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Abstract
Long-wave infrared (LWIR) spectra can be interpreted using a Random Forest machine learning approach 
to predict mineral species and abundances. In this study, hydrothermally altered carbonate rock core samples 
from the Fourmile Carlin-type Au discovery, Nevada, were analyzed by LWIR and micro-X-ray fluorescence 
(μXRF). Linear programming-derived mineral abundances from quantified μXRF data were used as training 
data to construct a series of Random Forest regression models. The LWIR Random Forest models produced 
mineral proportion estimates with root mean square errors of 1.17 to 6.75% (model predictions) and 1.06 to 
6.19% (compared to quantitative X-ray diffraction data) for calcite, dolomite, kaolinite, white mica, phlogopite, 
K-feldspar, and quartz. These results are comparable to the error of proportion estimates from linear spectral 
deconvolution (±7–15%), a commonly used spectral unmixing technique. Having a mineralogical and chemical 
training data set makes it possible to identify and quantify mineralogy and provides a more robust and meaning-
ful LWIR spectral interpretation than current methods of utilizing a spectral library or spectral end-member 
extraction. Using the method presented here, LWIR spectroscopy can be used to overcome the limitations 
inherent with the use of short-wave infrared (SWIR) in fine-grained, low reflectance rocks. This new approach 
can be applied to any deposit type, improving the accuracy and speed of infrared data interpretation.

Introduction
Short-wave infrared (SWIR) spectroscopy techniques are 
increasingly utilized in mining and mineral exploration to rec-
ognize and classify various mineral species of significance for 
exploration and mineral processing (Ahmed, 2010; Browning, 
2014; Maydagán et al., 2016; Bedell et al., 2017). Short-wave 
infrared spectroscopy is commonly used in porphyry (Pour 
and Hashim, 2015; Han et al., 2018; Neal et al., 2018) and 
epithermal exploration (Crósta et al., 2003; Hooper et al., 
2018). Recent efforts have been made to apply infrared spec-
troscopy techniques such as handheld and benchtop infrared 
analyzers (Ahmed, 2010; Bradford, 2008; Ahmed et al., 2009; 
Mateer, 2010; Browning, 2014), and, most recently, infrared 
core scanning technologies (Barker, 2017; Barker and Ridley, 
2020) to Carlin-type gold deposits in Nevada. The utility of 
SWIR for Carlin-type gold deposits, however, has been lim-
ited due to the low reflectivity of samples which often pro-
duces flat, undiagnostic spectra. 

In order to overcome the lack of reflectance and the diffi-
culty of distinguishing minerals such as quartz and feldspars in 
SWIR, LWIR spectroscopy has been implemented by hyper-
spectral core logging systems such as the Hylogger-3 (Mauger 
et al., 2012; Arne et al., 2016) and SisuROCK (Tappert et al., 
2015). However, many minerals contained within these fine-
grained samples have characteristic peaks that overlap within 
the spectral range used in this study (7,500–12,000 nm, Salis-
bury, 2020). In addition, the impact of volume scattering in 
fine-grained rocks (Ramsey and Christensen, 1998; Zaini et 
al., 2012; Laukamp et al., 2018), grain orientation (McDowell 

et al., 2009; Tappert et al., 2013), and grain size (Zaini et al., 
2012; Laukamp et al., 2018) on LWIR spectra have ham-
pered our ability to interpret LWIR for mineralogy and min-
eral chemistry. In this contribution, we demonstrate the use 
of micro-X-ray fluorescence (μXRF) mapping, supported by 
machine learning, to provide robust, quantitative analysis of 
LWIR spectra to predict mineral abundances within LWIR-
scanned rock samples. Previous attempts at quantifying LWIR 
spectral mixtures often involved the use of linear spectral mix-
ture analysis (Gillespie, 1992; Ramsey and Christensen, 1998; 
Feely and Christensen, 1999; Ramsey, 2004), which requires 
a complete spectral library of all minerals present in the sys-
tem. A reference library with a disproportionate number of 
end-member spectra to the mineral system in question can 
lead to high error and overfitting (Rogge et al., 2006; Hecker 
et al., 2012). 

