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Stress is a growing problem in recent years. It causes a 
deterioration of cognitive skills. The result is a worsening in 
the driving style and an increase in the likelihood of traffic 
accidents.  In this context, prediction models allow us to avoid 
or to minimize the negative consequences.  
An algorithm based on Deep Learning is proposed in this 
paper to predict the stress in advance. This type of algorithms 
detects complex relationships between variables. At the same 
time, it avoids the overfitting. The prediction of the upcoming 
stress level is made taking into account the driving behaviour 
(acceleration, deceleration, speed) and the previous stress 
level.  
The algorithm has been validated under different conditions in 
three routes in Spain and the United Kingdom. Results show 
that upcoming stress states can be accurately predicted by 88% 
when the driver is not fatigued. The model also presents a good 
behavior when the visibility is poor. However, the prediction is 
complex when there is heavy traffic or the driver is tired. In 
these cases, the percentage of success for the stress prediction 
is 82%. But, the main problem is the number of false positive 
(23% on average). 

Introduction 
Sely [1] was the first researcher to refer to the term 

“stress” in a biological context. According to this author, the 
stress includes an inappropriate physiological response to any 
kind of demand [2]. The “Stress” term refers to the condition 
while stressors are the stimulus causing it. Currently, there are 
many definitions of stress. However, all authors are in 
agreement in that the stress can have a negative effect on the 
intelligence, health and making decisions [3] [4] [5]. 

The data presented in [U.S. Department of Transportation, 
2008] categorizes the major risk factors responsible for traffic 
accidents as follows (according to their impact): human factors 
(92%), vehicle factors (2.6%), road/environmental factors 
(2.6%), and others (2.8%). Among these, drivers’ human 
factors consist of cognitive errors (40.6%), judgment errors 
(34.1%), execution errors (10.3%), and others (15%). Stress is 
one of the causes of human errors. Stress degrades the 
cognitive capabilities of driver. 

In the literature, there are many proposals on measuring 
and quantifying the driver’s cognitive load and stress levels. 
There are two major types of proposals to measure the stress: 

 Questionnaires 
 Physiological signals 
Questionnaires allow us to assess a large part of the 

population. However, the result is based on the subjective 
perception of the participant. One of the most important 
research work [7] is "The Perceived Stress Questionnaire 
(PSQ)". This measurement employs the subjective perception 
of things and the emotional reaction. This questionnaire can be 
used regardless of age, gender or profession of the participants. 
Other questionnaires relevant to measure the stress: The Stress 
Appraisal Measure (SAM) [8], the Impact of Event Scale (IES) 
[9] and the Perceived Stress Scale (PSS) [10]. 

The proposals based on the physiological signals allow us 
to objectively and continuously determine the stress level of a 
user. However, they require the use of sensors, increasing the 
cost and reducing the number of possible participants. In 
addition, these solutions can cause discomfort if they are 
intrusive or heavy.  

However, these problems are being minimized with the 
proliferation of the wearable devices in the recent years. 
Currently, a simple wristband can monitor several 
physiological signals. One example is the Empatica E4 [11] 
wristband is an unobtrusive, wearable, lightweight, wireless, 
multisensory signal acquisition device. It has four inbuilt 
sensors for continuously reporting Galvanic Skin Response 
(GSR), Photoplethysmograph (PPG) data, Skin Temperature 
(ST), and Tri-Axial Acceleration (ACC). It also reports Inter-
Beat Interval (IBI) at discrete intervals. 

The driver’s workload and the perceived capacity for 
handling it are major contributors to stress levels while driving. 
In [12], Itoh et al. measured electrocardiogram (ECG) signals 
as well as head rotational angles, pupil diameters, and eye 
blinking with a faceLAB device installed in a driving simulator 
to calculate the driving workload. In the study captured in [13], 
the driver’s workload was estimated from lane changing and 
measurements were taken through simulation test driving. In 
[14], the authors proposed a multiple linear regression equation 
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to estimate the driving workload. The model employs variables 
such as: speed, steering angle, turn signal, and acceleration. 

In [15] the authors propose a method for detecting stress 
based on facial expressions. They employed a near-infrared 
(NIR) camera to capture the near frontal view of the driver’s 
face.  Tracking face is made using a supervised descent method 
(SDM) [16].  In [17], the research analyzed the suitability of 
the heart rate variability (HRV) to measure the driving 
workload. The results conclude that the HRV could be used as 
a good workload indicator, although it is also affected by many 
other factors that may have an influence on it.  

