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Abstract 

In this work, we formalise and evaluate an ensemble of classifiers that is designed for the 

resolution of multi-class problems. To achieve a good accuracy rate, the base learners are built 

with pairwise coupled binary and multi-class classifiers. Moreover, to reduce the computational 

cost of the ensemble and to improve its performance, these classifiers are trained using a 

specific attribute subset. This proposal offers the opportunity to capture the advantages provided 

by binary decomposition methods, by attribute partitioning methods, and by cooperative 

characteristics associated with a combination of redundant base learners. To analyse the quality 

of this architecture, its performance has been tested on different domains, and the results have 

been compared to other well-known classification methods. This experimental evaluation 

indicates that our model is, in most cases, as accurate as these methods, but it is much more 

efficient.  

Highlights: 

BCE is an ensemble focused on multi-class problems with a large number of features. 

The base learners have a dual structure with a binary and a complementary classifier. 
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To reduce the computational cost, BCE includes a Feature Selection module. 

BCE gives preference to the accuracy of the base learners over their diversity. 

BCE is at least as accurate as other classification methods but is more efficient. 

Keywords: Ensemble of classifiers – Multi-class Classification – Artificial Neural Networks – 

Feature Selection – Diversity – 5x2cv F-test. 

1. Introduction

A considerable amount of research in machine learning has been devoted to developing methods 

that automate the classification tasks. Despite the variety and number of models that have been 

proposed, the construction of a perfect classifier for any given task is far from achieved [1]. An 

alternative to improving the accuracy of individual models has appeared during the last decades 

in the form of classifier ensembles, which are considered one of the most promising areas of 

research in supervised learning [2]. 

A specific kind of problem that has been devoted fewer attention concerns the application of 

ensembles to multi-class problems. Moreover, the lack of efficient solutions grows when the 

input space has a high dimensionality. 

Due to most of the classification systems have been designed for resolving dichotomous 

problems, the approach to multi-class classification usually consists in decomposing the 

multiclass problem into several binary sub-problems. Nevertheless, when the learning algorithm 

that is implicit in the classifiers is easily adaptable to multi-class problems, the binary 

decomposition might not be the best approach.  

In this paper, we present the Binary-Complementary Ensemble (BCE), a homogeneous 

ensemble of classifiers that is designed to resolve multi-class problems in which the number of 
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features that describe the examples is large. Given than in practical applications, training 

(space/time) complexity or the testing complexity can be factors as important as the accuracy; 

the main goal of the BCE architecture is improving the ensemble accuracy, especially in those 

problems with a high input dimensionality, while keeping the computational cost within 

reasonable bounds whenever possible. 

The feasibility of the proposed ensemble has been empirically tested. This research makes a 

comprehensive analysis of the performance of the proposed ensemble on different domains, and 

the results are compared to other well-known classification methods. 

This paper is organised as follows: Sections 2 and 3 provide a review of the literature on 

Classifier Ensembles and Feature Selection. Section 4 presents the architecture of BCE. Section 

5 describes the data sets, the method and the measures used to evaluate BCE. Section 6 analyses 

the experimental results. Last, Section 7 presents concluding remarks and future work. 

2. Ensemble of Classifiers

An ensemble of classifiers is a set of classifiers whose individual decisions are combined to 

obtain a system that hopefully outperforms every one of its members [2]. To achieve this goal, 

the members of the ensemble, known as base learners or base classifiers, must be both accurate 

and diverse. A classifier is accurate if its classification error is lower than that obtained when 

the classes are assigned in a random way. Two classifiers are diverse if they make errors on 

different instances [2]. 

An important trend for these systems is the search for diversity [3]. Some of the research has 

been focused on heterogeneous classifier ensembles, where the base learners are generated with 

different learning algorithms, such as artificial neural networks, decision trees, or nearest 

neighbour classifiers [4–6]. Another approach to achieve diversity is to inject randomness into 

the learning algorithm. For example, [7] show that training a series of Artificial Neural 
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Networks (ANN) on the same training set but with different initial weights can provide a set of 

classifiers whose behaviour can be quite different. Another method based on this approach is 

Randomization [8]. This method generates decision tress [9] in which the criterion used to 

expand a node is randomly selected among the 20 best candidates. 

Alternatively, diversity can be achieved by using different training data sets to build individual 

classifiers. Such data sets can be obtained in several ways [10]:  

 Resampling the training examples: This approach includes two of the most widely known 

methods to construct ensembles of classifiers: Bagging [11] and Boosting [12]. Bagging 

builds multiple versions of the training set by applying random sampling with replacement. 

Each new data set has the same cardinality as the original training set, but some instances 

are repeated while others are omitted. Boosting also resamples the original data set with 

replacement. This last system is based on a sequential training scheme in which the data set 

used for building each member of the ensemble depends on the performance of the 

previously trained classifiers. Therefore, in Boosting, misclassified examples are chosen 

more frequently than correctly predicted examples. 

 Manipulating the input features: Another way to achieve diversity between classifiers is the 

quantitative or qualitative modification of the set of features that is used to describe the 

instances. The quantitative modifications reduce this number by searching appropriate 

feature subsets. This reduction can be accomplished by random selection [13] or by 

applying different feature selection methods, such as genetic algorithms [14,15], heuristic 

search techniques [16], or wrapper models [17]. The qualitative modifications involve a 

change in the feature space. This group includes the methods of non-linear transformations 

proposed in [18]. 

 Manipulating the targets: A last way for generating diverse classifiers is the manipulation of 

the classes or categories of the training examples. These techniques are especially useful in 

multi-class problems. In this situation, the principal alternative is transforming the original 
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problem into several binary sub-problems. These transformations can be accomplished in 

different ways: OAA  One against All [19] (each classifier separates one class from the 

(k-1) remaining classes), OAO One against One [20] (all classes are confronted 

pairwise), and PAQ P against Q [21] (each classifier separates a subset P of classes from 

a subset Q, where P and Q are disjoint). 

