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Prediction of motorcyclist stress using the 
vehicle telemetry and road information 
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Abstract. The number of motorcycles on the road has increased in recent years. Although the total number of motorcycles is 
lower than the number of cars, the accident rate is much higher. A large number of these accidents are due to human errors. 
Stress is one of the main reasons behind human errors while driving. In this paper, we present a novel mechanism to predict 
upcoming values for stress levels based on current and past values for both the driving behavior and environmental factors. 
First, we analyze the relationship between stress levels and different variables that model the driving behavior (accelerations, 
decelerations, positive kinetic energy, standard deviation of speed, and road shape). Second, we study the accuracy of several 
machine learning algorithms (Support Vector Machine, Multilayer Perceptron, Naïve Bayes and Deep learning) when used to 
estimate the stress based on our input data. Finally, an experiment was conducted in a real environment. We considered four 
different scenarios: normal traffic, heavy traffic, tired motorcyclist, and rested motorcyclist. The results show that the proposal 
can estimate the upcoming stress with high accuracy. This algorithm could be used to develop driving assistants that 
recommend actions to smooth the current driving behavior in order to reduce the workload of the motorcyclist when high 
levels of upcoming stress are predicted.  
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1. Introduction

Motorcyclists are drivers who have accidents more
frequently. The percentage of these vehicles on the 
roads is small compared with the number of cars. 
However, they suffer a high proportion of fatal 
accidents. In Queensland in 2008 [1], the 
motorcycles were involved in a 20% of the road 
accidents. In Australia, motorcycle accidents account 
for 15% of all accidents. 

For this type of drivers, factors such as weather 
and road conditions, driver stress and the road 
topology have an important impact on safety. 
Motorcyclists have to pay attention to more risky 
situations than car drivers. These specific hazards can 
be classified into: 

 Roadway hazards such as debris,
unexpected speed bumps, uneven roadways
and potholes.

 Motorcycle-specific hazards such as traffic
appearing in a sharp turn.

Although motorcyclists are more exposed to 
accidents, the industry has not invested as much 
money in driving assistants that improve safety for 
them in comparison with those for automobiles. The 
majority of the proposals are still in an experimental 
stage and there is a lack for real tests. 

On the other hand, The Motorcycle Accidents In-
Depth Study (MAIDS) [3] concluded that human 
factors are the primary accident contributing factor in 
approximately 87.9% of all cases.  Stress is one of 
the causes of human errors. Stress degrades the 
cognitive capabilities of driver. 

Riding a motorbike is a task that requires a great 
physical and mental effort. Cognitive errors appear in 
highly cognitive demanding situations in which the 
cognitive load, as perceived by the driver, is high and 
the actions taken by the driver to handle those 
situations are in many occasions not appropriate. 

In the literature, there are many proposals on 
measuring and quantifying the driver’s cognitive load 
and stress levels. There are two major types of 
proposals to measure the stress: 

 Questionnaires: They allow us to assess a
large part of the population. However, the
result is based on the subjective perception
of the participant.

 Physiological signals: They allow us to
objectively quantify the stress levels.
However, they require the use of sensors,
increasing the cost and reducing the number
of possible participants. In addition, these

solutions can cause discomfort if they are 
intrusive or heavy.  

Many or the challenges for developping driving 
assistants for motorcyclists have been partially 
solved in recent years. One of them is how to present 
the information to the driver during a ride without 
distracting them. Devices such as smartphones, GPS 
or heads-up displays have been successfully used to 
mitigate these barriers. 

In addition, driving assistants require information 
about the driver and the driving  in order to provide 
appropriate recommendations. This information is 
extracted from the data obtained from user and 
environmental sensors. In this context, the wereable 
sensors have managed to minimize the driver’s 
discomfort. 

Currently, a single wristband can monitor several 
physiological signals.  For example, the Empatica 
E4[4] wristband is an unobtrusive, wearable, 
lightweight, wireless, multisensory signal acquisition 
device. It has four inbuilt sensors for continuously 
reporting Galvanic Skin Response (GSR), 
Photoplethysmograph (PPG) data, Skin Temperature 
(ST), and Tri-Axial Acceleration (ACC). It also 
reports Inter-Beat Interval (IBI) at discrete intervals. 

In conclusion, motorcycling is a new sector for the 
driving assitants. Existing solutions are very scarce 
and its state is very premature. These proposals are 
limited to provide generic recommendations without 
taking into account the mental state of the 
motorcyclist. An example is the proposed system in 
[5], where the recommended speed is indicated by 
speed limit signs. However, the proposal does not 
consider the current cognitive ability of the driver. 

In this work we propose an algorithm to predict 
stress based in Deep Learning and the motorbyke’s 
telemetry. The proposal is evaluated under different 
conditions regarding the road state, the road type 
(urban or motorway ), and the previous stress levels. 
This algorithm can be used to build a driving 
assistant that recommends an optimal vehicle speed. 
This recommended speed will minimize the driving 
workload and the speed fluctuations. 

1.1. State of the art 

In this subsection, we are going to describe the 
most relevant work relating to the stress detection 
and solutions to improve the driving of the 
motorcyclists. 



Stress Detection 
Sely [6] was the first researcher to refer to the 

term “stress” in a biological context. According to 
this author, the stress includes an inappropriate 
physiological response to any kind of demand [7]. 
The  term “stress” refers to the human condition and 
the term “stressor” to the stimulus causing it. 
Currently, there are many definitions of stress. 
However, all authors agree in that the stress can have 
a negative effect in the intelligence, health and 
making decisions hability [8] [9] [10]. 