In [18], the authors presented a solution to evaluate some 
emotional states (high stress, low stress, disappointment, and 
euphoria) of car-racing drivers. Support vector machines 
(SVMs) and adaptive neuro-fuzzy inference system (ANFIS) 
were used for the classification The proposed approach 
performs an assessment of the emotional states using facial 
electromyograms, electrocardiogram, respiration, and electro 
dermal activity. The system was validated by using data 
obtained from ten subjects in simulated racing conditions. The 
maximum predictive rate was 79.3% using support vector 
machine (SVM). 

As we have seen above, the proposal to detect current 
stress levels are getting very promising results. However, the 
stress prediction is a more complex task. Firstly, it is difficult 
to label stress perception levels by each driver in a generic way 
because the effects of events and stressors change depending 
on the driver profile and their current state. In addition, drivers 
tend to forget stress situations and details if filling in a 
questionnaire some time later. On the other hand, the 
physiological signals that have proven higher correlation levels 
with stress are very sensitive to noise and are influenced by 
other factors apart from stress. Finally, the combination of all 
the data collected by different sensors is not trivial. 

Estimation of stress level on drivers 
The objective of this work is to analyze how a set of 

factors (driver state, traffic, and visibility) affect the prediction 
of the upcoming driver stress levels. In order to make the stress 
level prediction, we use a model based on Deep Learning. 
Deep Learning is a set of algorithms that allow to design 
Multilayer Neural Networks.  

The training process is different from classic neural 
networks algorithms, avoiding the overtraining. These methods 
detect the complex relationships among variables. Currently, 
this type of algorithms is used in many commercial 
applications such as: keyboard from IOS, Android Operating 
System's speech recognition system or identifying objects in 
Google Photos. In the following subsections, we are going to 
describe each of the elements of our prediction model. 

Input variables 

In this work, the input variables can be classified into two 
groups: variables related to the stress level and variables 
associated with the driving behavior. 
 
Measurements of stress level 

The Heart Rate signal is many times used as an indicator 
or proxy for the Autonomic Nervous System (ANS) activity for 
normal, fatigued and drowsy states because the hearth rate is 
influenced by the sympathetic - and parasympathetic nervous 
systems which adapt to the user’s perceived stress. This 
indicator is not intrusive. A decrease in the heart variability 
correlates with the driver experiencing stress. 

Among the different physiological signals which correlate 
with stress levels previously captured in the existing literature 
we have used the Heart Rate Variability (HRV) [19] [20] since 
it has been assessed as one having a higher correlation with 
stress levels together with Skin Conductivity (SC).  

One major limitation of the HRV signal in order to 
estimate the level of stress and cognitive load is that there are 
other factors such as the physical exercise that also impact the 
measured values. In order to avoid this problem, the 
experiment has been designed to minimize the impact that 
factors outside the study have on the measurements. In this 
way, only data from drivers driving in similar situations each 
day (same hour, same traffic conditions, with moderated 
previous walking to get into the car and a relaxation period of 
30 seconds before driving, with the mobile phone muted, with 
the radio switched off and without using any navigation 
system) have been taken.  

In addition to the HRV signal, we analyze some driving 
behavior related data. The combination of these two groups of 
variables (HRV and driving behavior) allows us to build a 
model to predict the stress on drivers accurately. The idea is 
that the different stressors on the road that the user is currently 
facing will have a short term impact on the way the driver 
reacts (accelerating or pressing the brake for example) and a 
longer term impact on upcoming stress levels. Measuring 
current driving behavior and monitoring current levels of stress 
should therefore contain information about upcoming levels of 
stress. 

We can compute stress related features from the Heart 
Rate Variability (HRV) signal in two different domains: Time 
and Frequency. Time domain analysis of HRV implicates 
quantifying the mean or standard deviation of RR intervals 
(time between beat and beat given in milliseconds). Frequency 
domain analysis means calculating the power of the 
respiratory-dependent high frequency and low frequency 
components of HRV. In our case, we are going to use measures 
on the time domain. There are many HRV features that can be 
defined on this domain which are correlated with the perceived 
stress levels such as: mean RR interval (mRR), mean heart rate 
(mHR), standard deviation of RR interval (SDRR) or standard 
deviation of heart rate (SDHR). 



