=0).
In this case, as per Eqs. (1)-(3), then:

 (4)

The use of an IP-based scheme can only determine the error
pattern, but it cannot locate the position of the erroneous bits
and thus, it is unable to achieve error correction. For example,
in the case shown in Figure 3 (b), an error affecting d4’, d5’, d6’
generates the same syndrome bits of “111”. To correct errors,
stronger ECCs are therefore required.

C. SEC-DAEC Codes
As discussed in the introduction, SEC codes are a common

technique to correct single bit errors; SEC-DAEC codes have
been further developed to correct also double adjacent bit errors
[17], [18]. In this case, differently from the IP scheme, a
generator matrix G=[P Ik] (a parity check matrix H=[In-k PT]),
that is related to each code, is utilized to calculate the parity bits
for the generation of the n-bit codeword in the encoder (the
syndrome bits in the decoder). Therefore, the codeword C is
calculated by Eq. (5) (the syndrome S is calculated by Eq. (6)).
As operations are done in GF(2) and implemented by using xor
logic, the number of “1” in the G (H) matrix has an impact on
the delay to calculate the parity bits (syndrome bits) in the
encoding (decoding) process.

As per Eqs. (5) and (6), an error-free codeword (i.e., C’=C)
always generates an all-zero S, while a codeword with any
correctable error (i.e., C’=C e) will cause an unique S (i.e.,

). An error locating process is implemented to find
the position of the error; such process mostly determines the
complexity of the decoder circuitry. Once the error is located,
the erroneous bits can be corrected by simply flipping the
values. The number of parity bits (i.e., n-k), which is equal to
the number of columns of the P submatrix, can provide 2n-k-1
available non-zero syndrome patterns. It also determines the
number of additional memory bits needed per word, as well as
the number of xor logic gates in the encoder/decoder. This of
course affects the overhead of the memory and the protection
circuitry. The smallest value of n-k should be designed for the
best implementation in terms of overhead when the desired
error correction capability of the ECCs is accomplished.

Å

1 1 ' 1
' ''

0 1i i i

d d e i
S p p

i t
Å = =ì

= Å = í < £î

Å
TS e H= ×

(a)

(b)

Figure 3 Syndrome bits calculated as per the read-out codeword: (a) error free
case; (b) case of erroneous bits d1’, d2’, d3’

 (5)

(6)

1
1

1

1 0 0 1 0 1 1 1
• 8' • 7' • 6' • 5' • 4' • 3' • 2' • 1'

• 1''• 2''• 3''

• 3' • 2' • 1'
1 1 1

000

• 1• 2• 3

0
0

0

1 0 0 1 0 0 0 0
• 8' • 7' • 6' • 5' • 4' • 3' • 2' • 1'

• 1''• 2''• 3''

• 3' • 2' • 1'
1 1 1

111

• 1• 2• 3

()

11 12 1,

21 22 2,

31 32 2,1 2

,1 ,2 ,

1 0 0
0 1 0
0 0 0, , ,

0 0 1

n k

n k

n kk

k k k n k

p p p
p p p
p p pC d G d d d

p p p

-

-

-

-

é ù
ê ú
ê ú
ê ú= × = ×
ê ú
ê ú
ê úë û

! !

! !

! !!

" " " " " "

! !

()

11 21 ,1

12 22 ,2

13 23 ,31 2 1

1, 2, ,

1 0 0
0 1 0
0 0 0' ', ', , ', ', , '

0 0 1

T
k

k
T

kn k k

n k n k k n k

p p p
p p p
p p pS C H p p p d d

p p p

-

- - -

é ù
ê ú
ê ú
ê ú= × = ×
ê ú
ê ú
ê úë û

! !

! !

! !! !

" " " " " "

! !

5

For SEC codes, each column in the H matrix that is equal to
the syndrome for each single bit error (as per Eq. (6)), is unique;
hence, the syndromes for all single bit errors are distinguishable
and the error can be corrected. For SEC-DAEC codes, each
column in the H matrix is unique to achieve single bit error
correction as for SEC codes. Moreover, the xor of each pair of
adjacent columns is also unique and different from the columns
themselves; this ensures that all possible SEs and DAEs on the
codeword have different syndromes and thus, they can be
corrected. Therefore, a larger size of the H matrix
(corresponding to more parity bits) is needed by the
SEC-DAEC code than the SEC code in some cases when
protecting data with same length. Table I shows the number of
parity bits needed by the SEC and SEC-DAEC codes [12], [18].

III. PROPOSED SCHEME

A novel limited magnitude error correction scheme is
proposed in this section. The proposed scheme combines IP
with SEC-DAEC codes and can correct up to magnitude-3
errors.

A. IP Combined with SEC-DAEC (IP-DAEC) Scheme
As discussed in section II-A, symmetric magnitude-3 errors

(i.e. errors occur in both directions) will always corrupt at least
one of the lowest and second lowest bits. By considering these
bits in each cell as a pair of double adjacent bits, the corrupted
bit(s) in the erroneous cell is transferred to a single bit or double
adjacent bit error. Therefore, a SEC-DAEC code that covers the
lowest and second lowest bits per cell can locate the erroneous

cell, as well as correcting errors on those bits. However,
magnitude-3 errors can also affect some upper bits; for example,
in Figure 1 a magnitude-2 error affects the second and third
lowest bits causing a pattern of “110”. To handle errors on the
upper bits in the erroneous cell, the IP scheme that covers those
bits in each cell, is utilized to provide the error pattern for those
bits in the IP syndromes. Therefore, by combining IP with
SEC-DAEC codes, the proposed scheme can always guarantee
correct data under symmetric magnitude-3 errors. Next, the
encoder and decoder for the proposed scheme are described.

Encoder circuitry: As the proposed scheme combines two
ECC techniques (IP and SEC-DAEC), the encoder includes the
following two parity computational blocks:

� The IP bits are calculated as per Eq. (1). In our case, t is
equal to the number of bits stored in the MLC memory
cells as we target single cell errors. Then t-2 IP bits (i.e.,
1≤ i≤ t-2 in Eq. (1)) are calculated based on the upper
bits of each cell.