In [11], Itoh et al., data from electrocardiogram 
(ECG) signals as well as head rotational angles, pupil 
diameters, and eye blinking, measured with a 
faceLAB device installed in a driving simulator, are 
used to calculate the driving workload. In the study 
captured in [12], the driver’s workload was estimated 
from meassured lane changing behaviour, and the 
measurements were taken through simulation test 
driving. In [13], the authors proposed a multiple 
linear regression equation to estimate the driving 
workload. The model employs variables such as: 
speed, steering angle, turn signal, and acceleration. 

In [14] the authors propose a method for 
detecting stress based on facial expressions. They 
employed a near-infrared (NIR) camera to capture 
the near frontal view of the driver’s face.  Tracking 
face is made using a supervised descent method 
(SDM) [15].  In [16], the research analyzed the 
suitability of the heart rate variability (HRV) to 
measure the driving workload. The results conclude 
that the HRV could be used as a good workload 
indicator, although it is also affected by many other 
factors that may have an influence on it.  

In [17], the authors presented a solution to 
evaluate the emotional states (high stress, low stress, 
disappointment, and euphoria) of car-racing drivers. 
Support vector machines (SVMs) and adaptive 
neuro-fuzzy inference system (ANFIS) were used for 
the classification The proposed approach performs an 
assessment of the emotional states using facial 
electromyograms, electrocardiogram, respiration, and 
electro dermal activity. The system was validated by 
using data obtained from ten subjects in simulated 
racing conditions. The maximum predictive rate was 
79.3% using support vector machines (SVM). 

As we have seen above, the proposals to detect 
stress are getting very promising results. However, 
the stress prediction is a more complex task. Firstly, 
it is difficult to label stress because the prerceived 
effects of events change depending on the user 
profile and their current state. In addition, drivers 
tend to forget about stress situations when manually 

labeling stressful regions after driving. On the other 
hand, the physiological signals are very sensitive to 
noise and are only proxies to assess human mental 
states. Finally, combining all the data collected from 
different sensors is not a trivial task. 
 
Improving the motorcyclist safety 

 We find different solutions to improve safety in 
the  motorbikes’ field. Many of these proposals are 
based on systems developed inside the automobile 
industry. However, the motorcycles present some 
special features that hinder its implementation. 
According to [18], the advanced rider assistance 
systems could reduce accidents up to 40%. 

Authors in [19] present an Intersection Support 
System for motorcycles. Warning feedback is given 
to the rider by an appropriate combination of human–
machine interface elements, such as a haptic throttle, 
a vibrating glove, and a visual display. The proposal 
was validated in a simulator with 20 riders. The 
simulated test track had a length of about 10 km, 
consisting of 6.5 km on a rural road and 3.5 km in an 
urban scenario, and including a total of 26 
intersections. The traffic volume was kept low. The 
results were positive. Drivers, however, highlighted 
the need to improve the design of the system. 

An Intelligent Curve Warning System was 
proposed in [20]. The frequency of curve crashes 
using a motorcycle is very high. In order to solve this 
problem, the authors designed a system that gives the 
riders support when approaching a curve. The 
solution was tested in a simulator by 20 riders. The 
drivers performed three rides: one without the system 
(baseline) and two experimental rides using a version 
of the Curve Warning system, one providing the 
warnings by a force feedback throttle and one by a 
haptic glove. The conclusions were that riding with 
the Curve Warning system with the haptic glove 
further reduces the critical curve events. Moreover, 
the force feedback throttle required an increased 
attention. 

In [21], researchers presented the experimental 
results on comfort and safety aspects of two 
advanced rider assistance systems: the Front 
Collision Warning (FCW) and the Lane Change 
Support (LCS). They used three different machine 
learning models (Hidden Markov Models, Support 
Vector Machines and Artificial Neural Networks) in 
order to get the riders' behavior patterns according to 
the reaction time needed to avoid front collisions. 
Finally, the paper describes the implementation of 
the warning delivery strategy, that was implemented 
in a HMI (Human Machine Interface) installed on 



motorbikes. The authors conclude that the interface 
should show understandable recommendations and 
nonintrusive. 

A model to compute the minimum distance needed 
to swerve and avoid a collision against a fixed 
obstacle was proposed in [22]. It is important to 
compute and estimation for this distance in order to 
develop autonomous emergency brake systems. 
These systems help to reduce the severity of those 
accidents. The proposal was validated by 12 
volunteers riding a scooter equipped with a prototype 
for autonomous emergency braking. These type of 
solutions are called motorcycle autonomous 
emergency braking system (MAEB). The results 
show that the last-second swerving model represents 
the lower limit for a non-professional rider 
performing a maneuver with a large scooter 
swerving. 

The feasibility and quantitative potential benefits 
of a motorcycle autonomous emergency braking 
(MAEB) system in crashes was assessed in [23]. 
They analyzed seven cases from the Swedish national 
in-depth fatal database crash. They simulated 
accidents taking into account the vehicles involved 
and their precrash trajectories. The MAEB proved to 
be beneficial in a large number of cases. However, 
they highligthed that the solution was still not mature 
for the motorciclye industry. MAEB comes from 
automobiles. In the motorcycle is difficult define a 

deceleration pattern due to the loss of stability in the 
motobike. 

2. Estimation of stress level on motorcyclists 

2.1. Objective 

Our objective is to build a model to predict the 
upcomming values for the motorcyclist stress. The 
proposal uses telemetry data from the motorcycle and 
stress-related measures from physiological signals in 
order to estimate near future stress. The prediction of 
the upcoming stress levels in advance is the basis to 
make recommendations in order to reduce stress or 
avoid it (and therefore to mitigate stress induced 
human errors while drivng a motorbike). On the other 
hand, stress levels depend on many factors. We will 
analyze our proposal under different traffic 
conditions and levels of tiredness of the driver.  

