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Prediction of motorcyclist stress using the
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Abstract. The number of motorcycles on the road has increased in recent years. Although the total number of motorcycles is
lower than the number of cars, the accident rate is much higher. A large number of these accidents are due to human errors.
Stress is one of the main reasons behind human errors while driving. In this paper, we present a novel mechanism to predict
upcoming values for stress levels based on current and past values for both the driving behavior and environmental factors.
First, we analyze the relationship between stress levels and different variables that model the driving behavior (accelerations,
decelerations, positive kinetic energy, standard deviation of speed, and road shape). Second, we study the accuracy of several
machine learning algorithms (Support Vector Machine, Multilayer Perceptron, Naive Bayes and Deep learning) when used to
estimate the stress based on our input data. Finally, an experiment was conducted in a real environment. We considered four
different scenarios: normal traffic, heavy traffic, tired motorcyclist, and rested motorcyclist. The results show that the proposal
can estimate the upcoming stress with high accuracy. This algorithm could be used to develop driving assistants that
recommend actions to smooth the current driving behavior in order to reduce the workload of the motorcyclist when high
levels of upcoming stress are predicted.
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1. Introduction

Motorcyclists are drivers who have accidents more
frequently. The percentage of these vehicles on the
roads is small compared with the number of cars.
However, they suffer a high proportion of fatal
accidents. In Queensland in 2008 [1], the
motorcycles were involved in a 20% of the road
accidents. In Australia, motorcycle accidents account
for 15% of all accidents.

For this type of drivers, factors such as weather
and road conditions, driver stress and the road
topology have an important impact on safety.
Motorcyclists have to pay attention to more risky
situations than car drivers. These specific hazards can
be classified into:

e Roadway hazards such as debris,
unexpected speed bumps, uneven roadways
and potholes.

e  Motorcycle-specific hazards such as traffic
appearing in a sharp turn.

Although motorcyclists are more exposed to
accidents, the industry has not invested as much
money in driving assistants that improve safety for
them in comparison with those for automobiles. The
majority of the proposals are still in an experimental
stage and there is a lack for real tests.

On the other hand, The Motorcycle Accidents In-
Depth Study (MAIDS) [3] concluded that human
factors are the primary accident contributing factor in
approximately 87.9% of all cases. Stress is one of
the causes of human errors. Stress degrades the
cognitive capabilities of driver.

Riding a motorbike is a task that requires a great
physical and mental effort. Cognitive errors appear in
highly cognitive demanding situations in which the
cognitive load, as perceived by the driver, is high and
the actions taken by the driver to handle those
situations are in many occasions not appropriate.

In the literature, there are many proposals on
measuring and quantifying the driver’s cognitive load
and stress levels. There are two major types of
proposals to measure the stress:

e  Questionnaires: They allow us to assess a
large part of the population. However, the
result is based on the subjective perception
of the participant.

e Physiological signals: They allow us to
objectively quantify the stress levels.
However, they require the use of sensors,
increasing the cost and reducing the number
of possible participants. In addition, these

solutions can cause discomfort if they are
intrusive or heavy.

Many or the challenges for developping driving
assistants for motorcyclists have been partially
solved in recent years. One of them is how to present
the information to the driver during a ride without
distracting them. Devices such as smartphones, GPS
or heads-up displays have been successfully used to
mitigate these barriers.

In addition, driving assistants require information
about the driver and the driving in order to provide
appropriate recommendations. This information is
extracted from the data obtained from user and
environmental sensors. In this context, the wereable
sensors have managed to minimize the driver’s
discomfort.

Currently, a single wristband can monitor several
physiological signals. For example, the Empatica
E4[4] wristband is an unobtrusive, wearable,
lightweight, wireless, multisensory signal acquisition
device. It has four inbuilt sensors for continuously
reporting  Galvanic  Skin  Response  (GSR),
Photoplethysmograph (PPG) data, Skin Temperature
(ST), and Tri-Axial Acceleration (ACC). It also
reports Inter-Beat Interval (IBI) at discrete intervals.

In conclusion, motorcycling is a new sector for the
driving assitants. Existing solutions are very scarce
and its state is very premature. These proposals are
limited to provide generic recommendations without
taking into account the mental state of the
motorcyclist. An example is the proposed system in
[5], where the recommended speed is indicated by
speed limit signs. However, the proposal does not
consider the current cognitive ability of the driver.

