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Abstract

Kubernetes is one of the major container management platforms utilised by
Cloud Service Providers offering to host applications and services. As cloud
based services become more prevalent, platform providers are faced with an
increasingly complex problem of trying to meet contracted performance levels.
Providers must strike a balance between management of resource allocations
and contractual obligations to ensure that their service is profitable, while offer-
ing competitive pricing rates for contracts. This research explores performance
modelling of microservice application tenants within the Kubernetes container
management platform. We present a self-adaptive architecture to achieve mod-
elling at runtime. We establish the potential for automated classification of
cloud systems, and utilise a hybridised modelling approach to verify system
properties and evaluate performance. We achieve this through the modelling
of components as Extended Finite State Machines in WATERS, from which
we automate the generating of performance models using the PEPA syntax.
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Chapter 1

Introduction

Distributed cloud systems are growing in prominence. Cloud service providers

are faced with an increasingly complex task of balancing costs associated with

infrastructure and resource utilisation, with contractual obligations to clients

in the form of Service Level Agreements [4]. The Kubernetes cloud manage-

ment platform is used by Platform as a Service (PaaS) providers to manage

client applications. It is a self-adaptive platform, that makes use of control-

theoretical approaches to maintain expected levels of performance. This re-

search explores a potential extension to Kubernetes in the form of predictive

management. We present a self-adaptive architecture to perform classification

of systems and produce subsequent performance models at runtime. We em-

ploy two modelling paradigms to explore the adaptation of such a system as

it experiences different degrees of load. We make use of the Waikato Analy-

sis Tool for Events in Reactive Systems (WATERS) to create initial models

using Extended Finite State Machines (EFSM) [56]. These models reflect the

configuration and behaviour of deployed applications across a shared resource

pool within a local Kubernetes Cluster. We verify the behavioural properties

of EFSM models using the WATERS model checking framework. We present

an automated approach to classifying aspects of microservice applications. We

present a tool to automatically generate performance models using a Perfor-

mance Evaluation Process Algebra (PEPA) syntax [40]. Our modelling tool
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produces models that adhere to the same logic outlined by our EFSMs. We

evaluate the performance of physically deployed systems against our predictive

modelling approach. We have three research questions that we seek to answer

through this research.

1. How accurately are we able to capture the behaviours of the Kubernetes

management platform using EFSMs?

2. Can we classify aspects of microservice applications to generate equiva-

lent performance models?

3. Is there potential for such models to be used for predictive management?

We hypothesize that our modelling approach using WATERS will capture the

interactions between request handling and Kubernetes reasonably well, thus

providing a mechanism to help inform PaaS providers of possible impacts of

configuration changes at design time. We anticipate that our PEPA approach

will contribute further insight into expected levels of performance, from which

adaptation strategies can be developed.

Key contributions of this work are as follows.

• An outline of our proposed self-adaptive architecture.

• An EFSM model that can be easily adapted to represent different cluster

and deployment configurations at design time.

• A generator tool that establishes a model in PEPA syntax to evaluate

the performance of our modelled system at design time.

• Evaluation of our modelling process and observations of encountered

limitations.

We evaluate our models against observed performance of applications deployed

to local Kubernetes clusters managed by Minikube. We establish performance

observations using Apache Jmeter.
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We envision that this approach may show the potential for usage by Cloud Ser-

vice Providers (CSPs) to inform decisions about the acceptance of new client

contracts. Configuration of client applications can be added to an existing

WATERS model to see the potential impact on the status of a cluster. PEPA

models can be used to evaluate the expected performance of the new applica-

tion under different loads, and the consequent impact on cluster configurations.

Furthermore, we expect that future development of our modelling approaches

will work toward automating the classification and subsequent generation of

system models at runtime. Such an approach falls within the third and fifth

waves of adaptation [84]. We establish performance models of systems based

on known aspects of our application (Wave III). We use these models to pro-

vide guarantees of performance under uncertainty (Wave V) [15].

This thesis has the following structure: Chapter 2 discusses the background

information related to the presented research. This includes information re-

garding self-adaptive systems, cloud computing, Kubernetes, and the WATERS

and PEPA modelling paradigms. Chapter 3 presents previous work related to

our research topic. Chapter 4 presents our self-adaptive modelling architecture.

Chapter 5 discusses behavioural aspects of the Kubernetes container manage-

ment platform that we seek to capture. Chapter 6 discusses our experimental

methodology for evaluation of our modelled and actual clusters. Chapter 7 de-

scribes the methodology behind our automated system classification approach.

Chapter 8 presents the development of our system models and generation tool.

Chapter 9 evaluates the performance of our modelling approach. Chapter 10

presents conclusions and future development of our research.



Chapter 2

Background

This chapter presents the background information relevant to the content ex-

plored throughout this thesis. First, it introduces the notion of self-adaptation

from a software engineering perspective. Following this, it discusses the struc-

ture of modern cloud systems and the contexts within which they operate. It

then introduces containerization, microservices, and the Kubernetes container

management platform. Finally, it presents modelling practices and tools used

during the research process.

2.1 Self-Adaptive Systems

Increased complexity and reliance on software-based systems necessitates effec-

tive management strategies. The aim of such management is the avoidance of

performance inconsistencies and the increase in efficiency with which resources

are allocated. Systems that integrate principles of self-adaption establish sys-

tem goals in the form of setpoints. Setpoints represent the behaviours that the

system is expected to adhere to. This is often achieved through the quantifica-

tion of goals that are measured against performance metrics. The conceptual

model of a self-adaptive system within a software engineering context is com-

prised of four basic elements:

• The environment within which a system operates. This includes both
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physical and virtual infrastructures across which aspects of a system

operate.

• The managed system is the functional application code for which perfor-

mance goals are created. Performance of the managed system is effected

by resource availability and consequent processing capacity.

• Adaptation goals are quantified performance expectations that the man-

aged system should adhere to. Examples of such goals are the mean

response time of a system under dynamic load conditions, or the average

utilisation of allocated resources. Adaptation goals are conditions placed

on these metrics: e.g. response time is never greater than X.

• The managing system is comprised of multiple controlling components

that effect changes to the relationship between the managed system and

its environment to meet adaptation goals.

To achieve effective management of complex managed systems, sensory in-

formation relating to observed performance of system is scraped at runtime.

The implementation of self-adaptive management of systems follows a control-

theoretical approach.

2.1.1 Control Theory

A control-theoretical approach to software engineering entails the implemen-

tation of controlling components. Such components observe and analyse the

behaviour of a system at runtime. Adjustments are made to system param-

eters to effect a change in behaviour. Controllers act to minimise the error

between observed behaviours and defined setpoints. This thesis focuses on the

Kubernetes container management platform. The major benefit offered by this

platform is its self-healing and adaptive nature. This is achieved through a

control-theoretical [36] approach to management. Kubernetes utilises several

controller components that work through automated control loops. Figure 2.1

depicts the logic of a MAPE(K) loop that is the basis system controllers:
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Figure 2.1: A MAPE-K Loop

• Monitor the system to evaluate an observed behaviour against an ex-

pected one.

• Analyse the current performance metrics that are produced through the

monitoring process. Determine whether the specified system goals are

adhering to specifications.

• Plan out a series of potential strategies to correct deviations from ex-

pected performance.

• Execute a correcting action to effect change in system behaviour.

The MAPE(K) loop is executed at run time. Comparisons are made between

observed behaviour and specified setpoints. Controlling actions are taken to

minimize the measured error between observed performance and setpoint val-

ues. To achieve this, a controlled system makes use of a Knowledge base

that contains runtime information relevant to the management of the con-

trolled system [15, 27].

2.1.2 Waves of self-adaptation

Software Engineering of self-adaptive systems has been developed through 6

waves of research [84].
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1. Automating Tasks to support continuous management computing sys-

tems to mitigate human error when dealing with complex relationships

between dynamic system components [50].

2. Architecture-Based Adaptation [52] to achieve abstraction and sep-

aration of concerns to offer general controlling strategies that are appli-

cable across a range of systems and domains.

3. Runtime Models [9] to extend traditional model-driven engineering

techniques to fit a self-adaptive context. Models abstract behaviours

of underlying systems. Incorporation of models at runtime provides a

mechanism to evaluate the impact and efficacy of adaptive strategies

prior to implementation within the running system.

4. Goal-Driven Adaptation to achieve fuzzy behavioural aims rather

than explicit requirements [6]. Goal-driven adaptation allows for tem-

porary deviation from setpoint values that result from dynamic system

behaviours. A good example of goal driven adaptation is a central heat-

ing system. When the desired temperature is increased, the managing

system will implement controlling actions to achieve the new setpoint.

The most effective strategy for this is to turn a heating component onto

full power until the setpoint is reached. The cost associated with power

consumption for this strategy is high. Similarly, maintaining an exact

temperature may achieve setpoint adherence, but requires that heating

and cooling processes are rapidly engaged. Such behaviour is inefficient

and again has a high cost associated with power consumption. A goal-

driven approach in this instance seeks to balance cost with setpoint ad-

herence. Rather than meeting a desired temperature as soon as possible,

controlling actions are taken that ensure the setpoint is eventually met

at a lower cost.

5. Guarantees Under Uncertainty establishes a shift in the motivation

for self-adaptation. Rather than improve upon the efficiency with which
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systems are managed, this wave aims to minimise the impact of external

disturbances on observed performance [21, 30]. Managing systems within

this wave effect changes to achieve goal adherence when the managed

system is exposed to changing conditions. An example of such a situation

is the adjustment of resources assigned to an application for request

handling when the incoming request rate is dynamic.

6. Control-Based Adaptation combines the principles of waves 2 and 5

to provide guarantees under uncertainty through the implementation of

control theory as a self-adaptive framework [35]. The managing system

acts to meet multiple system goals, with controlling actions following

a mathematical structure that accounts for the magnitude of deviation

from expected behaviours and the flow on effect across multiple aspects

of the system.

Within this research, we present a self-adaptive managing architecture to ex-

tend the Kubernetes platform.

2.2 Cloud Computing

Coined by Google CEO Eric Schmidt in 2006, cloud computing describes a

system that is hosted across multiple different Physical Machines (PMs) that

are connected to each other through a network. Modern cloud systems can be

seen as an evolution of earlier technologies, such as web based email clients

and internet search engines [5], both of which rely on similar distributed sys-

tems [53].

The obvious advantage of cloud computing comes from the ability to dis-

place a great deal of the cost associated with the infrastructure required to

host a service. The cloud computing approach follows a client/server model,

wherein an end user makes a request of an application hosted on the cloud in-

frastructure. Requests routed to the application for handling, before returning

a response.
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2.2.1 Cloud Service Providers

Many cloud systems are managed by Cloud Service Providers (CSPs). The

costs associated with cloud system management and infrastructure can be sig-

nificant. An alternative is to enter into a contract with a CSP. This relationship

can be classified as a provider/client relationship, where clients are individuals

or companies with an application to be hosted. The contracts between CPSs

and clients form the basis of Service Level Agreements (SLAs). The degree

of separation between a client and application management categorises CSPs

into three main categories [37]:

• Software as a Service (SaaS) can be viewed as analogous to on-demand

software. Software is hosted across a distributed cloud system, and is

made available to clients on a subscription basis.

• Platform as a Service (PaaS) consists of hosting client services within a

managed cloud platform. A client engaged with such a provider deals

only with the data required for their service to run, while the PaaS

provider manages the administration associated with running such a

platform.

• Infrastructure as a Service (IaaS) is similar to PaaS, but without the

management layer provided within a PaaS environment. Rather than a

provider hosting and managing client services on a cloud platform, clients

in an IaaS model manage their own platforms, but pay for the provided

infrastructure.

A fourth cloud service model of Runtime as a Service (RaaS) also exists. In a

RaaS model, clients pay for access to a runtime environment and are charged

for resources on a utilisation basis. A potential extension of RaaS, Application-

Server as a Service (ASaaS) [66] has been proposed as an alternative to these

three standards. ASaaS builds on a Runtime as a Service model, wherein the

proposed ASaaS approach improves the efficiency of resource utilisation in a

RaaS context by sharing processes and libraries between tenants.



10

2.2.2 Platform as a Service

The focus of this research is the modelling of a cloud environment following

a Platform as a Service model. Specifically, we evaluate resource utilisation

of client services against observed performance. PaaS providers must compete

with one another to provide a competitive price for the service provided. Con-

tractual pricing rates seek to balance profitability with client demand. The

PaaS provider has an interest in minimizing costs associated with operation of

the platform, but must meet contracted levels of service. [22]

2.2.3 System Targets

From the PaaS provider perspective, service metrics are measured against Ser-

vice Level Objectives (SLOs) [20]. Whenever a contract is entered into with a

client, the service provider makes guarantees as to the expected performance of

the client’s hosted service as SLAs. SLAs typically involve performance metrics

service response time or allocation of resources such as CPU or memory [49].

SLAs refer to the minimum standard of service expected of the provider, as

established contractually with each respective client. To avoid SLA violations,

CSPs establish SLOs with a higher standard of performance than that de-

fined within SLAs. Actual performance is analysed to produce Service Level

Indicators (SLIs). By taking corrective action when measured SLIs result in

violation of SLOs, a provider is able to engage preemptive measures to avoid

breaches of contractual SLAs.

2.2.4 Containerization

Alongside the evolution of cloud systems, the methods of deploying appli-

cations across a decentralised pool of resources have continued to develop.

Effective management of cloud systems requires efficient distribution of appli-

cations across the available infrastructure. Development of Virtual Machine

(VM) based cloud systems greatly increased the ability for providers to tai-
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Figure 2.2: Application Encapsulation in a VM-based Cloud

lor their own platform architecture [8]. VM based cloud applications could

be hosted on any PM that can meet the resource requirements. Figure 2.2

illustrates this style of architecture. Applications run within VMs running

the required guest OS, while the VMs are managed by Hypervisors running

on the host machine. Applications that run of different operating systems

can be hosted on the same PM using VMs. While VM based architectures

allow for flexible management of deployed services, they also have their own

disadvantages.

• There is a high cost associated with running a hypervisor to manage

VMs that greatly impacts efficiency of resource management.

• VMs have a time cost associated with booting up or shutting down the

required host OS, which impacts the speed at which a system can reac-

tively scale.

• Both of the above issues are exacerbated by the inability to share system

resources between different VMs.

A containerization approach packages client applications along with any nec-

essary dependencies into a lightweight wrapper that can be quickly created or

destroyed [64]. This approach allows for the benefits of flexibility found within
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Figure 2.3: Containerised Cloud Management

VM-based systems, while also alleviating the cost associated with hypervi-

sors. Hence, containerization allows for much more efficient management of

multi-tenancy systems. This is achieved largely through the ability of multiple

containers to share kernel resources across a physical host without the need

for a hypervisor. As such, containers are able to be created and destroyed at a

much faster rate than VMs and the resources required to operate an individual

container unit are much less than that of a VM. Thus, container-based systems

allow for a much greater degree of efficiency and reactivity when compared to

an equivalent system that utilizes VMs [63].

2.2.5 Microservices

The lightweight nature of containerization is evident within microsevice ar-

chitectures [3]. Applications that follow a microservice architecture package

aspects of application behaviour as individual container images. These con-

tainers have a relatively low resource cost and consequent low capacity for

request handling. A microservice architecture maintains expected levels of

performance through scaling actions. The number of running containers asso-

ciated with a given service are increased or decreased based on observed load

to adjust the processing capacity of a given service under dynamic load con-

ditions. Microservice architecture has the following benefits over a traditional
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monolithic approach [79]:

• Resource allocations can be managed efficiently as micro service contain-

ers scale up and down.

• The impact of individual container failures is decreased. Container fail-

ures impact a single aspect of an application, rather than impacting the

application in its entirety. The proportional impact of each failure on

performance is decreased. Services spread across many containers with

small resource pools are impacted less by a container failure than a ser-

vice spread across few containers.

• Resource requirements can be split into smaller amounts. Applications

following a microservice architecture are well suited to deployment over

distributed systems.

Within this thesis, we present modelling approaches based on statespace meth-

ods. Components within a microservice architecture can be modelled more ef-

fectively than monolithic applications using statespace methods. Complexity

of models increases as the capacity of modelled components increases. As sys-

tems become more complex, the resulting statespace grows exponentially [82].

The modelling approach within this thesis is restricted to small applications

that follow a microservice architecture to avoid statespace explosions.

2.2.6 Load Balancing

The increased flexibility associated with a containerized approach to cloud

deployments, requires a Load Balancing service to ensure that workloads are

distributed across all active containers in such a fashion that we end up with

a relatively equal degree of stressing across all containers related to a service.