 

 

We have chosen the following variables based on real tests: 
 Average HeartRate (b.p.m): This variable has a high 

value when the driver experiences high levels of 
stress. 

 Average RR (ms): It measures the time between beat-
beat (consecutive heartbeats). Its value decreases 
when there is an event that causes stress on the 
driver. On the contrary, a high value means that the 
driver is relaxed. 

 Standard deviation of RR intervals (ms): the variation 
between beat and beat (inter-beats period) decreases 
when the driving workload is high. 

 RMSSD: The square root of the mean of the squares 
of the successive differences between adjacent RRs. 

 RR50: It is the number of pairs of successive RRs 
that differ by more than 50 ms. A high number 
allows us to detect stress situations. 

 
Driving behavior 
Maximum acceleration (positive and negative): The 

accelerations and decelerations capture reactions to different 
stressors that have an impact on stress levels and imply 
changes in the HRV signal such as a decrease in the time 
between heartbeat and heartbeat. The percentage depends on 
the intensity of these accelerations. The sudden accelerations 
significantly increase the driving workload. Figure 1 captures 
the RR and the vehicle speed when driver is braking. We can 
observe how RR value decreases by 12.22%.  Figure 2 shows 
the results when the driver is accelerating. In that case, the RR 
value is also reduced by a 10.89%. The values have been 
normalized using the following equation: 

 

 𝑁 =
 ( )

 ( )   ( )
  (1) 

 
In which 𝑎 is the current value of the variable (vehicle 

speed or RR) that we want to normalize and 𝐴 is the dataset 
(where 𝑎 value is included) 

 
 

 

 
 
Figure 1 RR values (normalized between 0 and 1) while 
driver was braking. 
 

 

 
 
Figure 2 RR values (normalized between 0 and 1) while 
driver was speeding up. 
 

The current acceleration of the vehicle is calculated based on 
the measured speed as follows: 

 
 𝑎 =  

 

 
  (2) 

In which vi represents the speed at the sample number i, ai 

the estimated acceleration at that sample and the derivative of 
the speed is estimated by dividing the increment in speed by 
the time elapsed between the consecutive samples i-1 and i. 
Vehicle speed was obtained using the GPS data from the 
system’s smartphone.  
Standard deviation of vehicle speed: The workload decreases 
when the driver is driving at steady speed. High deviations of 
speed capture reactions of the driver to different stressor that 
cause stress to the driver. He or she has to do several tasks at 
the same time such as: looking at the surrounding road, 
pressing the accelerator pedal or turning the steering wheel. 
Figure 3 shows the RR values obtained in two different cases 
by the same driver using a 60 seconds time window. In the first 
case, the standard deviation of vehicle speed was 19.33. In the 
second case, the value was 2.71.  We can observe that in the 
first case the RR values are higher than in the second case. In 
conclusion, we can see that there is a strong relationship 
between standard deviation of vehicle speed and the inter-beats 
time.  

Figure 3 Comparison of RR values according to the 
standard deviation of vehicle speed.  
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Positive Kinetic Energy: This variable measures the 
aggressiveness of driving. Its value depends on the intensity 
and frequency of the accelerations. If it is high, it means that 
the driver accelerated sharply and frequently. This driving style 
has a negative impact on the stress level. He or she has to make 
faster decisions in order to avoid accidents. 

The PKE is estimated over a period of time as follows: 
   

 𝑃𝐾𝐸 =  
∑(  )

;  𝑣 >   𝑣   (3)

   
Where the sum is performed for the period considered and d is 
the cumulated distance traveled during this time 
 
The intensity of turning: We detected during testing that the 
tension increased in the majority of the drivers when there were 
curves on the road. The degree of impact depends on the road 
angle (intensity of turning required). Figure 4 captures the RR 
values when the driver was driving over a curve. We can see 
that the inter-beats time decreases.  

