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Abstract

This article presents a numerical study on the mechanical behaviour of dam-

aged micro-lattice (ML) blocks submitted to uniaxial compressible loads.

The numerical model is implemented in the commercial finite-element code

Abaqus/Standard. From the finite-element model, the initial stiffness and

the Yield stress of ML blocks are calculated. The damage in ML blocks is

modelled as manufacturing defects, that are included in the ML structures

using a random algorithm implemented in MatLab. The numerical model

is validated with experimental data from uniaxial compression tests carried

out on ML intact blocks by other authors. The analysis of the mechani-

cal behaviour of ML blocks is presented in terms of variations of damage

percentage, cell type and cell size.
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Method

1. Introduction

In the last decades, the advance on additive manufacturing techniques

allowed developing new materials based on periodic structures [1, 2]. The

additive manufacturing has the greatest flexibility in realising fully bespoke

three–dimensional solutions [3, 4, 5].

Some issues included conformal lattice structures, in which the lattice

structures follow curved contours, and graded lattice structures, to fully

optimize the distribution of structurally effective material. Furthermore,

the three–dimensional lattice structures induce axial forces in the individual

members, so it is expected to have a high specific stiffness per unit weight

[6]. Their mechanical properties make them attractive to be used as cores in

sandwich structures [7, 8, 9, 10].

Researchers from the University of Liverpool developed an additive man-

ufacturing process to produce micro-lattice structures. This process is based

on a selective laser melting (SLM) system, and it permits to manufacture

lattice structures with high complexity which can be built at the micrometre

scale in relatively short times [11]. In this regard, numerous works present

experimental results [12, 13, 14, 15, 16, 17] of the mechanical responses of

micro-lattice structures submitted to different loadings and boundary condi-

tions.

In the same way, several researches [18, 19, 20, 21, 22] developed numerical

and analytical studies on the compressive strengths and the initial stiffness

of open cell materials. The work presented by Smith et al. [22] showed
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that predictions obtained using beam elements in finite-element models are

capable of obtaining the stiffness and Yield stress of ML structures submitted

to compression loads. In their work, they presented a numerical analysis,

validated with experimental results of cubic ML blocks manufactured using

SLM system.

However, being this system a complex process, it will be most susceptible

to imperfections in the form of inherent micro-voids due to the stacking–

layered fused nature of the metal powder [23, 24, 25, 26, 27, 28, 29, 30,

31]. Recently, it has been proved that the presence of imperfections in ML

structures produces changes in their vibrational response [32].

The aim of this work is to study the mechanical response of damaged ML

blocks submitted to uni-axial compressible loads. A finite-element model

implemented in the commercial software Abaqus/Standard [33] is used to

calculate the stiffness and the Yield stress of intact and damaged ML cubes.

In order to study the influence of imperfections on the mechanical behaviour

of ML structures, members (struts) of the ML structure are removed using an

algorithm implemented in MatLab. Finally, the numerical model is validated

with experimental data of uni-axial compression tests on ML intact blocks

presented by other authors [22]. The influence of the damage percentage in

terms of cell type and cell size on the mechanical properties of ML blocks is

analysed.

2. Description of the problem

The problem considered in this work is based on the experimental work

presented in [22], in which the authors tested cubic ML blocks under quasi-
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static compression loads. The blocks were manufactured with the SLM tech-

nique, using 316L stainless steel. The plates of the test machine were greased

before each test to reduce any friction between the plates and the cubes.

In the present study, two unit-cell topologies of ML structure are con-

sidered: a body-centred cubic arrangement (BCC), and the same structure

with vertical bars (BCC-Z). Fig.1 shows a schematic representation of both

cell topologies. The cell size is defined by the parameter h. Note that the

BCC-Z ML cubes were compressed in the direction of the vertical pillars.

h

(a) BCC unit cell. (b) BCC-Z unit cell.

Figure 1: Configurations of the unit cells.

3. Numerical model

Fig. 2 shows perspective and front views of the developed numerical

model, in which the ML cube and the plates of the load machine are modelled.

Both plates are defined as rigid shell and are meshed using quadrilateral

elements of 0.5 mm in size.