The load balancer is tasked with redirecting incoming traffic to the containers

that are associated with the application that is being engaged.
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2.3 Kubernetes

Kubernetes is a container orchestration platform for adaptive clouds1. De-

signed by Google in 2014 and maintained by the Cloud Native Computing

Foundation, Kubernetes manages distributed clusters through layers of com-

ponent encapsulation. As such, it facilitates management of cloud based appli-

cations by abstracting away multiple levels of internal network management.

Maintenance of the running cluster is achieved through controlling compo-

nents that check the observed state of the cluster with expected configuration

within a data store known as etcd. Kubernetes employs controllers to peri-

odically check the observed configuration of the cluster against the expected

configuration stored within etcd. These controllers then act to correct errors

as they are encountered through controlling actions. Such a system can be

described as self-adaptive. The units of encapsulation within Kubernetes are

as follows [74]:

• Pod components encapsulate application containers. Each pod has an

IP address, and contains one or more containers associated with a given

application. Each pod has associated resource requests and limits. This

thesis focuses on pods that contain a single container.

• Deployments establish expected configuration of application compo-

nents. Pod resources and replicasets are controlled by deployment con-

figurations. Traffic is spread between pods in a deployment using an

external Load Balancer.

• Replica Sets determine how many pod replicas of a given deployment

are desired at a time.

• Namespaces can be used to link related deployments or establish re-

source quotas for specific applications
1https://kubernetes.io/
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• Nodes are the physical machines that a Kubernetes Cluster spans across.

These are referred to as Masters and Workers.

• Cluster refers to the entirety of the system, and encapsulates all nodes

and deployments.

When part of an application needs to be accessible to an end-user, the rel-

evant deployment is exposed as a service. The internal IP of each pod in a

deployment is mapped to the exposed service as an EndPoint within etcd. The

Figure 2.4: Kubernetes Architecture

infrastrucure of a Kubernetes Cluster is made up of Nodes. Worker nodes are

the physical machines making up the resource pool onto which pods can be

deployed. Each Worker has a Kubelet that facilitates communication between

master components and worker nodes, several pods that encapsulate conta-

irized applications, a Container Runtime, and a KubeProxy that facilitates

internal cluster networking. Master nodes are reserved for cluster manage-

ment components:

• Kube-APIServer facilitates communication between components within
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a cluster and exposes front-end APIs.

• Kube-Controller-Manager is responsible for keeping the real-time

cluster architecture consistent with outlined configurations. A Node-

Controller keeps track of current node performance and failures. A

Replication-Controller keeps track of the number of deployed pods against

each relevant replica set. An Endpoints-Controller makes sure that any

exposed service is mapped to the appropriate pod within the cluster.

• Kube-Scheduler assigns pods to available nodes as they are created.

• Etcd is the distributed data store used within Kubernetes. When con-

troller components of the cluster are engaged, they check the observed

state of the cluster against the expected configuration found within etcd.

Adjustments are made to the physical cluster as required to match the

expected state.

The Kubernetes platform offers self-adaptive management of deployed appli-

cations. The self-adaptation within Kubernetes is achieved through the con-

trolling components which all follow a MAPE-K loop, with etcd comprising

the shared knowledge base. The platform architect applies new configurations

in the form of new deployed applications or alterations to the running cluster

environment. These configurations are uploaded and stored within etcd. This

management approach provides two functionalities that are explored within

this thesis:

• Horizontal Autoscaling can be implemented within deployments to

establish a replica set that adjusts based on resource utilization [45]. Au-

toscaling allows for the adjustment cluster resources dedicated to running

a particular deployment. Horizontal autoscaling achieves this by scaling

the number of pod replicas between a set minimum and maximum num-

ber to meet resource utilisation goals.

• Self-Healing is a natural byproduct of the Kube-Controller-Manager.
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If a pod crashes, the discrepancy against the expected configuration is

noticed. The Replication-Controller sends a request for a new pod which

is scheduled onto an available node. The Endpoints-Controller ensures

that the new pod is linked to the service, and removes the link for the

old one.

A request can enter into the cluster at any physical node in the system.

The request is aimed at a specific service hosted within the cluster. The

load balancer is then engaged to route the request. It determines the route by

checking the resource utilisation across all of the active pod replicas associated

with the services’ deployment, found by checking against the endpoint objects

stored within etcd. The request is then directed to the pod with highest

availability.

2.3.1 Minikube

Minikube is a tool that allows for the running of a single node Kubernetes

cluster within a VM or container on a local machine. The controlling com-

ponents are deployed within a ”kube − system” namespace, which mimics a

master node in an ordinary cluster. This local environment is the context

within which experiments are run in this thesis.

2.4 Modelling

Within any system, processes take place that transform the system itself from

an initial state to a number of given potential outcomes. The collection of

all possible outcomes resulting from actions across the different components

within a system is referred to as the statespace of the system. The actions un-

dertaken by components along with the associated rate at which they occur are

viewed as transitions. Model checking algorithms are based on an underlying

framework known as the Specification Problem [28]: Given a system M with

specification h, determine whether the behaviour of M fits h. The application
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for this approach within the context of a Kubernetes architecture is as follows:

• Given a Kubernetes Cluster with a known load, how accurately can a

model reflect observed performance against an established SLO?

• Given a Kubernetes Cluster with known performance, how accurately

can a model predict observed behaviours when load scales or new tenants

are introduced?

This thesis focuses on two modelling approaches, the first utilises the Waikato

Analysis Tool for Events in Reactive Systems (WATERS) which allows for cre-

ation and verification of models using modular automata to represent discrete

event systems. The second utilises Performance Evaluation Process Algebra

(PEPA) to model expected performance of Kubernetes clusters modelled as

stochastic processes represented by Markov Chains.

2.5 WATERS

TheWaikato Analysis Tool for Events in Reactive Systems (WATERS)/Supremica

is a tool developed to provide an environment within which large discrete

event systems can be modelled and analysed [2]. It utilises supervisory control

theory [75] from which a complex system can be represented using modular

components with shared events.

2.5.1 Discrete Event Systems

Many systems cannot be easily or accurately represented via mathematically

defined relationships, but rather as occupying one of a given finite series of

states at any one time. Such systems can be referred to as discrete event

systems and modelled through automata [33]. A good example of such a

situation would be modelling the potential behaviour of a production factory.

In such a situation, we are concerned about whether a particular manufacturing

component is idle, working, or finished. In such a context, the focus is on
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whether the required component is in an acceptable state at the point at which

it is needed. Likewise if we examine a traffic system, the aspect of focus is that

two opposing signals are not both green at the same time. In both of these

examples, the focus of model checking is to determine whether the system

functions as expected or enters states classed as forbidden, while transitions

are symbolic rather than numerical. WATERS provides a tool to explore

these systems through modelled automata, which represent an abstraction of

components within the system. The interaction between these components

can then be used to model supervisory control or potential blocking aspects of

a system.

2.5.2 Supervisory Control

Supervisory control can be used to model complex discrete event systems.

Each system component is modelled individually. A supervisor component

models system behaviours that must be adhered to. The synchronisation of

transitions between system components and a supervisory establish controlled

behaviours [23]. WATERS allows the user to model systems using compo-

nents known as plants and supervisors. Modelled behaviour of components

is controlled by synchronising transitions across plants and supervisors. Each

plant or supervisor is a Finite State Machine (FSM) representing the states

of an individual component and the transitions between each of said states

along a labeled pathway. Thus, each FSM can be represented as a 5-tuple [57]

G = (Σ, Q,→, Qi, Qm), where:

• Σ represents a finite alphabet of events that exist within the system. This

is a combination of the sets Σu of uncontrollable and Σc of controllable

events.

• Q is the set of possible states.

• → represents transitions between states of a system along a labeled event

pathway.
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• Qi ⊆ Q represents the subset of initial states of the system

• Qm ⊆ Q represents the subset of marked states in the system

States marked as accepting within a component represent what might be con-

sidered as an idle stage, wherein the component is ready to be engaged. The

events within a system can be shared across components and are classified as

controllable or uncontrollable. Controllable events can be blocked by a sys-

tem’s specifications, while uncontrollable events must always be able to occur.

Where components share the same actions, WATERS uses synchronous com-

position in line with the theory of Communicating Sequential Processes [13].

The shared event must be consistently controllable or uncontrollable across all

components in which it exists, the transition in one component can then only

occur if it is also enabled in each other component. At the point at which a

transition does occur in a component due to a shared event, all other compo-

nents with the event will also experience the relevant transition. Our WATERS

modelling approach makes use of this synchronous property. We map the effect

of transitions across multiple components through shared events.

2.5.3 Extended Finite State Machines

WATERS allows for control of systems by extending traditional Finite State

Machines through the incorporation of Variables, guards, and actions [62].

• Variables allow for modelling of system limits or behaviours [81]. Vari-

ables are integer values that are dynamically adjusted by transitions

between states. Variables are bounded within a defined range. These

variables can be referenced by guards and actions.

• Guards enable or disable transitions based on a logical formula.

• Actions update variables as events occur. Actions are limited by the

defined variable range.
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A system model within WATERS is thus represented by component plants and

controlling specifications. Plants model the behaviour of actual components

through states and transitions. Specifications are viewed as controllers that

enforce the limits of the system that interacting components must act within

by associating guards with given events. The system is considered controllable

if the given specifications define behaviour for all instances of uncontrollable

events across all plants in a system [56]. The WATERS modelling approach

within this research establishes the current state of cluster components through

tracking of variable values. Components contain logical guards defined within

plants and a system specification. In this manner, we track the state of resource

availability and utilisation across components within the system. Furthermore,

analysis of the generated state space provides insight into the competition

for resources between deployments as they scale. Thus, we establish possible

cluster configurations as components react to incoming request actions.

2.5.4 Verification

Once the plants and specifications of a system are established, WATERS allows

for verification [60] of the model properties through the following methods:

• Controllability determines whether the system meets the definition of

control as previously discussed.

• Conflict checking determines whether the system can finally reach a state

marked accepting.

• Deadlock checking finds any states from which a system cannot transition

out of.

• Control Loop checking finds any potential livelocks, wherein a system is

stuck in a repeating loop of controllable transitions.

• Property checking allows for predictive modelling of system behaviours,

by checking the model against known behaviours.
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This type of analysis is useful for determining reachability of a state given a

well defined model, but does not provide useful information about expected

system performance. This is an inherent property of any Discrete Event Sys-

tem (DES). Such systems model transitional behaviour between system states

without regard to the rate at which a given transition might take place. Our

modelling approach makes use of the verification provided by the WATERS

framework. Properties of our WATERS system model are verified. We then

transpose the logic of our model into a PEPA syntax. Our PEPA model sup-

ports activity rates for transitions. We evaluate the performance of our PEPA

model.

2.6 Queuing theory

A job in any given computer system has three main states. It arrives at the

system, it is worked by the system, and it leaves the system. With this ba-

sic model, the departure time of any job can be easily predicted with given

knowledge of the arrival time and the resource and I/O requirements of the

job. As more jobs are added concurrently to the system, the competing na-

ture of jobs with each other for resources results in performance delays as

resources are used and freed. When these jobs come in the form of user input

across a distributed system, the rate at which jobs arrive in a system can be

viewed as inherently stochastic. Queuing theory [38] can be applied to such

a system, given knowledge of resource costs and an exponentially distributed

arrival rate, to predict expected performance levels across a system design.

We utilise queuing theory to model capacity of pods through observed levels

of concurrency. Our models can thus be viewed as queues, where each position

reflects a granular level of concurrent active requests.
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2.6.1 Stochastic Processes

Stochastic Processes are a sequence of random variables representing gener-

alized behaviour of a system. Such processes are best suited to representing

systems for which certain behaviours can be assumed. Arrival rates on in-

coming jobs are typically constant over a time period, but the arrival time

of each individual job is unpredictable. Stochastic processes can be modelled

using Markov Processes to represent the evolution of the system state space

at any given time step [54, 31]. Markov processes are well suited to mod-

elling stochastic processes as they possess a memoryless property with regard

to transition rates. This means that the probability of being in a state at

time t is dependent on the state at time t − 1 but independent of all states

prior. Rather than using specific numeric rate values, Markov processes utilise

a mean value to represent a rate with an exponential distribution. Such an

approach means that long term trends will be well represented as the system

evolves, even if the actual rate fluctuates around the expected mean. Discrete

Time Markov Chain (DTMC) represents a system wherein transitions occur at

discrete time steps. Continuous Time Markov Chains (CTMC) allow for tran-

sitions regardless of time steps. This thesis focuses on CTMC representation

of systems. The memoryless nature of transitions within the chain means the

rate at which a transition occurs is independent of how many transition have

occurred prior, or how long the system has been in the current state. As such,

the exponential variable can be viewed as analogous to a Poisson Distribution,

where:

P (X = k) =
λke−λ

k!

• X is a discrete random variable representing the number of times a given

event occurs over a time period.

• k is a positive integer representing the observed number of events that

has occurred.

• λ is the expected value of X.
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Within the context of a Kubernetes Cluster, λ can be seen as equivalent to

the expected number of incoming jobs per second; the actual value may vary

between 0 and infinity, while the exponentially distributed variable has a mean

at the expected average. Markov chains can be visualised as Finite State Au-

tomata, much like those found within the WATERS modelling context. The

benefit of Markov chains is the ability to associate a rate λ with a transition ac-

tion, allowing for the evaluation of likely outcomes within a non-deterministic

context [16]. The previously mentioned memoryless nature of Markov pro-

cesses means that the steady state probability of transitioning from any given

state to another in the chain can be represented as a singular matrix with

dimension n × n where n is the size of the state space. Each row within the

matrix is associated with a the system being in a single state, with the entries

in the row depicting the probability of transitioning out of the current state

into the state associated with the column. Performance Evaluation Process Al-

gebra makes use of this underlying matrix to analyse the expected behaviour

of a defined Markov process, performing a steady state analysis to determine

the probability of being in any given state of the process at any given time.

2.7 PEPA

Performance Evaluation Process Algebra extends a traditional approach to

Process Algebras by associating probabilities with system actions and utilising

a compositional approach to model building [41]. These qualities make it

suitable for analysis of dynamic systems.

2.7.1 Process Algebras

Process algebras offer mathematical theories that allow for the modelling of

concurrent systems via algebraic expressions [7]. Each component within a

system is represented as a separate process. Interactions that alter the state

of a process can be modeled from a set A of system actions. In traditional
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process algebras, probability is abstracted away in favour of non-deterministic

choice [42]. Thus, actions can be viewed as analogous to the instantaneous

transitions within WATERS. PEPA extends this traditional functionality by

using activities, which comprise an action-rate pair: a = (α, r), α ∈ A. Each

activity is then given an exponentially distributed duration as a function of

r, with a mean time of 1
r
. The likelihood of a given activity within a process

taking place within a given time can be given as a function of time: fa(t) =

1−e−rt, where r is the associated rate and t is the time step. Such an approach

allows for the generation and analysis of the underlying Markov process, which

employs such exponential variables.

2.7.2 Syntax

PEPA models adhere to the following language:

P ::== (a, r).P | P +Q | P ./
L Q | P/L | A

• Prefix (a, r).P denotes the basic mechanism through which interactions

are modelled within PEPA. A component undertakes an activity consist-

ing of an action and associated rate, after which it behaves as component

P.

• Choice P+Q denotes the competing nature of processes. Multiple activ-

ities being enabled simultaneously results in multiple possible outcomes.

This can be viewed as a logical OR, with the outcome probabilities de-

termined by the given activity rates.

• Cooperation P ./
L Q allows for parallel composition of processes across

a system. This provides functionality through which to represent syn-

chronising processes where L is the cooperation set of actions between

processes P and Q. This means that where P experiences an action in

L, Q must experience the same action. The rate of the activity is deter-

mined by the lowest rate, as fast processes must wait for slower ones to
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finish. If L is empty then P ./
L Q represents parallel composition, where

there is no interaction between components. This is also represented as

P ||Q

• Hiding P/L denotes that actions in set L for process P are not visible

to other components. This is useful where detail about specific processes

can be abstracted away and only the rate is relevant

• Constant A def
= P are the names assigned to evolving processes. A con-

stant is an abstraction representing the possible activities undertaken

from a particular state in a given process. Each constant represents a

state in the associated component.

Where a particular component has multiple potential activities associated with

the same action available at the same time, each activity is viewed as indepen-

dent. While WATERS approaches modelling through visual representation of

components as FSAs, PEPA has a focus on performance evaluation. As such,

component states and transitions within the model are represented textually

as process algebra. The resulting model is less intuitive than that of the WA-

TERS approach, but allows for a much greater degree of evaluation due to the

analysis of the underlying Markov process. While components can be easily

defined and segmented as different plants within WATERS, there is no encap-

sulation of components within PEPA. Instead, all constants that are linked

through an activity can be viewed as potential states of the same component.

As such, the potential transitions from any given state within a component

is represented by the choice between defined activity prefixes that lead to the

next state.