The intensity of turning is estimated using the following 
formula: 

 𝑇𝐼 = cos
∙

‖ ‖‖ ‖
 ; 𝑣 > 𝑡ℎ  (4) 

 
 Where the numerator represents the dot product between the 

average direction vectors in the last 5 seconds and the average 
direction vectors in the next 5 seconds and the denominator 
captures the norm of such averaged vectors. The direction 
vectors are calculated from the GPS coordinates. The average 
over a period of 5 seconds is used to minimize the impact of 
random errors in the GPS signal. In order to eliminate the 
errors introduced at low speeds, a threshold in the speed is 

used. This threshold has been empirically evaluated and a value 
of 1 m/s has been found to perform well and therefore selected 
for the experiment. It depends on the device.  
 

 
Figure 4 RR values when the driver was driving over a 
road curve. 

Figure 5 Proposal to estimate the upcoming stress. 
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Output variable 

The output of the algorithm is the stress state in the next 
minute. In order to label the driving samples, the HRV signal 
has been translated into 2 different levels of cognitive load: 
stress or not stress. The HRV signal depends on the cognitive 
workload and the particular driver features and characteristics. 
Therefore, we take into account the usual values of the driver 
to make accurate predictions (intra-user prediction).  

In this work, we have defined stress as a state in which the 
measures related to the heart rate signal suffer a significant 
change compared to the usual values of the driver for a road 
type. On the other hand, no-stress state has been defined as the 
driver state when his or her heart rate signal presents a similar 
pattern to the obtained when there are not events that can alter 
the mental state.  

Table 1 captures the values of the heart rate signal in two 
scenarios for the same driver and route. However, the driving 
test in the first case took place on Monday at rush hour. In 
addition, the driver was stressed because had to go to the work. 
Driving test in the scenario 2 was made on Sunday. There was 
no traffic and the driver did not have any obligation. We can 
see as there is a change very meaningful in the variable. We 
have chosen the RMSSD measure to label the driving samples 
because it is the most recommended [21] in order to analyze 
the heart rate variability in short term. 

We compared the usual RMSSD (taking into account the 
road type) with the value obtained in the last 60 seconds. If the 
current RMSSD value is lower and the difference exceeds a 
threshold, we will label the driving sample as "stress". In our 
case we set the threshold at 7. This value was obtained 
empirically and it depends on many variables such as: heart 
rate band, driver age, diseases, and lifestyle. Figure 5 shows a 
schema of the proposal. 

 
 Case 1 

(Commute on 
Monday at rush 

hour) 

Case 2 
(Driving on 

Sunday) 

Average Heart Rate 
(b.p.m) 98.46 83.16 
Average RR 
(milliseconds) 622.8 737.03 
Std. RR 
(milliseconds) 16.41 33.21 
RR50  1 0 
RMSSD 
(milliseconds) 

11.10 19.08 

Table 1 Heart Rate measures with and without stress events. 

Deep Belief Network 

A deep-belief network (DBN) [22] is defined as a stack of 
restricted Boltzmann machines (RBM), in which each RBM 
layer communicates with both the previous and subsequent 
layers. The nodes of any single layer don’t communicate with 
each other laterally. The end of DBN is a classifier. We employ 

gradient-descent algorithm to revise the weight matrix of the 
whole network. The error is propagated in the opposite 
direction. Therefore, the parameters of RBMs change slightly. 
DBN has the following steps: 

Layer-wise Unsupervised Learning: We train the first 
RBM using the original data without the labels (unsupervised) 
and fixing up the parameters of this RBM. Then, the first layer 
configuration is frozen. We train the second layer using the 
output of the first layer. Finally, we get a DBN with several 
layers, whose parameters are appropriate to extract the features 
of data. This method avoids the overfitting. In addition, we can 
take advantage of unlabelled data. 

Fine-Turning: We unfreeze all weights, and train full 
DBN with supervised model (SoftMax classifier) to fine-tune 
weights. Gradient-descent algorithm is employed to update the 
weight matrix of the whole network. This solution avoids 
drastic changes because the error is propagated in the opposite 
direction.  
 
Restricted Boltzmann Machine (RBM) 

Restricted Boltzmann Machine are bipartite graph with a 
layer of “hidden” neurons and a layer of "visible" neurons, 
without connections between neurons in the same layer. Each 
node represents a random variable and each edge a dependency 
between variables that connects. 