2.2. Description of proposal 

Figure X shows a schema of the solution. We use a 
mobile device to obtain the motorcycle telemetry. 
The smartphone has a GPS sensor that allows us to 
estimate variables such as: acceleration, deceleration, 
positive  



kinetic energy, standard deviation of speed and 
intensity of turning. This type of devices are ideal 
due to their multiple sensors (GPS, accelerometer, 
and gyroscope), network connections (WIFI, 
Bluetooth, and LTE ) and low cost.  

On the other hand, we monitor the stress using a 
heart rate strap. This device is connected to the phone 
through bluetooth in order to send the heart rate 
signal. Using this signal, we employ different 
computations in order to estimate the level of stress 
on the driver.  

In addition, we have a knowledge base that 
contains driving samples previously obtained by 
other drivers or by the own motorcyclist . Stress is a 
state that depends on many factors. We choose the 
driving samples from the knowledge base taking into 
account the traffic state and time. The aim is to 
predict the upcoming stress accurately for a particular 
driver in a particular situation. 

Finally, a classification algorithm determines if the 
driver is going to suffer stress in the near future using 
as input the motorbike’s telemetry, the heart rate 
signal and the filtered driving samples. 
 
Input variables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Schema of the proposal to anticipate the stress leve of motorcyclist 
 



In this work, the input variables can be classified 
into two groups: variables related to the stress level 
and variables associated with the vehicle’s telemetry. 

 
Measurements to estimate the stress levels 
Heart Rate signals are employed as an indicator for 

the Autonomic Nervous System (ANS) neuropathy 
for normal, fatigued and drowsy states because the 
ANS is influenced by the sympathetic nervous 
system and parasympathetic nervous systems. This 
indicator is not intrusive.  

Among the different variables presented in the 
existing literature we have used the Heart Rate 
Variability (HRV) since it has been assessed as one 
having a higher correlation with stress levels together 
with Skin Conductivity (SC) [27].  

One major limitation of the HRV signal in order to 
estimate the level of stress and cognitive load is that 
there are other factors such as the physical exercise 
that also impact the measured values. Our experiment 
has been designed to minimize the impact that factors 
outside the study have on the measurements. In this 
way, only data from drivers driving alone to work 
and back home in similar situations each day (same 
hour, same traffic conditions, with moderated 
previous walking to get into the motorbike and a 
relaxation period of 30 seconds before driving, with 
the mobile phone muted, and without using any 
navigation system) have been taken.  

In addition, we analyze the driving behavior. The 
combination of these two groups of variables allows 
us to build a model to predict the stress on drivers 
and passengers accurately. 

We can consider Heart Rate Variability (HRV) as 
a proxy variable to estimate the stress level using 
computations from two different domains (as 
captured in previous research studies such as [27]): 
Time and Frequency domains. A time domain 
analysis of the HRV signal implicates quantifying the 
mean or standard deviation of RR intervals. 
Frequency domain analysis means calculating the 
power of the respiratory-dependent high frequency 
and low frequency components of the HRV signal. In 
our case, we are going to use measures on the time 
domain. There are many HRV features that can be 
defined on this domain such as: mean RR interval 
(mRR), mean heart rate (mHR), standard deviation of 
RR interval (SDRR) or standard deviation of heart 
rate (SDHR). 

We have chosen the following variables extracted 
from data from real tests: 

 Average HeartRate (b.p.m): This variables 
has a high value when the driver or 
passenger experiences high levels of stress. 

 Average RR (ms): It measures the time 
between beat-beat (consecutive heartbeats). 
Its value decreases when there is an event 
that causes stress on the driver. On the 
contrary, a high value means that the driver 
is relaxed. 

 Standard deviation of RR intervals (ms): the 
variation between beat and beat (inter-beat 
period) increases when the driving workload 
is high. 

 RR50: It is the number of pairs of 
successive RRs that differ by more than 50 
ms. A high number allows us to detect stress 
situations. 

 
Average acceleration (positive and negative): 

The accelerations and decelerations capture reactions 
to different stressors that have an impact on stress 
levels and imply changes in the HRV signal such as a 
decrease in the time between consecutive heartbeats. 
The percentage depends on the intensity of these 
accelerations. The sudden accelerations significantly 
increase the driving workload. Figure 2 captures the 
RR and the motobike speed when motorcyclist is 
braking. The values have been normalized between 0 
and 1 using the following equation: 

 

 𝑁 =
 ( )

 ( )   ( )
  (1) 

 
The RR value decreased by 18.23%.  Figure 3 

shows the results when the motorcyclist is 
accelerating after a stop. In that case, the RR value is 
also reduced by a 8.36%.  

 

 
  

Fig. 2. RR values while motorcyclist was braking. 
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Fig. 3. RR values while motorcyclist was speeding up. 
 
The current acceleration of the vehicle is 

calculated based on the measured speed as follows: 
 
 𝑎 =  

 

 
  (2) 

In which vi represents the speed at the sample 
number i, ai the estimated acceleration at that sample 
and the derivative of the speed is estimated by 
dividing the increment in speed by the time elapsed 
between the consecutive samples i-1 and i. 
Motorcycle speed was obtained using the GPS data 
from the system’s smartphone.  

Standard deviation of motorbike speed: The 
workload decreases when the motorcyclist is driving 
at steady speed. High deviations of speed capture 
reactions of the suject to different stressor that cause 
stress to the driver. He or she has to do several tasks 
at the same time. Figure 3 shows the RR values 
obtained in two different cases by the same 
motorcyclist. In the first case, the standard deviation 
of motorbike speed  was 1.97. In the second case, the 
value was 16.38.  We can observe that in the first 
case the RR values are higher than in the second 
case. In addition, the standard deviation of RR values 
in the second scenario is higher than in the first 
scenario. In conclusion, we can see that there is a 
strong relationship between standard deviation of 
motorcycle speed and the inter-beats time.  

 
 

 
 

Fig. 4. Comparison of RR values according to the standard 
deviation of motorbike speed. 