� The SEC-DAEC parity bits are calculated as per Eq. (5).
In our case, k is equal to twice the number of memory
cells, because in each cell two data bits are covered by
the codes. Then n-k SEC-DAEC parity bits are obtained
(they can be found in Table I).

Decoder circuitry: The proposed decoder mainly includes
the following blocks: two syndrome generation blocks, an error
locator and an error corrector.

� In the IP syndrome generation block, syndromes are
obtained as per Eqs. (2) and (3) (again, 1≤ i≤ t-2).

� In the SEC-DAEC syndrome generation block,
syndromes are obtained as per Eq. (6).

� In the error locator, the SEC-DAEC syndrome bits are
compared with all correctable error patterns to
determine the erroneous memory cell.

� In the error corrector, an xor operation is implemented
between the data bits read from the incorrect memory
cell and the IP syndrome bits.

The implementation of the proposed limited magnitude error
correction scheme for a 32-bit MLC memory with 3-bit cells is
shown in Figure 4. The (28, 22) SEC-DAEC code of [18] with
the H matrix shown in Figure 5 is utilized. In this case, one IP
bit pIP (i.e., 3-2=1) and six SEC-DAEC parity bits p1 to p6 (as
per Table I) are needed. The SEC-DAEC parity bits can only be
stored on the lowest and second lowest bits of each cell, such
that all magnitude-3 errors can corrupt at most two adjacent bits
of the SEC-DAEC codeword; else, miscorrections may occur.
For example, if the first three parity bits are stored in the same
cell, an error that affects all these bits, could generate a
syndrome of “111000”, which is the same as for the error on the
6th data bit; hence, a correct data bit would be flipped. Therefore,
in Figure 4 three memory cells need to be added to each word
for storing the parity bits, i.e. fourteen cells per word in total.

The flowchart of the proposed limited magnitude error
correction scheme is shown in Figure 6. In a write operation,
the original data is first provided as input to the encoder. The IP
bits and the SEC-DAEC parity bits are calculated, and then
written together with the data bits into memory, thus a
codeword is stored as memory word. In a read operation, the

TABLE I
NUMBER OF PARITY BITS NEEDED BY DIFFERENT ECCS

Data
length ECC # parity

bits
correctable

errors
available
syndromes

4-bit
SEC 4 8 15

SEC-DAEC 4 15 15

6-bit
SEC 4 10 15

SEC-DAEC 5 19 31

7-bit
SEC 4 11 15

SEC-DAEC 5 23 31

8-bit
SEC 4 12 15

SEC-DAEC 5 25 31

9-bit
SEC 4 13 15

SEC-DAEC 5 27 31

11-bit
SEC 5 16 31

SEC-DAEC 5 31 31

14-bit
SEC 5 19 31

SEC-DAEC 6 39 63

16-bit
SEC 5 21 31

SEC-DAEC 6 43 63

22-bit
SEC 5 27 31

SEC-DAEC 6 55 63

26-bit
SEC 6 32 63

SEC-DAEC 7 65 127

32-bit
SEC 6 38 63

SEC-DAEC 7 77 127

43-bit
SEC 6 49 63

SEC-DAEC 7 99 127

6

codeword is read out from the memory and then input to the
decoder. Once the decoder receives the codeword, the IP and
SEC-DAEC syndrome bits are generated. If all syndrome bits
are zero, the data is then directly provided as output, because it
is error free; a valid signal correct_data that identifies a correct
output, is generated (equal to “1” (“0”) when the data is error
free (erroneous)). Otherwise, the SEC-DAEC syndrome bits
that cover the lowest and second lowest data bits per cell can be
used to identify if the error is correctable. If the syndrome bits
are non-zero (so a correctable error occurs on a single memory
cell), then the SEC-DAEC syndrome bits are compared with
that of all considered single and double adjacent bit errors in
each cell to determine the position of the erroneous cell, as well
as the error pattern on the lowest and second lowest bits. Once
the erroneous cell is located, an xor operation between the IP
syndrome bits and the error pattern (determined by the
SEC-DAEC syndrome bits) with the data bits read from the
erroneous cell is performed to correct the error. Finally, the
decoder outputs the corrected data, as well as generating a valid
signal correct_data (i.e., equal to “1”) because the error has
been corrected. If not all of the syndrome bits are zero but the
SEC-DAEC ones are zero, an uncorrectable error is detected. In
this case, the data received by the decoder is immediately
provided as output; the signal correct_data is then given by “0”,
i.e. the data is incorrect. Figure 7 illustrates an example of
correcting a limited magnitude 1-error in the first data cell of a
32-bit data “11...1011” stored in a memory word with 3-bit
cells (as shown in Figure 4). The erroneous data cell is
identified by the SEC-DAEC code and the DAE on the two
lowest data bits is corrected by the SEC-DAEC code; the SE on
the remaining data bit of the erroneous cell is corrected by the
IP. In this case, the signal correct_data is given by “1”.

As in the flowchart of Figure 6, the two schemes are
combined (i.e., IP and SEC-DAEC); they are implemented in
parallel for both the encoding and the decoding. Therefore, the
critical path of the proposed scheme is mostly due to the
SEC-DAEC codes, which have a more complex decoding
process than the IP scheme. This leads to a low latency for
correcting limited magnitude errors, because in this case, the
SEC-DAEC codes deal with a small data length (twice the
number of data cells). However, the proposed scheme may
incur in a large number of additional memory cells to store the
parity bits, because we combine two ECCs and the number of
SEC-DAEC parity bits stored in each cell is limited to 2. To
address this issue, two approaches for low redundancy
SEC-DAEC codes used for the proposed scheme are proposed
in the next subsection.

B. Low Redundancy SEC-DAEC Codes
To reduce the number of parity bits needed for the proposed

scheme, two approaches are presented next for designing low
redundancy SEC-DAEC codes (i.e., with a smaller number of
parity bits) that can be used in the proposed scheme.