A representative method of the PAQ approach is ECOC Error Correcting Output Codes 

[22]. In ECOC, for each classifier i of the ensemble, the class set C={c1, c2, ... ck}, is 

randomly divided into two subsets, Ci
+ and Ci

-. Examples whose class is contained in Ci
+ 

are labelled as "1", and examples whose class is contained in Ci
- are labelled as "0". The 

training process delivers a set of binary classifiers that allow classifying new patterns by 

combining their outputs.  

Another method based on PAQ decomposition is OAHO One Against Higher Order 

[23]. OAHO is based on a cascaded classifier architecture that ranks the k classes based on 

their number of training examples. The first classifier confronts the majority class (positive 

samples) against the remaining classes (negative samples). The successive classifiers repeat 

the same process, suppressing the previous majority class, i.e., taking the previous negative 

samples and confronting the next majority class against the remaining classes.  

Most of the classification systems have been designed for dichotomous problems, and their 

extension to multi-class classification often leads to an increase in the computational cost or to a 

reduced system accuracy [24–26] . One way to address this difficulty is to divide the original 

problem into several binary sub-problems [23,27–32].  

A drawback associated with some of the binary decomposition methods is that the mapping 

induced by the class recoding can provoke or increase the imbalance of the new classes [21]. 

Moreover, the dichotomous classifiers that integrate these models are trained only on partial 

knowledge and, in some of these architectures (OAA, OAHO), wrong decisions emitted by a 
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binary classifier are not rectifiable [33]. In this scenario, the system accuracy depends mainly on 

the accuracy of its members but not on their diversity. Therefore, for certain problems, binary 

decomposition might not be the best approach.  

3. Feature Selection: 

A drawback when dealing with real-world problems is the dimensionality of the data and the 

computational cost of the classification models. In these situations it can be useful to perform a 

Dimensionality Reduction based on Feature Selection techniques. 

Feature Selection (FS) [34,35] has been applied in literature pursuing the following aims: 

decreasing the computational cost; increasing the data understanding and data visualization; and 

reducing the curse of dimensionality. However, the main purpose of Feature Selection is to 

increase the model accuracy, applying the idea that using as much as possible input information 

does not imply a better performance. Therefore, the Feature Selection is the procedure of 

selecting just the relevant information avoiding irrelevant and redundant information, and 

therefore reducing the computational complexity of the learning task. 

It is worth applying FS when: input variables are irrelevant, there is no correlation to the output 

to be predicted (classification, clustering, or regression); and when some input variables are 

related to others. Besides, FS can be applied for any prediction task (classification [36], 

regression [37], clustering [36]), or supervised and unsupervised learning [38].  

In order to carry out a Feature Selection procedure to any prediction system, a selection criterion 

has to be carefully chosen to fix a suitable feature subset. Hence, the criterion can be based on 

information acquired just from the input and targets data itself, or based on the model accuracy. 

Based on these criteria, the literature [34,35] establishes a taxonomy for FS methods: Filter [39], 

Wrapper [40] and Embedded methods [34]. 

Due to its computational efficiency, in this work Feature Selection is carried out applying a 

Filter method as Correlation-Feature Subset Selection [41]. This is not applied on the whole 
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feature set but on a selected feature subset obtained from the heuristic search known as Best 

First [42] ("greedy hill climbing augmented with a backtracking facility" [41]. This Feature 

Selection process is performed executing WEKA software [43]. 

 

4. Binary-Complementary Ensemble Architecture 

As was previously mentioned, the usual alternative for solving multi-class classification 

problems is the decomposition of the initial problem into binary sub-problems. Nevertheless, 

when the classification algorithm that is implicit in the base learners is easily adaptable to multi-

class problems, the binary decomposition might not be the best approach.  

In [33] we started addressing the resolution of the multiclass classification problems with the 

proposal of a preliminary framework based on dual base learners. This system was tested on 

two real problems and the experimental results were rather promising. Subsequently, we 

realized that the diversity among the members of BCE could be improved with a modification 

of its architecture. So, BCE maintains a design in which the base learners are implemented with 

two coupled classifiers -a binary classifier (Bi) and a complementary classifier (Ci)- but now the 

architecture of the complementary classifier is quite different. In [33] the binary and the 

complementary classifiers were trained with the whole training set. In the current version of 

BCE, the complementary classifiers are trained only with the instances that have been labelled 

as negative for the corresponding binary classifier (see Fig. 1.a). This difference involves the 

construction of smaller, more accurate, and more diverse base classifiers, and is an important 

difference with the previous approximation.  

It is necessary to achieve base learners whose output are a complete solution to the classification 

problem. Therefore, during the classification phase (Fig1.b) the answer given by Bi is included 

into the array given by Ci. So, the output of the i-th base learner is a one-dimensional-array 
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(Yi(x)={y1, y2,.., yk}), where component yi comes from Bi and the other components come from 

Ci. 
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Fig. 1. a) Construction scheme of the ith base learner (left). b) Performance scheme of the ith base 
learner (right). 

The Binary-Complementary decomposition attempts to ensure that the base learners are diverse 

and highly accurate. Nevertheless, this duality combined with the characteristics of the 

application domains (multi-class and a large number of attributes) has an impact on the 

computational cost of the BCE. To reduce this inconvenience, a module of feature selection is 

included in BCE.  

Next sections cover the design of the individual base learners of BCE and the strategy employed 

for generating the output ensemble. 

 

4.1 Design of the Binary Classifiers 

The binary classifiers (Fig. 2) that compose the base learners of BCE are analogous to the 

classifiers used in the OAA architecture [19]. Therefore, all of them are trained on a unique data 

set but using different output codifications. Specifically, to build the ith classifier, the original 

training data set Wtr is transformed into Wi
tr={W+i

tr  W-i
tr}, where W+i

tr (labelled as “1”) contains 

all of the examples of class i, and W-i
tr (labelled as “0”) contains the examples that belong to the 

remaining classes. 
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Once the different training sets (Wi
tr) have been built, the most relevant features are selected. 

This task is accomplished with the double objective of promoting diversity among the classifiers 

and improving the learning task, in terms of the accuracy and the computational cost. After 

analysing several feature selection methods [44] that are included in the Weka tool [45], 

Correlation-based Feature Selection [46] combined with Best First [47,48] (CFS+BF) were 

chosen as the search strategy.  