In this study, μXRF data were matched to LWIR spectra, 
and machine learning approaches were used to train models 
to predict minerals present within each LWIR image pixel. 
This method is similar to that presented in Hecker et al. 
(2012), where petrographic point counts were used as train-
ing data for a partial least-squares regression algorithm. The 
method for infrared mineral identification presented here cir-
cumvents the need to interpret the tremendous possible vari-
ations in spectral mixtures and obviates the need for a spectral 
library to be produced for each individual geologic domain. 
This approach could be broadly applied to any deposit type, 
potentially improving the speed and accuracy of spectral data 
interpretation by removing the need for custom libraries or 
relying on SWIR and LWIR spectra alone for mineralogical 
interpretation. 
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The rock samples in this study are fine-grained, carbona-
ceous, calcareous, hydrothermally altered sedimentary rocks 
from the Fourmile Carlin-type gold discovery, Nevada (Fig. 
1). Typical samples may contain carbonate minerals, phyllosil-
icates, feldspars, and quartz, all of which have been shown to 
have characteristic features in the LWIR spectral range (Nash 
and Salisbury, 1991; Lane and Christensen, 1997; Yitagesu et 
al., 2011).

Data and Methods

Sampling

Infrared scanning using the SisuROCK core imaging sys-
tem provided by the company TerraCore was completed on 
2,030 m of HQ drill core from seven drill holes, which passed 
through hydrothermally altered and unaltered sedimentary 
carbonate and minor low-grade metamorphic host rocks in a 
transect across the Fourmile Au discovery (Fig. 1). One hun-
dred core samples ≤30 cm in length were collected from the 
infrared-scanned drill core for μXRF and whole-rock geo-
chemical analysis. Of the 100 μXRF samples, 12 were used in 
this study (Table 1). These samples were selected to represent 
the full range of lithology types and alterations found in the 
IR-scanned drill core. Mineralogy of the samples selected was 
determined by XRD analysis of powders taken from the same 
12 μXRF analyzed samples selected for this study. 

Micro-XRF mineralogy

There are two primary reasons a μXRF chemical rastering 
technique was selected to inform LWIR spectra. First, the 
similarity of the rastering techniques between μXRF and 
infrared imaging produces data that are spatially referenced 
and can be related to one another using an image registra-
tion technique. Second, μXRF provided a way to estimate 
mineralogy independent of infrared techniques and produces 
a significant number of sample points (or pixels, ~1 × 106 
points per μXRF image) for robust statistical analysis. The 
μXRF geochemical maps were produced on a Bruker Tor-
nado μXRF (Bruker, 2018c), using a 100-μm step size (pixel 

size) and 25-μm spot size with standard conditions of analyses 
at 10 msec per pixel dwell time, two frame counts, and 50-kV 
acceleration voltage at the AuTec Laboratory in Vancouver, 
Canada. Quantitative chemical results were derived using the 
Bruker M4 (Bruker, 2018a) QMap fundamental parameter 
standardless quantification tool (Flude et al., 2017). 

A linear programming algorithm was used to calculate min-
eralogy from quantified μXRF geochemistry. This method 
uses mineral formulas obtained through electron microprobe 
analysis to calculate mineralogy from fundamental param-
eter quantification of μXRF chemical maps (see Barker, et. 
al., 2020, for complete method description). Quantification 
from the fundamental parameter method using Bruker M4 
software was completed on a 9- × 9-pixel grid, giving a final 
resolution of ~ 0.9 mm per pixel (aggregation of eighty-one 
100-μm pixels).

Infrared spectroscopy

All hyperspectral scanning was completed using the SisuROCK 
core imaging system provided by the company TerraCore for 
VNIR, SWIR, LWIR, and RGB. The RGB camera produces 
160-μm spatial resolution visible light images. For this project, 
the FENIX VNIR (350- to 1,000-nm range, 3.5-nm spectral 
resolution) and SWIR (1,000- to 2,500-nm range, 12-nm spec-
tral resolution) camera produced coregistered images at 1.2-
mm spatial resolution and a total of 410 bands. The OWL 
LWIR camera provided 1.2-mm spatial resolution images with 
96 bands (7,500–12,000 nm) and 100-nm spectral resolution. 

Preprocessing of hyperspectral data was completed by Ter-
raCore. TerraCore uses the empirical line calibration method 
(ELC; Smith and Milton, 1999) for conversion of raw spec-
tral data to reflectance. The ELC method directly compares 
image data and real spectra by using spectrally uniform light 
and dark pixels to draw a line-fitting algorithm to convert the 
raw digital numbers produced from the spectral cameras into 
physical units of reflectance (Bedell and Coolbaugh, 2009). 
In the case of TerraCore, the white and dark references are 
collected for each image during the scanning process. The 
white and dark references are then used to derive a linear 

Table 1.  Summary of Image Registration Tie Points Showing Total Number of Points and Root Mean Square Error as a  
Measure of “Goodness of Fit,” as well as the Sample Information for Each of the Core Grab Samples1 