In this work we propose an algorithm to predict
stress based in Deep Learning and the motorbyke’s
telemetry. The proposal is evaluated under different
conditions regarding the road state, the road type
(urban or motorway ), and the previous stress levels.
This algorithm can be used to build a driving
assistant that recommends an optimal vehicle speed.
This recommended speed will minimize the driving
workload and the speed fluctuations.

1.1. State of the art

In this subsection, we are going to describe the
most relevant work relating to the stress detection
and solutions to improve the driving of the
motorcyclists.



Stress Detection

Sely [6] was the first researcher to refer to the
term “stress” in a biological context. According to
this author, the stress includes an inappropriate
physiological response to any kind of demand [7].
The term “stress” refers to the human condition and
the term “stressor” to the stimulus causing it.
Currently, there are many definitions of stress.
However, all authors agree in that the stress can have
a negative effect in the intelligence, health and
making decisions hability [8] [9] [10].

In [11], Itoh et al., data from electrocardiogram
(ECG) signals as well as head rotational angles, pupil
diameters, and eye blinking, measured with a
faceLAB device installed in a driving simulator, are
used to calculate the driving workload. In the study
captured in [12], the driver’s workload was estimated
from meassured lane changing behaviour, and the
measurements were taken through simulation test
driving. In [13], the authors proposed a multiple
linear regression equation to estimate the driving
workload. The model employs variables such as:
speed, steering angle, turn signal, and acceleration.

In [14] the authors propose a method for
detecting stress based on facial expressions. They
employed a near-infrared (NIR) camera to capture
the near frontal view of the driver’s face. Tracking
face is made using a supervised descent method
(SDM) [15]. In [16], the research analyzed the
suitability of the heart rate variability (HRV) to
measure the driving workload. The results conclude
that the HRV could be used as a good workload
indicator, although it is also affected by many other
factors that may have an influence on it.

In [17], the authors presented a solution to
evaluate the emotional states (high stress, low stress,
disappointment, and euphoria) of car-racing drivers.
Support vector machines (SVMs) and adaptive
neuro-fuzzy inference system (ANFIS) were used for
the classification The proposed approach performs an
assessment of the emotional states using facial
electromyograms, electrocardiogram, respiration, and
electro dermal activity. The system was validated by
using data obtained from ten subjects in simulated
racing conditions. The maximum predictive rate was
79.3% using support vector machines (SVM).

As we have seen above, the proposals to detect
stress are getting very promising results. However,
the stress prediction is a more complex task. Firstly,
it is difficult to label stress because the prerceived
effects of events change depending on the user
profile and their current state. In addition, drivers
tend to forget about stress situations when manually

labeling stressful regions after driving. On the other
hand, the physiological signals are very sensitive to
noise and are only proxies to assess human mental
states. Finally, combining all the data collected from
different sensors is not a trivial task.

Improving the motorcyclist safety

We find different solutions to improve safety in
the motorbikes’ field. Many of these proposals are
based on systems developed inside the automobile
industry. However, the motorcycles present some
special features that hinder its implementation.
According to [18], the advanced rider assistance
systems could reduce accidents up to 40%.

Authors in [19] present an Intersection Support
System for motorcycles. Warning feedback is given
to the rider by an appropriate combination of human—
machine interface elements, such as a haptic throttle,
a vibrating glove, and a visual display. The proposal
was validated in a simulator with 20 riders. The
simulated test track had a length of about 10 km,
consisting of 6.5 km on a rural road and 3.5 km in an
urban scenario, and including a total of 26
intersections. The traffic volume was kept low. The
results were positive. Drivers, however, highlighted
the need to improve the design of the system.

An Intelligent Curve Warning System was
proposed in [20]. The frequency of curve crashes
using a motorcycle is very high. In order to solve this
problem, the authors designed a system that gives the
riders support when approaching a curve. The
solution was tested in a simulator by 20 riders. The
drivers performed three rides: one without the system
(baseline) and two experimental rides using a version
of the Curve Warning system, one providing the
warnings by a force feedback throttle and one by a
haptic glove. The conclusions were that riding with
the Curve Warning system with the haptic glove
further reduces the critical curve events. Moreover,
the force feedback throttle required an increased
attention.