Positive Kinetic Energy: This variable measures 
the aggressiveness of driving. Its value depends on 
the intensity and frequency of the accelerations. If it 
is high it means that the driver accelerated sharply 
and frequently. This driving style has a negative 
impact on the stress level. He or she has to make 
faster decisions in order to avoid accidents. 

The PKE is estimated over a period of time as 
follows: 

   

𝑃𝐾𝐸 =  
∑(  )

;  𝑣 >   𝑣   (3)

   
 
Where the sum is performed for the period 

considered and d is the cumulated distance traveled 
during this time 

 
The intensity of turning: We detected during 

testing that the tension increased in the majority of 
the motorists when there were curves on the road. 
The degree of impact depends on the road angle 
(intensity of turning required).  

 
The intensity of turning is estimated using the 

following equation: 
 

 𝑇𝐼 = cos
∙

‖ ‖‖ ‖
 ; 𝑣 > 𝑡ℎ  (4) 

 
 Where the numerator represents the dot product 

between the average direction vectors in the last 5 
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seconds and the average direction vectors in the next 
5 seconds and the denominator captures the norm of 
such averaged vectors. The direction vectors are 
calculated from the GPS coordinates. The average 
over a period of 5 seconds is used to minimize the 
impact of random errors in the GPS signal. In order 
to eliminate the errors introduced at low speeds, a 
threshold in the speed is used. This threshold has 
been empirically evaluated and a value of 1 m/s has 
been found to perform well and therefore selected for 
the experiment.  
 

2.3. Output 

Table 1 

RRMSS and pNN50 correlation coefficients 

Previous Values RRMSS pNN50 
Acceleration 0.6911 0.6180 
Deceleration 0.7021 0.6678 

PKE 0.6501 0.7180 
std_speed 0.4451 0.7099 

std_rr 0.3470 0.5612 
pNN50 0.2125 0.4391 

 
The output is the stress state in the next  minute. In 

order to label the driving samples, the HRV signal 
has been translated into 2 different levels of cognitive 
load: stressed or not stressed. As we saw previously, 
there are several methods for measuring the stress 
using the HRV signal.  

Table I captures the correlation indexes between 
the upcoming stress levels and the current values for 
the independent variables that we will use for their 
prediction. Upcoming stress levels are computed by 
using two of the previously captured variables (the 
RMSSD and the pNN50).  

We can observe that the motorcyclist behavior 
significantly affects the values of future stress levels. 
On the other hand, the previous stress levels do not 
have a strong relationship with the upcoming stress. 
The reason is that an unexpected action causes an 
increment in the stress level. However, after this 
increase the motorcyclist relaxes.  

The PKE is the variable most correlated with 
upcoming levels of stress. Analyzing the table, we 
also observed that we get the best results when we 
calculate the correlation in relation to the pNN50. 
Therefore, we have used this measure to classify the 
driving samples. 

 

3. Classification algorithms 

3.1. Deep Learning   

A deep-belief network (DBN) [21] is defined as 
a stack of restricted Boltzmann machines (RBM), in 
which each RBM layer communicates with both the 
previous and subsequent layers. The nodes of any 
single layer don’t communicate with each other 
laterally. The end of DBN is a classifier. We employ 
gradient-descent algorithm to revise the weight 
matrix of the whole network. The error is propagated 
in the opposite direction. Therefore, the parameters 
of RBMs change slightly. DBN has the following 
steps: 

Layer-wise Unsupervised Learning: We train 
the first RBM using the original data without the 
labels (unsupervised) and fixing up the parameters of 
this RBM. Then, the first layer configuration is 
frozen. We train the second layer using the output of 
the first layer. Finally, we get a DBN with several 
layers, whose parameters are appropriate to extract 
the features of data. This method avoids the 
overfitting. In addition, we can take advantage of 
unlabelled data. 

Fine-Turning: We unfreeze all weights, and 
train full DBN with supervised model (SoftMax 
classifier) to fine-tune weights. Gradient-descent 
algorithm is employed to update the weight matrix of 
the whole network. This solution avoids drastic 
changes because the error is propagated in the 
opposite direction.  
 
Restricted Boltzmann Machine (RBM) 

Restricted Boltzmann Machine are bipartite 
graph with a layer of “hidden” neurons and a layer of 
"visible" neurons, without connections between 
neurons in the same layer. Each node represents a 
random variable and each edge a dependency 
between variables that connects. 

We employ energy function (E) and probability 
distribution to describe a RBM. The energy of a 
configuration (pair of boolean vectors) (v,h) is 
defined as: 

 
 𝐸(𝑣, ℎ) =  − ∑ 𝑎 𝑣 − ∑ 𝑏 ℎ − ∑ ∑ 𝑣 𝑤 , ℎ   (5) 

where 𝑎  is the bias weight (offset) for the visible 
unit 𝑣 , 𝑏  is the bias weight for the hidden unit ℎ , 
and 𝑤 ,  the weight associated with the connection 
between hidden unit ℎ  and visible unit 𝑣 .    



Probability Distribution: 

 𝑝(𝑣, ℎ) =  𝑒 ( , )  (6) 

where Z is a partition function defined as the 
sum of 𝑒 ( , ) over all possible configurations. The 
aim is to ensure the probability distribution sums to 
1. 

Through summation we can get the marginal 
distribution of visible layer 𝒗: 

 

 𝑝(𝑣) =  ∑ 𝑒 ( , )    (7) 

 
SoftMax Classifier 

There are a set of training samples such as: {(x1, 
y1), (x2, y2),…,(xm,ym)}, yi ∈ {1,2,…m}.  The 
classifier is used in order to estimate the probability 
that x is a sample of j class.  The activation function 
is: 

 

 ℎ (𝑥) =

( | , )
(  | , )

…
𝑃(𝑦 = 𝑘 |𝑥, 𝜃) 

=  

𝑒 ×

𝑒 ×

…
𝑒 ×

   (8) 

 
Where 𝑍 = ∑ 𝑒 ×  is normalization factor. 
 