 

Fig. 2. Binary Classifier Design. 

Therefore, each one of the binary classifiers is built using a specific output target and a specific 

input feature subset. In this work, these classifiers are implemented as MLPs trained with the 

Back-Propagation algorithm [49]. The details about their architecture, topology and parameters 

are described with more detail in section 5.2.1.  

4.2 Design of Complementary Classifiers 

The complementary classifiers are designed with the purpose of determining the class of the 

examples labelled as negative by the corresponding binary classifier Bi. If the binary classifier is 

reliable, then these examples will belong to one of the k-1 classes that are considered to be 

negative during the learning phase. This step determines that, in contrast with the architecture 

introduced in [33] where complementary classifiers were trained with examples belonging to all 
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classes, in BCE the i-th complementary classifier is trained only with the instances that have 

been considered as negative by the i-th binary classifier, i.e., from {W-i
tr}.  

Similar to in the binary classifier implementation, a process to determine the most relevant 

feature subset is performed before the complementary classifiers are constructed. Because 

{W-i
tr}≠{W-j

tr} and the used feature selection algorithm (CFS+BF) depends on the examples 

contained in these subsets, each complementary classifier is built on different subsets of patterns 

and features. Consequently, each of the complementary classifiers will learn a different 

hypothesis and, therefore, it is likely that their misclassified sample sets have a lower 

correlation.  

Fig. 3 shows the construction scheme of the complementary classifiers. 

 

Fig. 3. Construction of the complementary classifier associated with class i. 

 

4.3. Base Learner Combination Method  

To obtain the output of BCE, the next step is to explain the strategy employed for combining the 

outputs of the base learners. 

MLPs provide continuous-valued outputs within the [0 - 1] range. Thus, within the i-th base 

module (Mi), the binary classifier (Bi) outputs a single real value between 0 and 1. On the other 

hand, the complementary classifier (Ci) gives as output a one-dimensional array of (k-1) real 

values, where each component is related to one of the k- 1 training classes. To obtain the output 

given by Mi, several options can be adopted [33]. The simplest approach is to include the 

answer of Bi into the array given by Ci. As a result, each base module produces an output 

(Yi(x)={y1, y2,.., yk}), where component yi comes from Bi and the other components come from 

outputs 
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Ci. The combined output can be interpreted as an indicator of the degree of confidence that Mi 

gives to each class.  

Because the base learners that integrate BCE provide a complete solution to the classification 

problem, the final integration scheme will follow a parallel architecture. This scenario leads to a 

partial redundancy among the individual decisions of the base modules, which suggests that the 

final decision should be made in a cooperative way.  

In this type of model, the final decision can be obtained with a combination of individual 

classifications, either through a mathematical function (e.g., average, weighted voting) or 

through a metaclassifier [2, 4]. For both, its simplicity and its effectiveness in a large and 

complex data set [50] the BCE output is calculated by averaging the outputs that are associated 

with each class and choosing the class that attains the maximum value. Mathematically, the 

process is described through Eq. (1): 


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where:  yij is the ith output of the jth base module, k is the number of categories, and L is the 

number of base modules. In BCE, k=L. 

Once the structural characteristics of BCE have been presented, the next sections show the 

experimental analysis that is performed. 

 

5. Experimental Setup 

This section describes the data sets (Sec. 5.1) and the method and the measures (Sec. 5.2) used 

to evaluate BCE. 

5.1. Selected Data Sets 
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For testing the viability of the proposed architecture we have selected 13 datasets from different 

sources. Table 1 compiles the main characteristics of these data sets. 

Table 1. Description of the data sets used. The data sets are sorted by the number of features. 

Data set Number of  
Instances 

Number of 
Features 

Number of 
Classes 

Num. Instances 
maj/min class 

Imbalance 
Ratio Source 

VOWEL 990 12 11 90/90 1.00 [51,52] 
SEGMENTATION 2310 18 7 330/330 1.00 [51,52] 

SATIMAGE 6435 36 6 1533/626 2.45 [51,52] 
TEXTURE 5500 40 11 500/500 1.00 [51,52] 

SYNTHETIC 600 60 6 100/100 1.00 [51] 
OPTDIGITS 5620 64 10 572/554 1.03 [51,52] 

AUTOMOBILE 159 75 6 48/3 3.05 [51,52] 
LIBRAS 360 90 15 24/24 1.00 [51,52] 

SEMEION 1592 256 10 162/155 1.04 [51] 
IMBALANCED 

SEMEION 1236 256 10 162/40 4.05 [51,53] 

SPLICE 3190 287 3 1655/768 2.10 [51,52] 
MNIST 60000 784 10 6742/5421 1.24 [54] 

ASISTENTUR 1006 1024 9 478/22 21.73 [53] 
 

5.2. Performance Evaluation 

To test how well BCE works on solving classification tasks, its performance is compared to that 

obtained by other well-known classification systems:  

1. A single one-layer MLP with k output units (k=number of classes). 

2. An OAA scheme [25] modelled with k MLP.  

3. Bagging [11] with MLP as base classifiers. 

4. ECOC [22] with MLP as base classifiers. 

5.2.1. Designing the Comparison  

For all of the models, each base learner is a one-hidden-layer MLP trained with the Back-

Propagation algorithm. According to Zhang [55], the importance of finding the adequate 

parameters for an optimal generalization capacity is more determining in the case of a simple 

ANN that in the case of an ANN ensemble. For each problem, the parameter search has been 
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performed on a single ANN based on a cross validation scheme. The selected parameter values 

have been also used for the ANNs in the ensembles. The activation function is the logistic 

function, both for the hidden and output units. The weights have been initialized with random 

uniform values in the interval [-1, 1]. The learning rate, the number of hidden nodes and the 

number of iterations are summarised in Table 2. 

It is worth mentioning that the large number of iterations required in ASISTENTUR is a 

consequence of the highly imbalanced class distribution. In imbalanced data sets, the decreasing 

rate of the net error for the minority class is very low and, therefore, the number of iterations 

required by the standard Back-Propagation algorithm increases [19,56]. 

 

Table 2. Parameters of the evaluated models. 