2.7.3 Model Solving

When an activity completes, PEPA uses preemptive resampling with a restart

to determine the next activity from the available choices for each component

state. This means that each activity within the system as a whole is treated
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equally, with activity weighting remaining consistent regardless of how much

time has passed since it was enabled. Thus, the exponential rate distribution

associated with transitions is independent of time. A derivation graph repre-

sents all of the potential interactions between different states in a process due

to the enabled activities. The initial node of the graph represents the com-

bination of all system component initial states. A race condition is used to

determine the probability of each activity branch from each node in the graph.

The likelihood of each activity occurring is calculated as a ratio of the asso-

ciated rate against the sum of the rates all enabled activities. Each selection

is independent and only one activity can fire at any timestep. By associating

each node in the graph with a system state, and each activity branch between

nodes in the graph with a given action, an underlying Markov process is iden-

tified that represents the states and transitions within the system. Analysis

of this Markov process can be performed to find the steadystate probability

associated with each state of the modelled system.

The research presented within this thesis uses queuing theory to model

behaviours of microservices within a Kubernetes cluster using WATERS and

PEPA. WATERS is used for initial creation and verification of models. An

automated generation tool is used to transpose the logic of our WATERS

model into a PEPA syntax for performance evaluation.



Chapter 3

Related Work

Within this chapter, we present a summary of previous research toward mod-

elling of cloud computing systems. We examine existing approaches to mod-

elling cloud systems across different architectural contexts, along with previous

work that relates to the modelling approaches taken within this thesis.

We classify our selected papers into the following key sections:

• Classification of Cloud Systems.

• Self-Adaptation.

• Modelling Approaches and Efficacy.

3.1 Classification of Cloud Systems

The use of cloud-based distributed systems is a recent phenomenon and as

such, the standard of implementation has evolved rapidly in recent years.

Hence, to classify and understand the behaviours of such a system, one must

have familiarity with the history of cloud environments and functional aspects

therein.

Dillon et al [24] Introduce key underlying concepts within the context of

cloud computing, specifically focusing on the history of Grid Computing and

service models found within a cloud environment. The presented work contex-

tualises the relationships between Service-Oriented Computing (SOC), Cloud
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Computing, and Grid Computing, with particular interest in the constraints

experienced by service providers when attempting to achieve established SLOs.

Gibson et al [37] present and discuss the differences between cloud service mod-

els from the perspective of a service provider. The presented work establishes

a clear distinction between cloud contexts using Platform, Infrastructure, and

Software as a Service. Magulari et al [55] present an approach to classifying

capacity of cloud systems based on resource utilisation and implements an ap-

proach that utilises queuing theory to evaluate the impact of load balancing

on resource allocation. Ardagna et al [4] provide a robust overview of exist-

ing approaches to modelling QoS within cloud systems. The present paper

discusses the different approaches of workload vs. system modelling, and the

different applications of each for evaluating QoS with regard to SLAs. Boni-

face et al [10] present a good overview of QoS management of cloud systems

across Software/Platform/Infrastructure as a Service. Patros et al [67, 70]

use CloudGC to benchmark the observed performance of deployed applica-

tions under different Garbage Collection policies. Further work [69] proposes

the use of Elastic GC to minimise the impact of GC processes on application

performance.

3.1.1 Modelling

With regard to modelling, existing research seeks to characterise cloud be-

haviours for the purpose of modelling performance and system verification.

Existing research explores elastic scaling of applications within a cloud envi-

ronment. Performance of vertical and horizontal scaling algorithms is mod-

elled [51, 77], along with predicted adherence to SLOs [12, 80].Brebner et al [12]

focus on performance prediction based on anticipated time durations. Souri et

al [80] discuss the impact of elastic scaling on SLO adherence. Further existing

research. analyses resource utilisation patterns across applications deployed to

a cloud environment [78, 71, 25]. Shawky et al [78] presents an approach to

modelling resource allocation within the context of an Aneka PaaS framework,
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while Ding et al [25] explore the impact of heterogeneous resource pools within

an IOT context. Patros et al [71] present further analysis of resource interfer-

ence within a cloud environment that houses multiple scaling tenants.

We seek to differentiate our research from existing work through the develop-

ment of runtime modelling strategies.

Existing research explores methods for classifying performance of cloud

applications under dynamic load [73]. Patros et al [65] explore a potential ap-

proach to mitigating performance issues in multitenant clouds through shar-

ing of dynamically compiled artifacts. Further research explores approaches

to avoid SLO violations through a combined approach of autoscaling and pri-

oritisation of request handling [68]. Calheiros et al [14] present the CloudSim

toolkit to simulate the performance of a VM based cloud under dynamic load,

others explore the efficacy of load balancing approaches across distributed sys-

tems [11, 55]. Zhu et al [86] establish performance benchmarking for Node.js

applications under different scaling conditions.

Work presented within this thesis compliments and improves upon exist-

ing research by automating parts of the system classification and modelling

processes. Previous work presented so far establishes methodologies for classi-

fication of cloud performance. We differentiate our research from extant work

by presenting a framework that automates aspects of this classification process.

3.1.2 Kubernetes

The following works relate to performance and behaviours of applications

hosted in a Kubernetes cluster. Casaliccho et al [18] evaluate the efficacy

of multiple autoscaling algorithms with regard to observed performance, while

van Zijl et al [83] model the logic of a horizontal autoscaling component to

establish SLO compliance. Evangelidis et al [32] establish a model for veri-

fication of autoscaling policies using the PRISM model checker, with an aim

of guaranteeing performance under uncertainty. Podolskiy et al [72] present
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a machine learning approach to optimise scaling of deployed applications. All

of the above works present research toward performance modelling of Kuber-

netes autoscaling behaviours. Podolskiy et al implement self-adaptative strate-

gies, with the focus is on vertical scaling through machine learning techniques.

Medel et al [59] present an approach to modelling the internal components of

a cluster through Extended Petri Nets. This approach was later extended [58]

to evaluate the impact of internal pod configurations on performance.

We identify the development of a framework for classification of microser-

vice application performance as a gap within existing research. Furthermore,

with the exception of Podolskiy et al, existing research does not explore self-

adaptive implementation of modelled strategies. Podolskiy et al implement

self-adaptation to achieve vertical autoscaling, rather than horizontal. They

approach this through machine learning, rather than performance modelling.

3.2 Self-Adaptive Systems

We present the following works that relate to development and implementation

of self-adaptive strategies.

Jiang et al [44] explore machine learning strategies for predicition-based pro-

visioning of cloud tenants. Esfahani et al [29] present the POISED framework

for mitigating the effects of uncertainty in self-adaptive systems. Jiang et

al [43] present A Self-Adapative Prediction (ASAP) system for dynamic re-

source provisioning of VM clouds. Cedillo et al [19] propose a framework for

producing runtime models of cloud systems. Heinrich et al [39] present work

toward implementation of runtime prediction modelling that reflects dynamic

changes of cloud environments. Calinescu et al [17] present adaptive model

learning methods to predict non-functional system properties using discrete

time markov chains. Johnson et al [48] present an approach to formalise cloud

resource usage as probabilistic patterns. They synthesise Markov Decision

Processes to evaluate probable resource utilisations.
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The works of Jiang et al [44, 43] implement self-adaptive frameworks to im-

prove performance. These works focus on machine learning techniques rather

than performance modelling. Cedillo et al and Heinrich et al present frame-

works for producing runtime models. These approaches illustrate the potential

of self-adaptive management, but are distinct from the modelling approaches

within our research. Existing research involving Markov Decision Processes

establish the potential for probabilistic performance modelling, but implemen-

tation is achieved through the PCTL language using the PRISMmodel checker.

3.3 Modelling Approaches

The papers within this section reflect current modelling approaches for cloud

based systems. The approaches taken can be broadly split into two categories.

Those that focus on modelling performance, and those that focus on system

verification. Furthermore, we also present relevant papers that establish the

required understanding of the modelling approaches undertaken within this

research.

3.3.1 General Background

Hillston et al [41, 40] discuss the development of process algebras and intro-

duce the PEPA modelling language. Presented work evaluates the efficacy

of previous approaches such as existing process algebras and petri nets for

modelling computer systems. Hillston discusses the timed extension of ex-

isting frameworks and provides a good overview of approaches to modelling

stochastic systems. Hillston presents the PEPA modelling language as syntax

for modelling stochastic processes, along with concise documentation of the

PEPA syntax and the construction and evaluation of the underlying Continu-

ous Time Markov Chain (CTMC) that represents the modelled system.

Malik et al [57, 56] present an approach to modelling systems using WA-

TERS. These works provide an overview of the WATERS/Supremica mod-
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elling framework with discussion included regarding the notion of supervisory

control. Teixeira et al [81] discuss the representation of system components as

Extended Finite State Machines, and establish how such models can be anal-

ysed to verify system behaviours. Further insight into the modelling environ-

ment within WATERS, along with various system models and accompanying

documentation.

3.3.2 Performance

Current research into performance modelling of cloud systems establishes sev-

eral frameworks. Calheiros et al [14] discuss issues relating to cloud per-

formance under dynamic load, and introduce CloudSim as a simulation tool

for evaluating expected performance. Other frameworks model performance

through mathematical approaches [12, 55]. Brebner [12] establishes mathe-

matical relationships to predict elasticity characteristics of cloud applications.

Maguluri et al [55] model expected performance of stochastic cloud systems

across different load balancing algorithms.

We find that several modelling approaches have been developed for cloud sys-

tems using the PEPA syntax [78, 11, 25, 77, 26]. Shawky et al [78] model

resource allocation within the context of the Aneka PaaS framework. Initial

modelling is achieved by outlining the behavioural logic within the syntax of

Stochastic Process Algebra, from which a PEPA model is derived to evaluate

performance. Bravetti et al [11] explore the impact of load balancing and scal-

ing on a distributed system. The focus of the presented research is modelling

the distribution of load across component populations and does not account for

internal component behaviours of scaling of tenants. Ding et al [25] use PEPA

to model predicted response times for various services across a heterogeneous

infrastructure, with the aim of predicting response times across different cloud

contexts. Further work models resource utilisation in VM clouds [26]. Sha

et al [77] model an Openstack cloud architecture, with a focus on the scaling

of VMs in response to load. This approach involves the modelling of multi-
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ple nodes, each of which encapsulates different aspects of system behaviour.

Research presented within this thesis follows a hybridised modelling approach

for evaluation of performance and verification of behaviours. Our automated

classification and generation processes are distinct from extant PEPA works.

3.3.3 Verification

Medel et al [59, 58] approach performance modelling of a Kubernetes archi-

tecture using extended Petri Nets to capture aspects of system performance.

Internal component behaviours are are modelled as Petri Nets to capture re-

source management and system capacity. Khebbeb et al [51] evaluate the

performance of a controller to decide elastic scaling events within a cloud envi-

ronment. Behaviours are depicted as bigraphs, while FSAs following a Kripke

structure employ supervisory control. Other works model autoscaling of cloud

systems to verify the adherence to SLOs [32, 83]. Evangelidis et al [32] present

work toward predicting the autoscaling performance of VM based cloud envi-

ronments, while van Zijl et al [83] model an horizontal autoscaler component

within a Kubernetes architecture.

Van Zijl [83] models Horizontal Pod auto-scaling within Kubernetes using

EFSMs in WATERS. The focus of the presented research in this case was

the capturing of auto-scaling behaviours. Sha et al. [77] and Ding et al. [26,

25]model cloud performance using PEPA, but focus on component utilisation

of tradition VM architectures rather than the adaptation of a Kubernetes-style

architecture under load conditions.

3.3.4 Other Modelled approaches

We find several literature reviews that evaluate cloud modelling frameworks [4,

76, 34]. provides a robust overview of existing approaches for modelling QoS

within cloud systems. The presented work evaluates different approaches of

workload vs. system modelling and the different applications of each for eval-

uating SLO adherence. Ardagna et al. also present a high level overview
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of how Queuing theory can be applied to represent such systems, along with

discussion around existing modelling paradigms such as stochastic Petri Nets.

Sakellari et al [76] present and evaluate formal approaches to mathematical

modelling of cloud systems within a research context. The authors review ex-

isting approaches for simulated and physically deployed cloud systems, with a

focus on larger systems of scale. Jindal et al [46] present an approach to per-

formance modelling of microservices using the Terminus modelling tool. This

approach benchmarks performance based on CPU utilisation for given request

loads to predict behavioural aspects of a Kubernetes cluster. Johnson et al [47]

present the INcremental VErification STrategy framework as a mechanism for

re-verification of component-based models. This approach makes use of Dis-

crete Finite Automata and high level algebras to establish probabilistic models

of computing systems.

3.4 Research Areas

The above outlined work establishes a strong basis from which to explore

performance modelling of cloud systems. The intention of this thesis is to

achieve this same end, while avoiding repetition of prior work. As such, We

focus on three key areas. Architecture, modelling context, and self-adaptation.

3.4.1 Architecture

Much prior work relating to cloud performance is based on a traditional VM

architectures. Research into the performance of containerized applications

within the context of a Kubernetes cluster is currently scarce. With the in-

creased prevalence of microservice architectures, we identify this as an area in

need of further research. We model microservice applications hosted within

a Kubernetes cluster. We model pods as units of container encapsulation to

evaluate performance.
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3.4.2 Modelling Context

Previous work on cloud performance modelling predominantly makes use of

simulation techniques [14, 12] and modelling paradigms such as extended Petri

Nets [59]. Extant modelling frameworks predominantly on either performance

or behaviour modelling. We combine these two aspects in a hybridised ap-

proach that makes use of parallel modelling paradigms. We model perfor-

mance as DES models using EFSMs, while performance is captured through

probabilistic modelling using the PEPA syntax. Furthermore, we present work

toward automatic generation of models at runtime.

3.4.3 Self-Adaptation

We identify the automation of classification and modelling processes as an

area in need of further research. Much existing research on microservice per-

formance focuses on classification or modelling at design time. A key con-

tribution of our work is a framework for automating the classification and

subsequent modelling of microservice applications. We present a self-adaptive

architecture that utilises our proposed framework to model performance at

runtime. The content presented through the rest of this thesis documents the

initial development and evaluation of our self-adaptive architecture.
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Proposed Self-Adaptive Design

Self-adaptive systems alter aspects of their operational context and behaviour

to meet performance goals under changing conditions. The self-adaptive ar-

chitecture presented within this chapter improves upon the performance of

a Kubernetes cluster through predictive performance modelling. The goal of

our architecture is to achieve a greater level of consistency for observed per-

formance of microservice applications managed by the Kubernetes platform.

Our approach achieves this goal through scaling actions that adjust the pro-

cessing capacity of microservices based on expected future performance. Our

architecture combines the 6 waves of self-adaptation [84]. Within this chapter,

we present the underlying architecture of our self-adaptive approach

4.1 Self-adaptation Requirements in Kubernetes

As the reader may recall from previous chapters, primary benefits of the Ku-

bernetes container management platform are the self-healing and self-adaptive

behaviour that is established through controlling components. This form of

self-adaptation fits the definition of reactive control. Kubernetes controllers

monitor the performance of pod replicas across deployments. Corrective ac-

tions are taken when variation is encountered between configured expectations

and observed behaviours. A drawback of this approach is that decreased per-

formance is observed during the time required for corrective actions to be
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implemented [61]. In the case of pod failures, the delay in corrective actions

results in the remaining active pod replicas experiencing an increase in load.

This leads to compounding failures. In cases where CPU throttling is en-

gaged, backlogs of requests develop which impact the future observed service

rate of pods. Consequently, the efficiency with which corrective actions can

be engaged is limited. An observed outcome is that pod replicas within a de-

ployment oscillate between a failed and active status. Active pods experience

a spike in load and fail during the time in which failed pods are restarted. The

microservice application thus operates at reduced capacity.

While Kubernetes engages in self-adaptive behaviours, the associated per-

formance is sub-optimal. The incorporation of additional tools to achieve

greater efficiency is required to satisfy performance requirements associated

with microservice applications. Such a tool requires knowledge of anticipated

performance to avoid the issues associated with delayed controlling actions.

4.2 Proposed architecture

We propose a self-adaptive architecture to improve upon the efficiency of cor-

rective actions using predictive performance evaluation. Our approach incor-

porates a new controlling component that takes corrective action based on

anticipated performance. This mitigates the compounding impact of request

handling in under-provisioned deployment contexts. The research presented

within this thesis contributes to our proposed architecture which executes con-

trolling actions based on a combination of observed performance and predictive

modelling. Our approach follows that of a Monitor-Analyse-Plan-Execute-

Knowledge (MAPE-K) architecture for self-adaptive systems [50]. The aim of

our approach is to facilitate adaptation of a Kubernetes cluster to meet per-

formance goals under degrees of uncertainty. We classify the different phases

of our approach within the MAPE-K context.
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Figure 4.1: Proposed Architecture

4.2.1 Monitoring

We monitor observed behaviour of deployed microservices at runtime. We

track resource utilisation and pod failures. Monitoring occurs at defined time

intervals, which provides average metrics across the given time period.