Approach 1: As discussed before, all magnitude-3 errors
affect at least one of the lowest and second lowest bits in a
memory cell, therefore any error on these bits is a correctable
single or double adjacent bit error if these bits are protected by
SEC-DAEC codes to locate the erroneous cell. As single cell
errors are considered in this paper, double adjacent bit errors
can only occur in the same memory cell (rather than the entire
word). This leads to a smaller number of relevant double
adjacent bit error patterns. These patterns are dependent on the
number of memory cells (i.e., at most one DAE in each cell),
while for the entire word, it is equal to the word length minus 1
bit (i.e., n-1 DAEs on the n-bit codeword). For example, in the
32-bit MLC memory with 3-bit cells shown in Figure 4, 28
single bit errors and 27 double adjacent bit errors can be
corrected by the (28, 22) SEC-DAEC code; however, only 28
single bit errors and 14 double adjacent bit errors in all memory
cells need to be taken into account. Therefore, the conventional
SEC-DAEC codes provide correction for some patterns that are
not relevant to our case. A strategy to obtain more efficient
SEC-DAEC codes with low redundancy is to design the H

Figure 5 H matrix of the (28, 22) SEC-DAEC code

Figure 4 Implementation of the proposed scheme to protect a 32-bit MLC memory with 3-bit cells

H =

1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0
0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1
0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0
0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1
0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Encoder
Decoder

11 data cells

d1
d2

d5

d29
d31

d4
p1

p3

3 parity cells

p4
p5
p6

s1

SEC-DAEC
syndrome
generation

s4
s5
s6

s3
doutput

d28

pIPXOR

p2SEC-DAEC
parity

computation

d32

d3
d6

d30

XOR

d3
d6
d30
pIP

d1
d2

d5
d4

d32
p1

p6

p2

s2

sIP

Signal
correct_dataError locator

& corrector

d1d2d3d4d5d6d7d8d9d28d29d30d31

Memory

p2 p1p3 pIP

...

d32 . . .p6 p5

d1d2d3d4d5d6d7d8d9d28d29d30d31pIPd32 . . .

d1d2d3d4d5d6d7d8d9d28d29d30d31pIPd32 . . .

d1d2d3d4d5d6d7d8d9d28d29d30d31pIPd32 . . .

p4

p2 p1p3p6 p5 p4

p2 p1p3p6 p5 p4

p2 p1p3p6 p5 p4

7

matrices that generate distinguishable syndromes only for the
single bit errors and double adjacent bit errors without sharing
any bit (i.e., errors on the 1st bit and 2nd bit, 3rd bit and 4th bit, 5th
bit and 6th bit and so on). In this case, the size of the H matrices
will be smaller than conventional SEC-DAEC codes in most
cases, thus the number of needed syndromes is reduced. A
memory cell may also be saved with a lower decoding latency,
because the error location process is simplified.

Approach 2: In the proposed scheme, the SEC-DAEC parity
bits can only be stored on the lowest and second lowest bits of
each memory cell. If there are more than two parity bits (found
at the lowest and second lowest bit positions) stored in a cell,
limited magnitude errors that can corrupt more than these two
bits in a cell may cause an uncorrectable error pattern on the
parity bits. If this uncorrectable error has the same syndrome as
any single bit error or double adjacent bit error, a miscorrection
will occur. This can be remedied if the H matrix is carefully
designed. To store more SEC-DAEC parity bits in the same cell
(thus reducing the number of additional cells and lowering
memory redundancy), a strategy for code design is to ensure
that the H matrices generate different syndromes for all
possible errors on the parity bits (stored in the same memory

cell) for all correctable errors. The syndromes for additional
errors on those parity bits do not need to be different from each
other, because they are only used to avoid miscorrections rather
than correcting those errors (only the correctness of the data
bits needs to be guaranteed). In this case, more parity bits can
be stored in a single memory cell without introducing a
miscorrection; moreover, the number of parity bit cells can be
also reduced. A potential issue is that the number of parity bits
may increase, because more syndrome patterns are considered
when using this second approach. However, this is unlikely to
occur, because the number of additionally considered
syndromes is limited and can also be avoided by a suitable
placement of the stored parity bits.

Low redundancy SEC-DAEC codes have been designed by
combining the two approaches presented above and meeting
the following constraints in the H matrices.

1) The total number of “1” is reduced (so resulting in a low
complexity of the encoder/decoder circuitry);

2) The largest number of “1” per row is reduced (so
resulting in a reduction of the critical path for
encoding/decoding);

3) All single columns are unique and also different from
any xor result on each pair of the 1st column and 2nd

column, 3rd column and 4th column, 5th column and 6th

Figure 6 Flowchart of the proposed limited magnitude error correction scheme

Figure 7 An example when utilizing the proposed scheme to correct limited
magnitude errors.

Start

Calculate IP bits Calculate SEC-
DAEC parity bits

Generate IP
syndrome bits

Yes

No

Yes

No

Output the
corrected data

End

Encoding process

Decoding process

Input the data to the encoder

Write the codeword
into the memory

Codeword is stored
in the memory

Read the codeword from the memory
and then input it to the decoder

Generate SEC-DAEC
syndrome bits

Check if all
syndrome bits are

zero

Output
the data

Output
the data

Set signal
correct_data

to “ 1”

Set signal
correct_data

to “ 1”

Set signal
correct_data

to “ 0”

If SEC-DAEC syndrome
bits are zero ?

Use SEC-DAEC syndrome bits to
locate the erroneous cell, and
generate the error pattern on

the 2 lowest bits

Use IP syndrome bits and
error pattern obtained
above to correct errors

1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1. . .
d1d2d3d4d5d6d7d8d9d28d29d30d31p2 p1p4 p3 pIP d32p6 p5

Input : 32-bit data (d32 to d1)
11111111111111111111111111111011

 IP parity: pIP = d30⊕ ...⊕ d9⊕ d6⊕ d3 = 1
p1 = d32⊕ d31⊕ ...⊕ d5⊕ d4⊕ d2 = 1
p2 = d28⊕ d26⊕ ...⊕ d5⊕ d2⊕ d1 = 1
p3 = d32⊕ d28⊕ ...⊕ d7⊕ d5⊕ d2 = 0
p4 = d28⊕ d26⊕ ...⊕ d10⊕ d7⊕ d2 = 1
p5 = d17⊕ d14⊕ ...⊕ d8⊕ d4⊕ d1 = 0
p6 = d31⊕ d28⊕ ...⊕ d7⊕ d4⊕ d1 = 1

Encoding

A mag-1 error occurs
in the 1st data cell

1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0. . .