Sample no. Points RMSE X R2 Y R2 Drill hole Depth [m] Rock description

M180062 17 3.96 1.000 0.998 FM16-01D 609.57 Silicified and brecciated limey carbonaceous mudstone with illite 
        enrichment
M180069 23 5.35 1.000 0.999 FM16-01D 863.44 Limestone with minor silicification and argillization
M180074 19 8.80 0.999 0.997 FM16-01D 1071.59 Sulfidized and argillized muddy limestone
M180077 19 6.06 1.000 0.997 FM16-07D 706.53 Metacarbonate breccia with silicified clasts
M180080  Visual test sample (not registered) FM16-07D 823.48 Limey mudstone with silica replacement front
M180083 17 4.96 1.000 0.999 FM16-07D 906.48 Dolomitic metacarbonate
M180088 22 8.27 1.000 0.996 FM16-07D 1118.07 Base metal vein-bearing marl with minor silicification
M180093 18 7.53 0.999 0.984 GRC-0427D 685.69 Metacarbonate with pinstripe pyrite and minor silicification
M180102 8 7.85 0.999 0.928 GRC-0427D 877.00 Muddy limestone with minor silicification and argillization
M180104 18 5.73 1.000 0.990 GRC-0427D 925.07 Mineralized limey mudstone breccia with pervasive silicification 
        and sulfidation
M180118 19 4.11 1.000 0.997 GRC-0436D 765.20 Muddy limestone with minor silicification and argillization
M180121 13 4.42 0.999 0.999 GRC-0432D 200.62 Weathered carbonaceous limey mudstone with minor argillization 
        and silicification

1Points refers to the number of tie points selected for each sample; the X and Y R2 values refer to the R2 in both the X and Y axes; the drill hole and depth is 
the ID of the drill hole and depth in which the sample came from (see Fig. 1 for geographic location)
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adjustment between the raw digital number and the actual 
reflectance measured from the reference (Bedell and Cool-
baugh, 2009). This is done on each box of scanned core to 
ensure consistent data collection. 

For all LWIR data, a continuum removal was applied using 
the linear interpolation and division normalization method 

(Clark and Roush, 1984) in the R statistical programming lan-
guage (R Core Team, 2017).

Image registration

Image registration was completed on 11 of the 12 μXRF 
images where the μXRF image was registered to a LWIR 
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Fig. 1.  Regional geologic map of the Goldrush-Fourmile district from Barrick Gold Exploration Inc. unpublished results 
(2019) with locations of drill holes, which sourced the samples for this study. 
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image of the same sample. Image registration is the process 
of aligning two images of the same object to compare images 
from multiple sources, sensor types, and spatial resolutions. 
Images from this study were registered by manually selecting 
tie points of the base and warp images in the R statistical pro-
gramming language (R Core Team, 2017). The tie points were 
used to calculate a homography and apply an affine transfor-
mation using the R packages “raster 2.8-4” (Hijmans, 2018), 
and “imager 0.41.1” (Barthelme, 2018). Resampling of pixels, 
or the creation of new pixels in the warp image, was completed 
using a nearest neighbor resampling method (Canty, 2014). 
The final products were evaluated for accuracy by measure-
ment of tie points to a predicted location on the warp image. 
The predicted location is based on a first-order polynomial 
transform that is generated from the tie points on the base 
image. A total root mean square error (RMSE) is produced 
for each image and is taken as a measurement of the overall 
fit of the tie points when combined with a visual assessment 
of overlaid base and warp images (Jin, 2017). Table 1 sum-
marizes the number of tie points and RMSE for each sample. 

Random Forest classification and regression

Random Forest is an example of an ensemble algorithm, 
which is designed to combine multiple weak, independently 
trained models, in this case decision trees, to make an overall 
prediction (Breiman, 2001). Decision trees generate classifi-
cation or regression predictions by constructing a model from 
available training data (Breiman et al., 1984; Quinlan, 1986).  
Decisions are made at nodes in the tree structure based on 
splitting criteria that iteratively pass observations down the 
tree until a prediction decision is made for the given input. 
Decision trees can be sensitive to changes in the training sets 
such that different subsets of data can result in vastly different 
outcomes. Random Forest attempts to alleviate this problem 
by taking random subsamples from the training data to con-
struct individual decision trees. The final prediction is based 
on a majority class vote for classification, or the average value 
for regression (Brownlee, 2018).

The Random Forest v4.6-14 package (Liaw and Wiener, 
2002) was used to construct regression models and assess 
model performance. For each Random Forest model, the 
number of trees grown (ntree) was left at the default value 
of 500. The number of variables randomly sampled as can-
didates at each split (mtry) was also left at the default values 
of √p for classification and p ⁄3 for regression, where p is the 
number of variables in the dataset. A series of ntree and mtry 
values were evaluated using the R package “caret” (v6.0-85; 
Kuhn, 2020) for each classification and regression model, 
with a range from 250 to 3,000 for ntree and 1 to 60 for mtry. 
No significant changes in classification accuracy or regression 
RMSE were observed across different ntree or mtry values. 