 Number of base classifiers Number of  
Hidden units 

Number of 
Iterations 

Learning 
 BCE/OAA Bagging ECOC Rate 

VOWEL 11 15 14 20 500 0.050 
SEGMENTATION 7 15 63 10 500 0.025 

SATIMAGE 6 15 31 15 600 0.050 
TEXTURE 11 15 14 20 300 0.250 

SYNTHETIC 6 15 31 15 300 0.025 
OPTDIGITS 10 15 15 30 400 0.050 

AUTOMOBILE 5 15 15 20 500 0.025 
LIBRAS 15 15 15 20 300 0.250 

SEMEION 10 15 15 20 300 0.025 
IMBALANCED 

SEMEION 10 15 15 20 300 0.025 

SPLICE 3 15 3 20 200 0.025 
MNIST 10 15 15 100 500 0.025 

ASISTENTUR 9 15 15 30 2000 0.025 
 

For both OAA and BCE, the number of base learners is equal to the number of classes of the 

corresponding problem. ECOC has been constructed using the error-correcting codes proposed 

by [22], and therefore, the number of columns in the code determines the number of base 

classifiers. For determining the number of base learners of Bagging, we have attempted to reach 
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a compromise between the 50 replicas suggested by Breiman [11], the 10 suggested by Quinlan 

[57], and the computational cost of training an ANN. This number is quite close to the number 

of replicas proposed by Optiz & Maclin [58], who assert than whenever Bagging is 

implemented with Neural Networks, the largest error-reduction rate occurs when using between 

10 and 15 base classifiers.  

 

5.2.2. Ensemble Integration Method 

As was mentioned before, the output of BCE is obtained by averaging the outputs associated 

with each class and choosing the class that attains the maximum value (Eq. 1). To avoid errors 

in the class assignation that are attributable to the integration method [59], the output of 

Bagging1 is obtained as in BCE or, more precisely, using Eq. (1). For the single ANN and for 

the OAA approach, the predicted class corresponds to the unit that attains the highest output 

value. Finally, for ECOC, the class of a sample x, C(x), is computed following Eq. (2):  

   



L

j
ijji wxfxC

1
min    (2) 

where: fj(x) is the output value of the j-th binary classifier and wij = 1/0 if class ci belongs to one 

of the categories that the j-th classifier considers as positive/negative during the learning phase 

(ciCj
+/ciCj

-). 

5.2.3. Ensemble Performance Evaluation 

To statistically evaluate the performance of BCE, we have used the combined 5x2 cv F-test 

[60]. This test relies on performing five runs of a two-fold cross-validation [61]. In each run, the 

original data set is randomly partitioned into two subsets with the same cardinality, which are 

alternatively used as training and testing sets. If pi
(j) is the difference between the error rates of 

the two classifiers on fold j of run i, and  is the estimated variance 
                                                           
1
 Experimentally we have noticed that simple average delivers better results than majority vote.  

2)2(2)1(2 )()( iiiii pppps 
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on run i (where )), then the statistic given in Eq. (3) approximately follows 

an F distribution with 10 and 5 degrees of freedom. 
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Therefore, we reject the hypothesis that the two classifiers have the same error rate if the F-test 

is equal to or greater than the tabulated critical value for the one-tailed F distribution at the 

prespecified level of significance. At the 0.05 level, this value is equal to 4.735 [62].  

Furthermore, for each model, we represent and analyse the relationship between the accuracy of 

the ensemble and i) the observed mean accuracy of the members in the ensemble and ii) the 

maximum accuracy of any base learner.  

5.2.4. Diversity Evaluation 

To analyse the influence of the diversity of the base classifiers on the ensemble accuracy, some 

well-known measures of diversity [16,63] will be computed: fail/non-fail disagreement, the Q 

statistic, the correlation coefficient and the kappa statistic. Table 3 shows a summary of these 

measures and the relationship between the obtained value and the diversity between the 

ensemble members (the greater/lower the value is, the more diverse the classifiers are). They all 

are pairwise measures because they quantify the diversity between each pair of classifiers. 

Therefore, the diversity of the ensemble is the averaged value over all of the pairs of classifiers 

in the ensemble, as given in Eq. (4): 
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where L is the number of base classifiers in the ensemble. 
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To study the relationship between the diversity and accuracy, the connection between these four 

measures of diversity and the gain of the ensemble is computed [64]. The gain is defined as the 

difference between the ensemble accuracy and the mean accuracy of its members. 

In the following subsection, there is a description of the experimental results obtained with each 

implemented system. 

 

Table 3. Summary of the 4 pairwise diversity measures. Monotonically increasing/decreasing 
measures are identified with an ascending/descending arrow.  
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where: 
N is the cardinality of the test set. 
k is the number of classes. 
Nab is the number of instances in the data set, classified correctly (a=1) or incorrectly (a=0) by the 
classifier i, and correctly (b=1) or incorrectly (b=0) by the classifier j. 
Nij is the number of instances in the data set, labelled as class i by the first classifier and as class j 
by the second classifier. 

 

6. Experimental Results 

This section contains the experimental results obtained in this work. First, in section 6.1, the 

accuracy and the computational cost of BCE are measured and compared with other well-

established systems. Second, in section 6.2, the diversity of the base learners and its relationship 
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with the ensemble accuracy are analysed. Finally, the results are summarised and analysed in 

section 6.3. 

6.1. Ensemble Performance 

To evaluate the performance of the proposed system, BCE is tested against the standard 

classification methods specified in section 5.2. For all of the domains and all of the 

classification methods, 5 runs of 2-fold stratified cross validation (5x2cv) have been performed. 

In each run, the original data set has been randomly partitioned into two subsets, Si
(1) and Si

(2), 

which have the same cardinality and keep the same class distribution of the examples as in the 

original data set. Moreover, to control the variations that result from the inherent ANN 

randomness, each classification model has been trained on each data set ten times, each time 

with a different initial weight set. After excluding the extreme cases (minimum and maximum 

values), the mean error is considered to be the actual error of the model on each test set. Hence, 

the standard error E is computed following Eq. (5): 
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where ei
(1) is the actual error of the model when it is trained on Si

(1) and tested on Si
(2), and ei

(2) is 

the actual error of the model when it is trained on Si
(2) and tested on Si

(1). 