The cost function to train the classifier is: 
 

 𝐽(𝜃) =  −  ∑ ∑ 1 𝑦( 𝑙𝑜𝑔
( )

∑ ( )
  (9) 

 
In the equation, 1{𝑦(𝑖) = 𝑗} is indicative 

function, whose value is 1 when 𝑦(𝑖) = 𝑗 and 0 when 
not. The aim is to minimize the cost function 
adjusting the parameters. We employ gradient-
descent algorithm to make this task.  

3.2. MultiLayer Perceptron 

A multi-layer perceptron (MLP) [29] and the vehicle 
telemetry obtained in real time are employed in order 
to predict the driver behavior. This algorithm is an 
artificial neural network that has multiple layers and 
whose main advantage is to allow non-linearly-
separable problems. This type of algorithms can be 
generalized. We can classify an element based on 
other elements that have been previously classified 
and which have the same characteristics. 

Neural networks were proposed in the 1940, 
when Warren McCulloch (a psychiatrist and 
neuroanatomist) and Walter Pitts (a mathematician) 

explored the computational capabilities of networks 
made of very simple neurons [30].  

Later, in 1943, [31] introduced the perceptron 
(figure 10), the simplest form of a neural network. 
The perceptron consists of a single neuron with 
adjustable synaptic weights and a threshold 
activation function. This proposal guaranteed the 
convergence only if the problem was linearly 
separable due to the basic properties of the 
perceptron which separate entries into two outputs. 
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Fig. 5. Perceptron Model 
 
A multi-layer perceptron overcome many of 

limitations of single-layer perceptron. However, there 
were no effective training algorithms. This problem 
was solved by [29]. They called the method 
“backward propagation” and it is based on least 
means square algorithm (LMS) [32].  

The basic MLP structure consists of an input 
layer, output layer and one or more hidden layers. 
The number of layers determines the kind of problem 
that we can solve. The single layer perceptron is 
limited to calculating a single line of separation 
between classes. On the other hand, a three layer 
perceptron can produce arbitrarily shaped decision 
regions. The single layer perceptron is limited to 
calculating a single line of separation between 
classes. On the other hand, a three layer perceptron 
can produce arbitrarily shaped decision regions 
(Kolmogorov theorem), and are capable of separating 
any classes. Each layer has a set of neurons. The 
number of neurons depends on the type of problem to 
be solved. The neurons are connected with other 
neurons using weighted connections. 

The multilayer perceptron has the following 
steps: 

 Initialization of weights and bias. Usually 
it is randomly done. 

 Calculate the output of all neurons of the 
neuronal network according to equation 
(9). The output value of a neuron in layer 



n is part of the input value from neurons 
in layer n + 1. 

 
𝑦 =  ∑ 𝑤 𝑥 −  𝜃     

              (9) 
 
where wi is the synaptic weight of the connection, 

xi is the input value, 𝜃 is a bias term that regulates the 
degree of an activation to induce firing.  

 The third step is to calculate the error in 
order to minimize it. The training stage 
on this type of algorithms is supervised. It 
defines a set of pairs (Xi, Yi) training 
patterns and an error function (10) 
(difference between the desired output 
and the value obtained). Once retrieved 
the error, the connection weights are 
updated (11) to minimize them. 

 

 𝐸 =  ∑ 𝐸 =  ∑ (𝑑 −  𝑂 )

       (10) 
   
where  𝐸  is the total output error, 𝐸  is the output 

error from neuron p, P is the number of neurons from 
the last layer, 𝑂  is the output value from neuron p 
on layer s, and 𝑑  is the expected output 

 

 𝑤 (𝑘 + 1) =  𝑤 (𝑘) −  𝜇                   

(11) 
where 𝑤  is the connection weight  between 

neuron i and  j in layer L, 𝐸  is the total error ,k is the 
current iteration, and 𝜇 is the learning factor.  

 
The algorithm can be improved by introducing a 

momentum term focused on accelerating the process, 
changing the size of the neuronal network or 
initializing the weight connections in a non-random 
way. 

3.3. Naïve Bayes 

Naïve Bayes algorithm [106] is a probabilistic 
classifier based on Bayes theorem assuming 
independence between variables. This independence 
is that gives the name of "Naive". For example, a 
computer consists of CPU, GPU, RAM and hard 
disk. A Naïve Bayes Classifier considers each of 
these features contributes independently to be 
describing a computer, regardless of the presence or 
absence of other features. This assumption makes 

that this algorithm has a great performance, even 
when the number of instances is very large. 

To classify a driving sample in one of the two 
classes (stress or without stress), we build a 
probabilistic model. This model allows us to estimate 
the posterior probability 𝑃(𝑐|𝑥) of different classes. 
Applying Bayes Theorem [10], we obtain: 

 

 𝑃(𝑐|𝑥) =  
(𝑥|𝑐) ( )

( )
  (12) 

 
where 𝑃(𝑐)  can be estimated by counting the 

proportion of class c in the training set and 𝑃(𝑥) can 
be ignored since we are comparing different classes 
on the same driving sample. Therefore, we have only 
to  calculate 𝑃(𝑥|𝑐). However, this probability is not 
easy to be estimated because this requires the 
estimation of the parameters of the joint-probabilities 
of the features. As we see previously, Naïve Bayes 
considers that the variables are independent in order 
to reduce the complexity. Although it is not always 
right, it simplifies the classification task dramatically 
because Creating a new document with the Word 
templat 

3.4. Support Vector Machines 

Support Vector Machines (SVM) [28] constitute a 
different approach for learning from data based on 
the use of hyperplanes to split the data samples into 
different classes. By using different kernels, samples 
can be classfied using non-linear regions [29]. The 
hyperplanes are defined by the following equation: 