A Random Forest binary classification model was used to 
generate a mask for the LWIR images for the purpose of 
reducing computational time, limiting false identification of 
core box pixels, and to improve the aesthetic of false color 
images. Regions of interest were manually selected from five 
core-box images and labelled as “rock” or “box.” The resulting 
Random Forest classifier was created with a total of 52,342 
samples (12,973 box and 39,369 rock), 36,639 of which were 
training and 15,703 test samples, and 96 variables (LWIR 

bands). The resulting mask model produced results with an 
accuracy (proportion of correctly identified pixels to total 
number of pixels) of 0.98. The mask model was run on each 
box image prior to mineral identification. Pixels that resulted 
in a box label were given a null value. 

Random Forest regression models were created by regis-
tering μXRF-derived mineralogy raster images to LWIR spec-
tral images as training data for the following minerals: calcite, 
dolomite, kaolinite, white mica, potassium feldspar, phlogo-
pite, and quartz. The total number of data points for the infra-
red regression models is shown in Table 2. Each data point 
contained 102 variables, 96 of which were LWIR band inten-
sities (LWIR spectra) and six were spectral features that were 
extracted from the LWIR spectra, such as peak and trough 
wavelength positions and peak intensity ratio (Table 3). 

Performance of models was measured by doing a 70/30 
train-test split and calculating the root mean square error 
(RMSE) and R2 (Pearson), slope, and intercept of the line of 
best fit (least-squares method) between training test values 
(mineralogy from μXRF) and predicted values (mineralogy 
from LWIR). Both RMSE and R2 are measurements of how 
well a dataset fits to a line that is produced from the input and 
predicted values. To verify that the predictions are not over- 
or underestimated, the slope of the line should be close to one 
and the intercept should be near zero. Therefore, the slope 
and intercepts are used in conjunction with RMSE and R2 
for a more complete performance measurement of the model. 

External validation

The LWIR-derived mineralogy results were aggregated to 
multielement geochemistry and assay intervals (5, 10, and 

Table 2.  Number of Training and Test Samples (pixels)  
Used for Each Mineral Model

Model Training samples Test samples

Calcite 85,911 33,506
Dolomite 57,248 24,535
Kaolinite 28,048 12,021
K-feldspar 28,675 11,296
White mica 54,570 23,388
Phlogopite  8,959  3,840
Quartz 65,713 28,163

Table 3.  Summary of LWIR Feature Variables Used in the  
Random Forest Mineral Regression Models1

Feature Range (nm): from To (nm)

Maximum  7,717  8,376
Maximum  8,423  9,599
Maximum  7,717  9,599
Maximum 10,916 11,528
Minimum  7,952  8,987
Ratio ~8,000  ~9,000

1Maximum refers to a spectral “peak” and minimum is a spectral “trough;” 
the range describes the bands that were evaluated for the feature position; 
the resulting data is a wavelength value that contains the highest or lowest 
point for peaks and troughs, and the ratio is the maximum of the ~8,000 
nm (7,717–8,376 nm) divided by the maximum of the ~9,000-nm feature 
(8,423–9,599 nm)
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20 ft) for the same 2,030 m of drill core samples. The mul-
tielement geochemistry and assay, provided by Barrick Gold 
Exploration Inc., were analyzed at ALS, Elko, Nevada for Au 
and Ag assay and 48 element, 4-acid digest geochemistry (Li, 
Be, Na, Mg, Al, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 
Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, In, Sn, Sb, 
Te, Cs, Ba, La, Ce, Hf, Ta, W, Re, Hg, Tl, Pb, Bi, Th, and U). 
Predicted elemental concentrations (from Random Forest 
models) were calculated using the mineralogy predictions and 
compared to multielement geochemistry from each interval 
for Al, Ca, K, and Mg. Carbon was estimated from multiele-
ment geochemistry by calculating CO2 from carbonate in the 
following equation:

            MgO            MgO        1
 CO2 = ——— + [CaO – ——— ] [———],
            CO2Dol          CaODol     CO2Cal

where CO2Dol is the proportion of CO2 in dolomite (0.458), 
CaODol is the proportion of CaO in dolomite (0.719), and 
CO2Cal is the proportion of CO2 in calcite (1.274). This 
method cannot account for organic C and so there must be 
an assumption that organic C is minor compared to C from 
carbonate. This assumption is considered to be reasonable 
because of the low organic content of samples from the unal-
tered Roberts Mountain Formation (~0.25%; Wells and Mul-
lens, 1973; Clark Maroun et al., 2017) and the altered and 
unaltered Wenban Formation (<0.05–0.25%; Wells et al., 
1969) of the neighboring Cortez Hills Au district. Silica for 
four acid ICPMS analyses (which do not provide Si concen-
trations) was calculated by summing all oxides, including the 
calculated carbonate in the equation:

 SiO2 = 100 – S(Measured Oxide + CO2),

which assumes that the missing chemical component is SiO2. 
This approach for estimating C and Si was validated by com-
paring the predicted results to those obtained from the 100 
whole-rock geochemical laboratory analyses. Samples used 
to verify the Si and C calculation method were characterized 
for whole-rock geochemistry by ALS Laboratory in Reno, 
Nevada, using a “complete whole rock characterization pack-
age,” which includes major elements measured by XRF and 
ICP-AES on lithium borate fused disks, trace elements by 
ICPMS on fused beads, and total carbon and sulfur measured 
by infrared combustion (LECO) analysis. 

Results
Long-wave infrared (LWIR) was chosen for this study due 
to the lack of reflectivity of the Carlin-type gold deposit host 
rocks in the short-wave infrared (SWIR) range. Figure 2 is 
an example of the Carlin-type gold deposit rocks used in this 
study with a comparison of the SWIR and LWIR spectra 
from five points taken throughout the box of core. It shows 
that SWIR spectra from these points are flat and undiagnos-
tic, whereas the LWIR spectra has characteristic peaks that 
can be used for mineral identification. A scatter plot of peak 
intensity relative to measured albedo for SWIR and long-
wave infrared (LWIR) data (Fig. 3) shows the lack of SWIR 
response in low albedo samples compared to that of LWIR, 
which demonstrates the limitation of SWIR in dark litholo-
gies. In addition, a plot of the same samples illustrating the 

intensity of carbonate peaks in the LWIR range correlates to 
variations in Ca content derived from multielement geochem-
istry, whereas there is no obvious association in the SWIR due 
to the lack of reflectance (Fig. 4).

LWIR spectra

Sample LWIR spectra from individual pixels show multiple 
spectral absorption features indicating a mixture of mineral-
ogy (Fig. 5). In most cases, the spectra from each pixel likely 
contains more than just the target mineral, due to the fine-
grained nature of the rocks, causing characteristic peak over-
lap and volume scattering (Ramsey and Christensen, 1998), 
which makes spectral library matching for quantification dif-
ficult (Fig. 5). 

LWIR Random Forest regression models:  
predicted mineral proportions

Random Forest regression models for mineral identification 
were constructed using LWIR spectra of LWIR raster images 
trained by μXRF-derived quantitative mineralogy. Samples 
(pixels) were split in a 70/30 ratio where 70% was used to 
train the models and 30% used to test the predictions of the 
models. The RMSE for model predictions (measured versus 
predicted) ranged between 1.17 and 6.75%, with R2 values of 
0.82 to 0.94, and regression lines with slopes near one (1.01-
1.09) and intercepts near zero (–0.70 - –0.09) for calcite, dolo-
mite, white mica, kaolinite, K-feldspar, phlogopite, and quartz 
(Fig. 6). 

A test μXRF sample was withheld from model training for 
the purpose of validation of the textural and geologic signifi-
cance of the Random Forest results. Figures 7 and 8 show 
side-by-side comparisons of μXRF-derived quantified min-
eralogy and LWIR Random Forest quantified mineralogy 
results for sample M180080 for the minerals calcite, dolomite, 
quartz, and white mica. For descriptive purposes, sections of 
the sample are numbered in Figures 7 and 8 according to 
textural significance where (1) is the relatively unaltered host 
rock, (2) is the larger calcite + quartz veins in the unaltered 
host rock, (3) shows the silicification front, (4) is the zone of 
pervasive silicification, (5) shows a thin dolomite vein, and (6) 
is a zone of high calcite in the lower right corner of the image. 

Large calcite veins can be identified in the LWIR Random 
Forest results (2), as well as calcite in the host rock (1), along 
the silicification front (3), and in the lower right corner of the 
image (6). Calcite veins seen in the μXRF image, which are 
smaller than the spatial resolution of the LWIR image, cannot 
be clearly recognized in the LWIR image. Some variation in 
calcite quantity is predicted in the host rock (1) that is not 
apparent in the μXRF image. It appears the Random Forest 
model predicted the left side of the image to be slightly higher 
in calcite abundance than the right (Fig. 7A, B). 