The ML structure is discretised using Euler-Bernoulli beams (B33 - sim-

ple 2-node beam elements) available in Abaqus/Standard library. These el-
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ements do not allow a transverse shear deformation to occur; plane sections

initially normal to the beam’s axis remain plane and normal to the beam

axis. The work presented by Smith et al. [22] showed that the quasi-static

response of ML structures can be described using beam element types. The

geometry is simplified, so the struts were represented by straight beams with

a circular cross-section of a 0.20 mm constant diameter.

The mechanical behaviour of ML bars is modelled with an elastic-plastic

constitutive model, with the following material properties: Young’s modulus

E = 140 GPa, Poisson’s ratio ν = 0.27, Yield strength σy = 144 MPa, and

density ρ = 7870 kg/m3 [34, 13].

A mesh sensitivity analysis was performed in order to find a good balance

between accuracy and computational costs. The analysis was focused on

the results of the initial part of the stress-strain curve obtained from the

simulations, which shows a good correlation with experimental data when

only one B33 element per member is used. The finite-element mesh of BCC

ML structures contained approximately 14398, 36846 and 48576 elements for

cell sizes of 2.50, 1.67 and 1.25 mm, respectively.

The contact between plates and the ML cube was assumed as hard contact

(using penalty constraint enforcement) in the normal direction and friction-

less in the tangential direction.

Because of their manufacturing process, ML structures can present defects

and imperfections, such as variable cross -section, wavy struts and micro-

pores [35]. These defects can cause premature failure of defective struts.

The aim of this paper is to explore the sensitivity of both Young’s modulus

and Yield strength to the presence of defects. Imperfections are limited to
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(a) Front view.

(b) Perspective view.

Figure 2: Geometry of the numerical model.

randomly missing struts, as prior studies suggest that displaced nodes and

missing cell walls rapidly knock down the strength of lattices [36]. Therefore,

the most restrictive hypothesis to simulate damage is the total disappearance

of struts.

In this context, the presence of defects as damage in the ML structure

is defined with an algorithm programmed in MatLab language. The devel-

oped MatLab code randomly removes members (struts) of the ML structure.

These elements are incorporated within the Abaqus input file, assigning new

material properties with null stiffness. Five ML structures of each cell type

and size were virtually tested in order to obtain the average and the standard
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deviation of the numerically determined mechanical properties.

4. Validation of the numerical model

This section presents the validation of the numerical model with the ex-

perimental data taken from the literature for intact ML structures [22]. For

the sake of brevity, only intact ML blocks with cell sizes of 2.50 and 1.25 mm

for both BCC and BCC-Z cell types were modelled.

Tables 1 and 2 show the numerical and experimental values of Young’s

modulus and Yield stress obtained for each case, respectively. The experi-

mental results and the percent errors of the numerical model are included.

The deviation of numerical predictions with respect to experimental val-

ues is less than 16%, and the order of magnitude of the numerical values is

the same as that of the experimental data.

Cell type Size Experimental Numerical Error

[mm] [MPa] [MPa] [%]

BCC 2.50 10.60 12.10 14.2

1.25 207.50 238.90 15.1

BCC-Z 2.50 547.20 478.05 12.6

1.25 2273.20 2166.59 4.7

Table 1: Experimental [22] and numerical values of Young’s modulus.
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Cell type Size Experimental Numerical Error

[mm] [MPa] [MPa] [%]

BCC 2.50 0.16 0.18 12.5

1.25 2.56 2.15 16.0

BCC-Z 2.50 1.04 1.07 2.9

1.25 7.02 5.95 15.2

Table 2: Experimental [22] and numerical values of Yield stress.

Furthermore, a representative stress-strain curve for BCC model (2.50

mm in size) is presented and compared with experimental data in Fig. 3.

In both curves there is a sharp rise in the elastic region followed by a stress

plateau. This behaviour has been reported for cellular foam structures. The

numerical model captures the initial stiffness (Young’s modulus) and Yield

stress values experimentally observed in [22], and results show good correla-

tion in the first part of the curve. In this way, the curve can be characterised

by Young’s modulus and Yield stress.

The numerical results are reasonably consistent with those of the exper-

imental measurements taken from the literature, thus the model is used for

further analysis on the comparison of the mechanical behaviour of damaged

ML blocks when subjected to compressive loads.