In [21], researchers presented the experimental
results on comfort and safety aspects of two
advanced rider assistance systems: the Front
Collision Warning (FCW) and the Lane Change
Support (LCS). They used three different machine
learning models (Hidden Markov Models, Support
Vector Machines and Artificial Neural Networks) in
order to get the riders' behavior patterns according to
the reaction time needed to avoid front collisions.
Finally, the paper describes the implementation of
the warning delivery strategy, that was implemented
in a HMI (Human Machine Interface) installed on



motorbikes. The authors conclude that the interface
should show understandable recommendations and
nonintrusive.

A model to compute the minimum distance needed
to swerve and avoid a collision against a fixed
obstacle was proposed in [22]. It is important to
compute and estimation for this distance in order to
develop autonomous emergency brake systems.
These systems help to reduce the severity of those
accidents. The proposal was validated by 12
volunteers riding a scooter equipped with a prototype
for autonomous emergency braking. These type of
solutions are called motorcycle autonomous
emergency braking system (MAEB). The results
show that the last-second swerving model represents
the lower Ilimit for a non-professional rider
performing a maneuver with a large scooter
swerving.

The feasibility and quantitative potential benefits
of a motorcycle autonomous emergency braking
(MAEB) system in crashes was assessed in [23].
They analyzed seven cases from the Swedish national
in-depth fatal database crash. They simulated
accidents taking into account the vehicles involved
and their precrash trajectories. The MAEB proved to
be beneficial in a large number of cases. However,
they highligthed that the solution was still not mature
for the motorciclye industry. MAEB comes from
automobiles. In the motorcycle is difficult define a

deceleration pattern due to the loss of stability in the
motobike.

2. Estimation of stress level on motorcyclists
2.1. Objective

Our objective is to build a model to predict the
upcomming values for the motorcyclist stress. The
proposal uses telemetry data from the motorcycle and
stress-related measures from physiological signals in
order to estimate near future stress. The prediction of
the upcoming stress levels in advance is the basis to
make recommendations in order to reduce stress or
avoid it (and therefore to mitigate stress induced
human errors while drivng a motorbike). On the other
hand, stress levels depend on many factors. We will
analyze our proposal under different traffic
conditions and levels of tiredness of the driver.

2.2. Description of proposal

Figure X shows a schema of the solution. We use a
mobile device to obtain the motorcycle telemetry.
The smartphone has a GPS sensor that allows us to
estimate variables such as: acceleration, deceleration,
positive
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kinetic energy, standard deviation of speed and
intensity of turning. This type of devices are ideal
due to their multiple sensors (GPS, accelerometer,
and gyroscope), network connections (WIFIL,
Bluetooth, and LTE ) and low cost.

On the other hand, we monitor the stress using a
heart rate strap. This device is connected to the phone
through bluetooth in order to send the heart rate
signal. Using this signal, we employ different
computations in order to estimate the level of stress
on the driver.

In addition, we have a knowledge base that
contains driving samples previously obtained by
other drivers or by the own motorcyclist . Stress is a
state that depends on many factors. We choose the
driving samples from the knowledge base taking into
account the traffic state and time. The aim is to
predict the upcoming stress accurately for a particular
driver in a particular situation.

Finally, a classification algorithm determines if the
driver is going to suffer stress in the near future using
as input the motorbike’s telemetry, the heart rate
signal and the filtered driving samples.

Input variables

Fig. 1. Schema of the proposal to anticipate the stress leve of motorcyclist



In this work, the input variables can be classified
into two groups: variables related to the stress level
and variables associated with the vehicle’s telemetry.

Measurements to estimate the stress levels

Heart Rate signals are employed as an indicator for
the Autonomic Nervous System (ANS) neuropathy
for normal, fatigued and drowsy states because the
ANS is influenced by the sympathetic nervous
system and parasympathetic nervous systems. This
indicator is not intrusive.

Among the different variables presented in the
existing literature we have used the Heart Rate
Variability (HRV) since it has been assessed as one
having a higher correlation with stress levels together
with Skin Conductivity (SC) [27].

One major limitation of the HRV signal in order to
estimate the level of stress and cognitive load is that
there are other factors such as the physical exercise
that also impact the measured values. Our experiment
has been designed to minimize the impact that factors
outside the study have on the measurements. In this
way, only data from drivers driving alone to work
and back home in similar situations each day (same
hour, same traffic conditions, with moderated
previous walking to get into the motorbike and a
relaxation period of 30 seconds before driving, with
the mobile phone muted, and without using any
navigation system) have been taken.