 IP syndrome: SIP = pIP'⊕ d30'⊕ ...⊕ d9'⊕ d6'⊕ d3' = 1
S1 = p1'⊕ d32'⊕ d31'⊕ ...⊕ d5'⊕ d4'⊕ d2' = 1
S2 = p2'⊕ d28'⊕ d26'⊕ ...⊕ d5'⊕ d2'⊕ d1' = 0
S3 = p3'⊕ d32'⊕ d28'⊕ ...⊕ d7'⊕ d5'⊕ d2' = 1
S4 = p4'⊕ d28'⊕ d26'⊕ ...⊕ d10'⊕ d7'⊕ d2' = 1
S5 = p5'⊕ d17'⊕ d14'⊕ ...⊕ d8'⊕ d4'⊕ d1' = 1
S6 = p6'⊕ d31'⊕ d28'⊕ ...⊕ d7'⊕ d4'⊕ d1' = 1

d1'd2'd3'd4'd5'd6'd7'd8'd9'd28'd29'd30'd31'p2'p1'p4' p3' pIP'd32'p6' p5'

Decoding
The SEC-DAEC syndrome S6,S5,...,S1 = 111101 refers to a

DAE on d1' and d2' on the 1st cell.
The IP syndrome SIP=1 refers to a SE on d3' on the

erroneous cell (i.e. the 1st one)
Thus the error is corrected (by xor with the error pattern

00...0111).

1 0
1 1
1 0
1 0
0 1
0 1

H = ...

1 S1

0 S2

1 S3

1 S4

1 S5

1 S6

xor

Output : correct data (d32 to d1)
11111111111111111111111111111011,

And set signal correct_data to “ 1”

11 data cells3 parity cells

SEC-DAEC syndrome:

SEC-DAEC parity:

Are all syndrome bits zero? No

8

column and so on (this ensures that the erroneous cell in
which magnitude-3 errors occur can be located and
errors on the lowest and second lowest bits of such cell
can be corrected);

4) The xor results on any combination of the columns that
relate to the parity bits stored in a same memory cell,
are different from the columns/results found in
constraint 3) above (so avoiding miscorrection on data
bits from errors on the parity bits).

A Matlab program has been used to find the H matrices for
low redundancy SEC-DAEC codes employed in the proposed
scheme. Compared to the conventional SEC-DAEC codes
given in Table I, one parity bit can be saved when the data size
is 6-bit and 26-bit. In the example shown in Figure 4, the (28,
22) SEC-DAEC code with the H matrix shown in Figure 5 can
be improved to the (28, 22) SEC-DAEC code with the H matrix
shown in Figure 8. Even if in this case the number of parity bits
may not be reduced, a memory cell per word can be saved as
shown in Figure 9 (from 14 cells in Figure 5 to 13 cells in
Figure 9) because more parity bits can be stored in the same
cell.

C. Advantages of the Proposed Scheme
Based on the observation that errors of limited magnitude up

to 3 levels always affect at least one of the lowest and second
lowest bits in a memory cell, the proposed scheme uses
SEC-DAEC codes to determine which cell is in error. In this
case, the error locating process (which accounts for most of the
complexity of the decoder) is significantly simpler, because it is
applicable to only single bit errors and a partial number of
double adjacent bit errors (rather than all possible patterns) as

caused by the limited magnitude errors. This leads to the
following advantages of the proposed scheme:

� As the number of considered error patterns in the error
location process (related to the number of
distinguishable syndromes) is small, the SEC-DAEC
codes used in the proposed scheme require a small
number of parity bits. Even if several IP bits are
additionally needed; the proposed scheme has an
advantage in terms of memory redundancy when
compared to existing schemes at the same error
correction capability.

� The small number of considered error patterns also
makes the proposed scheme efficient in terms of
decoding latency compared to schemes that also
implement syndrome-checking in the decoding process.

These advantages will be confirmed by the evaluation results
presented in the next section.

IV. EVALUATION

The evaluation of the proposed scheme is considered in this
section; it consists of two parts: memory redundancy and the
encoder/decoder overhead. Data words of 8, 16, 32, 64-bit
stored in MLC memories with 3, 4, 5-bit cells are considered in
the evaluation. Existing limited magnitude error correction
schemes in the technique literature and the conventional
Reed-Solomon (RS) codes that can correct single symbol errors
are summarized in Table II; they are also evaluated for a
comprehensive comparison. To show the overhead introduced
by error correction over only error detection, the TBP scheme
of [24] is also included in the comparison.

Figure 8 H matrix of the low redundancy (28, 22) SEC-DAEC code used for
the proposed scheme

TABLE II
ERROR CORRECTION CAPABILITIES OF DIFFERENT SCHEMES

Scheme Error correction capability
Hamming scheme [19] Asymmetric magnitude 1 error

Spotty codes [21] Symmetric magnitude 2 error
OLS scheme [20] Symmetric magnitude 3 error
SSEC* RS [12] Single symbol error

Proposed IP-DAEC Symmetric magnitude 3 error
*SSEC stands for Single Symbol Error Correction

Figure 9 Implementation of the improved design to protect a 32-bit MLC memory with 3-bit cells

1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1
0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0
0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1
0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0
0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1

H =

d1d2d3d4d5d6d7d8d9d28d29d30d31

MemoryEncoder

p2 p1

11 data cells

d1
d2

d5

d29
d31

d4
p1

p3

p3

2 parity cells

pIP

p4
p5
p6

s1

SEC-DAEC
syndrome
generation

s4
s5
s6

s3
d28

pIP

...

d32 . . .p6 p5

d1d2d3d4d5d6d7d8d9d28d29d30d31pIPd32 . . .

d1d2d3d4d5d6d7d8d9d28d29d30d31pIPd32 . . .

d1d2d3d4d5d6d7d8d9d28d29d30d31pIPd32 . . .