4.2.2 Analysis

Resource utilisation metrics are analysed to find an average cost associated

with request handling. Pod failures are analysed to establish limits associated

with concurrent handling of requests. Resource utilisation and pod failures are

our SLIs. These are used in conjunction with known deployment configurations

to generate a model that reflects the capacity and maximum throughput of

pod replicas within the deployment. The expected performance of our model

is referred to as our expected SLIs (eSLIs). There are two possible outcomes

of model analysis.

• Where average load patterns are observed to be static, our approach
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models eSLIs for load patterns where the rate of incoming requests are

within a tolerance range above that of our observed system. This es-

tablishes predictive performance that accounts for variation of incoming

rate around the observed average.

• Where load patterns are observed to follow an increasing trend, our ap-

proach models eSLIs for predicted load based on the observed trend.

This establishes predictive performance that accounts for changing load

conditions.

We only model scenarios where the incoming request rate is equivalent to

or greater than that of our observed system. Under-utilisation of resources

does not have a compounding impact on future performance. Possible over-

utilisation is therefore the limiting aspect of performance. Through this ap-

proach, we establish eSLIs based on the observed performance of our microser-

vice at runtime. These eSLIs are compared against target SLOs to determine

whether corrective actions must be taken.

4.2.3 Planning

In situations where our analysis phase dictates that corrective actions must be

taken, the planning strategy within our approach is as follows:

• The direction of corrective action is determined. Within the context of

horizontal scaling discussed within this thesis, the required change in

an increase or decrease in the number of pod replicas associated with a

deployment. Where autoscaling is enabled, corrective action is taken to

adjust the maximum and minimum number of pod replicas associated

with the deployment.

• Probabilistic models are automatically generated using information at-

tained through the monitoring stage. Models are generated using in-

coming request rates within a range established in the analysis stage.

Multiple models are generated using different pod replica configurations.
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A model is selected based on the adherence of eSLIs to SLOs and the

resource cost of the modelled configuration. The planning phase of our

self-adaptive strategy models potential configurations of our deployed

microservice against possible load patterns. It evaluates the eSLIs and

resource cost associated with each configuration. A modelled configu-

ration is selected that produces eSLIs that adhere to SLOs. Modelled

configurations that meet this criteria are prioritised by their associated

resource cost.

4.2.4 Execution

Our self-adaptive architecture applies the modelled configuration selected in

our planning phase to the physically deployed microservice.

Our proposed architecture shares knowledge of previous deployment perfor-

mance and configurations across a native Kubernetes cluster and an additional

controlling component. This controlling component automatically generates

probabilistic models of a deployed microservice to establish a predicted level

of performance. Controlling actions are engaged to minimise the error between

predicted performance and that defined within our SLOs.

4.3 Implementation

There are multiple implementation stages of our proposed self-adaptive ar-

chitecture. These stages are presented in Figure 4.2. The focus of research

presented within this thesis is establishing the potential for usage of our ap-

proach in predictive scaling of microservice applications within a Kubernetes

Cluster.

We establish methods for classifying system behaviours and analysing per-

formance within the context of resource utilisation. We develop an initial

modelling approach to represent a Kubernetes Cluster as a Discrete Event
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Figure 4.2: Stages of Proposed Self-Adaptive Architecture
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System in WATERS. We check that our DES model matches expected be-

haviours of our system and verify properties of our model using the WATERS

framework. We transpose the logic of our DES model into a probabilistic con-

text using the PEPA syntax. We create an automated process for generating

PEPA models based on our prior observations of system performance. We

evaluate the suitability of our performance model against observed behaviours

of physically deployed microservices.

Due to limiting time constraints, the presented research seeks primarily

to examine the potential for evaluating the performance of our modelling ap-

proach against that of deployed microservices. Future research aims to im-

prove upon the accuracy with which performance is modelled by capturing

wider behaviours that contribute to the observed SLIs of deployed applica-

tions. Furthermore, in future we aim to evaluate the efficacy of our proposed

self-adaptive architecture in preventing SLO violations associated with dy-

namic load patterns, through the implementation and consequent evaluation

of our proposed controlling component.
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Classifying Aspects of Kubernetes

This chapter presents characteristics of the Kubernetes container manage-

ment platform. We explore components within the platform and establish

behaviours. We use this analysis to produce our system models. The aim of

this approach is to produce some prediction of expected performance at design

time.

We model cluster behaviours with regard to request handling and underly-

ing performance. We capture this as a client-server communication relation-

ship. We model cluster elements within the context of incoming and handled

requests across pod replicas of a deployed microservice architecture.

5.1 Cluster Elements

From the earlier background section, the reader may recall the core components

of Kubernetes. Within this thesis, we view the scaling pod components of a

Kubernetes cluster as a series of parallel queues. Each queue then represents

the resource pool that is currently available to a deployed microservice. As the

number of pod replicas scales, the resource pool scales proportionally. Resource

competition between tenants can be captured by a queue that represents the

shared available resource pool of a node.
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5.1.1 Pods and Deployments

Pods are the unit of scale within Kubernetes. Each pod can be viewed as

a self-sufficient clone of a microservice. The service can function if there is a

single pod available, but increasing the number of pods will scale the processing

power made available to it. A deployment describes the configuration of pods.

It describes which container image a pod should pull, how much memory

and CPU should be allocated to the pod, and how many replicas of the pod

should be created. Deployments can be scaled by Horizontal Pod Autoscalers,

discussed later in this chapter.

5.1.2 Nodes

Nodes are the physical hardware across which a cluster is hosted. Each node

has a finite resource pool that pods can be deployed to. Each node has an

IP address within the cluster. Pods are scheduled onto nodes with enough

available resources. Each pod is assigned an IP address from a pool of ad-

dresses available for internal routing on each node. Endpoints map pods to a

deployment and node.

5.1.3 Controllers

The major functionality that Kubernetes provides is its capacity for self-

management. The Kubernetes architecture relies on system controllers to

ensure that the observed configuration and behaviours of the cluster match

those defined within the applied configuration files. In this way, a Kuber-

netes cluster can be viewed as a controlled system [85], seeking to match user

defined configuration setpoints. This is achieved by controlling components

housed within the master node of the cluster.

• Replica Controller checks the number of currently deployed pods against

the expected number of replicas described by the relevant deployment. If

there are too few pod replicas, the controller creates a pod replica. This
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pod remains pending until it is deployed to a node by the Scheduler. If

there are too many pods, the controller terminates a pod replica.

• Node Controller updates the information stored within etcd to match

observed configuration and resource availability of nodes within the clus-

ter.

• Scheduler determines which physical nodes within the cluster have the

resource capacity to accommodate the requirements of a pending pod. If

and when a suitable node is found, the pod is scheduled to be deployed

onto the node.

• Endpoint Controller keeps the endpoints up to date by creating and

removing endpoints as pods are deployed and terminated. It checks

endpoints within etcd against the observed configuration of the cluster.

Stale endpoints are removed and updated

5.1.4 Deployed Applications

Applications are defined through deployments within Kubernetes. Deploy-

ments are created by applying configuration files to the cluster.

5.1.5 Horizontal Autoscaling

A Horizontal pod Autoscaler (HPA) allows for efficient management of resource

utilisation. An HPA can be configured to work with resource values such as

CPU or memory utilisation, or custom metrics such as average response time.

A setpoint is established for the relevant metric. The HPA component checks

the observed behaviour of pods within the associated deployment against this

setpoint. Observed metrics are averaged over the number of pod replicas. A

controlling action is taken that adjusts the number of pod replicas to minimise

observed error. The HPA has a default buffer window of 10% to avoid rapid

creation and termination of pod replicas. If a target utilisation of 70% is
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set, the HPA will seek to increase the number of expected pod replicas once

utilisation exceeds 80%, and decrease it if it reaches 60%. This is achieved

through the following equation:

desiredReplicas =

ceil[currentReplicas ∗ (currentMetricV alue/desiredMetricV alue)]

Where currentMetricValue represents the measured value for CPU or memory

utilisation and desiredMetricValue reflects the target utilisation goal. Au-

toscaling allows for achieving of SLOs under dynamic load, while reducing

overhead from underutilised resources. Our modelling approach can be easily

adapted to fit desired resource metrics.

5.2 Request Handling

As pods are created for a deployment, they are scheduled to nodes that have

the resources necessary to run them. Exposed services are assigned an external

IP that makes them accessible from outside of the cluster. As requests enter

the cluster, they are handled by a load balancer. Requests are routed to the

pod experiencing the least utilisation. Thus, load is balanced between pod

replicas.

5.2.1 Resource Constraints

Pod Resource limits are passed to the control groups (cgroups) of the con-

tainer host. The underlying linux kernel then manages resource allocation and

utilisation between containers. Memory limits are treated as a hard cap. If

the utilized memory of a container exceeds that of the set pod Limit, it will be

killed with an Out of Memory error, and restarted based on the Kubernetes

restart policy. CPU limits ensure that containers do not steal CPU time from

one another as their load increases. This is achieved through throttling of run-

ning processes [1]. Resource Requests are the minimum amount of allocatable
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resources required for a pod to be scheduled on a given node. Resource Limits

are the maximum utilization of a given resource that a pod can engage.

The way that Kuberenetes deals with resource management differs with

regard to Memory and CPU.

• Memory is allocated in units of MiB or Mebibytes. A pod will be de-

ployed and reserve its requested memory block. It can utilise anywhere

up to the defined limit, at which point it is killed by the scheduler due

to an Out of Memory error.

• CPU allocation is handled differently. CPU requests are dealt with in

terms of Shares. A single core CPU is split into 1024 shares. A request of

CPU = "0.5" means that a node must have at least 512 shares available

for the pod to be deployed.

• CPU limits are not dealt with in terms of shares but rather a quota over

a given time period (default 100ms). If a CPU limit is set to 0.5, this

means that the pod is able to use up to 500ms of CPU across concurrent

requests within a 100ms time period. This means that if we have a

system wherein we have 10 parallel threads, each of which engages the

CPU for 100ms, we will reach the Quota in 50ms, ie 10*50ms = 500ms.

The pod will experience throttling for the remainder of the CPU period.

If we do not set a CPU limit, a Pod utilises as much available CPU as

it requires.

Our modelling approach requires that we identify the limits of our deployed

application with regard to concurrent request capacity. CPU limits are de-

fined in terms of millicores of CPU within our deployment configurations. As

containers are created, the Docker engine inherits the defined CPU limit, and

contextualises it as a measure of CPU shares. Each running container on a

host OS will have a measure of CPU shares assigned to it. To achieve this,

Docker determines CPU allocation at runtime using two metrics. CPU quota

and period. The CPU period is set as 1/10th of a second. Quota is the amount
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of CPU time that the running container can utilise within a single period,

and is inherited from the deployment configuration. If a container exceeds

its quota within a period, then the running processes will be throttled until

the next period. Increasing the number of concurrent of CPU intensive tasks

therefore leads to increased delays for the completion of all tasks, as they all

encounter throttling proportional to the number of tasks being handled.

5.2.2 Internal processes

Internal container processes contribute to resource utilisation. A recognised

contributing factor to CPU utilisation in Java applications is Garbage Col-

lection. As memory is utilised, GC processes are engaged to remove state

memory objects. CPU resources are engaged during this process. Internal

memory management therefore leads to an increase in observed CPU utilisa-

tion, thus impacted performance of deployed applications. [71]

Our modelling approach captures the interaction between components within

a Kubernetes cluster. We use our knowledge of microservices and the Ku-

bernetes platform to establish parallel queues that represent the capacity of

deployed pod replicas and node resources. Synchronous composition and log-

ical guards are employed to capture the behaviour of controlling components.

Classification of deployed microservice applications is performed to capture the

tailored performance of each microservice application. We use this knowledge

to produce performance models of the associated system.



Chapter 6

Experimental Setup

Our automated modelling required two sets of experiments. The first set, con-

currency testing experiments, were for classification of observed behaviours.

The second set, load testing experiments, were for evaluation of our produced

models. These experiments used a Kubernetes cluster on which an opensource

stress-testing application was deployed as a microservice architecture. Exper-

iments were run across three homogeneous local clusters. Clusters were each

run on identical machines with Ubuntu 18.04.4. Each machine had 16GB of

RAM and an Intel i7-8700CPU with 6 cores. Clusters were hosted within

VMs and managed by Minikube. Each VM was assigned 8GB of RAM and 3

CPU cores. Each identical cluster was an experimental environment for our

deployed stressing application. Apache JMeter was used to drive load to local

clusters, while the status and resource utilisation of cluster components were

recorded through kubectl commands within a bash script.

6.1 Minikube setup

Each cluster was hosted using a VirtualBox wrapper. The clusters were thus

established within identical VM environments with specific resource alloca-

tions. Each cluster then contained a stressing namespace to which applica-

tions were deployed. The Docker image that our deployment configuration file

pulled was installed into each VM’s local docker environment. This removed
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any network delays when restarting pod replicas. Our Minikube clusters had

the metrics-server and metallb addons enabled for access to pod metrics and

load balancing respectively.

6.1.1 Deployed Application

The application deployed for testing within this thesis was an open source

stress-testing Docker image created by Flavio Stutz1. This application was

chosen due to its customizable request load and known behaviours. The reader

may recall from previous sections that our modelling approach is tailored to-

ward microservices with low individual pod capacity. Our chosen application

image simulated request load based on user defined parameters. When sent a

request with a specified number n of bytes and duration t. The application

created an array of size n and then slept for the specified duration before re-

leasing the reserved memory. We configured pods within our deployments to

pull this image. We assigned different resource allocations to different deploy-

ments. Load testing of our deployed application was performed using Apache

JMeter. We observed the behaviour of pods within our deployments under

different request load patterns. Testing was performed across multiple deploy-

ment configurations.

6.1.2 Load Balancing

Kubernetes supports the inclusion of load balancing, but relies on an external

load balancing service to manage routing decisions within the hosted environ-

ment. When a deployment is exposed as a load balancing service, the external

load balancer assigns an IP address from an available pool. This IP serves

as the access point for external requests that are made to the deployed appli-

cation. This IP address is mapped to the internal addresses of pods within

the deployment through endpoint objects. As requests enter the cluster, the

load balancer will evaluate the load across pods within the cluster, and priori-
1https://github.com/flaviostutz/web-stress-simulator
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tise pods for routing based on observed utilisation. Minikube is designed as

a localised testing environment for evaluating a Kubernetes cluster. Default

Minikube configuration does not provide a load balancing service, as such, we

used the Minikube metallb2 addon as our load balancer. This addon has three

main components:

• Configuration determines the IP address ranges that you want the load

balancer to be able to assign to services as they are exposed.

• A Controller deployment assigns IP addresses to services as they are

exposed.

• A Speaker daemonset that ensures that services are reachable.

We configured metallb to assign a consistent external IP address across all of

our experimental environments. When we exposed our deployments as load

balancing services, this IP was then mapped to the pod endpoints that the

service was linked to. As requests entered the cluster, they were routed to an

appropriate pod based on the average observed load.

6.1.3 Scaling

Horizontal autoscaling of our application used CPU utilisation for scaling deci-

sions. Our chosen application was Java-based. JVM based applications make

use of a memory heap. As memory objects are created, they are added to the

heap. When heap utilisation exceeds default thresholds, Garbage Collection

processes are engaged to free objects[70]. Memory-based scaling was redun-

dant for our deployed application as measured heapsize was not reflective of

active utilisation. Experimental tuning of parameters to increase the rate at

which GC processes were engaged resulted in greatly increased CPU utilisation

and consequent throttling.
2https://metallb.universe.tf/
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6.2 JMeter Scripts

JMeter Scripts were used to fire requests to the deployed System. Requests

consisted of a specified number of bytes and a time. The application handled

these requests by generating an array of characters to use the number of bytes

specified, and then slept for the time duration. This established a memory

cost of servicing requests. We made use of two testing scenarios. Concurrent

request testing was used to establish our CPU coefficient and limits of our

system. Load testing under different incoming request rates was used to eval-

uate the accuracy of our modelled predictions. Concurrent testing scenarios

involved JMeter maintaining a constant number of active requests for a given

duration. The desired number of active requests wass created, and a new one

was sent only when a response was received. We thus measured the resource

cost of request handling, and the limits of our deployed Pods. Scripts were

fired sequentially, with a concurrent request target increasing from 1-15. De-

ployments were restarted between each test and given time for the containers

to fully spin up to avoid the behaviours of one test round impacting results

of another. Concurrent testing was used to obtain information required for

model generation.