In addition, we analyze the driving behavior. The
combination of these two groups of variables allows
us to build a model to predict the stress on drivers
and passengers accurately.

We can consider Heart Rate Variability (HRV) as
a proxy variable to estimate the stress level using
computations from two different domains (as
captured in previous research studies such as [27]):
Time and Frequency domains. A time domain
analysis of the HRV signal implicates quantifying the
mean or standard deviation of RR intervals.
Frequency domain analysis means calculating the
power of the respiratory-dependent high frequency
and low frequency components of the HRV signal. In
our case, we are going to use measures on the time
domain. There are many HRV features that can be
defined on this domain such as: mean RR interval
(mRR), mean heart rate (mHR), standard deviation of
RR interval (SDRR) or standard deviation of heart
rate (SDHR).

We have chosen the following variables extracted
from data from real tests:

e Average HeartRate (b.p.m): This variables
has a high wvalue when the driver or
passenger experiences high levels of stress.

e Average RR (ms): It measures the time
between beat-beat (consecutive heartbeats).
Its value decreases when there is an event
that causes stress on the driver. On the
contrary, a high value means that the driver
is relaxed.

e Standard deviation of RR intervals (ms): the
variation between beat and beat (inter-beat
period) increases when the driving workload
is high.

e RR50: It is the number of pairs of
successive RRs that differ by more than 50
ms. A high number allows us to detect stress
situations.

Average acceleration (positive and negative):
The accelerations and decelerations capture reactions
to different stressors that have an impact on stress
levels and imply changes in the HRV signal such as a
decrease in the time between consecutive heartbeats.
The percentage depends on the intensity of these
accelerations. The sudden accelerations significantly
increase the driving workload. Figure 2 captures the
RR and the motobike speed when motorcyclist is
braking. The values have been normalized between 0
and 1 using the following equation:

a-min(4)

L ——— (1)

max(A)— min(4)

The RR value decreased by 18.23%. Figure 3
shows the results when the motorcyclist is
accelerating after a stop. In that case, the RR value is
also reduced by a 8.36%.

1 —
0,8 A)
0,6 N\
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Fig. 2. RR values while motorcyclist was braking.
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Fig. 3. RR values while motorcyclist was speeding up.

The current acceleration of the vehicle is
calculated based on the measured speed as follows:

— YiT Vi1
4= ti—ti—g (2)

In which v; represents the speed at the sample
number i, a; the estimated acceleration at that sample
and the derivative of the speed is estimated by
dividing the increment in speed by the time elapsed
between the consecutive samples i-1 and i
Motorcycle speed was obtained using the GPS data
from the system’s smartphone.

Standard deviation of motorbike speed: The
workload decreases when the motorcyclist is driving
at steady speed. High deviations of speed capture
reactions of the suject to different stressor that cause
stress to the driver. He or she has to do several tasks
at the same time. Figure 3 shows the RR values
obtained in two different cases by the same
motorcyclist. In the first case, the standard deviation
of motorbike speed was 1.97. In the second case, the
value was 16.38. We can observe that in the first
case the RR values are higher than in the second
case. In addition, the standard deviation of RR values
in the second scenario is higher than in the first
scenario. In conclusion, we can see that there is a
strong relationship between standard deviation of
motorcycle speed and the inter-beats time.
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Fig. 4. Comparison of RR values according to the standard
deviation of motorbike speed.

Positive Kinetic Energy: This variable measures
the aggressiveness of driving. Its value depends on
the intensity and frequency of the accelerations. If it
is high it means that the driver accelerated sharply
and frequently. This driving style has a negative
impact on the stress level. He or she has to make
faster decisions in order to avoid accidents.

The PKE is estimated over a period of time as
follows:

v 2
PKE = 2000 5 (3)

Where the sum is performed for the period
considered and d is the cumulated distance traveled
during this time

The intensity of turning: We detected during
testing that the tension increased in the majority of
the motorists when there were curves on the road.
The degree of impact depends on the road angle
(intensity of turning required).

The intensity of turning is estimated using the
following equation:

B 4)

TI, = cos 1 1L
L NI’

Where the numerator represents the dot product
between the average direction vectors in the last 5



seconds and the average direction vectors in the next
5 seconds and the denominator captures the norm of
such averaged vectors. The direction vectors are
calculated from the GPS coordinates. The average
over a period of 5 seconds is used to minimize the
impact of random errors in the GPS signal. In order
to eliminate the errors introduced at low speeds, a
threshold in the speed is used. This threshold has
been empirically evaluated and a value of 1 m/s has
been found to perform well and therefore selected for
the experiment.