 
∑ 𝑤 𝑥 −  𝜃 = 0              

(13) 
 
A hard margin and a soft margin approach can be 

used to calculate the paramenters in the previous 
equation. Soft margin techniques allow the algorithm 
to find a solution in the case of misclassfied samples. 
The idea is to find a hyperplane which makes the 
distance to the nearnest samples from each class as 
big as possible (highest gap). The generic expression 
to minimize for the linear soft margin classification is 
captured in the following equation: 

 

∑ max 0, 1 − 𝑦 ∑ 𝑤 𝑥 −  𝜃 +

 𝐶 ∑ 𝑤 𝑤               (14) 
 
Where the sub-index “i” has been used to capture 

the different data samples and the sub-index “j” to 



implment the dot product for each m-dimensional 
sample and the m-dimensional vector of coefficients 
𝑤. The value of 𝑦  represents 0 or 1 for the class of 
each of the samples. The value of C controls the 
importance of minimizing the misclassfied samples. 

 

4. Validation of the proposal 

In this section, the proposed prediction algorithm 
is validated. We used a Nexus 6 in order to get the 
driving samples. Nexus 6 has a 2.7 GHz quad-core 
Snapdragon 805 processor with 3 GB of RAM, GPS 
chipset Qualcomm IZat Gen8B, and Android 6.0.  

A Polar H7 band was employed to record the HRV 
signal. The band was paired with the smartphone 
running an application implemented for the 
experiment which recorded the HRV together with 
GPS data and telemetry data such as the driving 
speed. 

We have analyzed three different scenarios. In the 
first scenario, we show how accurately upcoming 
levels of stress can be assessed based on recent levels 
of stress, driving behavior and road shape when the 
motorcyclist drives to their daily commute from 
home to the workplace. In this case, the driver has 
rested. However, the stress can be high if the rider 
does not arrive on time to work.  

In the second scenario, we capture the algorithm 
response when rider drove from workplace to home. 
In this case, the fatigue alters the heart rate signal. 
Finally, the third scenario is dedicated to show how 
the traffic conditions affects the stress level.  

In order to conduct the tests, a driver used a 
motorbike (kawasaki vn900 classicf) to travel an 
urban route in Madrid (Spain). 22 different drives on 
the same route have been used. Table 2 captures the 
features of the motorcycle.   

To make the stress prediction, we have analyzed 4 
different algorithms to capture different families of 
machine learning techniques: Naïve Bayes, Support 
Vector Machines (SVM), Multi-Layer Perceptron 
(MLP), and Deep Learning. 10-fold cross technique 
ws employed in order to make the validation of the 
proposal.   
 

Table 2 

Features of a kawasaki vn900 classic 

Feature Value 
Engine 0.6911 

Displacement 0.7021 

Bore x Stroke 0.6501 
std_speed 0.4451 

Overall Length 0.3470 
Overall Width 0.2125 
Overall Heigh  

 
 

 
 

Fig. 4. Motorbike used on the tests. 
 

4.1. Scenario 1 (Driving from home to workplace) 

Tables 1, 2, and 3 capture the confusion matrix 
obtained using the different classification algorithms. 
In order to build the model, we employed a training 
database that contained driving samples acquired on 
the daily commute to work.  

We can observe how the four algorithms obtained 
similar results. Deep Learning algorithm is that it is 
able to predict more accurately stress. This algorithm 
works especially well for predicting stress when 
really there is stress. However, it also predicts false 
positives by 14%. Naive bayes is the algorithm that 
gets worse results. In that case, the false positives 
rate is 16%. On the other hand, both MLP and SVM 
presented results similar. The total error rate (false 
positives and false negatives) is 24% in both cases. 

 
 

Table 3 

Naïve Bayes 

Actual/Predicted Yes No 
Yes 0.9 0.1 
No 0.16 0.84 

 
Table 4 

Support Vector Machine 

Actual/Predicted Yes No 
Yes 0.88 0.12 
No 0.12 0.88 

 
Table 4 



Multilayer Perceptron 

Actual/Predicted Yes No 
Yes 0.86 0.14 
No 0.10 0.90 

 
 

Table 5 

Deep Learning 

Actual/Predicted Yes No 
Yes 0.92 0.08 
No 0.14 0.86 

 
Figure X shows the time to build the classification 

model using the different algorithms. The time was 
obtained running 10 times the algorithms on a PC 
with the features shown in table 6.  We can see that 
Naïve Bayes is the fastest. Deep Learning was the 
algorithm that obtained more accurate results. 
However, it is an slower (450 ms) than Naïve Bayes 
(1 ms). In this case, the algorithm Naïve Bayes is 
offering a better balance between time and accuracy 
of the results. Multilayer Perceptron is faster (19 ms) 
than Deep Learning and slower than Naïve Bayes.  

 
Table 6 

PC Specification  

Feature Value 
Processor Intel Core i7-3520M (2.9 GHz 

RAM 8 GB 1600 MHz DDR3 
Hard Disk SSD SanDisk Ultra II 240GB 

OS macOs 10.12 

 
 

 
 

Fig. 2. Time to build the models  using the classification 
algorithms when rider drives from home to workplace 

 

4.2. Scenario 2 (Driving from workplace to home) 

Tables 12, 13, 14, and 15 capture the results 
obtained using driving samples of the commute 
between workplace and home. In this case, there 
were significant differences between the tested 
algorithms. 

Naïve Bayes presents a very low success rate. This 
algorithm is only able to predict that the motorcyclist 
will suffer stress by 72%. On the other hand, the 
Deep Learning algorithm improves the accuracy 
compared to the results obtained in the first scenario.  