Once we acquired the information required to model our system, we compared

the predicted performance of our models with the observed performance of our

system under further testing scenarios. This further testing involved firing the

same requests as concurrent testing, but with a focus on increasing the rate

at which requests enter the system, rather than the number of requests being

handled concurrently. These scripts were also executed sequentially, with the

incoming request rate increasing from 1-10 requests per second.

For concurrency testing, we repeated our experiments across deployment con-

figurations of 1, 2, and 3 pod replicas. We repeated our further experiments

across these same configurations, along with configurations that scale the num-

ber of pod replicas from 1-2, 1-3, and 2-3.
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6.3 PodMetrics

As Jmeter scripts were run to stress the system, information was obtained

through the Kubernetes Command-line Tool (kubectl). As tests were run, a

bash script was utilised to make kubectl requests at regular intervals. Infor-

mation was thus recorded regarding the behaviour and resource utilisation of

pods during testing. The kubectl commands were:

• kubectl top pods -n stressing, which returned the resource usage of pod

replicas deployed within the stressing namespace. These metrics were

obtained through the metrics-server addon, which scrapes resource usage

of pods with a default resolution of 60 seconds.

• kubectl get pods -n stressing returned the number of pods within the

stressing namespace and the associated state of each pod. These states

were RUNNING, CREATING, or CrashLoopBackoff.

• When scaling was engaged, we also queried the associated HPA for in-

formation regarding resource utilisation and expected Pod replicas.

6.4 Postprocessing

Initially, results were not formatted in a way that was suited to any form of

analysis. Hence, techniques were utilised to extract relevant information and

present it in a format that was more convenient for performance evaluation.

The process through which we attained and analysed our data is as follows:

Pod level data generated by our bash scripts was saved into csv files. This

provided us with a record of status and resource utilisation for each pod as

our system was stressed within each experimental run. We utilised several

Python scripts to analyse our observed results. These scripts stripped the

data down to relevant information, which was then analysed to evaluate av-

erage performance across different load patterns. This data was then graphed

using the pyplot package from the matplotlib library. For Cluster data, we



55

graphed pod metric usage along with observed pod replica counts. During

this postprocessing, classification of other system aspects was also performed.

This classification produced metrics that were used to calculate transition rates

within the generation of performance models. The next implementation stage

of our self-adaptive architecture is the automation of this classification process

at runtime. Produced graphs can be seen within the later discussion chap-

ters. Results of testing that involved concurrent requests was the basis of our

model generation, while results of testing that involved increasing load were

compared against our modelled results. The data from each round of testing

was further examined to provide insight into the performance results that are

produced.



Chapter 7

Tuning Model Parameters

Within this chapter we present our process for classification of parameters used

for the generation of our system models. We outline the various request and

deployment configurations across which we test our modelling approach, and

discuss the classification of our deployed microservice architectures.

7.1 Variations to Experimental Context

Verifying the suitability of our modelling approach involved testing across mul-

tiple environmental contexts. To create such models, we observed the reac-

tion of our deployed applications across various request loads. We evaluated

the performance of our modelled systems against the observed behaviour of

deployment scenarios under various load conditions. We compared observed

behaviours of deployment scenarios under differing request loads. We also com-

pared the performance of our application using different deployment scenarios

with the same request load.

7.1.1 Deployment Configuration

We evaluated the suitability of our modelled approach across scenarios with

varying resource allocations associated with our deployed application. Each

deployment configuration was stressed with the same baseline request load of
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3MB with duration of 100ms. We established different CPU and memory al-

locations across our deployment scenarios. CPU limits were not enforced on

deployment scenarios within concurrency testing. CPU utilisation was able to

increase up to the maximum available in the namespace, being 3000 millicores.

As such, analysis of concurrency testing established an estimated CPU util-

isation cost that was not impacted by throttling behaviours. The difference

between observed performance across scenarios were attributed to memory

allocation, with all other variables controlled.

• Scenario A - 150MiB Memory

• Scenario B - 250MiB Memory

• Scenario C - 350MiB Memory

Comparison between observed behaviours of each deployment scenario pro-

vided insight to the impact of memory availability on concurrency handling.

Varying the memory limit assigned to pods within our scenarios directly im-

pacted the maximum concurrent request capacity.
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(a) Replica Status across 1 Pod, Deployment Scenario

A

(b) Replica Status across 2 Pods, Deployment Scenario

A

(c) Replica Status across 3 Pods, Deployment Scenario

A

Figure 7.1: Observed Replica Status for Deployment Scenario A
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(a) Replica Status across 1 Pod, Deployment Scenario

C

(b) Replica Status across 2 Pods, Deployment Scenario

C

(c) Replica Status across 3 Pod, Deployment Scenario

C

Figure 7.2: Observed Replica Status for Deployment Scenario C
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Comparison between the graphs presented within Figures 7.1, 7.2 and 7.7

illustrates the impact of available memory on concurrency limits of our sys-

tem. It is worth noting that the difference in concurrent capacity did not match

expectations from our knowledge of request load and allocated resources. Re-

quests used to generate the presented Figures use the same load of 3MB with

duration of 100ms. Given that the deployed application was constant across

deployment scenarios, and that memory usage was driven by our request pat-

tern, we anticipated that the concurrent capacity of pod replicas would increase

linearly with the increased resource allocation.

∆LimConcurrent =
Podmem

requestmem
+ C (7.1)

Where C was the memory utilisation of the running container image. In the

case of Figures 7.7c and 7.1a, we anticipated an increase in capacity that

reflected the cost of each request against the increased capacity, i.e.,

250− 150

3
= 16

2

3

We observed an increase 3. We attributed this discrepancy to the nature of

JVM heap management.

Heapsize does not directly correlate to the measured concurrency level of an

application. Instead, memory is allocated within the heap as processes are

engaged. Once processing completes, this memory remains allocated until

Garbage Collection (GC) processes are engaged[70]. As the heap approaches

its maximum size, GC engages CPU resources to check for and remove stale

objects in memory.

GC behaviours contributed to the observed capacity of pods across our de-

ployments. Stale objects were not freed from memory until GC was engaged.

Memory utilisation from previous requests reduced the memory available for

incoming requests. Consequently, the observed failure point of an individual

pod did not correlate to the relative cost of requests against available resources.

As memory allocation increased, the efficiency of GC also increased. GC pro-

cesses are triggered when the used space in a heap exceeds a threshold. As
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memory allocations were increased across our deployment scenarios, GC pro-

cesses were encountered less often, and each successful GC run freed up a larger

amount of memory proportional to the increased allocation. As such, we ob-

served a dramatic increase in pod replica concurrency limits as the configured

memory allocation was increased.

7.1.2 Request Configuration

We used configuration of our application in scenario B to classify behaviours

of our system under different load conditions. Previous Figures 7.9a and 7.7

depict the behaviour of pod replicas within this scenario when faced with

requests of size 3MB and duration of 100ms. We utilised 5 different request

loads across this same system.

• 3MB with duration of 50ms

• 3MB with duration of 100ms

• 3MB with duration of 200ms

• 1MB with duration of 100ms

• 5MB with duration of 100ms

Results returned by these experiments served two purposes. The first was to

establish the impact of varying request size and duration on the observed be-

haviour of our system. The second was to verify the accuracy with which our

modelling approach is fitted to a system under changing conditions. Both of

these aspects contributed to the answering of our research questions, specifi-

cally the validity of our approach for modelling the behaviours of a Kubernetes

cluster. Figures 7.3 and 7.5 depict the resource utilisation and status of pods

within our system for Scenario B under requests with a duration of 50ms.

Figures 7.9, 7.7, 7.4, and 7.6 depict the same scenario and request size, with

durations of 100ms and 200ms.
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(a) Metrics across 1 Pod, 50ms Request Duration

(b) Metrics across 2 Pods, 50ms Request Duration

(c) Metrics across 3 Pods, 50ms Request Duration

Figure 7.3: Observed Resource Utilisation for Deployment Scenario B, Request

duration 50ms
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(a) Metrics across 1 Pod, 200ms Request Duration

(b) Metrics across 2 Pods, 200ms Request Duration

(c) Metrics across 3 Pods, 200ms Request Duration

Figure 7.4: Observed Resource Utilisation for Deployment Scenario B, Request

duration 200ms

Comparison between utilisation across the different durations showed what
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we can classify as an inverse relationship between request duration and CPU

utilisation within concurrency testing. We found an explanation for this within

our stressing methodology. The reader may recall from previous discussions

that our application handled memory stressing requests by creating an array of

size n bytes, after which it slept for t ms before releasing the assigned memory.

As such, the CPU load of our application was almost entirely due to creating

and freeing these arrays in conjunction with receiving and replying to requests.

As concurrency stressing required that requests were replaced as soon as they

were handled, a decreased request duration resulted in an increased rate at

which requests entered the system. Thus, the amount of CPU time required

to maintain a level of concurrency also increased.
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(a) Replica Status across 1 Pod, 50ms Request Duration

(b) Replica Status across 2 Pods, 50ms Request Dura-

tion

(c) Replica Status across 3 Pods, 50ms Request Dura-

tion

Figure 7.5: Observed Replica Status for Deployment Scenario B, Request Du-

ration 50ms
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(a) Replica Status across 1 Pod, 200ms Request Dura-

tion

(b) Replica Status across 2 Pods, 200ms Request Du-

ration

(c) Replica Status across 3 Pods, 200ms Request Dura-

tion

Figure 7.6: Observed Replica Status for Deployment Scenario B, Request Du-

ration 50ms
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Examination of pod status presented in Figures 7.5, 7.7 and 7.6 indicates

that our shorter request duration also resulted in earlier observations of failure

as the number of pod replicas in our deployment increases. This relationship

can be explained by the inaccuracy displayed by our load balancer. As pre-

viously discussed, lower request durations resulted in higher incoming request

rates when our stressing involved concurrency. The result of this is that our

load balancer was engaged more often, which further exacerbated the impact

of incorrectly routed requests.

(a) Replica Status across 1 Pod, 1MB Request Size

(b) Replica Status across 1 Pod, 5MB Request Size

We established the impact of request load via a comparison between ob-

served failure points of pods within deployment scenario B, using request du-

ration of 100ms and size of 1mb, 3mb, and 5MB respectively. From these
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produced results, we observed that the size of our request correlated to the

concurrency level at which we encountered a pod failure. This was consis-

tent with our expectations of behaviour based on the OOM condition that led

to pod failure. As the memory utilisation increased due to request size, we

expected a lower capacity for request concurrency.

7.2 System Classification

The following aspects of pod replicas within our deployed microservice archi-

tecture were known from deployment configuration files at design time:

• Memory requests and limits.

• CPU requests and limits.

• The minimum and maximum number of pod replicas.

• The utilisation threshold for horizontal autoscaling actions.

Classification of the following aspects was achieved through concurrency test-

ing:

• The average CPU utilisation for a single pod replica across concurrent

request levels.

• The concurrency limit of a single pod replica with regard to pod failure.

Concurrency testing utilised multiple experimental rounds with incrementally

increasing levels of active request concurrency to benchmark our systems.

Python scripts were used to automate the classification process. These scripts

analysed test results and pod information across repeated rounds of testing.

Such scripts return the average CPU utilisation and concurrency limit of pod

replicas within a deployment scenario. We anticipate that future development

of our architecture will incorporate this process at runtime.
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7.2.1 Limits

For the purpose of identifying processing limits, we analysed the state of pod

replicas within our deployed application across different levels of concurrency.

Figure 7.7 shows the expected number of active replicas against the observed

count for our B scenario. The X axes within the captured graphs represent

experimental rounds. Each experiment lasted 10 minutes, within which time

a stable concurrent load was generated. Each integer along the x axes corre-

sponds to the level of concurrency within that experimental round. We inferred

three aspects of our system’s behaviour from the graphs within this figure. Fig-

ure 7.7c indicates that our application began to fail at the point where a single

pod reached a concurrency level of 8 active requests. Figures 7.7d and 7.7e

show that this failure point did not scale linearly with relation to the number

of deployed pod replicas. Instead, we saw a staggered increase in the limit for

concurrent request handling. Figures 7.7c and 7.7d show recorded attempts to

restart pods quickly increased and then plateaued.

The cause of failure in our system can be deduced from Figure 7.9, where we

see that the concurrency level associated with failure was also the point at

which the average memory usage of each pod exceeded the configured limit of

250MiB. This was further supported by the observed status of deployed pods,

found within the experimental results in our appendix. When we examined

the status of pods within our cluster, we saw a failure with an OOM error,

indicating that pods exceeded the resource cap defined within their internal

CGroups.
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(c) Replica Status across 1 Pod

(d) Replica Status across 2 Pods

(e) Replica Status across 3 Pods

Figure 7.7: Observed Replica Status of Pod Replicas in Deployment Scenario

B
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(a) CPU Utilisation Across 3 Pods

(b) Memory Utilisation Across 3 Pods

Figure 7.8: Balanced Resource Utilisation of Pod Replicas in Deployment

Scenario B

The staggered scaling of our observed failure point as the number of de-

ployed pod replicas increased can be partially explained by the imperfect na-

ture of load balancing within our cluster. In Figure 7.8, we see the observed

resource utilisation of each active pod in our deployment. These graphs were

generated directly from our first round of concurrency testing, with three de-

ployed pod replicas and a concurrent request level of 4. The subfigures show

that while the load was similar across pod replicas, there were still differences
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in observed utilisation from one pod to the next. As a result, it was possible

for pods to experience a spike in utilisation that exceeded their configured re-

source limits, and thus fail as the generated load approached the total system

capacity. As one pod failed, the utilisation of other pods increased as they were

routed extra requests. The result of this is that we experienced a cascading

failure of all pod replicas within the deployment. The impact of load balancing

efficacy was exacerbated within our system due to the low concurrent handling

capacity of each single pod.

Kubernetes makes use of a staggered delay between each attempted pod

restart. The result of this is that each failure within an experimental round

resulted in significant downtime for the failed pod, while the number of at-

tempted restarts was constrained by the duration of the experiment.

7.2.2 CPU Cost

From Figure 7.7, we established the concurrency limits of a single pod replica.

Further examination of experimental results established that request handling

capacity was impacted by memory allocation. Having classified the maximum

capacity of pod replicas, we then identified expected throughput. Our justifi-

cation for this was that as the maximum throughput of a system is increased,

the likelihood of it exceeding its concurrency limit for a given rate of incoming

requests is decreased. The reader may recall that throughput in Kubernetes

is limited by CPU throttling. As such, we experimentally measured a CPU

coefficient for generation of our modelled service rate.
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(a) Resource Utilisation of a Single Pod Replica in De-

ployment Scenario B

(b) Resource Utilisation Across Two Pod Replicas in

Deployment Scenario B

(c) Resource Utilisation Across Three Pod Replicas in

Deployment Scenario B

Figure 7.9: Resource Utilisation Pod Replicas in Deployment Scenario B
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Figure 7.9 presents the averaged resource utilisation across different num-

bers of pod replicas for our deployment scenario B. The reasonably consistent

standard deviation observed prior to the failure point across graphs within

this figure reinforces previous observations regarding load balancing efficacy,

showing that observed load across experimental repeats fell within a consis-

tent range of average utilisation. Within the process of generating Figure 7.9a,

an average of the CPU utilisation against concurrent request count was taken

from each level of concurrency prior to failure. The average of these recorded

values became our CPU coefficient. For scenario B, we found that maintain-

ing a level concurrency for a single request utilised on average 375millicores

of CPU. This value, along with the concurrent handling limit of a single pod,

were used in conjunction with other known information about the deployed

configuration of our microservice application to produce system models.

Identification of system capacity and utilisation was automated with the use of

python scripts. Other information was taken from deployment configurations.

We anticipate that future development will automate both of these processes

by scraping runtime metrics of microservice applications.

From our concurrency testing, we established performance parameters for

applications across our deployment scenarios. The key aspects identified were

the concurrency limit of pod replicas within a given deployment, and the av-

erage CPU cost associated with maintaining a level of concurrency. Such

processes fell into the system classification step of our self-adaptive strategy

outlined in Figure 4.2. The classification information from each of our deploy-

ment scenarios was used in the next steps of our strategy, the development of

our system models.



Chapter 8

Modelling Approaches

This chapter explores our modelling approaches using both WATERS and

PEPA. We capture expected behaviour of components as the cluster evolves

over time. We first establish a visual representation of system behaviour that

can be adjusted to fit different cluster configurations. This is achieved using

automata and variable tracking within WATERS. We verify that our model

adheres to expected behavioural properties, such as controllability and non-

blocking nature. We transpose the controlling logic of our model into a gener-

ator script that produces a process algebra representation of the same model

within a PEPA syntax. Figure 8.1 depicts our hybridised modelling approach.