2.3. Output

Table 1
RRMSS and pNN50 correlation coefficients

Previous Values | RRMSS | pNN50
Acceleration 0.6911 0.6180
Deceleration 0.7021 0.6678

PKE 0.6501 0.7180
std_speed 0.4451 0.7099
std_1r 0.3470 0.5612
pNN50 0.2125 0.4391

The output is the stress state in the next minute. In
order to label the driving samples, the HRV signal
has been translated into 2 different levels of cognitive
load: stressed or not stressed. As we saw previously,
there are several methods for measuring the stress
using the HRV signal.

Table I captures the correlation indexes between
the upcoming stress levels and the current values for
the independent variables that we will use for their
prediction. Upcoming stress levels are computed by
using two of the previously captured variables (the
RMSSD and the pNNS50).

We can observe that the motorcyclist behavior
significantly affects the values of future stress levels.
On the other hand, the previous stress levels do not
have a strong relationship with the upcoming stress.
The reason is that an unexpected action causes an
increment in the stress level. However, after this
increase the motorcyclist relaxes.

The PKE is the variable most correlated with
upcoming levels of stress. Analyzing the table, we
also observed that we get the best results when we
calculate the correlation in relation to the pNNS50.
Therefore, we have used this measure to classify the
driving samples.

3. Classification algorithms
3.1. Deep Learning

A deep-belief network (DBN) [21] is defined as
a stack of restricted Boltzmann machines (RBM), in
which each RBM layer communicates with both the
previous and subsequent layers. The nodes of any
single layer don’t communicate with each other
laterally. The end of DBN is a classifier. We employ
gradient-descent algorithm to revise the weight
matrix of the whole network. The error is propagated
in the opposite direction. Therefore, the parameters
of RBMs change slightly. DBN has the following
steps:

Layer-wise Unsupervised Learning: We train
the first RBM using the original data without the
labels (unsupervised) and fixing up the parameters of
this RBM. Then, the first layer configuration is
frozen. We train the second layer using the output of
the first layer. Finally, we get a DBN with several
layers, whose parameters are appropriate to extract
the features of data. This method avoids the
overfitting. In addition, we can take advantage of
unlabelled data.

Fine-Turning: We unfreeze all weights, and
train full DBN with supervised model (SoftMax
classifier) to fine-tune weights. Gradient-descent
algorithm is employed to update the weight matrix of
the whole network. This solution avoids drastic
changes because the error is propagated in the
opposite direction.

Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine are bipartite
graph with a layer of “hidden” neurons and a layer of
"visible" neurons, without connections between
neurons in the same layer. Each node represents a
random variable and each edge a dependency
between variables that connects.

We employ energy function (E) and probability
distribution to describe a RBM. The energy of a
configuration (pair of boolean vectors) (v,h) is
defined as:

E(w,h) = —Xiav; — X bjh; — X Xjviwi jh; (S)

where q; is the bias weight (offset) for the visible
unit v;, b; is the bias weight for the hidden unit h;,
and w; ; the weight associated with the connection
between hidden unit h; and visible unit v;.



Probability Distribution:

p(v,h) = e F@M (6)

where Z is a partition function defined as the
sum of e "M gver all possible configurations. The
aim is to ensure the probability distribution sums to
1.

Through summation we can get the marginal
distribution of visible layer v:

1 -
p(v) = ;T FCN

SoftMax Classifier
There are a set of training samples such as: {(x/,
v, (& ¥, &myM) Y € {12,..m}. The
classifier is used in order to estimate the probability
that x is a sample of j class. The activation function
is:

P(y=1|x,0) 691><X
P(y=2|x,0 0, XX
oGy =| OO = Le

Pa=klo) ] 7| o
Where Z =3 %™ is normalization factor.
The cost function to train the classifier is:

1 m yn ¢ ee;Cx(i)
J(6) = — | &i=1 Xi=1 1{y}og SN0}

In the equation, 1{y({) = j} is indicative
function, whose value is 1 when y(i) = j and 0 when
not. The aim is to minimize the cost function
adjusting the parameters. We employ gradient-
descent algorithm to make this task.