Dolomite (Fig. 7C, D) in the predicted LWIR image has 
similar general textures in the host rock (1) as in the μXRF. 
Much of the textural detail is lost in the LWIR image, such as 
the small grains of dolomite that can be seen in the μXRF, but 
the general presence of dolomite in the host rock (1) and not 
in the silicified section (3, 4) nor the calcite + quartz vein (2) 
are similar. Many of the small dolomite veins (5), which are 
thinner than the spatial resolution of the LWIR, are also not 
visible in the LWIR image. There also appears to be a small 
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Fig. 2.  Example spectrum from a typical box of core from hole FM16-07D, 801.6-804.2-m depth. The color dots in the true-
color image (top) show the location of the extracted VN-SWIR (middle) and LWIR (bottom) spectra. This figure shows the dif-
ficulty in interpreting VNIR-SWIR spectrum from Carlin-type spectrum and why LWIR may be the preferred spectral range. 
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amount of calcite predicted as dolomite in the lower portion 
of Figure 6. 

The quartz mineral maps (Fig. 8A, B) are of similar abun-
dances and show most of the same textures such as a quartz 
vein (2), silicification front (3), pervasive silicification (1), 
and lack of silicification (6) in the carbonate-rich zones. Like 
calcite, there appears to be variation in the quartz quantity 
within the host rock (1) of the LWIR image that is not seen in 
the μXRF, except the increase in quantity is seen on the right 
side. 

The white mica mineral maps (Fig. 8C, D) have very simi-
lar quantities between the LWIR and μXRF. General textures 
between the two images appear to agree in the region of the 
silicification front (3), pervasive silicified zone (4), and calcite 
zone (6). There appears to be some error in the prediction 
of the host-rock composition (1). The μXRF shows variable 
white mica from ~5 to 15% with the highest quantities around 
the larger calcite + quartz veins. The Random Forest has pre-
dicted the host rock to have a more homogeneous white mica 
distribution (possibly because of the coarse resolution of the 

Fig. 3.  Results of infrared-scanned drill core from seven drill holes (FENIX and OWL sisuRock core imaging systems) at 
~10-ft composites (image pixel results aggregated to the assay intervals) for a total of 1,531 samples. SWIR CaO intensity 
(~2,340-nm feature) and LWIR CaO intensity (~11,200-nm feature) compared to sample albedo measurements (total reflec-
tance of sample in VNIR compared to white and dark reference). SWIR response minimal up to ~20 to 30% albedo, whereas 
LWIR response shows little change related to albedo.

Fig. 4.  Results of infrared-scanned drill core from seven drill holes at ~10-ft composites (image pixel results aggregated to the 
assay intervals) for a total of 1,531 samples (same samples from Fig. 3). Intensity of SWIR (~2,340 nm) and LWIR (~11,200 
nm) CaO features compared to Ca from 4-acid digest multielement geochemistry of the same intervals. Clear linear relation-
ship can be seen in LWIR, which is not present in SWIR.
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LWIR images) and to be generally higher in abundance, with 
slightly less mica around the calcite + quartz veins. 

Visually, the predicted mineralogy results have similar tex-
tures and mineralogical patterns as that of the μXRF-derived 
mineralogy map of the test sample for calcite, dolomite, 
quartz, and white mica (Figs. 7, 8). However, minor differ-
ences can be seen in some of the mineral distributions, espe-
cially when it comes to loss of detail (due to the change in 
image resolution between XRF and LWIR). 

Variable importance 

The variable importance is a measure of how much a vari-
able increases accuracy when included or decreases accuracy 

when omitted. It is a typical method for understanding and 
interpreting the inner workings of a Random Forest model as 
it provides a record of the variables which are most diagnos-
tic for a prediction. Figure 9 shows the variable importance 
displayed as a function of wavelength and thus shows which 
wavelengths were most important in the creation of each 
mineral model. In some cases, such as dolomite and quartz, 
characteristic features were the primary variables used in cre-
ating the models. Other models like kaolinite however gained 
the most accuracy by utilizing peak wavelengths such as the 
~8,000- to 9,000-nm feature position, as well as some other 
LWIR bands that don’t appear to be related to recognized 
spectral features present on reference spectra. In these other 
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cases, the important variable may be a lack of characteristic 
feature or the approach to a peak (i.e., a peak shoulder). 