This approach takes advantage of the ease of use and inference provided by

the WATERS Graphical User Interface, while also allowing us to evaluate ex-

pected performance using the more convoluted PEPA syntax. The logic of

control plane components such as autoscaling and a deployment controller is

captured within guard statements in WATERS automata. PEPA does not

afford us with this functionality, as such it is instead implemented within the

logic of the model generator found within the accompanying appendices to

capture this same behaviour. Each PEPA component is generated with de-

fined behaviours. Control of the overall cluster is achieved by synchronising

components on relevent actions.
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Figure 8.1: Our Hybridised Modelling Approach

8.1 Workload

The workload associated with a given service comprises requests that are han-

dled by multiple pods within the relevant deployment. Each request will have

an assigned number of bytes of memory that it will engage during its com-

pletion, and an assigned duration for which it should engage these resources.

The resource cost to memory is constant during the requests’ completion. We

identify limits to our system capacity through concurrency testing outlined in

our experimental methodology. These limits are the point at which our system

is pushed over its memory resource allocation, and we encounter a pod crash

with an Out of Memory (OOM) error. The maximum capacity is implemented

as an integer value within our model. WATERS tracks this against the ob-

served request count and enables failure transitions when the limit is passed.

Our PEPA generator generates states representing a request queue up to the

maximum capacity, after which failure actions are enabled. WATERS does

not allow for tracking of request rates, but is used for verification purposes

instead. We evaluate expected performance within PEPA, where we are able

to vary the rate at which requests enter our system.
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8.2 Component Classification

We model the internal components of the Kubernetes platform as M |M |k

queues that synchronise over common events. We denote a queue comprising

request handling times using standard notation [38]. The first M indicates

that the inter-arrival time of requests are memoryless. The second M indi-

cates that the service times are memoryless. This means that neither of these

behavioural aspects of our system are impacted by past behaviour. These char-

acteristics are then shared across a pool of k servers. Within the context of

this research, k can be viewed as the number of parallel pod replicas. Each De-

ployment can be viewed as parallelM |M |k queues of length Lpod. Deployment

queues with different k values can exist in parallel, linked via a deployment,

termination, or failure action. Incoming and handled requests synchronise

with transitions within the deployment. We represent node resources as two

queues, for memory and CPU respectively. By synchronising deployment and

termination actions with those of the deployment queues, we are able to model

total node resource availability as our system evolves. The queue length Lnode

represents total resource capacity, and is determined by the Greatest Common

Divisor, GCD, found between the node’s assigned resources and the resource

cost associated with each kind of pod. Each pod creation will cause the queue

position to increase by a scale factor that is proportional to the cost of the

created pod.

Lnode =
Assignednode

GCD(Assignednode, Assignedpodi, Assignedpodj, ..., Assignedpodn)

(8.1)

Where Assigned refers to assigned CPU or memory resource respectively. By

synchronizing on pod creation and termination, the node queue can then block

scaling actions of deployments on the node where there are not adequate re-

sources available. Thus, we can build a basic system model from our con-

stituent components through the formalisation of a system equation to repre-

sent the synchronous composition of system components across shared events.
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We model pods of different deployments in parallel with each other, while they

all synchronise with the resource queues over their relative transitions.

(Podsj[n] ./ Podsk[m]) ./
activatejk,terminatejk

Noderesources (8.2)

Where Podsj[n] ./ Podsk[m] represents the parallel relationships between n

pods of deployment j and m pods of deployment k. activate and terminate

refer to the actions taken to establish or destroy a running pod from a given

deployment. Noderesources is the synchronous product of our node CPU and

memory resource queues.

Noderesources = Nodemem ./
activatejk,terminatejk

Nodecpu (8.3)

The pod queue position of a given deployment will change based on internal

request arrival and completion actions. The number of pods within the de-

ployment may increase or decrease as load varies. Pod creation, termination,

and failure events are synchronised with the node queues which ensure that

resource constraints are obeyed. Such an approach allows for the capturing of

behaviour of controlling components within the master node without explicit

modelling, as the behaviours are controlled via synchronisation across compo-

nents, where actions must be possible across all relevant components before

they can be fired.

8.2.1 Pod Queues

The queue limit for our Pods for is determined by running initial concurrency

stress tests on deployed microservice applications. Analysis of produced re-

sults reveals the maximum number of concurrent active requests that a single

pod replica can service before it exceeds its memory limit and is killed. CPU

utilisation is averaged over the all of the experimental rounds prior to pod fail-

ure to attain the CPU coefficient associated with concurrent levels of request

handling.
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8.3 WATERS representation

This thesis makes use of modelling within both WATERS and PEPA contexts

to make the most of the analysis offered by both. Through this approach, visual

representations of system components can be presented through WATERS

along with functional verification of model properties. The logic of this model

can then be applied to generate the language of our PEPA model. This PEPA

model is then used to evaluate expected performance.

8.3.1 Automata

WATERS modelling of cluster behaviour is achieved through a base model

that can be quickly adjusted to meet changing deployment configurations and

system constraints. Each deployment is modelled by a scaling pod component,

which is synchronised with a plant component defining request behaviour and

a system controller that ensures that node resource constraints are adhered to.
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8.3.1.1 Components and Constants

(a) WATERS Components and variables (b) WATERS Constants

(c) WATERS Events

Figure 8.2: WATERS Elements

The Figures 8.2a and 8.2b show the components and constants that are utilised

within WATERS to model cluster architecture. In the shown Figures, a sys-

tem is presented with two plants, Pod1 and Pod2. Each represents a different

deployment tenant within the cluster. Requests entering each pod are han-
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dled by Request plants, while the System supervisor establishes control within

our model. We keep track of how our system evolves over time through the

defined variables in 8.2a, which track modelled resource utilisation. Within

8.2b, we are presented with the system constants that determine our mod-

elled deployments’ possible behaviour. The role of each defined constant is as

follows:

• SYS_CPU_LIM is the maximum value associated with CPU allocation

for the node. It is given in units of millicores.

• SYS_MEM_LIM is the maximum value associated with memory allo-

cation for the node, given in units of mebibytes

For each deployment, the constants associated with allocation and performance

are provided given a prefix that matches them to the pod component that

engages in deployment related actions, shown in 8.2b as P1 and P2. The

constants are then given as follows:

• CPU is the cost in millicores associated with a single pod of the given

type being deployed.

• CPU_COST is the measured CPU utilisation when handling a single

concurrent request.

• MEM is the cost in mebibytes associated with a single pod of the given

type being deployed.

• THRESH is the threshold for resource utilisation as a percentage of the

total resources assigned.

• LIM is the maximum queue length that a given pod can handle before it

encounters a failure point due to an Out Of Memory (OOM) exception

• LBE is the error associated with load balancing, representing the number

of potentially incorrectly routed requests per pod replica beyond 1.
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• MIN is the minimum number of active pods that the deployment can

scale down to.

• MAX is the maximum number of active pods that the deployment can

scale up to.

The first thing of note within the definitions presented in Figure 8.2b are the

MIN and MAX values given for P1 and P2. For P1, both of these values are

set as 1. This represents a deployment that seeks to maintain only one active

pod with no dynamic scaling. P2 has values of 1 and 3 respectively, indicating

that the deployment is can scale between 1 and 3 pod replicas. It is also worth

noting that THRESH values are given as integers rather than floating point

decimals as might be expected for percentage based scaling. This is due to the

fact that WATERS only supports integer values.

We track the state of our cluster through variable tracking, as indicated

within Figure 8.2a. We keep track of variables for all tenants, distinguishing

between them numerically.

• reqCount is a counter for how many active requests there are being han-

dled by the relevant pods.

• podActiveCount is the number of deployed pods that are currently in an

active state and able to handle requests.

• podFailedCount is the number of deployed pods that are currently in a

failed state due to exceeding their capacity.

• podPendingcount is the number of pending pods. These are pods that

have been created due to some scaling action, but are not yet active.

• podTotal is the total number of pods across all three states.

Figure 8.2a also shows the plant and supervisory components of our sys-

tem. These are our pods, requests, and system. These components capture
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the behaviour of our system through transitions over defined events. These

transitions then impact the variable values. The events can be seen in Figure

8.2c and are again distinguished numerically.

• PodActivate is the event that transitions a pod from a pending state into

an active state.

• PodCancel destroys a pending pod if it is no longer required.

• PodDep creates a pending pod.

• PodFail transitions a pod from an active state to a failed state.

• PodRestart transitions a pod from a failed state to an active state.

• PodTerm removes an active pod.

• reqIn indicates an incoming request. This is an uncontrollable action

and must be possible whenever it is enabled.

• reqComplete is the completion of a request.

8.3.1.2 Pods

S0

(100*req1Count*P1_CPU_COST<((P1_THRESH-10)*pod1Total*P1_CPU))&(pod1Total>P1_MIN)&(pod1ActiveCount>0)&(pod1FailedCount==0)&(pod1PendingCount==0)

pod1PendingCount+=0

pod1FailedCount+=1

pod1Total-=1

pod1ActiveCount -=1

pod1ActiveCount+=0

pod1Total+=1

pod1ActiveCount +=0

pod1ActiveCount+=1

pod1FailedCount>0

pod1FailedCount-=1

(100*req1Count*P1_CPU_COST<((P1_THRESH-10)*pod1Total*P1_CPU))&(pod1Total>P1_MIN)&(pod1PendingCount>0)&(pod1ActiveCount>0)

pod1PendingCount+=0

(req1Count>P1_LIM*pod1ActiveCount-P1_LBE*(pod1ActiveCount-1))&(pod1ActiveCount>0)

pod1PendingCount -=1

req1Count-=(P1_LIM+1)

pod1ActiveCount-=1

(100*req1Count*P1_CPU_COST<((P1_THRESH-10)*pod1Total*P1_CPU))&(pod1Total>P1_MIN)&(pod1FailedCount>0)&(pod1ActiveCount>0)

pod1FailedCount +=0

pod1FailedCount +=0

(100*req1Count*P1_CPU_COST>((10+P1_THRESH)*pod1Total*P1_CPU))&(pod1Total+1<=P1_MAX)| (pod1Total<P1_MIN)

pod1PendingCount-=1

pod1Total-=1

pod1Total-=1

pod1FailedCount -=1

pod1PendingCount>0

pod1ActiveCount+=1

pod1PendingCount +=1

Pod1Dep

Pod1Activate
Pod1Fail

Pod1Restart

Pod1Term

Pod1Cancel

Pod1Term

Figure 8.3: WATERS Pod component

In Figure 8.3, we see the possible actions for pods within a given deployment,

shown by the black text transition labels within the WATERS model. The
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ability of any given action to fire within a model is determined by a guard, the

logic of which is shown in the blue text within the Figure. As actions are fired,

they impact the associated variables following the logic of the red text within

the Figure. The variables that are used within these checks can be found

in Figures 8.2a and 8.2b. The functionality provided by WATERS for storing

variables that may be subject to change as a system evolves or is altered allows

us to track the impact of deployment actions on system resources. The defined

guards for each transition are as follows:

PodDep models the deployment of a new pod. This action is able to fire if

the conditions of one of two logical guards is met:

• The current request queue associated with the deployment must be such

that CPU utilisation is above the set threshold required for horizontal

pod scaling. Scaling actions must not exceed the maximum number of

pod replicas associated with the relevant deployment: 100 ∗ req1Count ∗

P1_CPU_COST >= ((10 +P1_THRESH) ∗ pod1Total ∗P1_CPU)

AND pod1Total+1 <= P1_MAX. Note that we engage scaling at 10%

to either side of the threshold value to avoid thrashing behaviour where

pod replicas are rapidly created and terminated to meet a set-point.

• The current number of pods for the relevant deployment is below the min-

imum acceptable number due to a pod failure: pod1Count < P1_MIN .

PodTerm is the modelled action that represents the termination of a Pod

within a deployment. There are two possible outcomes from this transition,

each action is able to fire if both of the following guard conditions are met:

• The current request queue associated with the deployment is such that

the CPU utilisation across pods in the deployment is less than the given

threshold value.: 100∗req1Count∗P1_CPU_COST <= ((P1_THRESH−

10) ∗ pod1Total ∗ P1_CPU).

• Scaling the deployment down must not result in a pod count below the

minimum accepted number of replicas: pod1Total − 1 >= P1_MIN .
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The choice of transition is determined by the state of pod replicas associated

with the given deployment. If there are failed pods within the deployment,

then they will be prioritised for termination. If there are no pods in a failed

state, then an active pod is terminated.

If there are pending pods present and the requirements for pod termination are

met, then it is possible to cancel a pending pod instead. PodDep, PodCancel,

and PodTerm actions result in a change (either an increase or decrease) to the

relevant podTotal value. Enabling and disabling of these actions is achieved

via a comparison between the CPU utilisation associated with the current re-

quest count and the threshold set-point associated with scaling actions. The

scale factor of 100 is to allow for the use of integers within this formula, as

previously discussed.

PodFail is the action modelling pod failures. This action is enabled when the

number of requests in the queue are greater than the maximum total memory

capacity of the active pods for the relevant deployment, after accounting for

load balancing errors: req1Count > P1_LIM ∗pod1ActiveCount−P1LBE ∗

(pod1ActiveCount − 1). This is to simulate the handling of Out of Memory

(OOM) errors where pods are forcibly killed. When a fail action is under-

taken, the podActiveCount is decreased and the podFailedCount increased.

The number of active requests in the queue is decreased by the pod request

limit plus the extra request: req1Count − = P1_LIM + 1. This simulates

dropping of requests that were being handled by the pod in question.

PodRestart is the action taken to restart failed pods. This action is en-

abled when there are pods within the deployment that are in a failed state.

The outcome of this action is to decrease the podFailCount and increase the

podActiveCount.
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A1F1P0

A0F1P2

A2F0P1

A1F1P1

A1F0P1

A2F1P0

A3F0P0

A0F2P1

A1F0P0

A1F2P0

A0F1P0

A0F3P0

A1F0P2

A2F0P0

A0F1P1

A0F2P0

Pod2Dep

Pod2Restart

Pod2Term
Pod2Fail

Pod2Activate

Pod2Term

Pod2Fail

Pod2Fail

Pod2Restart

pod2Cancel

Pod2Fail

Pod2Activate

Pod2Term

Pod2Restart

Pod2Fail

Pod2Dep

Pod2Restart

Pod2Activate

Pod2Activate

Pod2Fail

pod2CancelPod2Dep
Pod2Restart

Pod2Dep

Pod2Term

Pod2Restart

Pod2Restart

Pod2Fail

pod2Cancel

Pod2Activate

Pod2Fail

Pod2Fail

Pod2Restart

Pod2Activate

Pod2Term

Pod2Term

Pod2Restart

Pod2Activate

Pod2Restart

Pod2Fail

Pod2Term

Figure 8.4: WATERS Unpacked Deployment

The logic dictated within the guards of each transition within the automa-

ton controls the possible cluster statespace through limiting the behaviours

of pods within the deployment to those allowed by the defined guards. This

means that we can capture all of the states that we encounter within a deploy-

ment within a single state automaton with supporting variables. Without the

use of variable tracking, this can be unpacked to give the deployment states-

pace shown within 8.4. Each state in the automaton is named with regard

to the status of deployed pods, in the format AiFjPk where i is the number

of active pods, j is the number of failed pods, and k is the number of pend-

ing pods within the deployment. The number of states is determined by the

maximum number of running pod replicas defined within the constants of Fig-

ure 8.2b. Our approach to modelling deployment behaviour using guard logic

with an emphasis on defined transitory behaviour rather than representative

state-space, we are able to remove the need for creation of new automata when
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we wish to explore different cluster configurations, as altering constant values

will automatically adjust our model to fit changing deployment and cluster

resource configurations. We are thus able to capture the core behaviours of a

generalised cluster, which we can adjust to suit our context. We can show that

our refined model captures the same behaviour as the unpacked automaton, by

producing a synchronous product of each option and comparing the number of

states in the resulting space. Equivalent models will produce the same number

of states.