XOR

p2SEC-DAEC
parity

computation

d32

d3
d6

d30

XOR

d3
d6
d30
pIP

d1
d2

d5
d4

d32
p1

p6

p2

s2

sIP

p4

p2 p1p3p6 p5 p4

p2 p1p3p6 p5 p4

p2 p1p3p6 p5 p4

Decoder

doutput

sIP

Signal
correct_dataError locator

& corrector

9

A. Memory Redundancy
When using ECCs to protect memories, redundant cells are

added to each word to store the parity bits of the codes; this has
an impact on memory overhead in terms of area and power. As
each multilevel memory cell can store several bits, ECCs that
have different number of parity bits, may need the same number
of cells per word depending on their word length.

Table III shows the number of parity bits needed by different
schemes, as well as word-length in terms of number of cells.
The proposed scheme always needs more parity bits than the
TBP scheme of [24] and the Hamming scheme of [19]
(regardless of data size), also the Spotty codes of [21] and the
SSEC RS codes [12] in several cases. In terms of word-length,
(that largely affects memory redundancy), the proposed scheme
only introduces one cell more than the TBP scheme (that
detects magnitude-2 errors) in most cases (two cells in other
cases); however, the proposed scheme can correct up to
magnitude-3 errors. Compared to the Hamming scheme of [19]
and the Spotty codes of [21], the proposed scheme needs the
same or one more cell, but providing a stronger error correction

capability. For the same error correction capability
(magnitude-3 errors), the proposed scheme has a significant
advantage in terms of memory redundancy over the OLS
scheme of [20] that can also correct magnitude-3 errors. This
occurs because the SEC-DAEC codes used in the proposed
scheme are designed with low redundancy strategies, while
traditional OLS codes used in [20] usually require a significant
larger number of parity bits. Compared to the SSEC RS codes,
the proposed IP-DAEC scheme needs the same number of cells
in nearly all cases.

Memories in most cases account for a significant fraction of
the circuit area of modern digital chips, so this makes the
proposed scheme very attractive for protecting MLC memories.

B. Encoder and Decoder Overhead
To evaluate the overhead introduced by protection circuits of

different schemes, encoders and decoders have been designed
and implemented in HDL and mapped to a 65nm library from
TSMC using the Synopsis Design Compiler. The synthesis tool
has been set to area and delay optimization in the circuitry to
obtain the best results for these metrics. The synthesis results

TABLE III
NUMBER OF PARITY BITS AND WORD-LENGTH NEEDED BY DIFFERENT SCHEMES

Data
size

#bits
/cell

parity bits Word-length (cells)

TBP
[24]

Hamming
scheme

[19]

Spotty
codes
[21]

OLS
scheme

[20]

SSEC
RS
[12]

Proposed
IP-DAEC

TBP
[24]

Hamming
scheme

[19]

Spotty
codes
[21]

OLS
scheme

[20]

SSEC
RS
[12]

Proposed
IP-DAEC

8
bits

3 2 3 5 11 6 5 4 4 5 7 5 5
4 2 3 6 9 8 6 3 3 4 5 4 4
5 2 3 6 9 10 7 2 3 3 4 4 3

16
bits

3 2 4 6 15 6 6 6 7 8 11 8 8
4 2 3 6 12 8 7 5 5 6 7 6 6
5 2 3 7 12 10 8 4 4 5 6 6 5

32
bits

3 2 4 7 21 6 7 12 12 13 18 13 13
4 2 4 7 18 8 8 9 9 10 13 10 10
5 2 4 8 17 10 9 7 8 8 10 9 9

64
bits

3 2 5 8 30 6 8 22 23 24 32 24 24
4 2 5 8 24 8 9 17 18 18 22 18 19
5 2 5 9 24 10 9 14 14 15 18 15 15

TABLE IV
SYNTHESIS RESULTS OF AREA (um2) FOR ENCODERS AND DECODERS

Data
size

#bits
/cell

Encoder Decoder

TBP
[24]

Hamming
scheme

[19]

Spotty
codes
[21]

OLS
scheme

[20]

SSEC
RS
[12]

Proposed
IP-DAEC

TBP
[24]

Hamming
scheme

[19]

Spotty
codes
[21]

OLS
scheme

[20]

SSEC
RS
[12]

Proposed
IP-DAEC

8
bits

3 24.4 24.8 59.6 42.4 325.2 35.2 33.6 56.0 147.6 126.0 3758.4 139.2
4 20.8 20.0 60.8 34.4 414.8 25.2 29.6 42.0 179.2 442.4 4818.4 116.8
5 16.0 20.0 67.2 34.4 512.8 24.4 22.4 42.0 188.4 380.8 5940.4 110.4

16
bits

3 56.0 56.4 129.6 95.2 352.4 80.8 65.6 116.4 315.6 251.6 3936.0 283.2
4 48.8 45.2 129.6 73.6 416.0 66.0 57.6 83.6 344.0 854.4 4951.6 231.2
5 40.8 45.2 152.4 64.0 514.8 62.0 50.4 83.6 442.0 1004.4 6094.4 226.4

32
bits

3 124.4 120.8 288.0 216.8 356.4 214.0 133.6 210.0 676.8 502.8 4216.4 585.6
4 105.6 97.6 312.0 166.4 440.4 187.2 114.4 174.4 685.2 1732.0 5270.4 526.0
5 89.6 89.6 311.2 132.8 522.8 155.6 99.2 159.2 846.0 2126.0 6421.2 470.4

64
bits

3 256.8 258.4 493.2 480.4 402.4 344.4 265.6 442.8 1216.0 1042.8 4895.6 952.8
4 217.6 206.8 687.6 380.8 482.4 348.0 227.2 284.0 1420.4 3144.0 6056.0 884.8
5 191.2 183.6 632.0 309.2 542.0 332.4 200.8 229.6 1741.6 4574.0 7059.6 845.2

10

for area, delay and power consumption for the encoders and
decoders are given in Tables IV-VI.