Deep Learning is a method that introduces a new 
way of training multilayer networks. This new 
technique allows us to discover the complex 
relationships between variables. On the contrary, 
Naïve Bayes considers that the variables are 
independent between itself, simplifying the model. 
However, the tiredness of the motorcyclist after the 
work increases the complexity for predicting 
correctly the stress. The consequences are that NaÏve 
Bayes is not an algorithm suitable in this case. 

Finally, the MLP and SVM algorithms get similar 
results. SVM anticipates the motorcyclist stress  by 
16% when there is no stress. Moreover, the false 
positives rate is 12%. For the MLP algorithm, the 
total error rate (false positives + false negatives) is 
24%. 

 
Table 7 

Naïve Bayes 

Actual/Predicted Yes No 
Yes 0.72 0.28 
No 0.16 0.84 

 
Table 8 

Support Vector Machine 

Actual/Predicted Yes No 
Yes 0.84 0.16 
No 0.12 0.88 

 
Table 9 

Multilayer Perceptron 

Actual/Predicted Yes No 
Yes 0.88 0.12 
No 0.12 0.88 

 
 

Table 10 

Deep Learning 

Actual/Predicted Yes No 
Yes 1 0 
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No 0.08 0.92 

 

Fig. 2. Time to build the models  using the classification 
algorithms when rider drives from workplace to house 

 
 
Figure X captures the time required to build 

models using the proposed algorithms. Naïves Bayes 
is the fastest (13 ms). However, the success rate is 
lower than the rest of the algorithms. SVM is 
presents a more balanced results taking into account 
the total error rate and execution time. Deep Learning 
is the algorithm more slowly as it happened on the 
first stage. This method is 94.87% slower than the 
rest of algorithms 

4.3. Scenario 3 (Driving under heavy traffic) 

Tables 14, 15, 16 and 17 show the results obtained 
under heavy traffic. The speed is decreased due to 
this external factor. In this case, the sudden 
accelerations and sudden decelerations also are 
minimized, but their number increase. Figure X 
compares the speed profile with and without traffic 
heavy in the same road section. We can observe that 
the number of accelerations and decelerations 
increased by X% when the traffic was dense. In 
addition, the sudden accelerations (positive and 
negative) decreased by X %. 

Analyzing the results of the confusion matrix, we 
can see that Naïve Bayes classified correctly the 
stress level by 94%. In this situation, a significant 
change in the value of any variable means stress in 
the near future. For this reason Naïve Bayes is the 
most suitable algorithm. The success rate is high. In 
addition, it is the algorithm that takes less time to 
build the model. MLP predicted the stress level 

correctly by 94%. However, this algorithm is 78.46% 
slower.  

SVM has a high false negative rate (18%). On the 
contrary, Deep Learning got a high false positive rate 
(16%). Furthermore, the time to build a classification 
model is 91.33% greater than the others. Figure X 
captures the execution times for each algorithm. 
 

Table 11 

Naïve Bayes 

Actual/Predicted Yes No 
Yes 0.94 0.06 
No 0.06 0.94 

 
Table 12 

Support Vector Machine 

Actual/Predicted Yes No 
Yes 0.82 0.18 
No 0 1 

 
Table 13 

Multilayer Perceptron 

Actual/Predicted Yes No 
Yes 0.92 0.08 
No 0.04 0.96 

 
Table 14 

Deep Learning 

Actual/Predicted Yes No 
Yes 0,98 0.02 
No 0.16 0.84 

 

Fig. 2. Time to build the models  using the classification 
algorithms when rider drives from workplace to house 

5. Conclusions 

 

0
100
200
300
400
500
600
700

Naïve
Bayes

Multilayer
Perceptron

Support
Vector

Machine

Deep
Learning

Ti
m

e 
(m

s)

0
100
200
300
400
500
600

Naïve
Bayes

Multilayer
Perceptron

Support
Vector

Machine

Deep
Learning

Ti
m

e 
(m

s)



 

Acknowledgements 

The research leading to these results has received 
funding from the “HERMES-SMART DRIVER” 
project TIN2013-46801-C4-2-R funded by the 
Spanish MINECO, from the grant PRX15/00036 
from the Ministerio de Educación Cultura y Deporte 
and from a sabbatical leave by the Carlos III of 
Madrid University. 

References 

[1] Filtness, Ashleigh J. & Rudin-Brown, Christina M. (2012) 
Drinking and riding: is subjective workload related to 
performance? In Australasian Road Safety Research, 
Policing and Education Conference, 4 - 6 October 2012, 
Wellington, New Zealand. 

[2] M. P. Jenkins and D. Young, "BARRACUDA: An 
augmented reality display for increased motorcyclist en 
route hazard awareness," 2016 IEEE International Multi-
Disciplinary Conference on Cognitive Methods in 
Situation Awareness and Decision Support (CogSIMA), 
San Diego, CA, 2016, pp. 68-72. 

[3] ACEM (Association des Constructeurs Européens de 
Motocycles): “In-depth investigations of accidents 
involving powered two-wheelers (MAIDS)” (Brussels, 
Belgium, 2009), pp. 1–179. 

[4] Empatica E31. URL: https://www.empatica.com, [Last 
access: 11-07/2016]. 

[5] Simpkin, B., Lai, F., Chorlton, K., Fowkes, M.: ‘ISA-UK, 
Intelligent Speed Adaptation. Results of motorcycle trial’ 
(University of Leeds, Leeds, UK, 2007). 

[6] H. Selye, “A Syndrome Produced by Diverse Nocuous 
Agents,” in Nature, vol. 138, p. 32, Jul. 1936. 

[7]  H. Selye, “Stress and disease,” in Science, vol. 122, p. 
625-631, Oct. 1955. 

[8] J.E. McGrath, “Stress and behavior in organizations,” in 
Handbook of industrial and organizational psychology, 
M.D. Dunnette, Ed. Chicago: Rand McNally, 1976, pp. 
1351–1395.  