8.3.1.3 Requests

S0

req1Count>0&pod1ActiveCount>0

req1Count +=1

(req1Count<=P1_LIM*pod1ActiveCount)&(pod1ActiveCount>0)

req1Count -=1

req1In

req1Complete

Figure 8.5: WATERS Request Component

Figure 8.5 represents requests entering or being completed within the system.

reqIn is an uncontrollable action, meaning that no other specification com-

ponents within the system are able to stop it from occurring. The guards

req1Count <= P1_LIM ∗ pod1Count and pod1Count > 0 stop the infinite

increase of requests in a queue that cannot be handled, as our modelling ap-

proach is not concerned with modelling a backlog of requests, as going beyond

the limit for pod request handling results in an OOM failure, which is already

modelled within our Pod component.

reqComplete is enabled when there are requests present in the queue, and

an active pod that is able to handle them. This action decreases reqCount.
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8.3.1.4 System

SystemAcceptable

((pod1Total+1)*P1_CPU +pod2Total*P2_CPU<=SYS_CPU_LIM) &((pod1Total+1)*P1_MEM+ pod2Total*P2_MEM<=SYS_MEM_LIM)

(pod1Total*P1_CPU +(pod2Total+1)*P2_CPU<=SYS_CPU_LIM) &(pod1Total*P1_MEM+ (pod2Total+1)*P2_MEM<=SYS_MEM_LIM)

Pod1Cancel

Pod1Term

Pod1Dep

Pod1Fail

Pod2Activate

Pod2Fail

Pod2Term

Pod1Activate

pod2Cancel

Pod2Dep

Figure 8.6: WATERS System Controller

Figure 8.6 then represents the System component, which is the controller for

our cluster model. This component is not of much consequence for systems

that utilise only a single deployment, but becomes increasingly relevant as

we seek to model interactions associated with multitenancy. The component

synchronises with all deployment, termination, and failure actions across all

pod components within the cluster. To this end, the only guards are associated

with deploying new pods into a running system, as this is the only action that

is impacted by node resource constraints. A deployment action is only allowed

to fire if the additional resource costs incurred by creating another pod instance

do not cause the total system CPU and Memory allocation to exceed the max

limit as defined within our defined Constants.

8.3.2 Verification

We model components of a Kubernetes Cluster as automata within WATERS.

We engage in sanity checking for our model properties. We ensure that our

non-deterministic representation of our cluster architecture reflects expected

behavioural properties. To this end, we use WATERS inbuilt framework to

verify that our model is controllable by our system specification. We also ver-

ify that the synchronous composition of components within our model does

not ever result in deadlocked states and that uncontrollable actions such as

incoming requests are never blocked. We observe the impact of scaling compo-
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nents on the length of request queues and the scaling ability of other tenants

within the cluster. Our WATERS model captures functionality of compo-

nents within a Kubernetes cluster. This establishes possible behaviours and

configurations of our modelled system, but is not indicative of expected perfor-

mance. We apply the logic of our guards within WATERS to the generation

stage of our PEPA model. We thus create a digital twin that captures the

same logic, while allowing for further evaluation of performance. We estab-

lish consistency between models through comparison between the generated

synchronous statespaces.

8.4 PEPA

While modelling in WATERS provides us with a mechanism through which

we are able to perform qualitative analysis of our cluster, it does not allow

for the evaluation of expected performance levels. Thus a second modelling

approach using PEPA is also utilised to explore the potential for performance

evaluation once we are confident in the behaviours of our WATERS model.

8.4.1 Automatic Model Generation

While WATERS offers an intuitive GUI, PEPA models are created using a

process algebraic syntax. As such, it is difficult to conceptualise the behaviour

of components within the context of transitions inside of a statespace. Our

approach is therefore, to create an automatic model generator that is capable

of language within a PEPA syntax to reflect the logic of our WATERS model,

based on a system information textfile. This approach provides a framework

for quickly producing and evaluating performance models based on known

information about a cluster. This framework fits within the third wave of self-

adaptive systems, providing a mechanism for producing models at runtime.
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8.4.1.1 System Metrics

Model generation is based on information from a textfile that describes system

metrics. The following sections discuss the behaviour of a model identical

to that of the given WATERS example, generated based on the following

parameters:

sysmem: 1000

syscpu: 1200

Label: a

memReq: 250

cpuReq: 300

cpuLim: 300

cpuCost: 375

reqLim: 8

reqIn: 1

minReps: 1

maxReps: 2

thresh: 0.4

Label: b

memReq: 200

cpuReq: 300

cpuLim: 300

cpuCost: 270

reqLim: 7

reqIn: 1

minReps: 1

maxReps: 1

thresh: 0.4

The given parameters describes a cluster containing two deployments, a
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and b. The cluster node has a memory capacity of 1000mb and 1200millicores

of CPU that are allocatable. Upon creation, each pod is allocated their re-

spective cpu and memory. Each pod also has an associated CPU limit of 300.

The cpuCost is how much cpu is utilised at each level of concurrency, while

reqLim shows the maximum concurrent requests before the pod is killed with

an Out of Memory exception. reqIn is the initial rate of incoming requests

given as requests per second. We vary the incoming request rate to evalu-

ate performance. The Reps values give us the range of actively deployed pod

replicas that the deployment may scale between. Thresh is the average CPU

utilization value for which scaling is enabled.

8.4.1.2 Rates

deploy = 0.06;

restart = 0.01;

terminate = 5;

activate = 0.3;

a_RI = 1.0;

b_RI = 1.0;

The maximum throughput capacity of our modelled system is established by

finding the number of CPU periods required to service each level of request

concurrency.

This can be written as:

CPU_Periods =
ReqCostCPU
CPU_Limit

Where ReqCostCPU is the measured CPU utilisation across a single concur-

rent request, and CPU_Limit is the limit assigned within our deployment

configuration file.

ServiceRate =
10

CPU_Periods
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Default Kubernetes behaviour defines a single CPU period as 100ms, or 0.1

seconds. As such, 10
CPU_Periods gives us the expected service rate of a request.

Within PEPA, transitions are made with a probability that is determined by

the rate of the current activity as a ratio to all other enabled activity rates

at that point in time. Rates within our physical cluster are consistently mea-

sured in units/second. We transpose these rates directly into our generated

model. The incoming request rate can be set by varying the value associated

with aRI. The heavy weighting given to termination ensures that this action

will be favoured when available, which is also reflective of a practical environ-

ment. Rates associated with deploy, restart, and activate actions are taken

from known behaviour of Kubernetes. Kubernetes HPA components scale pod

replica counts when the average utilisation is above the set-point over a 15

second period. Restarts occur 10 seconds after pod failure is determined. We

establish our activation rate based on the observed time taken for scheduled

pods to be capable of handling requests.

8.4.1.3 Node Resource Constraints

The reader may recall from previous sections that PEPA does not encapsulate

components in the same manner as WATERS. Instead, the PEPA syntax makes

use of constants with defined behaviour. In the below example, we see queues

that represent node memory (SM ) and CPU (SC ) capacities. Each queue

represents the possible states of the relevant node resource pool. Each state

in the queue component is given as a named constant. This constant has

an associated number of choices between action-rate pairs, after which it will

behave as the next constant. In this instance, SM1 is the initial position in

our memory queue, from which there is a choice of transitions between that of

action a_act and b_act, after which the component will act as the constant

SM13 or SM14 respectively.

SM9 = (a_act, activate).SM14 + (b_act, activate).SM13;

SM10 = (a_act, activate).SM15 + (b_act, activate).SM14;
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SM11 = (a_act, activate).SM16 + (b_act, activate).SM15;

SM12 = (a_act, activate).SM17 + (b_act, activate).SM16;

SM13 = (a_act, activate).SM18 + (b_act, activate).SM17 +

(b_term, terminate).SM9;

SM14 = (a_act, activate).SM19 + (a_term, terminate).SM9 +

(b_act, activate).SM18 + (b_term, terminate).SM10;

.

.

.

SM20 = (a_term, terminate).SM15 + (b_term, terminate).SM16;

SC2 = (a_act, activate).SC3 + (b_act, activate).SC3;

SC3 = (a_act, activate).SC4 + (a_term, terminate).SC2 +

(b_act, activate).SC4 + (b_term, terminate).SC2;

SC4 = (a_term, terminate).SC3 + (b_term, terminate).SC3;

Pods within a cluster are constrained by limited physical resources that are

available across physical nodes. As such, we must consider maximum node

capacity within our model. While WATERS allows for the tracking of vari-

ables, this is not a feature that is supported within PEPA. As such, we model

our capacity using queues to represent the total capacity of the node with

regard to CPU and memory. Queue capacity is determined by the highest

common factor between the resource costs of each modelled pod and the total

capacity of the system. Each state within the queue represents a movement

with this granularity. States within the queue are linked using activate and

terminate actions across modelled deployments. As deployments scale, the re-

source queue position will change based on the freed/reserved resources of the

relevant deployment.

8.4.1.4 Deployment Queues

Pa_A_1_F_0_P_0_0 = (req, a_RI).Pa_A_1_F_0_P_0_1;
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Pa_A_1_F_0_P_0_1 = (req, a_RI).Pa_A_1_F_0_P_0_2 +

(serve, 8.0).Pa_A_1_F_0_P_0_0 +

(a_dep, deploy).Pa_A_1_F_0_P_1_1;

.

.

.

Pa_A_1_F_0_P_0_8 = (serve, 8.0).Pa_A_1_F_0_P_0_7 +

(a_fail, a_RI).Pa_A_0_F_1_P_0_0 +

(a_dep, deploy).Pa_A_1_F_0_P_1_8;

Deployments are represented as parallel queues that represent the total capac-

ity for concurrent request handling. The above queue represents our described

cluster at minimum expected operating capacity. The prefix of each state in

a queue identifies it as a Pod (P) from deployment a, taken from the system

description file. We identify the current queue by the number of active, failed,

and pending pod replicas, A1F0P0, while the integer following the under-

score represents the current number of concurrent requests within the system.

a_RI is the rate at which requests associated with the deployment, a, are

coming into the system, while the service rate is determined by a formula to

reflect CPU throttling behaviours within the architecture. Deployment and

Termination activities are added to the model by the generator based on the

scaling threshold given in the descriptor file. Likewise, the ability for a pod to

fail is determined at the generation stage of the model based on expected load

balancing of requests across pod replicas within the cluster. As deployments

scale, they enter into a parallel queue at the same position, but with capacity

reflecting the new number of active pods.

Pa_A_1_F_0_P_1_0 = (req, a_RI).Pa_A_1_F_0_P_1_1 +

(a_cancel, terminate).Pa_A_1_F_0_P_0_0 +

(a_act, activate).Pa_A_2_F_0_P_0_0;

Pa_A_1_F_0_P_1_1 = (req, a_RI).Pa_A_1_F_0_P_1_2 +

(serve, 8.0).Pa_A_1_F_0_P_1_0 + (a_act, activate).Pa_A_2_F_0_P_0_1;
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.

.

.

Pa_A_1_F_0_P_1_7 = (req, a_RI).Pa_A_1_F_0_P_1_8 +

(serve, 8.0).Pa_A_1_F_0_P_1_6 + (a_act, activate).Pa_A_2_F_0_P_0_7;

Pa_A_1_F_0_P_1_8 = (serve, 8.0).Pa_A_1_F_0_P_1_7 +

(a_fail, a_RI).Pa_A_0_F_1_P_1_0;

This is achieved firstly through a deploy action that transitions to a parallel

queue with an added pending pod, followed by an activate action that transi-

tions into a queue with an added active pod.

Pa_A_2_F_0_P_0_0 = (req, a_RI).Pa_A_2_F_0_P_0_1 +

(a_term, terminate).Pa_A_1_F_0_P_0_0;

Pa_A_2_F_0_P_0_1 = (req, a_RI).Pa_A_2_F_0_P_0_2 +

(serve, 16.0).Pa_A_2_F_0_P_0_0;

Pa_A_2_F_0_P_0_2 = (req, a_RI).Pa_A_2_F_0_P_0_3 +

(serve, 16.0).Pa_A_2_F_0_P_0_1;

.

.

.

Pa_A_2_F_0_P_0_13 = (req, a_RI).Pa_A_2_F_0_P_0_14 +

(serve, 16.0).Pa_A_2_F_0_P_0_12 + (a_fail, a_RI).Pa_A_1_F_1_P_0_6;

Pa_A_2_F_0_P_0_14 = (req, a_RI).Pa_A_2_F_0_P_0_15 +

(serve, 16.0).Pa_A_2_F_0_P_0_13 + (a_fail, a_RI).Pa_A_1_F_1_P_0_7;

Pa_A_2_F_0_P_0_15 = (serve, 16.0).Pa_A_2_F_0_P_0_14 +

(a_fail, a_RI).Pa_A_1_F_1_P_0_7;

Pod failure thresholds are determined by our load balancing error algorithm

outlined later in this section. This returns a threshold value that reflects the

point at which a pod within the deployment queue may exceed its memory

limit and be killed, allowing for a margin of error due to incorrect routing of
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requests by the load balancer. As this failure is triggered by a request count

above the capactiy of our pod, it has the same rate when enabled as incoming

requests. Failure actions transition into another parallel queue. The index

is reduced by the maximum capacity of the a single pod to reflect dropped

requests, while the state label changes to indicate the updated pod status.

Pa_A_0_F_1_P_0_0 = (req, a_RI).Pa_A_0_F_1_P_0_0 +

(a_restart, restart).Pa_A_1_F_0_P_0_0;

Pa_A_0_F_1_P_1_0 = (req, a_RI).Pa_A_0_F_1_P_1_0 +

(a_restart, restart).Pa_A_1_F_0_P_1_0 +

(a_act, activate).Pa_A_1_F_1_P_0_0;

Pa_A_0_F_2_P_0_0 = (req, a_RI).Pa_A_0_F_2_P_0_0 +

(a_restart, restart).Pa_A_1_F_1_P_0_0;

Pa_A_1_F_1_P_0_0 = (req, a_RI).Pa_A_1_F_1_P_0_1 +

(a_term, terminate).Pa_A_1_F_0_P_0_0;

.

.

.

Pa_A_1_F_1_P_0_8 = (serve, 8.0).Pa_A_1_F_1_P_0_7 +

(a_fail, a_RI).Pa_A_0_F_2_P_0_0;

8.4.1.5 System Equation

((SM9<a_act, a_term, b_act, b_term>SC2)

<a_act, a_term, b_act, b_term>

(Pa_A_1_F_0_P_0_0<>Pb_A_1_F_0_P_0_0))

This system equation reflects the same behaviour of our controlling component

within the WATERS model. The system itself is comprised of two resource
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queues, SM and SC, that reflect the CPU and Memory capacity for the mod-

elled node. (SM1<a_act, a_term, b_act, b_term>SC1) shows that both re-

source queues synchronise with each other on scaling and deployment actions,

while the synchronous composition of the two resource queues synchronises on

such actions of a deployment. In this way, our PEPA model is able to reflect

the capacity of the overall system without having to make use of dynamic

variables.

8.4.2 Assumptions

It is not feasible to model the behaviour of a load balancer with regard to

directing requests without increasing the complexity of created models and

thus increasing the likelihood of state space explosions. As such, it is diffi-

cult to establish scaling based on load across a deployment where pods are

modelled as individual components, as invariably one pod will reach a failure

state while others are under-utilised. The approach of this work is therefore

to abstract away the individual pods within a system and instead make use of

parallel queues of differing length with regard to request handling, which can

be switched between through the use pod scaling actions. The effect of a load

balancer is captured by an error margin within our generator that represents

the percentage of requests that may be incorrectly routed throughout system.

We thus calculate the threshold at which failure actions are enabled as follows,

nreqs =
nmax

n−1
pods + e

(8.4)

where e is the percentage of mis-routed requests, given as a decimal. The

number of concurrent requests that must be in the system for Pod failure to

be enabled (nreqs) can be found by dividing the maximum number of requests

for a single Pod (nmax) by the sum of the inverse of the number of Pod replicas

(n−1
pods) and the load-balancer margin of error. This formula is naive in that it

assumes that an increase in active pod replicas will have a proportional effect

on total system capacity.
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Our combined modelling approach captures the advantages offered by WA-

TERS in verification of model properties and visual representation. Genera-

tion of our PEPA model is automated through a generator script that captures

logic of our verified model. Steady-state analysis of this PEPA model reveals

the probability of a total deployment queue across all pods being at a certain

length at any given time. From this, we are able to evaluate the likelihood of

our deployment being in any given state with regard to scaling and failure un-

der a given load. This provides us with a framework through which we predict

performance of a defined deployment under various load conditions. We eval-

uate the performance of our generated performance models against observed

behaviours of deployed microservices.



Chapter 9

Model Evaluation

We used the information gathered during the classification process as the ba-

sis for our models. Initially, we modelled interactive cluster components as

EFSMs within WATERS. Transition behaviours were defined through logical

guards and actions. Synchronisation between components was captured by

WATERS’ supervisory control logic. Within WATERS, models were represen-

tative of possible system state-space without knowledge of rates or probabil-

ities. WATERS verification was performed to ensure that models adhered to

expected behaviours. Once we were satisfied with how our WATERS modelling

approach captured cluster behaviour, we developed a tool to automatically gen-

erate PEPA models that followed the same logic. Modelled performance was

evaluated against observed behaviour for the following deployment scenarios:

Scenario Pod Memory Limit Pod CPU Limit

A 150MiB 300millicores

B 250MiB 300millicores

C 350MiB 300millicores

D 250MiB 600millicores

These scenarios were identical to those used within the previously discussed

classification process, other than the defined CPU limit. A new Scenario, D,

was introduced to evaluate the impact of CPU allocation.
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9.1 Analysis of Deterministic Model

In developing our EFSM-based modelling approach, we sought to capture two

primary aspects of behaviour. The first was the failure points of pod replicas

within a given deployment. The second was possible configurations of pod

replicas across deployments where resource competition was encountered. The

produced EFSMs within our deterministic model were adapted to fit different

system configurations by altering the values of our defined constants.