Table 4 shows the accuracy (1.0 - standard error) for the evaluated classification models. 

Additionally, the results of the statistical comparison (considering the F-test and a level of 

significance of 0.05) between BCE and the other standard classifiers are shown.  
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Table 4. Accuracy values (in %) for the evaluated models. The / symbol indicates that, according 
to the F-test, the standard classifier is significantly better/worse than BCE. The  symbol indicates 
that the standard classifier and BCE are statistically equivalent. The best values in each domain are 
marked in bold. 

Data Set BCE Standard Classifiers 
ANN OAA Bagging ECOC 

VOWEL 73.93 79.13  86.29  83.82  87.05  
SEGMENTATION 93.08 93.73  92.89  93.67  92.88  

SATIMAGE 86.14 87.16  86.21  87.44  85.35  
TEXTURE 98.63 99.52  99.49  99.65  99.56  

SYNTHETIC 97.02 96.26  94.58  96.85  96.61  
OPTDIGITS 95.37 92.25  94.17  95.36  94.61  

AUTOMOBILE 69.29 64.28  64.42  65.13  63.33  
LIBRAS 71.39 72.99  73.15  77.08  76.33  

SEMEION 90.12 86.10  87.09  90.56  88.06  
IMBALANCED SEMEION 90.70 84.71  85.70  89.12  87.07  

SPLICE 94,79 93,96  94,25  95,41  86,41  
MNIST 96,91 95,26  96,56  96,38  96,95  

ASISTENTUR 94.69 93.27  92.87  94.36   94.31  
win/tie/loss  6/4/3 7/4/2 2/7/4 4/7/2 

 

The results in Table 4 show that BCE: 

 Offers the best accuracy rate on five (SYNTHETIC, OPTDIGITS, AUTOMOBILE, 

IMBALANCED_SEMEION, and ASISTENTUR) of the thirteen data sets. 

 Significantly outperforms OAA in 7 data sets, ANN in 6 data sets, ECOC in 4, and Bagging 

in 2. 

 Is significantly better than any of the other models on the IMBALANCED SEMEION data set. 

 When the number of features in the data sets is large (greater than 60), it is never 

significantly worse than the other classifiers. Nevertheless, when the number of features in 

the data sets is less than 40  the classical ensembles outperform BCE. This is the case of the 

VOWEL, SEGMENTATION, SATIMAGE and TEXTURE datasets. 

To analyse the influence of the Feature Selection process in the results obtained for VOWEL, 

SEGMENTATION, SATIMAGE and TEXTURE, Table 5 shows the accuracy of BCE when it is 

trained and tested using the full feature space – to avoid ambiguity, this ensemble is called 

BCE*. Additionally, Appendix 1 gathers the results obtained with the rest of the datasets. This 
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study includes a) the results obtained when all the classification models (including BCE) are 

implemented using the whole feature set and b) the results obtained when the base learners of all 

classification models are implemented using the feature subsets obtained by applying BF+CFS. 

Table 5. Accuracy values (in %) when all the classifiers (included BCE) are built using the full 
feature space.  The / symbol indicates that, according to the F-test, the standard classifier is 
significantly better/worse than BCE*. The  symbol indicates that the standard classifier and BCE* 
are statistically equivalent. The best values in each domain are marked in bold. 

Data Set BCE* Standard Classifiers 
ANN OAA Bagging ECOC 

VOWEL 85.42 79.13  86.29  83.82  87.05  
SEGMENTATION 93.89 93.73   92.89  93.67  92.88  

SATIMAGE 87.33 87.16   86.21  87.44  85.35  
TEXTURE 99.63 99.52  99.49  99.65  99.56  

win/tie/loss  1/3/0 2/2/0 1/3/0 2/1/1 
 

The results in Table 5 show that, in domains in which the number of attributes is relatively 

small (between 12 and 40), the binary-complementary decomposition is a good approach 

whenever the Feature Selection process is omitted. A conclusion is that Feature Selection is 

useless for domains with a low number of attributes. 

 

In addition to the accuracy, another important aspect to account for while evaluating the 

performance of the different classifiers is the overall computation time. Given two or more 

algorithms that are statistically equivalent, the simpler algorithm is chosen, namely the approach 

with the lower running time [65].  

Figure 4 shows the computation time of the implemented classification models. In this study we 

have excluded those data sets with a low number of attributes in which the Feature Selection 

makes no sense (VOWEL, SEGMENTATION, SATIMAGE and TEXTURE)  
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SYNTHETIC
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 0.00   0.02       0.04        0.06         0.08
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 0.00   0.125       0.25      0.375          0.50
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AUTOMOBILE
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þECOC

þBagging

þOAA

þANN

 0.00   0.25        0.50        0.75          1.00

Training Time (seg)   Classification Time 101(seg)

LIBRAS
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þANN
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 0.00    0.30         0.6          0.9          1.2

Training Time 10-4(seg)     Classification Time 10-2 (seg)

ASISTENTUR
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þBagging

OAA

ANN

 0.00    0.50        1.0          1.50         2.00

Training Time 10-2(seg)       Classification Time (seg)

SPLICE

BCE
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þOAA

ANN

 0.00    0.50        1.0          1.50         2.00

Training Time 10-2(seg)       Classification Time (seg)

IMBALANCED SEMEION

BCE

ECOC
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OAA

ANN

 0.00   0.25        0.50        0.75          1.00

Training Time 10-1(seg)       Classification Time (seg)

SEMEION

BCE

ECOC
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OAA

ANN

 0.00   0.25        0.50        0.75          1.00

Training Time 10-1(seg)       Classification Time (seg)

 

Fig.4. Ensemble classification time and training time of a base learners on an Intel Core i7-2600 
CPU @ 3.40GHz. The þsymbol indicates those systems that are statistically equivalent to BCE in 
terms of the accuracy. The training time for BCE is divided into two consecutive bars that 
correspond to the complementary and the binary classifiers that compose the base learner. 
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When evaluating BCE only according to its training time, it outperforms those systems that are 

statistically equivalent. The only exception occurs in  the SYNTHETIC dataset. Here, the training 

time of BCE appears to be higher than the training time of both ECOC and Bagging. However, 

considering that i) the base modules of BCE are composed by two MLPs that can be trained in a 

parallel way, and ii) the number of base learners of BCE is lower than for Bagging and ECOC, 

it can be said that BCE outperforms both Bagging and ECOC. None of the ensembles appears to 

provide a substantial improvement over a single ANN. However, because of the parallel 

structure of BCE, it is possible to achieve a high computational efficiency on multiprocessor 

systems.  