3.2. MultiLayer Perceptron

A multi-layer perceptron (MLP) [29] and the vehicle
telemetry obtained in real time are employed in order
to predict the driver behavior. This algorithm is an
artificial neural network that has multiple layers and
whose main advantage is to allow non-linearly-
separable problems. This type of algorithms can be
generalized. We can classify an element based on
other elements that have been previously classified
and which have the same characteristics.

Neural networks were proposed in the 1940,
when Warren McCulloch (a psychiatrist and
neuroanatomist) and Walter Pitts (a mathematician)

)

)

explored the computational capabilities of networks
made of very simple neurons [30].

Later, in 1943, [31] introduced the perceptron
(figure 10), the simplest form of a neural network.
The perceptron consists of a single neuron with
adjustable synaptic weights and a threshold
activation function. This proposal guaranteed the
convergence only if the problem was linearly
separable due to the basic properties of the
perceptron which separate entries into two outputs.

(7

Inputs

Weights Activation Function

Fig. 5. Perceptron Model

A multi-layer perceptron overcome many of
limitations of single-layer perceptron. However, there
were no effective training algorithms. This problem
was solved by [29]. They called the method
“backward propagation” and it is based on least
means square algorithm (LMS) [32].

The basic MLP structure consists of an input
layer, output layer and one or more hidden layers.
The number of layers determines the kind of problem
that we can solve. The single layer perceptron is
limited to calculating a single line of separation
between classes. On the other hand, a three layer
perceptron can produce arbitrarily shaped decision
regions. The single layer perceptron is limited to
calculating a single line of separation between
classes. On the other hand, a three layer perceptron
can produce arbitrarily shaped decision regions
(Kolmogorov theorem), and are capable of separating
any classes. Each layer has a set of neurons. The
number of neurons depends on the type of problem to
be solved. The neurons are connected with other
neurons using weighted connections.

The multilayer perceptron has the following
steps:

e Initialization of weights and bias. Usually
it is randomly done.

e Calculate the output of all neurons of the
neuronal network according to equation
(9). The output value of a neuron in layer



n is part of the input value from neurons
in layer n + 1.

y=Xiwx;— 0
)

where w; is the synaptic weight of the connection,
x; is the input value, 0 is a bias term that regulates the
degree of an activation to induce firing.

e The third step is to calculate the error in
order to minimize it. The training stage
on this type of algorithms is supervised. It
defines a set of pairs (Xi, Yi) training
patterns and an error function (10)
(difference between the desired output
and the value obtained). Once retrieved
the error, the connection weights are
updated (11) to minimize them.

1
E, = ¥p=1Ep = 2p=1(dp — 07)?
(10)

where E, is the total output error, Ej, is the output
error from neuron p, P is the number of neurons from
the last layer, OF is the output value from neuron p
on layer s, and d,, is the expected output

whle+1) = wh() — por
7]
an
where WiLj is the connection weight between
neuron i and j in layer L, Ey is the total error ,k is the
current iteration, and y is the learning factor.

The algorithm can be improved by introducing a
momentum term focused on accelerating the process,
changing the size of the neuronal network or
initializing the weight connections in a non-random
way.

3.3. Naive Bayes

Naive Bayes algorithm [106] is a probabilistic
classifier based on Bayes theorem assuming
independence between variables. This independence
is that gives the name of "Naive". For example, a
computer consists of CPU, GPU, RAM and hard
disk. A Naive Bayes Classifier considers each of
these features contributes independently to be
describing a computer, regardless of the presence or
absence of other features. This assumption makes

that this algorithm has a great performance, even
when the number of instances is very large.

To classify a driving sample in one of the two
classes (stress or without stress), we build a
probabilistic model. This model allows us to estimate
the posterior probability P(c|x) of different classes.
Applying Bayes Theorem [10], we obtain:

P(X|C)P(c)
P(x)

P(clx) = (12)

where P(c) can be estimated by counting the
proportion of class ¢ in the training set and P(x) can
be ignored since we are comparing different classes
on the same driving sample. Therefore, we have only
to calculate P(x|c). However, this probability is not
easy to be estimated because this requires the
estimation of the parameters of the joint-probabilities
of the features. As we see previously, Naive Bayes
considers that the variables are independent in order
to reduce the complexity. Although it is not always
right, it simplifies the classification task dramatically
because Creating a new document with the Word
templat