Consider first the overhead introduced by error correction
over only error detection. From Tables IV-VI it can be seen that
compared to the detection-only TBP scheme [24] the proposed
scheme introduces overheads in area, delay and power for the
encoder and decoder in all cases. This is expected, because the
number of parity bits needed by the proposed scheme (that
combines two ECCs) is larger than the TBP scheme, leading to
a higher complexity of the encoder and the syndrome
generation block in the decoder. Moreover, the error locating
process and error correcting process also introduces additional
hardware overhead compared to detection only.

Consider the schemes that can correct limited magnitude
errors. Compared to [19] that uses Hamming codes to correct
only asymmetric magnitude-1 errors, the proposed introduces
overhead in all cases due to the additional parity bits (Table III)
to account for correction and the stronger coding function. For
example, the proposed scheme requires 43.3% more area, 23.1%
more delay and 50.0% more power for the encoder, and 143.3%
more area, 44.7% more delay and 155.6% more power for the

decoder than the Hamming scheme for a 16-bit memory with
3-bit cells. Compared to the Spotty codes of [21] that correct
magnitude-2 errors, the proposed scheme (that corrects
magnitude-3 errors, so a stronger coding function) requires a
lower hardware overhead for the encoder and decoder. For
example, for a 16-bit memory with 3-bit cells, the savings are
37.7% area, 11.1% delay and 33.3% power for the encoder, and
10.3% area, 2.9% delay and 4.2% power for the decoder. For
the scheme of [20] with the same correction capability (i.e.
magnitude-3 errors), traditional OLS codes are used to cover
three bits per cell to correct errors on those bits. Then, the
corrected three bits are checked by using a truth table that lists
all possible errors to identify the direction and magnitude of the
error, thus the error pattern on the remaining bits is found and
corrected. This decoding process is more complex than the
proposed scheme for a memory with more than 3-bit per cell.
For example, for a 32-bit memory with 4-bit cells, 69.6% area,
18.9% delay and 79.9% power for the decoder are saved by
using the proposed scheme. When the number of bits per cell is
3, the OLS scheme of [20] incurs in a lower overhead, because
in this case the OLS codes cover all bits and their majority logic

TABLE VI
 SYNTHESIS RESULTS OF POWER (mW) FOR ENCODERS AND DECODERS

Data
size

#bits
/cell

Encoder Decoder

TBP
[24]

Hamming
scheme

[19]

Spotty
codes
[21]

OLS
scheme

[20]

SSEC
RS
[12]

Proposed
IP-DAEC

TBP
[24]

Hamming
scheme

[19]

Spotty
codes
[21]

OLS
scheme

[20]

SSEC
RS
[12]

Proposed
IP-DAEC

8
 bits

3 0.01 0.01 0.05 0.03 0.17 0.02 0.02 0.04 0.10 0.09 2.81 0.10
4 0.01 0.01 0.05 0.02 0.14 0.02 0.02 0.03 0.16 0.39 2.71 0.09
5 0.01 0.01 0.04 0.02 0.17 0.02 0.01 0.03 0.16 0.38 3.25 0.09

16
bits

3 0.04 0.04 0.09 0.07 0.35 0.06 0.04 0.09 0.24 0.20 4.69 0.23
4 0.03 0.03 0.09 0.05 0.28 0.04 0.04 0.07 0.33 1.24 4.19 0.20
5 0.03 0.03 0.11 0.04 0.35 0.04 0.03 0.07 0.39 1.29 5.02 0.19

32
bits

3 0.09 0.09 0.23 0.18 0.64 0.18 0.10 0.18 0.60 0.49 8.10 0.54
4 0.08 0.07 0.24 0.12 0.59 0.17 0.09 0.16 0.61 2.39 7.49 0.48
5 0.07 0.07 0.24 0.10 0.62 0.10 0.08 0.11 1.24 3.00 7.98 0.41

64
bits

3 0.19 0.19 0.42 0.41 1.43 0.34 0.20 0.39 1.43 1.37 17.52 1.32
4 0.18 0.17 0.61 0.38 1.25 0.35 0.20 0.23 2.20 4.50 15.70 1.29
5 0.18 0.16 0.57 0.23 1.30 0.25 0.19 0.20 2.40 6.10 14.82 1.24

TABLE V
 SYNTHESIS RESULTS OF DELAY (ns) FOR ENCODERS AND DECODERS

Data
size

#bits
/cell

Encoder Decoder

TBP
[24]

Hamming
scheme

[19]

Spotty
codes
[21]

OLS
scheme

[20]

SSEC
RS
[12]

Proposed
IP-DAEC

TBP
[24]

Hamming
scheme

[19]

Spotty
codes
[21]

OLS
scheme

[20]

SSEC
RS
[12]

Proposed
IP-DAEC

8
 bits

3 0.20 0.20 0.31 0.22 2.61 0.26 0.25 0.41 0.58 0.35 4.55 0.57
4 0.14 0.22 0.31 0.22 1.62 0.25 0.23 0.34 0.62 0.88 3.80 0.57
5 0.11 0.22 0.33 0.22 1.60 0.25 0.19 0.34 0.67 0.82 4.00 0.56

16
bits

3 0.25 0.26 0.36 0.26 4.92 0.32 0.30 0.47 0.70 0.40 7.52 0.68
4 0.22 0.25 0.37 0.24 3.48 0.32 0.27 0.45 0.71 0.89 5.64 0.65
5 0.20 0.25 0.39 0.22 3.16 0.26 0.25 0.45 0.76 0.94 5.88 0.64

32
bits

3 0.33 0.37 0.45 0.27 9.68 0.43 0.36 0.55 0.82 0.46 12.22 0.80
4 0.27 0.32 0.49 0.28 7.04 0.39 0.34 0.52 0.85 0.95 9.90 0.77
5 0.26 0.31 0.49 0.27 5.88 0.36 0.31 0.51 0.88 0.98 8.82 0.73

64
bits

3 0.43 0.42 0.53 0.32 19.85 0.51 0.44 0.68 0.92 0.49 22.32 0.90
4 0.39 0.37 0.55 0.33 13.44 0.44 0.40 0.61 0.95 1.03 19.44 0.86
5 0.38 0.36 0.55 0.27 11.05 0.43 0.38 0.59 0.97 1.06 14.25 0.82

11

decoder is fast and simple [12],[30]. For example, in a 32-bit
memory with 3-bit cells, 16.5% more area, 73.9% more delay
and 10.2% more power for the decoder are required by the
proposed scheme. For the encoder, as the OLS codes need more
parity bits but each parity bit covers a smaller number of data
bits than the proposed scheme, a larger overhead of area and
power consumption is introduced by the OLS encoder in most
cases, while a lower delay is achieved. For a 16-bit memory
with 4-bit cells, 10.3% less area, 33.3% more delay and 20.0%
less power are introduced by the proposed scheme.