If we consider only the classification time, BCE outperforms ECOC, Bagging and the OAA 

architecture. Compared with the single ANN, the classification time of BCE is slightly higher 

for the OPTDIGITS and MNIST datasets, but in these cases the single ANN offers a higher error 

rate.  

Considering both the accuracy and computational complexity, it can be concluded that BCE is, 

in general, better than the traditional ensembles (OAA, Bagging and ECOC) and, in the worst 

case, it is equally precise but much more efficient.  

To estimate the quality of BCE and to check whether it outperforms every one of its members, 

Fig. 5 shows the relationship between the accuracy of the ensemble and i) the observed mean 

accuracy of the members in the ensemble and ii) the maximum accuracy of any classifier. Each 

graph shows the values obtained using the cross-validation method described previously; 

therefore, there are 100 (10x5x2) points in each plot. 

This graphical representation is shown only for those models in which the base learners are 

redundant in the sense that each learner provides a complete answer to the classification 

problem, in other words, in BCE and in Bagging. In OAA and ECOC, this representation is not 

feasible. 
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 BCE Bagging 

 Mean Accuracy Max. Accuracy Mean Accuracy Max. Accuracy 

Synthetic 

    

Optdigits 

    

Automobile 

    

Libras 

    

Semeion 

    

Imbalanced
Semeion 

    

Fig. 5a.- Comparison of BCE/Bagging accuracy (y axis) and the medium/maximum accuracy of its 
base classifiers (x axis). Datasets: Synthetic, Optdigits, Automobile, Libras, Semeion, and 
Imbalanced Semeion. 
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 BCE Bagging 

 Mean Accuracy Max. Accuracy Mean Accuracy Max. Accuracy 

Splice 

    

MNIST 

    

Asistentur 

    

Fig.5b.- Comparison of BCE/Bagging accuracy (y axis) and the medium/maximum accuracy of its 
base classifiers (x axis). Dataset: Splice, MNIST, and Asistentur. 

 

For those data sets in which BCE or Bagging produce ensembles that are better than every one 

of its base modules, all of the points on the graph in Fig. 5 lie above the dashed diagonal line. 

Nevertheless, the values plotted in Fig. 5 show that, sometimes, both BCE and Bagging are 

worse than the best of their members. This scenario appears in the SYNTHETIC dataset, where 

for BCE and Bagging, 14 and 61 out of 100 points are below the diagonal; in the AUTOMOBILE 

dataset where for BCE and Bagging, 61 and 70 of 100 points are below the diagonal; and in the 

LIBRAS dataset where for BCE 31 points are below the diagonal. In all of the other domains, 

both Bagging and BCE are more accurate than the best of their members and are significantly 

more accurate than the average. This fact combined with the improvement of Bagging and BCE 

over the single classifier (ANN) proves the utility of the ensembles of classifiers.  

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 

0.7 

0.8 

0.9 

1 

0.7 0.8 0.9 1 



24 
 

To improve the readability of the graphs in Fig. 5, Fig. 6 plots the ensemble accuracy, the 

interval defined by the accuracy of all of the base learners and the median of these last values.  

Taking the IMBALANCED SEMEION data set as an example, the base modules of BCE are more 

accurate than the Bagging base learners. Both Bagging and BCE are more accurate than any of 

their members. BCE is significantly more accurate than Bagging.  

Taking ASISTENTUR as a reference, the base learners of both Bagging and BCE have, on 

average, a similar accuracy; however, some of the base modules of BCE are less accurate than 

the Bagging base learners. BCE is slightly more accurate than Bagging. 

The study of the achieved accuracy shows that, in general, BCE is similar to Bagging, but the 

reduction in the computational cost (Fig. 4) makes BCE more efficient. 

 
 

Fig. 6 Ensemble Accuracy (bar), interval defined by the accuracy of the base learners (line) and 
median of these last values (point). 

  



25 
 

6.2. Diversity Evaluation  

One way to understand the behaviour of ensemble methods is to measure the correlation 

between the diversity and the gain of the ensemble (AcEns - AcMean) [16]. Because of the fact 

that this relationship is not linear [64], the statistical dependence of these parameters is 

quantified using Spearman's rank correlation coefficient (RCC), which is described through Eq. 

(6): 

    
 

 




N

i

ii

NN
yRankxRankRCC

1
2

2

1
61     (6) 

where:  N is the number of observations, X and Y are the measured variables (diversity and 

gain), and Rank(xi) is the position of xi when the values of X are sorted in order of increasing 

magnitude. 

For RCC values equal or near to 0, the relationship between the accuracy gain and the diversity 

of the ensembles is non-existent or low. If the variations of the diversity and the gain are 

strongly coupled, then the RCC will output a high absolute value. The RCC should have a 

negative sign for those measures that are monotonically decreasing functions (Q, , and ). 

Otherwise, it should have a positive sign.  

Table 6 presents Spearman's rank correlation coefficients between the 4 diversity measures 

summarised in Table 3 and the gain of the ensemble for Bagging and BCE. The best results are 

shown in bold. It is worth mentioning that the BCE values showed for VOWEL, SEGMENTATION, 

SATIMAGE and TEXTURE were obtained excluding the Feature Selection Module.  

Upon computing RCC, it appears to be interesting to analyse whether the obtained value is large 

enough to allow a conclusion as to whether the relationship between the measurement variables 

is statistically significant or not. To evaluate the significance of RCC [62], we assume that, 

under the null hypothesis, the statistic given through Eq. 7: 
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21
2

RCC
NRCCt



     (7)  

is distributed following Student’s t distribution with N-2 degrees of freedom. Therefore, we 

reject the hypothesis that the relationship between the two variables is null when t is greater 

than the tabulated critical value for the two-tailed Student's t distribution at the prespecified 

level of significance. At the 0.05 level and for N=100 (the number of built ensembles), this 

value (t0.05) is equal to 1.984. 