[9] D. I. Tepas and J. M. Price, “What is stress and what is 
fatigue?” in Stress, workload, and fatigue, P.A. Hancock 
and P.A. Desmond, Eds. Mahwah, NJ: L. Erlbaum, 2001, 
pp. 607-622. 

[10] R. Vecchio, “Theoretical and empirical examination of 
cognitive resource theory,” in J. Applied Psychology, 
vol.75 (2), 1980, pp. 141-147. 

[11] M. Itoh, E. Kawakita, and K. Oguri, “Real-time estimation 
of driver’s mental workload using physiological 
indexes,” in Proc. ITS World Congr., 2010, pp. 1–11. 

[12] E. T. T. Teh, S. Jamson, and O. Carsten, “How does a lane 
change performed by a neighboring vehicle affect driver 
workload?” in Proc. ITS World Congr., 2012, pp. 1–8. 

[13] S. Sega and H. Iwasaki, “Verification of driving workload 
using vehicle signal data for distraction-minimized 
systems on ITS,” in Proc. ITS World Congr., 2011, pp. 
1–12. 

[14] H. Gao, A. Yüce and J. P. Thiran, "Detecting emotional 
stress from facial expressions for driving safety," 2014 
IEEE International Conference on Image Processing 
(ICIP), Paris, 2014, pp. 5961-5965. doi: 
10.1109/ICIP.2014.7026203. 

[15] X. Xiong and F. De la Torre, “Supervised Descent Method 
and Its Applications to Face Alignment,” in IEEE 
Conference on Computer Vision and Pattern Recognition 
(CVPR), 2013, pp. 532–539. 

[16] B. Eilebrecht, "The relevance of HRV parameters for driver 
workload detection in real world driving," 2012 
Computing in Cardiology, Krakow, 2012, pp. 409-412. 

[17] C. D. Katsis, N. Katertsidis, G. Ganiatsas and D. I. Fotiadis, 
"Toward Emotion Recognition in Car-Racing Drivers: A 
Biosignal Processing Approach," in IEEE Transactions 
on Systems, Man, and Cybernetics - Part A: Systems and 
Humans, vol. 38, no. 3, pp. 502-512, May 2008. doi: 
10.1109/TSMCA.2008.918624.  

[18] Rakotonirainy, A., Haworth, N.: ‘Institutional challenges to 
ITS deployment and adoption’. 29th Australasian 
Transport Research Forum, Australia, Gold Coast, 
September 2006 

[19] Biral, F., Lot, R., Rota, S., et al.: ‘Intersection support 
system for powered two-wheeled vehicles: Threat 
assessment based on a receding horizon approach’, IEEE 
Trans. Intell. Transp. Syst., 2012, 13, (2), pp. 805–816 

[20] Véronique Huth, Francesco Biral, Óscar Martín, Roberto 
Lot, Comparison of two warning concepts of an 
intelligent Curve Warning system for motorcyclists in a 
simulator study, Accident Analysis & Prevention, 
Volume 44, Issue 1, January 2012, Pages 118-125, ISSN 
0001-4575, http://dx.doi.org/10.1016/j.aap.2011.04.023. 

[21] Valtolina, S., Vanzi, S., Montanari, R., Minin, L., Marzani, 
S.: ‘Design of warning delivery strategies in advanced 
rider assistance systems’. ASME 2011 World Conf. on 
Innovative Virtual Reality, Italy, Milan,  June 2011, pp. 
41–50. 

[22] Federico Giovannini, Giovanni Savino, Marco Pierini, 
Niccolò Baldanzini, Analysis of the minimum swerving 
distance for the development of a motorcycle 
autonomous braking system, Accident Analysis & 
Prevention, Volume 59, October 2013, Pages 170-184, 
ISSN 0001-4575, 
http://dx.doi.org/10.1016/j.aap.2013.05.020. 

[23] Savino, G., Giovannini, F., Baldanzini, N., Pierini, M., 
Rizzi, M.: ‘Assessing the potential benefits of the 
motorcycle autonomous emergency braking using 
detailed crash reconstructions’, Traffic Injury Prev., 
2013, 14, pp. 40–49.  

[24] L.L. Di Stasi, D. Contreras, A. Cándido, J.J. Cañas, A. 
Catena, Behavioral and eye-movement measures to track 
improvements in driving skills of vulnerable road users: 
First-time motorcycle riders, Transportation Research 
Part F: Traffic Psychology and Behaviour, Volume 14, 
Issue 1, January 2011, Pages 26-35, ISSN 1369-8478. 

[25] Charles Goldenbeld, Divera Twisk, Saskia de Craen, Short 
and long term effects of moped rider training: a field 
experiment, Transportation Research Part F: Traffic 
Psychology and Behaviour, Volume 7, Issue 1, January 
2004, Pages 1-16, ISSN 1369-8478, 
http://dx.doi.org/10.1016/j.trf.2003.09.003. 

[26] Charles C. Liu, Simon G. Hosking, Michael G. Lenné, 
Hazard perception abilities of experienced and novice 
motorcyclists: An interactive simulator experiment, 
Transportation Research Part F: Traffic Psychology and 



Behaviour, Volume 12, Issue 4, July 2009, Pages 325-
334, ISSN 1369-8478. 

[27] Healey, J. A., & Picard, R. W. (2005). Detecting stress 
during real-world driving tasks using physiological 
sensors. IEEE Transactions on intelligent transportation 
systems, 6(2), 156-166. 

[28] Cortes, C.; Vapnik, V. (1995). "Support-vector networks". 
Machine Learning. 20 (3): 273–297. 
doi:10.1007/BF00994018. 

[29] Crammer, Koby & Singer, Yoram (2001). "On the 
Algorithmic Implementation of Multiclass Kernel-based 
Vector Machines" (PDF). Journal of Machine Learning 
Research. 2: 265–292. 

 
  

 

 