Regression model results compared to  
multielement geochemistry

The Random Forest mineral models were run on LWIR 
images of 2,030 m of drill core from seven drill holes. The 
mineralogy results were converted to chemistry and aggre-
gated to multielement geochemistry data intervals at 5, 10, 
and 20 ft for external validation of Random Forest model 
results (Fig. 10). Multielement proportions for Al, Ca, K, 
and Mg are measured via 4-acid digest method and C and 
Si were estimated from the 4-acid digest data (see “Meth-
ods”) because neither C nor Si are measured in the 4-acid 

digest analysis. The calculated Si and C was compared to 
the measured values for Si and C (geochemistry results from 
this study using whole-rock XRF for Si and LECO analyses 
for total C) for validation of this Si and C estimation method 
(Fig. 11), which produced results with absolute error of 
±4.5% for CO2 and ±4.1% for SiO2. The comparison pro-
duced RMSE values of 1.06 (Al), 4.55 (Ca), 1.65 (K), and 
2.19 (Mg) when compared to measured values. Compared to 
calculated concentrations, RMSE values were 1.24 (C) and 
6.19 (Si). Elements Al, C, Ca, and Si have regression lines 
with slopes close to one, intercepts near zero, and R2 values 
that range from 0.55 (Mg) to 0.94 (C and Ca). Potassium 
and magnesium appear to be slightly overestimated by the 
models overall and both have a lower R2 value. 
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Fig. 7.  Quantified μXRF-derived mineralogy maps compared to Random Forest-derived LWIR mineralogy maps for calcite 
(A) and (B) and dolomite (C) and (D) of sample M180080. Sections of the sample are numbered based on textural differ-
ences. (1) = relatively unaltered host rock, (2) = calcite + quartz veins in the unaltered host rock, (3) = silicification front, (4) = 
zone of pervasive silicification, (5) =  thin dolomite vein, and (6) = zone of high calcite in the lower right corner of the image. 

Downloaded from http://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/doi/10.5382/econgeo.4804/5192445/4804_barker_et_al.pdf
by University of Waikato user
on 17 February 2021



 MINERAL MAPPING OF DRILL CORE SURFACES II: LWIR MINERAL CHARACTERIZATION  11

Discussion

LWIR regression models

Feely and Christensen (1999) used a linear spectral deconvo-
lution algorithm to quantify mineral mixtures for major rock-
forming minerals using LWIR. They reported residual errors 
of ±7 to 15% for minerals such as feldspar, quartz, calcite 
and dolomite, as compared to our Random Forest predictive 
RMSE of 1.17 to 6.75% and external RMSE of 1.06 to 6.19% 
(compared to QXRD) for calcite, dolomite, kaolinite, white 
mica, K-feldpsar, phlogopite, and quartz derived using our 
modeled Random Forest regression. 

Whereas the error of each method is comparable, the meth-
ods for mineral identification are very different. The spectral 

unmixing method requires a complete library of characteristic 
spectra that represent the minerals present within the sam-
ples. Feely and Christensen (1999) also reported on results 
from coarse-grained rocks, whereas the samples from this 
study contain very fine-grained minerals. The utility of linear 
deconvolution is limited in fine-grained rocks due to addi-
tional spectral features caused by volume scattering, which 
is difficult to account for in spectral libraries (Hubbard et al., 
2018). The benefit of linear spectral deconvolution is that an 
accurately defined spectral library can be transferable to other 
field areas without additional data (as long as the samples have 
sufficiently coarse grain sizes). However, an incomplete library, 
or a library that contains characteristic spectra of minerals not 
present in the system, can lead to large increases in error or 
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Downloaded from http://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/doi/10.5382/econgeo.4804/5192445/4804_barker_et_al.pdf
by University of Waikato user
on 17 February 2021



12 BARKER ET AL.

Va
ria

bl
e 

Im
po

rt
an

ce

~1
11

98
nm

 [m
ax

]

~8
00

0n
m

 [m
ax

]

~8
50

0n
m

 [m
in

]

~9
00

0n
m

 [m
ax

]

80
00

-9
00

0n
m

 [m
ax

]

80
00

:9
00

0n
m

 [r
at

io
]

1250.00 1111.11 1000.00 909.09 833.33

Calcite

Dolomite

Kaolinite

White Mica

K-Feldspar

Quartz

Phlogopite

Fig. 9.  Variable importance (scaled) as a function of wavelength and spectral feature for each Random Forest mineral model.

Downloaded from http://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/doi/10.5382/econgeo.4804/5192445/4804_barker_et_al.pdf
by University of Waikato user
on 17 February 2021



 MINERAL MAPPING OF DRILL CORE SURFACES II: LWIR MINERAL CHARACTERIZATION  13

compensation by misidentification of a combination of other 
minerals (Rogge et al., 2006; Hecker et al., 2012). In contrast, 
the Random Forest regression modeling approach presented 
here does not require a spectral library to be produced for 
each individual geologic domain. Furthermore, the approach 
adopted in this study provides a built-in baseline (whereby 
other analytical results are used for training data), with error 
measurement to evaluate the robustness of the results. 