The numerical model allows a better understanding of the failure modes

of the simulated structures. In this regard, Fig. 4 presents a qualitative com-

parison of the deformation modes of BCC and BCC-Z ML blocks, respec-

tively. The numerical failure modes (b) are compared with the experimental

data (a) presented in the work by Gümruk et al [16]. The numerical models
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Figure 3: Numerical and experimental [22] stress-strain curves for BCC configuration (cell

size of 2.50 mm).

capture the shear band formation, that is oriented at an inclination angle

of 45◦. Note that these local deformations begin at the corners of the ML

structure, growing towards the inside of the ML block.

5. Results and discussion

5.1. Non-damage analysis

Fig. 5 shows the numerical results of intact ML blocks, the two cell

configurations BCC and BCC-Z and three different sizes (2.50, 1.67 and 1.25

mm). For both Young’s modulus and Yield stress results, the trend is exactly

the same: values for BCC-Z structures are greater than those obtained for

BCC cells. This might be due to the presence of the central pillar in the cell

type BCC-Z, which provides more stability against buckling.
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(a) BCC Experimental data. (b) Von Mises field stress of the BCC block.

(c) BCC-Z Experimental data. (d) Von Mises field stress of the BCC-Z block.

Figure 4: Numerical and experimental [16] results of the BCC and BCC-Z blocks for cell

size of 2.5 mm.

The trend is also the same when results are analysed as a function of

the cell size: both Young’s modulus and Yield stress decrease in ML blocks

with larger cell sizes. This behaviour is also given for honeycomb structures:

smaller cell sizes share some properties with homogeneous structures, as the

cross-sectional area in which the compression load is distributed is greater

than in structures with larger cell sizes [37]. In addition, larger cell sizes,

when compressed, take longer to come into contact with each other, present-
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Figure 5: Numerical results of non-damaged (intact) micro-lattice structures.

ing lower stiffness.

The results of non-damaged (intact) ML blocks will be used to assess the

mechanical properties of ML structures as a function of the damage level.

5.2. Damage effect on Young’s modulus

In order to analyse the effect of the damage location, five random cases for

each damage percent were considered in the analysis. Tables 3 and 4 present

the values of the average Young’s modulus and the standard deviation for

BCC and BCC-Z cells, respectively. The maximum percent of standard de-

viation for BCC cell is 2.16%, while BCC-Z cell has a maximum percent

standard deviation of 9.33%. Therefore, BCC-Z cell presents an upper de-

pendence on the damage localization than BCC cell.
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Damage 2.5 mm 1.66 mm 1.25 mm

[%] E [MPa] s E [MPa] s E [MPa] s

0 14.35 0 84.41 0 238.33 0

5 13.61 0.07 78.70 0.24 221.82 0.53

10 12.88 0.10 72.84 0.26 205.68 0.53

15 11.99 0.14 67.15 0.27 189.57 0.53

20 11.20 0.17 61.40 0.71 174.02 0.98

25 10.24 0.05 55.62 0.52 158.75 1.08

30 9.32 0.12 50.50 0.33 144.52 0.73

35 8.39 0.16 45.12 0.29 130.73 1.29

40 7.65 0.17 40.69 0.24 117.93 0.88

Table 3: Mean Young’s modulus and standard deviation values for BCC cell.

Damage 2.5 mm 1.66 mm 1.25 mm

[%] E [MPa] s E [MPa] s E [MPa] s

0 555.76 0 1122.79 0.00 2166.59 0

5 440.51 3.21 1044.23 6.83 2014.95 8.92

10 378.73 35.35 963.47 17.04 1869.75 11.19

15 358.47 12.04 883.49 7.97 1715.61 13.79

20 331.79 10.21 801.70 8.28 1564.87 13.22

25 276.97 16.26 708.99 32.04 1419.97 15.37

30 248.06 7.23 634.50 22.49 1266.78 20.37

35 212.93 18.14 552.91 20.43 1110.15 14.03

40 169.35 15.04 463.20 9.59 970.93 35.62

Table 4: Mean Young’s modulus and standard deviation values for BCC-Z cell.
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Fig. 6(a) and 6(b) present the numerical results of normalised Young’s

modulus as a function of the damage generated through the algorithm imple-

mented in Matlab. The results have been normalised with the value obtained

for numerical intact ML blocks, thus it is possible to estimate the variation

of stiffness with increasing damage in these structures. Note that the nor-

malised Young’s modulus is calculated from the average values presented in

Tables 3 and 4.