Finally, when compared to the SSEC RS codes, the proposed
IP-DAEC scheme incurs in a significantly lower overhead in all
cases for area, delay and power dissipation.

To further show the advantage of the proposed scheme over
the scheme that has the same error correction capability, the
normalized combined metric of PADP (i.e., the Power Area
Delay Product) results for the encoders and the decoders of the
proposed scheme and the OLS scheme of [20] for different
configurations are plotted in Figure 10 and Figure 11
respectively. As the decoders mostly determine the complexity

of the protection circuitry (because they are the most complex
block), the proposed scheme has a significant advantage
(saving up to 97.7% of PADP) for MLC memories with more
than 3-bits per cell.

For memory cells of a smaller size (i.e., 3-bit per cell) for
which the proposed scheme has a larger PADP, the value of the
PADP can be compensated by the reduction in parity bits
because the parity bits account for a significant part of the
overhead in large memories (they are added per word while the
encoder and decoder are added to the entire memory).

V. CONCLUSION

In this paper, an efficient scheme (referred to as IP-DAEC)
that corrects up to symmetric magnitude-3 errors in multilevel
cell (MLC) memories has been proposed; this scheme is based
on the use of two simple ECCs: Interleaved Parity (IP) bits and
Single Error Correction and Double Adjacent Error Correction
(SEC-DAEC) codes. As all magnitude-3 errors always affect
one of the lowest and second lowest bits in the cell, a
SEC-DAEC code that covers these bits in each cell is used to
locate the erroneous cell and correct the errors on these bits.
The IP bits are used to identify the errors on the upper bits in the
erroneous cell. By converting limited magnitude errors at
different levels into single and double adjacent bit errors in the
cell, the proposed scheme very efficiently corrects errors at a
very low decoding complexity. Moreover, two approaches to
design low-redundancy SEC-DAEC codes for the proposed
scheme have also presented to further reduce the number of
parity bits.

The advantages of the proposed IP-DAEC scheme have been
verified by comparing it with existing schemes that also deal
with limited magnitude errors. Evaluation results show that the
proposed scheme significantly reduces memory redundancy
(up to 25.0%), as well as the encoder (up to 34.6% of PADP)
and decoder overhead (up to 97.7% of PADP) over existing
magnitude-3 error correction schemes based on OLS codes.
When compared to Spotty codes that can only correct
magnitude-2 errors, the proposed scheme also performs better
in terms of both memory redundancy and hardware overhead in
most cases. These advantages make the proposed scheme
attractive for utilization in MLC memories.

The proposed scheme can also be extended for a stronger
limited magnitude error correction capability. For example, if
we use codes that can correct 3-bit burst errors to cover the
lowest, second lowest and third lowest bits per cell (instead of
the SEC-DAEC codes in the proposed IP-DAEC scheme),
symmetric magnitude-7 errors can be corrected by combining
the codes with IP bits because those errors will always affect at
least one of the bits covered. This extension is left for the future
work.

ACKNOWLEDGMENT
Pedro Reviriego was partially supported by the TEXEO

project (TEC2016-80339-R) funded by the Spanish Research
Plan and by the Madrid Community research project
TAPIR-CM grant no. P2018/TCS-4496.

Figure 10 Normalized PADP results for the encoders

Figure 11 Normalized PADP results for the decoders

12

REFERENCES
[1] W. A. Bhat, “Is a Data-Capacity Gap Inevitable in Big Data Storage?”,

IEEE Computer, vol. 51, no. 9, pp. 54-62, Sep. 2018.
[2] G. Atwood, S-I Chae, S.S.Y. Shim, “Next Generation Memory”, IEEE

Computer Magazine, vol. 46, no.8, pp. 21–22, Aug. 2013.
[3] N. Papandreou, A. Pantazi, A. Sebastian, M. Breitwisch, C. Lam, H.

Pozidis, and E. Eleftheriou, “Multilevel Phase-Change Memory,” in
Proc. IEEE Int.Conf. Electron. Circuits Syst., pp. 1017–1020, Dec. 2010.

[4] G.S. Sandhu, “Emerging Memories Technology Landscape”, 13th
Non-Volatile Memory Technology Symposium, pp.1-5, Jul. 2014.

[5] X.P. Wang, Z.Y. Wang and Y. Shen, “A High Reliable Design of
Memristor-Based Multilevel Memory”, IEEE 34th Chinese Control
Conference, pp.5615-5618, Sep. 2015.

[6] IBM, News Release, [Online] Available at http://
www-03.ibm.com/press/us/en/pressrelease/49746.wss, 17. May 2016.

[7] ExtremeTech, “Western Digital’s HGST division Creates New
Phase-Change SSD that’s Orders of Magnitude Faster than Any NAND
Flash Drive on the Market”, [Online] Available at https://www.extrem-
etech.com/extreme/187577-hitachis-new-phase-change-ssd-is-orders-of
-magnitude-faster-than-any-nand-flash-drive-on-the-market, Aug. 2014.

[8] Intel Optane Memory, [Online] Available at https://www.intel.com
/content/www/us/en/support/products/99745/memory-and-storage/intel-
optane-memory.html, Nov. 2019.

[9] The Register, “IBM’s Phase Change Memory Computer Can Tell You If
It’s raining”,[Online] Available at https://www.theregister.co.uk/2017/10
/31/a_phase_change_memory_computer_with_no_processor,Oct.2017.

[10] J. Li, B. Luan and C. Lam, "Resistance Drift in Phase Change Memory,"
in Proc. of IEEE International Reliability Physics Symposium (IRPS),
pp. 6C-1, Apr.2012.