We employ energy function (E) and probability 
distribution to describe a RBM. The energy of a configuration 
(pair of boolean vectors) (v,h) is defined as: 

 
 𝐸(𝑣, ℎ) =  − ∑ 𝑎 𝑣 − ∑ 𝑏 ℎ − ∑ ∑ 𝑣 𝑤 , ℎ   (5) 

where 𝑎  is the bias weight (offset) for the visible unit 𝑣 , 
𝑏  is the bias weight for the hidden unit ℎ , and 𝑤 ,  the weight 
associated with the connection between hidden unit ℎ  and 
visible unit 𝑣 .    

Probability Distribution: 

 𝑝(𝑣, ℎ) =  𝑒 ( , )  (6) 

where Z is a partition function defined as the sum of 
𝑒 ( , ) over all possible configurations. The aim is to ensure 
the probability distribution sums to 1. 

Through summation we can get the marginal distribution 
of visible layer 𝒗: 

 

 𝑝(𝑣) =  ∑ 𝑒 ( , )   

 (7) 
 

SoftMax Classifier 
There are a set of training samples such as: {(x1, y1), (x2, 

y2),…,(xm,ym)}, yi ∈ {1,2,…m}.  The classifier is used in order 
to estimate the probability that x is a sample of j class.  The 
activation function is: 
 



 

 

 ℎ (𝑥) =

( | , )
(  | , )

…
𝑃(𝑦 = 𝑘 |𝑥, 𝜃) 

=  

𝑒 ×

𝑒 ×

…
𝑒 ×

   (8) 

 
Where 𝑍 = ∑ 𝑒 ×  is normalization factor. 
 

The cost function to train the classifier is: 
 

 𝐽(𝜃) =  −  ∑ ∑ 1 𝑦( 𝑙𝑜𝑔
( )

∑ ( )
  (9) 

 
In the equation, 1{𝑦(𝑖) = 𝑗} is indicative function, whose 

value is 1 when 𝑦(𝑖) = 𝑗 and 0 when not. The aim is to 
minimize the cost function adjusting the parameters. We 
employ gradient-descent algorithm to make this task.  

Validation of the prediction model 
In this section, the proposed prediction algorithm is 

validated under different conditions. The solution was 
deployed on a Nexus 6 and Samsung Galaxy Note 4. These 
devices support Bluetooth Low Energy. The solution requires 
this protocol in order to get the heart rate signal. A Polar H7 
band [23] is used to monitor the stress.   

Tests were made in three different regions: Madrid (Route 
A-Spain), Seville (Route B-Spain), and Sheffield (Route C-
United Kingdom). Route A has a length of 8.3 Km. The trip 
time estimated by Google under normal conditions is 18 
minutes. Route B has a length of 16 Km. In this case, the trip 
time estimated by Google under normal conditions is 32 
minutes. Finally, route C has a length of 22.4 Km. In this case, 
the trip time estimated by Google under normal conditions is 
44 minutes. 

Three different drivers participated. Each driver completed 
150 test drives using their own cars. Their ages are between 38 
and 41. All drivers were active and with unknown disease 
history. The experiment has been designed to minimize the 
impact that factors outside the study have on the 
measurements. We have only taken into account data from 
drivers driving in similar situations each day (same hour, same 
traffic conditions, with moderated previous walking to get into 
the car and a relaxation period of 30 seconds before driving, 
with the mobile phone muted, with the radio switched off and 
without using any navigation system) have been taken. The 
only exceptions are when we analyze the algorithm in low 
visibility conditions and heavy traffic. 

The algorithm was validated using 10-fold cross-
validation. The Deep Belief Network consisted of 6 hidden 
layers with 200 units per layer. The algorithm was run with the 
following parameters: 

 Learning rate: 0.5 
 Momentum: 0.2 
 Epochs: 30 

Driver state 

In order to know the fatigue level, the drivers filled in a 
questionnaire with the following data:  

 Working time 
 Times Awakened 
 Sleep Time 
Tables 2-4 capture the results taking into account the 

driver state. The proposed algorithm is able to predict the stress 
levels by 88% when the driver is not tired. However, the results 
obtained when the driver is tired are worse. In this case, the 
proposal predicts stress by 80%. The main limitation of the 
approach is with false positives (the prediction of stress when 
driver will not suffer it). The algorithm classified 45 out of 150 
non-stress samples as stress.  

This happens because the user experience a worsening of 
the driving style due to fatigue. The proposal confuses the 
fatigue with stress. Therefore, the results are less accurate. This 
problem could be solved by adding personal features (working 
time and sleeping time) to the prediction model.  