In ML structures composed by BCC cells, Young’s modulus decreases

almost linearly with respect to the intact value for the three sizes studied.

BCC cells of 1.25 and 1.67 mm show similar results, and the curves practically

overlap for all damage percentages. Differences among both cell sizes results

and those of cell size 2.50 mm become more noticeable in a damage percentage

of 10%. However, differences among the results of the three cell sizes do

not present variations greater than 6%. For BCC cells, the variation of

Young’s modulus between intact ML blocks (0%) and the highest percentage

of damage (40%) is approximately 50%.

Results for ML structures with BCC-Z cells present more differences when

represented as a function of cell size. Results for BCC-Z cell sizes of 1.25 and

1.67 mm practically overlap until a damage level of 20%, as observed in BCC

cells. From that point, differences between both sizes do not exceed 5%. The

reduction of the normalised Young’s modulus as a function of damage level

is almost linear, reaching values of 0.4-0.45 for a damage level of 40%, which

are slightly lower when compared to those obtained from BCC cell blocks.

On the other hand, the trend of the curve given for ML blocks with cell

size of 2.50 mm shows more differences in BCC-Z cells: for the lowest per-
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centage of damage (5%) the drop in Young’s modulus values, when compared

to the other cell sizes, is much greater than in BCC blocks (difference being

approximately 15%), and 20% with respect to Young’s modulus of the intact

ML block. For 10% damage, this drop starts to soften, and from a damage

level of 15%, the curve ends up showing a similar slope to the one given by

the other two sizes.

As the initial drop is much more pronounced in cells of 2.50 mm, for

a damage level of 40% the stiffness decreased from the initial value to 70%.

This behaviour indicates that ML blocks with BCC-Z arrangements are more

affected by the damage generation than by ML blocks with BCC cells, as it

was suggested in results of Table 4.
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Figure 6: Normalised Young’s modulus as a function of damage level.

5.3. Damage effect on Yield stress

Similarly to the previous section, five random cases for each damage per-

cent were considered in order to study the variation of Yield stress. Tables
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5 and 6 present the values of the mean Yield stress and the standard devia-

tion for BCC and BCC-Z cell, respectively. The standard deviation of Yield

stress presents the same tendency that Young’s modulus, where the BCC-Z

cell has an upper dependence on the damage position than the BCC cell. In

this case, the maximum values of the percent standard deviation are 2.30

and 7.29 percent for BCC and BCC-Z cell, respectively.

Damage 2.5 mm 1.66 mm 1.25 mm

[%] σ0.2 [MPa] s σ0.2 [MPa] s σ0.2 [MPa] s

0 0.1865 0 0.7707 0 1.8362 0

5 0.1718 0.0007 0.7157 0.0067 1.6810 0.0038

10 0.1634 0.0026 0.6575 0.0077 1.5293 0.0036

15 0.1502 0.0017 0.5994 0.0061 1.4384 0.0039

20 0.1363 0.0022 0.5622 0.0032 1.3053 0.0215

25 0.1243 0.0020 0.5081 0.0048 1.1864 0.0067

30 0.1118 0.0026 0.4620 0.0029 1.0910 0.0097

35 0.0990 0.0028 0.4136 0.0023 0.9888 0.0070

40 0.0902 0.0019 0.3740 0.0020 0.9025 0.0067

Table 5: Mean Yield stress and standard deviation values for BCC cell.

15



Damage 2.5 mm 1.66 mm 1.25 mm

[%] σ0.2 [MPa] s σ0.2 [MPa] s σ0.2 [MPa] s

0 1.0700 0 2.6055 0 5.2595 0

5 1.0148 0.0180 2.5268 0.0431 4.8914 0.0198

10 0.9574 0.0168 2.3372 0.0508 4.5440 0.0229

15 0.8878 0.0162 2.1781 0.0155 4.1841 0.0293

20 0.8182 0.0199 1.9919 0.0157 3.8409 0.0309

25 0.7065 0.0243 1.7737 0.0463 3.5094 0.0310

30 0.6380 0.0134 1.6171 0.0548 3.1649 0.0404

35 0.5597 0.0320 1.4338 0.0462 2.8173 0.0285

40 0.4598 0.0335 1.2220 0.0228 2.5031 0.0771

Table 6: Mean Yield stress and standard deviation values for BCC-Z cell.