[11] J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett et al.,
"High Switching Endurance in TaOx Memristive Devices", Appl. Phys.
Lett. vol. 97, no.23, Dec. 2010.

[12] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Englewood
Cliffs, NJ, USA: Prentice-Hall, 2004.

[13] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical
Applications, Wiley-Interscience, 2006.

[14] Z.N. Wu, P.A. McEwan, K.K. Fitzpatrick, J.M. Cloffi, “Interleaved
Parity Check Codes and Reduced Complexity Detection”, IEEE
International Conference on Communications, pp. 1648-1652, Aug.
2002.

[15] M. Y. Hsiao, “A Class of Optimal Minimum Odd-Weight-Column
SEC-DED codes”, IBM J. Res. Develop., vol. 14, no. 4, pp. 395-401, Jul.
1970.

[16] E. Ibe, H. Taniguchi, Y. Yahagi, K. I. Shimbo, T. Toba, “Impact of
Scaling on Neutron-Induced Soft Error in Srams from a 250 nm to a 22
nm Design Rule”, IEEE Transactions on Electron Devices, vol.57, no.7,
pp. 1527-1538, Jul. 2010.

[17] A. Dutta and N. A. Touba, “Multiple Bit Upset Tolerant Memory using a
Selective Cycle Avoidance based SEC-DED-DAEC Code,” in Proc.
IEEE VLSI Test Symp., pp. 349-354, May 2007.

[18] Z. Ming, X. L. Yi, L. H. Wei, “New SEC-DED-DAEC Codes for
Multiple Bit Upsets Mitigation in Memory”, in IEEE/IFIP 19th
International Conference on VLSI and System-on-Chip, pp.254-259,
Aug. 2011.

[19] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
Asymmetric Limited-Magnitude Errors with Application to Multilevel
Flash Memories”, in IEEE Transactions on Information Theory, vol. 56,
no. 4, pp. 1582-1595, Apr. 2010.

[20] A. Das and N.A. Touba, “Limited Magnitude Error Correction Using
OLS Codes for Memories with Multilevel Cells”, in Proc. of IEEE
International Conference on Computer Design (ICCD), pp. 391-394,
Nov.2017.

[21] S.S Liu, P. Reviriego, K. Namba, S. Pontarelli, L.Y. Xiao, F. Lombardi,
“Low Redundancy Double Error Correction Spotty Codes Combined
with Gray Coding for 64 Data Bits Memories of 4-bit Multilevel Cells”,
in Proc. of the 32nd IEEE International Symposium on Defect and Fault
Tolerance (DFT) in VLSI and Nanotechnology Systems, Oct. 2019.

[22] A. Das and N.A. Touba, “Efficient Non-binary Hamming Coding for
Limited Magnitude Errors in MLC PCMs”, IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pp.1-6, Oct.2018.

[23] K. Namba and F. Lombardi, “Non-Binary Orthogonal Latin Square
Codes for a Multilevel Phase Charge Memory (PCM)”, IEEE Trans. on
Computers, vol.64, no. 7, pp.2092-2097, Aug. 2014.

[24] S.S. Liu, P. Reviriego, F. Lombardi, “Detection of Limited Magnitude
Errors in Emerging Multilevel Cell Memories by One-Bit Parity (OBP)
or Two-Bit Parity (TBP)”, IEEE Transactions on Emerging topics in
Computing, 2019 (Early access).

[25] P. Junsangsri, J. Han and F. Lombardi “A System-level Scheme for
Resistance Drift Tolerance of a Multilevel Phase Change Memory”, Proc
IEEE International Symposium on DFT in VLSI and Nanotechnology
Systems, Amsterdam, pp. 63-68, Oct. 2014.

[26] P. Junsangsri. and F. Lombardi, "A New Comprehensive Model of a
Phase Change Memory (PCM) Cell", IEEE Transactions on
Nanotechnology, vol 13, no. 6, pp. 1213-1225, Nov. 2014.

[27] Z. Zhang, W. Xiao, N. Park, D.J. Lilja, “Memory Module-Level Testing
and Error Behaviors for Phase Change Memory”, IEEE 30th
International Conference on Computer Design (ICCD), Sep. 2012.

[28] N. An, R. Wang, Y. Gao, H. Yang, and D. Qian, “Balancing the Lifetime
and Storage Overhead on Error Correction for Phase Change Memory”,
PloS one, vol.10, no.7, Jul. 2015.

[29] N.H. Seong, S. Yeo, H.S. Lee, “Tri-Level-Cell Phase Change Memory:
Toward an Efficient and Reliable Memory System”, Proceeding of the
40th Annual International Symposium on Computer Architecture, pp.
440-451, Jun. 2013.

[30] M. Y. Hsiao, D. C. Bossen, and R. T. Chien, “Orthogonal Latin square
codes,'' IBM J. Res. Develop., vol. 14, no. 4, pp. 390–394, Jul. 1970.

Shanshan Liu (M'19) received the M.Sc.
and Ph.D. degrees in microelectronics and
solid-state electronics from Harbin
Institute of Technology, Harbin, China, in
2012 and 2018, respectively. She is
currently a Post-doctoral researcher with
the Department of Electrical and
Computer Engineering, Northeastern
University, Boston, US. Her current
research interests include fault tolerant

design in high performance computer systems.

Pedro Reviriego (M'04-SM'15) received
the M.Sc. and Ph.D. degrees in
telecommunications engineering from the
Technical University of Madrid, Madrid,
Spain, in 1994 and 1997, respectively.
From 2007 to 2018 he was with Nebrija
University. He is currently with
Universidad Carlos III de Madrid working
on high speed packet processing and fault

tolerant electronics.

Fabrizio Lombardi (M'81-SM'02-F'09)
received Ph.D. degree from the University
of London in 1982. He is currently the
International Test Conference (ITC)
Endowed Chair Professorship with
Northeastern University, Boston, USA.
His research interests are bio-inspired and
nano manufacturing/computing, VLSI
design, testing, and fault/defect tolerance

of digital systems. He is the Editor-in-Chief of the IEEE
TRANSACTIONS ON NANOTECHNOLOGY.

	Página en blanco