Figure 6 Comparison of fuel consumption (l/100km) according 
to the driver state (rested or tired). 

 
The change in the driving behavior is also reflected on fuel 

consumption. Figure 6 compares the average fuel consumption 
(10 laps) according to the driver state under the same road 
conditions (weather, traffic, and route) for a driver. We can see 
that the fuel consumption improves by 11.96 % when the driver 
is rested.   
 

 Rested Tired 
Actual/Predicted No Yes No Yes 
No 96 % 4 % 62 % 38 % 
Yes 14% 86 % 20 % 80 % 

Table 2 Stress prediction on Route A. 

 Rested Tired 
Actual/Predicted No Yes No Yes 
No 100 % 0 % 70 % 30 % 
Yes 15 % 85 % 18 % 82 % 

Table 3 Stress prediction on Route B. 
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 Rested Tired 
Actual/Predicted No Yes No Yes 
No 88 % 12 % 78 % 22 % 
Yes 7 % 93 % 21% 79 % 

Table 4 Stress prediction on Route C. 

Heavy traffic 

Tables 5-7 present the results obtained in the three routes 
when traffic was dense. In this scenario, the proposal makes the 
stress prediction correctly by 84% on average. We can see that 
the results are worse than when the road conditions are good 
and the driving tests are made when the drivers are rested. The 
driving behavior is not as good as the usual. The accelerations 
and decelerations are more frequent. The consequences are an 
increase in error rates: 
 

𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑑 𝑎𝑠 𝑛𝑜𝑛_𝑠𝑡𝑟𝑒𝑠𝑠

𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

35

150
 

 
 

𝑛𝑜𝑛_𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑑 𝑎𝑠 𝑠𝑡𝑟𝑒𝑠𝑠

𝑛𝑜𝑛_𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

24

150
 

 
 
 

Actual/Predicted No Yes 
No 86 % 14 % 
Yes 30 % 70 % 

Table 5 Stress prediction under heavy traffic on Route A. 

 
Actual/Predicted No Yes 
No 90 % 10 % 
Yes 22 % 78 % 

Table 6 Stress prediction under heavy traffic on Route B. 

 
Actual/Predicted No Yes 
No 76 % 24 % 
Yes 18 % 82 % 

Table 7 Stress prediction under heavy traffic on Route C. 

Visibility conditions 

In is subsection, we analyze the algorithm behavior when 
the visibility is poor due to fog. Table 8 captures the results 
when there is fog on the road. In this situation the stress 
increases. However, the model response is accurate because the 
driver does not get worse driving. He only slows down. 
Therefore, sudden accelerations and heart rate are related to the 
future stress. The model is able to predict the stress by 88%.  
 
 

𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑑 𝑎𝑠 𝑛𝑜𝑛_𝑠𝑡𝑟𝑒𝑠𝑠

𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

6

50
 

 
 

𝑛𝑜𝑛_𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑑 𝑎𝑠 𝑠𝑡𝑟𝑒𝑠𝑠

𝑛𝑜𝑛_𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

5

50
 

Actual/Predicted No Yes 
No 90 % 10 % 
Yes 12 % 88 % 

 

Table 8 Stress prediction foggy. 

Conclusions and future work 
In this work, we have analyzed a model to predict the 

stress under different conditions. The proposed algorithm is 
based on deep learning. The proposal uses information about 
the road geometry, current driving behavior and the previous 
driving stress to infer the upcoming stress levels in advance.  

The solution has been evaluated in four different 
scenarios: rested driver, tired driver, heavy traffic, and poor 
visibility. The results show that the model predicts accurately 
stress when the driver is rested. We also obtain a good hit rate 
when visibility is poor. However, the number of false positives 
is high when the driver is tired or the traffic is dense. The 
reason is that under these conditions the driver worsens the 
driving behavior. However, the causes are not the appearance 
of stress. 

As future work, we want to introduce new variables in the 
model to improve the accuracy such as: working time, sleeping 
time or the air quality inside the vehicle. The proposal allows 
us to predict stress by assessing the driving and the previous 
stress level. We could use this algorithm to warn the driver in 
advance if he or she is making driving actions that are going to 
cause a high stress level. E.g.: if the solution predicts stress and 
we observe that the driver is speeding up strongly, the driving 
assistant would notify that he or she should smooth the 
accelerations. 
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