Table 6. Spearman's rank correlation coefficient (RCC) for the total ensemble diversity and the 
gain of the ensemble. The  symbol indicates that, according to the T-test, the relationship between 
the considered diversity measure and the gain of the ensemble is not statistically significant. Bold 
face type indicates the best values. 

 Q ()  ()  () des () 

 Bagging BCE Bagging BCE Bagging BCE Bagging BCE 
VOWEL* -0.695 -0.601 -0.679 -0.523 -0.556 -0.468 0.555 0.470 

SEGMENTATION*  -0.209 -0.878 -0.230 -0.867 -0.220 -0.946 0.239 0.948 
SATIMAGE* -0.537 -0.862 -0.554 -0.900 -0.463 -0.912 0.467 0.917 
TEXTURE* -0.634 -0.784 -0.559 -0.529 -0.588 -0.971 0.644 0.982 
SYNTHETIC -0.564 -0.403 -0.564 -0.506 -0.091 -0.182 0.105 0.195 
OPTDIGITS -0.449 -0.698 -0.079 -0.508 -0.625 -0.781 0.663 0.809 

AUTOMOBILE -0.378 -0.31 -0.407 -0.308 -0.26 -0.447 0.258 0.456 

LIBRAS -0.745 -0.573 -0.744 -0.557 -0.75 -0.419 0.752 0.422 

SEMEION -0.505 -0.479 -0.471 -0.384 -0.411 -0.473 0.475 0.525 
IMBALANCED 

SEMEION -0.668 -0.536 -0.626 -0.514 -0.495 -0.433 0.584 0.478 

SPLICE -0.431 -0.697 -0.339 -0.741 -0.282 -0.825 0.302 0.834 
MNIST -0.374 -0.324 -0.329 -0.274 -0.304 -0.360 0.522 0.506 

ASISTENTUR -0.455 -0.460 -0.288 -0.229 -0.361 -0.508 0.507 0.573 
 

The relationship between the diversity (Q, ρ, , des) and the gain of the ensemble (AcEns - 

AcMean) is illustrated in Fig. 7. Each point in the scatter plot represents an ensemble of 

classifiers. 

Fig. 7 shows that, in most cases, the measured values of the diversity are very distant from the 

best possible theoretical values. They are high when they should be low (Q, ρ and ), and they 

are low when they should be high.  
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 Q ()  ()  () des () 

 Synthetic 

Bagging 

    

BCE 

    
 Optdigits 

Bagging 

    

BCE 

    
 Automobile 

Bagging 

    

BCE 

    
x axis represents the diversity value and y axis represents the difference between  the ensemble accuracy and the 
mean accuracy of members in the ensemble. 

Fig. 7a Relationship between ensemble diversity (x axis) and the difference between the ensemble 
accuracy and the mean accuracy of the members in the ensemble (y axis). Datasets: Synthetic, 
Optdigits, and Automobile. 
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 Q ()  ()  () des () 
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x axis represents the diversity value and y axis represents the difference between  the ensemble accuracy and the 
mean accuracy of members in the ensemble. 

Fig. 7b Relationship between ensemble diversity (x axis) and the difference between the ensemble 
accuracy and the mean accuracy of the members in the ensemble (y axis). Datasets: Libras, 
Semeion, and Imbalanced Semeion. 
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 Q ()  ()  () des () 
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x axis represents the diversity value and y axis represents the difference between  the ensemble accuracy and the 
mean accuracy of members in the ensemble. 

Fig. 7c.- Relationship between ensemble diversity (x axis) and the difference between the ensemble 
accuracy and the mean accuracy of the members in the ensemble (y axis). Dataset: Splice, MNIST, 
and Asistentur. 
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Considering the SYNTHETIC and the SPLICE datasets, BCE has a higher diversity than Bagging 

(the clouds of points for BCE are closer to the best possible theoretical values than for Bagging) 

and has a larger gain (elevated on the y axis). However, this improvement is not sufficient to 

achieve a statistically significant difference in the ensemble accuracy (see Table 4). On the other 

hand, for the case of LIBRAS and IMBALANCED SEMEION, Bagging is slightly more diverse than 

BCE and shows a higher gain. Nevertheless, with IMBALANCED SEMEION BCE is statistically 

more accurate than Bagging, whereas with LIBRAS both models are statistically equivalent. This 

finding appears to suggest that in these domains, the accuracy of the ensemble depends more on 

the accuracy of the base learners than on their diversity (see Fig. 6). With OPTDIGITS, 

AUTOMOBILE, SEMEION, MNIST and ASISTENTUR, Bagging and BCE show a similar diversity.  

As reported in [66], these observations might be evidence that the diversity measures and the 

ensemble accuracy have a small relationship in real-life classification problems. 

6.3. Summary of the Results 

The experimental study shown in section 6.1 suggests that BCE is a feasible alternative for 

resolving multi-class classification problems. The results indicate (Table 4) that in five of the 

thirteen analysed domains, BCE offers a higher accuracy. When comparing BCE against the 

four other models in the domains with a high number of attributes (greater than 60), BCE is a 

good alternative for the classification task. On the other hand, with datasets with a relative low 

number of attributes, the results obtained with BCE are in some cases statistically inferior to 

those obtained with other classical methods. Nevertheless, when the Feature Selection Module 

is switched off (Table 5) the results of BCE are equivalent or even better than those obtained 

with the rest of the evaluated models.  

When BCE is evaluated in terms of its testing time (Fig. 4), BCE is clearly more efficient than 

those systems that are statistically equivalent. When a comparison is performed in terms of the 

training time, it is observed that, in most cases BCE outperforms those ensembles that have an 
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equivalent error rate. However, considering the highly parallelisable nature of BCE and the 

number of base learners of the different ensembles (Table 2), it is possible to say than BCE 

outperforms these. 