3.4. Support Vector Machines

Support Vector Machines (SVM) [28] constitute a
different approach for learning from data based on
the use of hyperplanes to split the data samples into
different classes. By using different kernels, samples
can be classfied using non-linear regions [29]. The
hyperplanes are defined by the following equation:

Xiwixp— 8=0
(13)

A hard margin and a soft margin approach can be
used to calculate the paramenters in the previous
equation. Soft margin techniques allow the algorithm
to find a solution in the case of misclassfied samples.
The idea is to find a hyperplane which makes the
distance to the nearnest samples from each class as
big as possible (highest gap). The generic expression
to minimize for the linear soft margin classification is
captured in the following equation:

[%Zimax (0'1 = yi(Zwxi; — 0)) ] *
CZ]- wyw, (14)

Where the sub-index “i” has been used to capture
the different data samples and the sub-index “j” to



implment the dot product for each m-dimensional
sample and the m-dimensional vector of coefficients
W. The value of y; represents 0 or 1 for the class of
each of the samples. The value of C controls the
importance of minimizing the misclassfied samples.

4. Validation of the proposal

In this section, the proposed prediction algorithm
is validated. We used a Nexus 6 in order to get the
driving samples. Nexus 6 has a 2.7 GHz quad-core
Snapdragon 805 processor with 3 GB of RAM, GPS
chipset Qualcomm IZat Gen8B, and Android 6.0.

A Polar H7 band was employed to record the HRV
signal. The band was paired with the smartphone
running an application implemented for the
experiment which recorded the HRV together with
GPS data and telemetry data such as the driving
speed.

We have analyzed three different scenarios. In the
first scenario, we show how accurately upcoming
levels of stress can be assessed based on recent levels
of stress, driving behavior and road shape when the
motorcyclist drives to their daily commute from
home to the workplace. In this case, the driver has
rested. However, the stress can be high if the rider
does not arrive on time to work.

In the second scenario, we capture the algorithm
response when rider drove from workplace to home.
In this case, the fatigue alters the heart rate signal.
Finally, the third scenario is dedicated to show how
the traffic conditions affects the stress level.

In order to conduct the tests, a driver used a
motorbike (kawasaki vn900 classicf) to travel an
urban route in Madrid (Spain). 22 different drives on
the same route have been used. Table 2 captures the
features of the motorcycle.

To make the stress prediction, we have analyzed 4
different algorithms to capture different families of
machine learning techniques: Naive Bayes, Support
Vector Machines (SVM), Multi-Layer Perceptron
(MLP), and Deep Learning. 10-fold cross technique
ws employed in order to make the validation of the
proposal.

Table 2

Features of a kawasaki vn900 classic

Feature Value
Engine 0.6911
Displacement 0.7021

Bore x Stroke 0.6501

std speed 0.4451
Overall Length 0.3470
Overall Width 0.2125
Overall Heigh

Fig. 4. Motorbike used on the tests.

4.1. Scenario 1 (Driving from home to workplace)

Tables 1, 2, and 3 capture the confusion matrix
obtained using the different classification algorithms.
In order to build the model, we employed a training
database that contained driving samples acquired on
the daily commute to work.

We can observe how the four algorithms obtained
similar results. Deep Learning algorithm is that it is
able to predict more accurately stress. This algorithm
works especially well for predicting stress when
really there is stress. However, it also predicts false
positives by 14%. Naive bayes is the algorithm that
gets worse results. In that case, the false positives
rate is 16%. On the other hand, both MLP and SVM
presented results similar. The total error rate (false
positives and false negatives) is 24% in both cases.

Table 3
Naive Bayes
Actual/Predicted Yes No
Yes 0.9 0.1
No 0.16 0.84
Table 4
Support Vector Machine
Actual/Predicted Yes No
Yes 0.88 0.12
No 0.12 0.88

Table 4



Multilayer Perceptron

Actual/Predicted Yes No
Yes 0.86 0.14
No 0.10 0.90
Table 5

Deep Learning

Actual/Predicted Yes No
Yes 0.92 0.08
No 0.14 0.86

Figure X shows the time to build the classification
model using the different algorithms. The time was
obtained running 10 times the algorithms on a PC
with the features shown in table 6. We can see that
Naive Bayes is the fastest. Deep Learning was the
algorithm that obtained more accurate results.
However, it is an slower (450 ms) than Naive Bayes
(1 ms). In this case, the algorithm Naive Bayes is
offering a better balance between time and accuracy
of the results. Multilayer Perceptron is faster (19 ms)
than Deep Learning and slower than Naive Bayes.