Fig. 7(a) and 7(b) represent the normalised Yield stress as a function of

the damage level. The Yield stress in the numerical model is chosen as the

stress that causes a permanent strain of 0.002 in the ML structure (ε = 0.2).

The normalised Yield stress presented in Fig. 7 is defined as the ratio between

the Yield stress obtained in the numerical simulations, which depends on the

selected damage level, and the Yield stress value given by intact ML blocks.

In general, Yield stress linearly decreases with the increasing damage

level. In the case of ML blocks composed by BCC cells, Yield stress decreases

by 50% for a damage of 40% when compared to intact blocks. For the three

cell sizes (2.50, 1.67 and 1.25 mm), the decrease slope is practically the same.

However, for a damage level between 5% and 30%, there are slight differences

between the three curves and ML blocks with larger cells (2.50 mm) which
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values of Yield stress slightly higher than those of smaller cells.

For BCC-Z cells the results are similar: the three curves linearly decay

with a similar slope, presenting a decrease in Yield stress of around 55%

between intact blocks and blocks with a 40% damage. In this case, the

curves for the three cell sizes show more differences from the beginning of

the damage inclusion, and larger cells have a Yield stress value slightly higher

than that of ML blocks with smaller cell sizes. However, from a damage level

of 25% the Yield stress of the largest cell size (2.50 mm) decreases with

respect to the results given by the other two cell sizes.
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Figure 7: Normalised Yield stress as a function of damage level.

5.4. Damage effect as a function of the cell type

Fig. 8 shows the comparison of the variation of Young’s modulus for the

three cell sizes studied as a function of the cell type unit (BCC and BCC-Z).

Results for cells of 1.67 mm and 1.25 mm are practically the same, thus

the cell type has no visible effect on the stiffness of the ML blocks. In cells

of 1.67 mm in size, the results between BCC and BCC-Z cells almost overlap
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Figure 8: Normalised Young’s modulus in function of damage level for different cell types.

until a damage level of 10% is reached. From that point, the value of the

Young’s modulus is slightly higher for BCC-Z cells. The same trend can

be observed at cells of 1.25 mm, only that the curves begin to show their

differences from a damage level of 15%.

Differences between BCC and BCC-Z cells for cell sizes of 2.50 mm is

noticeable from the beginning of damage inclusion. The decrease in Young’s

modulus is more visible in ML blocks with BCC-Z cells than in blocks with

BCC arrangements. Therefore, the loss of the vertical pillar that differ-
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entiates BCC-Z cells from BCC notably affects the stiffness of ML blocks.

Moreover, Yield stress does not display significant differences when depicted

as a function of the cell type (Fig.9), and differences are negligible in all three

cases.
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Figure 9: Normalised Yield stress in function of damage level for different cell types

As a conclusion, it is Young’s modulus (and therefore, the stiffness of

the ML structure) the most relevant parameter to take into account when

choosing the cell type in the ML blocks design.
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6. Conclusions

In this work, a finite-element model was implemented to study the me-

chanical response of micro-lattice metallic blocks submitted to compressive

loads. The simulations are focused on showing the sensitivity of the mechan-

ical properties to the presence of defects (damage) in the micro-lattice block.

In this context, a MatLab code was developed to generate the geometry and

the random defects in the simulated ML blocks.

Firstly, the numerical model was validated with experimental results ob-

tained from intact blocks. In this way, two cell sizes were studied for both

BCC and BCC-Z cells arrangements. The results showed that the numeri-

cal model is capable of predicting Young’s modulus and Yield stress with a

relative error lower than 16%.

The numerical model allowed studying the effect of the damage level on

the mechanical properties. The normalised values of Young’s modulus and

Yield stress linearly decrease with the same slope when the damage increases

(for all cell sizes and types). Therefore, the damage presence generates the

same effect on the mechanical properties, independently of cell type or size.

However, BCC-Z cells have upper dependence on the location of damage

than BCC cell.
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