Considering the accuracy and the diversity of the base learners, the BCE members are usually 

very accurate but not very diverse (Fig. 7). Therefore, accepting a taxonomy in which the 

ensembles of classifiers are grouped according to the accuracy and the diversity of their base 

learners, BCE as Bagging is included in the category that gives preference to the accuracy 

over the diversity [67].    

When quantifying the induced diversity of the ensembles using different measurements, the 

obtained values are similar for BCE and for Bagging. Finally, when computing the correlation 

between the diversity and the gain of the ensemble, it can be concluded that there is a significant 

relationship between the two parameters (Table 6). 

 

7. Conclusions 

In this work, we proposed BCE, an ensemble of classifiers based on ANN that efficiently 

resolves multi-class problems that have a feature space with a high dimensionality. In this 

model, each base learner is a dual arrangement that is composed of a binary and a 

complementary classifier. The Binary-Complementary decomposition that was initially 

proposed in [33], is now enhanced with a new complementary classifier architecture. This 

adaptation leads to the construction of more accurate and diverse base modules.. 

The dual character of the base modules has an impact on the computational cost of BCE. To 

lower this inconvenience, a feature selection process is applied before each classifier is 

constructed. This process depends on the instances that are contained in the training set and 

their class distribution. Therefore, each member of all the base learners is trained using a 
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specific data set and a specific feature subset. Consequently, it is likely that each of them learns 

a different hypothesis and, therefore, a degree of diversity can be achieved. Additional diversity 

is achieved by implementing the classifier as an ANN with randomly generated initial weight 

sets. 

We have tested the performance of BCE in thirteen different domains, and to evaluate their 

performance we have compared BCE against a single ANN, OAA, ECOC, and Bagging. The 

experimental results indicate that BCE significantly outperforms OAA in 7 data sets, ANN in 6 

data sets, ECOC in 4, and Bagging in 2. On the other hand, BCE is statistically worse than OAA 

and ECOC in 2 data sets, ANN in 3 and Bagging in 4. It is worth mentioning that these 

unfavourable results appears only in domains in which the number of features is relatively 

small. The accuracy values obtained when BCE is trained and tested using the full feature space 

(BCE*) show that these bad results are a consequence of the feature selection process, rather 

than due to some problem in the binary-complementary decomposition. 

In respect to the computational cost, in domains with a large number of features, BCE is equal 

or more accurate than other traditional classifiers but clearly much more efficient. This question 

is more irrelevant when the number of features is low. 

For the domains with a large number of features (>60), we have analyzed the relationship 

between the accuracy of BCE and i) the observed mean accuracy of its base learners and ii) the 

maximum accuracy of its base learners. Moreover, to analyze the influence of the diversity on 

the accuracy, the correlation between the former and the gain of BCE has been computed. This 

analysis shows that the base learners of BCE are accurate and diverse and that the relationship 

between diversity and the gain of the ensemble, while not strong, is statistically significant.  

In the future, we intend to analyse the dependence between BCE and the construction 

methodology of the base learners. This work should include other learning algorithms combined 

with the construction of heterogeneous ensembles. Furthermore, achieving higher diversity rates 

is also an important aim that should entail an increased accuracy of the ensemble of classifiers. 
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Appendix 1 

This appendix shows the accuracy of the evaluated models when all the base learners are 

implemented a) using the whole feature set and b) using the feature subsets obtained by 

applying BF+CFS  

Table A. Accuracy values (in %) when all the classifiers (including BCE) are built using the full 
feature space.  The / symbol indicates that, according to the F-test, the standard classifier is 
significantly better/worse than BCE*. The  symbol indicates that the standard classifier and BCE* 
are statistically equivalent. The best values in each domain are marked in bold. 

Data Set BCE* Standard Classifiers 
ANN OAA Bagging ECOC 

VOWEL 85.42 79.13  86.29  83.82  87.05  
SEGMENTATION 93.89 93.73   92.89  93.67  92.88  

SATIMAGE 87.33 87.16   86.21  87.44  85.35  
TEXTURE 99.63 99.52  99.49  99.65  99.56  

SYNTHETIC 96.48 96.26  94.85  96.85  96.61  
OPTDIGITS 95.80 92.25  94.17  95.36  94.61  

AUTOMOBILE 66.33 64.28  64.42  65.13  63.33  
LIBRAS 77.62 72.99  73.15  77.08  76.33  

SEMEION 91.11 86.10  87.09  90.56  88.06  
IMBALANCED SEMEION 90.16 84.71  85.70  89.12  87.07  

SPLICE 94.96 93.96  94.25  95.41  86.41  
MNIST 96.85 95.26  96.56  96.38  96.95  

ASISTENTUR 95.03 93.72  92.87  94.36  94.31  
win/tie/loss  4/9/0 5/8/0 2/10/1 4/8/1 
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Table B. Accuracy values (in %) when all the classifiers are built using the feature subsets obtained 
by applying BF+CFS. The / symbol indicates that, according to the F-test, the standard classifier 
is significantly better/worse than BCE*. The  symbol indicates that the standard classifier and 
BCE* are statistically equivalent. The best values in each domain are marked in bold. 

Data Set BCE Standard Classifiers 
ANN* OAA* Bagging* ECOC* 

VOWEL 73.93 68.44  61.74  78.03  57.14  
SEGMENTATION 93.08 93.56  88.35  93.46  87.70  

SATIMAGE 86.14 86.31  81.95  87.91  81.97  
TEXTURE 98.63 97.44  92.78  98.43  95.33  

SYNTHETIC 97.01 96.01  94.77  96.85  97.04  
OPTDIGITS 95.37 91.58  89.70  94.87  88.39  

AUTOMOBILE 69.29 67.55  69.44  69.00  65.64  
LIBRAS 71.39 63.06  56.23  75.66  45.41  

SEMEION 90.12 85.96  85.96  86.68  89.99  
IMBALANCED SEMEION 90.70 85.88  88.32  89.36  85.20  

SPLICE 94.79 93.47  94.13  94.86  86.71  
MNIST 96.91 95.32  93.82  96.39  94.70  

ASISTENTUR 94.69 93.34  91.72  94.15  93.73  
win/tie/loss  8/5/0 11/2/0 3/9/1 10/3/0 
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