Table 6
PC Specification
Feature Value
Processor Intel Core i7-3520M (2.9 GHz
RAM 8 GB 1600 MHz DDR3
Hard Disk SSD SanDisk Ultra I1 240GB
[ON macOs 10.12
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Bayes Perceptron Vector Learning
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Fig. 2. Time to build the models using the classification
algorithms when rider drives from home to workplace

4.2. Scenario 2 (Driving from workplace to home)

Tables 12, 13, 14, and 15 capture the results
obtained using driving samples of the commute
between workplace and home. In this case, there
were significant differences between the tested
algorithms.

Naive Bayes presents a very low success rate. This
algorithm is only able to predict that the motorcyclist
will suffer stress by 72%. On the other hand, the
Deep Learning algorithm improves the accuracy
compared to the results obtained in the first scenario.

Deep Learning is a method that introduces a new
way of training multilayer networks. This new
technique allows us to discover the complex
relationships between variables. On the contrary,
Naive Bayes considers that the variables are
independent between itself, simplifying the model.
However, the tiredness of the motorcyclist after the
work increases the complexity for predicting
correctly the stress. The consequences are that Naive
Bayes is not an algorithm suitable in this case.

Finally, the MLP and SVM algorithms get similar
results. SVM anticipates the motorcyclist stress by
16% when there is no stress. Moreover, the false
positives rate is 12%. For the MLP algorithm, the
total error rate (false positives + false negatives) is
24%.

Table 7

Naive Bayes

Actual/Predicted Yes No
Yes 0.72 0.28
No 0.16 0.84

Table 8

Support Vector Machine

Actual/Predicted Yes No
Yes 0.84 0.16
No 0.12 0.88

Table 9

Multilayer Perceptron

Actual/Predicted Yes No
Yes 0.88 0.12
No 0.12 0.88

Table 10

Deep Learning

Actual/Predicted Yes No
Yes 1 0
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Fig. 2. Time to build the models using the classification
algorithms when rider drives from workplace to house

Figure X captures the time required to build
models using the proposed algorithms. Naives Bayes
is the fastest (13 ms). However, the success rate is
lower than the rest of the algorithms. SVM is
presents a more balanced results taking into account
the total error rate and execution time. Deep Learning
is the algorithm more slowly as it happened on the
first stage. This method is 94.87% slower than the
rest of algorithms

4.3. Scenario 3 (Driving under heavy traffic)

Tables 14, 15, 16 and 17 show the results obtained
under heavy traffic. The speed is decreased due to
this external factor. In this case, the sudden
accelerations and sudden decelerations also are
minimized, but their number increase. Figure X
compares the speed profile with and without traffic
heavy in the same road section. We can observe that
the number of accelerations and decelerations
increased by X% when the traffic was dense. In
addition, the sudden accelerations (positive and
negative) decreased by X %.

Analyzing the results of the confusion matrix, we
can see that Naive Bayes classified correctly the
stress level by 94%. In this situation, a significant
change in the value of any variable means stress in
the near future. For this reason Naive Bayes is the
most suitable algorithm. The success rate is high. In
addition, it is the algorithm that takes less time to
build the model. MLP predicted the stress level

correctly by 94%. However, this algorithm is 78.46%
slower.

SVM has a high false negative rate (18%). On the
contrary, Deep Learning got a high false positive rate
(16%). Furthermore, the time to build a classification
model is 91.33% greater than the others. Figure X
captures the execution times for each algorithm.

Table 11

Naive Bayes

Actual/Predicted Yes No
Yes 0.94 0.06
No 0.06 0.94
Table 12
Support Vector Machine
Actual/Predicted Yes No
Yes 0.82 0.18
No 0 1
Table 13
Multilayer Perceptron
Actual/Predicted Yes No
Yes 0.92 0.08
No 0.04 0.96
Table 14

Deep Learning

Actual/Predicted Yes No
Yes 0,98 0.02
No 0.16 0.84

0 — - —

Naive  Multilayer Support Deep
Bayes Perceptron Vector Learning
Machine

Fig. 2. Time to build the models using the classification
algorithms when rider drives from workplace to house

5. Conclusions
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