The visual comparison of calcite, quartz, and dolomite 
μXRF-derived mineralogy (Figs. 7A, C, 8A, C, using the 
methods presented in Barker et al., 2020) and the results 
of the LWIR regression model (LWIR interpreted mineral-
ogy) on a test sample (M180080), which was omitted from 
the training data (see Figs. 7, 8), show that the two produce 
a similar geometric distribution of mineralogy. Figure 7B has 
textural and mineralogical results consistent with a carbonate 
host rock that has been decalcified and later crosscut by calcite 
veins. The resulting image is interpreted to represent a decal-
cification front with the image top being relatively unaltered 
and the bottom almost completely decalcified in some areas. 
Figure 8B shows the silica replacement that often occurs dur-
ing, or after, decalcification of carbonate rocks in Carlin-type 
systems (Cline et al., 2005). It also shows quartz veins and the 
distribution of primary quartz in the unaltered silty carbonate. 

Due to the difference in spatial resolution (100 μm μXRF and 
1.2 mm for LWIR), much of the finer scale details have been 
lost in the LWIR images. Veins with a width of <1 mm are not 
identifiable in the Random Forest-predicted LWIR images. 
There are also small discrepancies (error) between the two 
image types, especially in the fine-grained host rock. Two of 
the LWIR images (calcite and quartz) show what may be a 
“shadow” effect (Figs. 7B, 8B). This may be due to a slightly 
uneven heating of the sample during analysis. Visually, the 
LWIR-predicted mineralogy images are comparable to the 
μXRF-derived mineralogy map with similar mineral abun-
dances and provide details that are beneficial in understand-
ing the alteration that has occurred in this sample. 

A final external validation showed that the Random For-
est regression models produced results comparable to mul-
tielement geochemistry over the scanned 2,030 m of drill 
core (at 5-, 10-, and 20-ft intervals). The relatively low RMSE 
(1.06–6.19%) suggest that despite the difference in data type, 
scale, and source (surface scans versus whole-rock analyses 
from split core from the same intervals), the Random Forest 
models produced mineral abundance estimates with chemical 
components that are consistent with the multielement geo-
chemistry. The low R2 value and shallow slope of the regres-
sion line for K and Mg suggests that these elements have been 
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overestimated by the Random Forest models. The difficulty 
of distinguishing white mica from K-feldspar and phlogopite 
in the μXRF training data likely contributes to error in the K, 
whereas the high detection limit of Mg in the μXRF method 
may have contributed to error in identifying Mg-bearing min-
erals. However, the results of Al, C, and Ca suggest that the 
total aluminosilicate and carbonate mineral predictions are 
accurate. With the development of a more sensitive μXRF 
analyzers such as the Bruker Tornado Plus (Bruker, 2018b), 
with lower detection limits for the light elements, Mg predic-
tions may be improved. 

The strength of the Random Forest regression models is in 
their ability to estimate (with relative accuracy and precision) 
the mineral proportions of complicated spectral mixtures in 
fine-grained mineralogical systems such as Carlin-type gold 
deposits. This method is especially useful for data-rich projects, 
such as those typically managed by the mining industry. Such 
projects often have multiple datasets readily available that can 
be used for training LWIR spectra. An additional advantage 

of this method is in the turnaround time. This method can be 
completed in-house by workers with an understanding of the 
particular geologic system in question by collecting samples 
containing representative mineralogy and creating a training 
dataset using commercially available analytical rastering tech-
nique such as μXRF (as described in Barker, et. al., 2020) or 
quantitative SEM (e.g. MLA, QEMSCAN; Gottlieb, 2008). 
Being able to describe the mineralogical variations quanti-
tively and with more confidence, potentially in “real time” 
as core scanning proceeds, may lead to the discovery of new 
exploration vectors for Carlin-type and other mineralization 
styles, particularly in fine-grained sedimentary rocks. Use of 
this method can provide detailed logs of mineralogy that can 
be used by geologists to better understand paragenesis and 
alteration. It may also provide value to metallurgists who can 
understand the relative abundance of quartz, carbonate, and 
clay mineralogy, which could affect hardness and mineral pro-
cessing characteristics (Escolme et al., 2019).

Conclusion
In this study LWIR was used to predict mineral abundances 
using Random Forest regression models. Results of the Ran-
dom Forest regression models indicate that the use of μXRF-
derived mineralogy to inform LWIR of mineral proportions 
using Random Forest modeling can produce relatively accu-
rate and precise mineral estimates. The RMSE rates from 
this study (1.17–6.75% internal and 1.06–6.19% external) are 
comparable to error of proportion estimates of a linear spec-
tral deconvolution algorithm (±7–15%), a commonly used 
spectral unmixing method.
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