9.1.1 Model Development

Our deterministic modelling approach used variable abstraction to manage

transitional logic without explicit mapping of the entire state space. Plant

and supervisor components were comprised of a single state, while transition

guards provided the controlling logic. Analysis of our model was thus based

on the changing of variables as transitions were fired. Simulation was used

within the WATERS model checker to evaluate the fit of modelled behaviours.

The WATERS verification framework was used to verify that the synchronous

product of components adhered to expected model properties

Our EFSMs were adapted to suit our deployment scenarios through the al-

teration of defined constants. Values were determined during the previously

outlined classification process.

9.1.2 Evaluation

The adherence of models to the behaviour of our observed system was eval-

uated through the WATERS simulation framework. The effects of incoming

requests on our modelled systems were evaluated by firing discrete transitions.

The WATERS simulator framework enabled and disabled potential transitions

within modelled components based on adapting variables. Simulation was per-

formed across the different pod replica configurations of our deployment sce-

narios. Figure 9.1 illustrates the simulation process.
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Figure 9.1: WATERS Simulator, Deployment Scenario B

We used the verification framework within WATERS to ensure that our

models adhered to expected properties with regard to controlling and block-

ing behaviours. We generated synchronous products to show the combined

statespace of modelled components. This product captures all possible com-

binations of variables based on the controlling logic of our model. In practice,

this presents us with more detail than we require. Such a state-space is im-

mense and cannot be easily represented visually. We compared the size of the

statespace produced by our EFSM models with those of our later generated

PEPA models. This was done across all pod replica configurations of our de-

ployment scenarios. As both modelling approaches sought to capture the same

logic, both should produce the same sized synchronous product under equiv-

alent configurations. We observed consistently equivalent statespaces across

our modelling approaches. The following table depicts the comparative states-

paces for produced WATERS and PEPA models across different deployment

and request configurations.

Deployment Scenario Request Pod Replicas EFSM PEPA
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A 3mb, 100ms 1 6 6

A 3mb, 100ms 2 15 15

A 3mb, 100ms 3 28 28

B 3mb, 100ms 1 10 10

B 3mb, 100ms 2 27 27

B 3mb, 100ms 3 52 52

B 3mb, 100ms 1 Scale 2 47 47

B 3mb, 100ms 1 Scale 3 136 136

B 3mb, 100ms 2 Scale 3 106 106

B 3mb, 50ms 1 10 10

B 3mb, 50ms 2 27 27

B 3mb, 50ms 3 52 52

B 3mb, 200ms 1 10 10

B 3mb, 200ms 2 27 27

B 3mb, 200ms 3 52 52

B 1mb, 100ms 1 23 23

B 1mb, 100ms 2 66 66

B 1mb, 100ms 3 130 130

B 5mb, 100ms 1 7 7

B 5mb, 100ms 2 18 18

B 5mb, 100ms 3 34 34

C 3mb, 100ms 1 7 7

C 3mb, 100ms 2 18 18

C 3mb, 100ms 3 34 34

D 3mb, 100ms 1 10 10

D 3mb, 100ms 2 27 27

D 3mb, 100ms 3 52 52

Table 9.2: Comparative Statespaces across Modelling Approaches
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9.2 Probabilistic Modelling

We created a tool to automatically produce probabilistic models to represent a

Kubernetes cluster. We used this tool to produce PEPA models that captured

the same behaviour as logical guards and actions within our EFSA models.

Transitions relating to cluster management were assigned rates that reflected

observed behaviours across our Kubernetes environments. Pod replica capaci-

ties and system resource allocations were modelled from information gathered

during the previously discussed classification process. Rates assigned to tran-

sitions relating to microservice performance were calculated from classification

information.

9.2.1 Model Evaluation

We used the PEPA workbench to derive the statespace for our modelled sys-

tems. Steadystate analysis was performed to associate probabilities with states

in the resulting synchronous products. We analysed these statespaces to find

the different possible combinations of pod replicas within the model, each be-

ing in an active, pending, or failed state. This analysis process was automated

to find the probability of each pod state combination. We performed this

evaluation process over a range of modelled incoming request rates. The rate

of request servicing was calculated at generation time based on the observed

CPU coefficient found within the previously discussed classification process.

The Pod Req Limit was the observed concurrency limit, also established dur-

ing classification. This information for our experimental deployment scenarios

is given in Table 9.3.

Scenario Request CPU Coefficient Pod Req Limit Service Rate

A 3mb 100ms 366 4 8.2

B 3mb 100ms 352 8 8.52
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B 3mb 50ms 441 8 6.80

B 3mb 200ms 219 8 13.7

B 1mb 100ms 186 21 16.1

B 5mb 100ms 410 5 7.32

C 3mb 100ms 310 15 9.68

D 3mb 100ms 366 8 16.4

Table 9.3: Performance Information For Deployment Scenarios

Within the following sections, we present figures that plot the number of

active and expected pod replicas for our modelled and deployed applications.

We present results across different deployment scenarios and request configura-

tions. Figures are presented alongside brief evaluation of model suitability. We

examine experimental results to gain insights into observed performance. We

suggest improvements to our initial modelling approach. Finally, we contex-

tualise development of our automated modelling strategy within our proposed

self-adaptive architecture.

We evaluated the performance of our modelled system against the results at-

tained from our load testing experiments. We repeated this process across

different request patterns and deployment scenarios. The configured expected

and the average active pods refer to pods deployed within our physical cluster,

while the modelled active pods refer to the predicted number of active pods

produced by our models under different degrees of load balancing error (LBE).

For our deployed application, each plotted point was found by averaging the

observed number of active pods across 3 repeated experimental rounds. Our

modelled results were produced evaluating the performance of our modelled

system under the same load conditions associated with our observed experi-

mental results. The number of restarts refers to the average observed number

of times that deployed individual pod replicas crashed and were restarted dur-

ing each set of experimental rounds.
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9.2.1.1 Deployment Scenarios

We evaluated the performance of our probabilistic models against the results

attained through our load testing experiments across our 4 deployment sce-

narios.
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(a) 1 Pod Replica, Scenario A: Each Pod Assigned

150MiB and 300millicores

(b) 2 Pod Replicas, Scenario A: Each Pod Assigned

150MiB and 300millicores

(c) 3 Pod Replicas, Scenario A: Each Pod Assigned

150MiB and 300millicores

Figure 9.2: Modelled and Observed Replica Status For Scenario A, Requests

of 3mb and 100ms
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(a) 1 Pod Replica, Scenario B: Each Pod Assigned

250MiB and 300millicores

(b) 2 Pod Replicas, Scenario B: Each Pod Assigned

250MiB and 300millicores

(c) 3 Pod Replicas, Scenario B: Each Pod Assigned

250MiB and 300millicores

Figure 9.3: Modelled and Observed Replica Status For Scenario B, Requests

of 3mb and 100ms
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(a) 1 Pod Replica, Scenario C: Each Pod Assigned

350MiB and 300millicores

(b) 2 Pod Replicas, Scenario C: Each Pod Assigned

350MiB and 300millicores

(c) 3 Pod Replicas, Scenario C: Each Pod Assigned

350MiB and 300millicores

Figure 9.4: Modelled and Observed Replica Status For Scenario C, Requests

of 3mb and 100ms
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(a) 1 Pod Replica, Scenario D: Each Pod Assigned

250MiB and 600millicores

(b) 2 Pod Replicas, Scenario D: Each Pod Assigned

250MiB and 600millicores

(c) 3 Pod Replicas, Scenario D: Each Pod Assigned

250MiB and 600millicores

Figure 9.5: Modelled and Observed Replica Status For Scenario D, Requests

of 3mb and 100ms
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Figures 9.2, 9.3 9.4, and 9.5 present comparative performance of our proba-

bilistic models against observed performance of the relevant deployment config-

urations. We see that the performance of our modelled systems was reasonably

consistent with observed performance of the associated scenario. We identify

two trends from the presented graphs.

1. Modelled performance exceeded observed performance for configurations

consisting of a single pod replica, with the exception of Scenario C.

2. Modelled systems underperformed as resource allocations were increased

9.2.1.2 Request configuration

We evaluated the performance of our probabilistic models against the results

attained through load testing experiments across multiple request configura-

tions. The size and duration of requests were varied as respective independent

variables. All of these experiments were conducted on deployment Scenario B

as a controlled environment.
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(a) 1 Pod Replica, Duration 50ms

(b) 2 Pod Replicas, Duration 50ms

(c) 3 Pod Replicas, Duration 50ms

Figure 9.6: Modelled and Observed Replica Status For Scenario B, Request

Duration 50ms
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(a) 1 Pod Replica, Duration 200ms

(b) 2 Pod Replicas, Duration 200ms

(c) 3 Pod Replicas, Duration 200ms

Figure 9.7: Modelled and Observed Replica Status For Scenario B, Request

Duration 200ms

Figures 9.6, 9.3, and 9.7 present comparative performance across requests
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of 50, 100, and 200ms respective durations. The reader will observe that our

generated system models began overperforming as the duration of requests

was increased. We see from results presented in Figure 9.9b that overshoot

of modelled performance was lower than the previous single pod configura-

tion of 9.3a. Models produced for deployment configurations of 2 and 3 pods

undershot measured performance for requests of 50ms duration. Conversely,

Figure 9.7 shows that modelled performance for requests of 200ms duration

overshot measured performance.
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(a) Request Size 1mb, Duration 100ms

(b) Request Size 1mb, Duration 100ms

(c) Request Size 1mb, Duration 100ms

Figure 9.8: Modelled and Observed Replica Status For Scenario B, Request

Size 1mb
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(a) Request Size 5mb, Duration 100ms

(b) Request Size 5mb, Duration 100ms

(c) Request Size 5mb, Duration 100ms

Figure 9.9: Modelled and Observed Replica Status For Scenario B, Request

Size 5mb

Figures 9.8, 9.3, and 9.9 present comparative performance across requests
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with sizes of 1, 3, and 5mb respectively. We observe that overshoot of mod-

elled performance was reduced for single pod configurations as request size

increased. Modelled performance was reasonably consistent for deployment

configurations of 2 pod replicas across request sizes. Modelled performance for

configurations with 3 pod replicas undershot that of the deployed application

for request sizes of 3 and 5mb.
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(a) Scaling 1 - 2 Pods, Deployment Scenario B

(b) Scaling 1 - 3 Pods, Deployment Scenario B

(c) Scaling 2 - 3 Pods, Deployment Scenario B

Figure 9.10: Modelled and Observed Replica Status For Scenario B, Autoscal-

ing

Figure 9.10 depicts the observed status of pod replicas within Scenario B
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using a Horizontal Pod Autoscaler. A scaling threshold of 40% CPU utilisation

was used for scaling actions. This threshold was low to account for the CPU

cost of handling requests, which was low in relation to the limits that we set

for CPU within our load testing experiments. A low threshold thus increased

the chance of engaging in a scaling action prior to encountering OOM failures.

9.2.2 Understanding Results

Further examination of observed performance of deployment scenarios was un-

dertaken. This, in conjunction with our knowledge of Kubernetes behaviours,

provided insights into further model development areas.

9.2.2.1 Deployment Scenarios

We saw a consistent overshoot across all deployment scenarios configured with

a single pod replica, with the exception of Scenario C. In figures from scenarios

A, B, and D, we see that observed failures had a tendency to quickly plateau as

the rate of incoming requests increased. Kubernetes used an exponential back-

off delay when restarting failed pods. There was also a small delay between

a pod being marked as active, and a pod handling requests. Consequently, in

single pod configurations, we saw that as pods were restarted, requests formed

a backlog prior to full pod activation. As pods began handling requests, the

processing of these backlogs quickly resulted in pods exceeding their mem-

ory allocations. As such, there was little time between pods being restarted

and subsequently failing again. The combination of these factors resulted in

a maximum cap for number of restarts observed by a single pod within the

duration of a single experimental round. We anticipate that performance of

models that are adjusted to account for the discussed exponential delay would

produce figures with much steeper points of inflection for active pods.
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(a) Replica Status for Round 1

(b) Replica Status for Round 2

(c) Replica Status for Round 3

Figure 9.11: Observed Replica Status Across Experimental Rounds for Sce-

nario A with 2 Pod Replicas, Requests of 3mb 100ms Duration

Examination of results produced by individual rounds of experiments shown
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in Figure 9.11 reveals that the incoming request rate associated with pod

replica failures was not consistent across all experimental rounds. We attribute

this in part to inconsistent efficacy of load balancing. As previously discussed,

modelled performance did not capture the effect of exponential backoff delays.

The reader may recall from previous discussion around Figure 7.8 that we ob-

served errors with balancing of resource utilisation across pod replicas. As pod

replicas approached their memory capacities in Figure 9.11, poorly balanced

load contributed to the failure of individual pod replicas. We observe a spike

in failure that reflects the exponentially delayed restart of effected pod replicas.

Scenario Replicas LBE 0 LBE 10% LBE 20% LBE 30%

A 1 0.2838 0.2838 0.2838 0.2838

A 2 0.2419 0.1591 0.09870 0.5605

A 3 0.0971 0.05368 0.07489 0.1369

B 1 0.1192 0.1192 0.1192 0.1192

B 2 0.07119 0.05108 0.03433 0.01982

B 3 0.2914 0.3350 0.3894 0.4595

C 1 0.009016 0.009016 0.009016 0.009016

C 2 0.09167 0.1163 0.1336 0.1549

C 3 0.3276 0.4031 0.4658 0.5406

D 1 0.2161 0.2161 0.2161 0.2161

D 2 0.01107 0.01144 0.009008 0.004461

D 3 0.0 0.0 0.0 0.0

Table 9.4: RMS Errors Across Modelled Deployment Scenarios. Requests of

Size 3mb and Duration 100ms

The effect of resource allocation can be seen when we examine the observed

performance of our respective deployment scenarios. As allocated resources

were increased, we observed an increased maximum incoming request rate
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prior to pod replica failures. We also observed a gentler decline in the num-

ber of active replicas for configurations with more than a single pod replica.

Analysis of RMS error between modelled and observed performance presented

in Table 9.4 reveals that our generated models began to underperform for sit-

uations as resource allocations were increased for deployment configurations

involving multiple pod replicas. This indicates that our initial classification of

system behaviours did not fully capture the relationship between resource allo-

cation and processing capacity. Further discussion regarding this relationship

is presented within the following section on model refinement.

9.2.2.2 Request Configurations

Evaluation over different request durations revealed that our classification pro-

duced models that underperformed against requests of short duration, but

overperformed against requests of long duration. Knowledge of our deployed

application provides insight as to why this is the case. Analysis of graphs in

figures 9.6, 9.3, and 9.7 shows that the failure point of pods within the same

scenario was consistent for requests of the same size, regardless of duration.

The CPU coefficient produced during the classification process related to con-

current levels of request handling. A decreased request duration necessitated

a higher rate of incoming requests to maintain the same level of concurrency.

We present this equivalency in the below table. The information presented in

Scenario Size Duration CPU Coefficient Equivalent Requests/Second

B 3mb 50ms 441 20

B 3mb 100ms 352 10

B 3mb 200ms 219 5

Table 9.5: Duration and Equivalent Incoming Rate of Requests at a Concur-

rency Level of 1.

Table 9.5 reveals that the CPU cost associated with handling requests of the
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same size is correlated to the incoming rate of said requests. Further exami-

nation of running containers revealed that actual utilisation varied based on a

number of factors:

• There was a stable cost associated with allocating the amount of memory

specified within the request. This cost is proportional to the amount of

memory used by the request.

• There was a stable cost associated with receiving requests and sending

responses.

• There was an unknown cost when GC processes were engaged.

An increased rate of incoming requests resulted in an increase in associated

request handling actions. This resulted in greater heap utilisation, and con-

sequently increased engagement of GC processes. As such, the average CPU

utilisation of pod replicas was observed to increase in line with the rate of

incoming requests. Figures 9.6, 9.3, and 9.7 therefore model performance of

the same microservice application using CPU coefficients that reflect average

utilisation across pod processes at incoming request rates of 5, 10, and 20

respectively. We note that the performance of modelled systems in the case

of incoming rates of 5 and 10 requests per second is consistent with observed

behaviours of experimental rounds using the same rates.

Analysis of results presented in figures 9.8, 9.3, and 9.9 reveals that there

was a significant decrease in observed performance when request size was in-

creased from 1mb to 3mb. Performance was observed to be reasonably consis-

tent when request size was increased from 3mb to 5mb, although pod replica

failures were observed at lower rates of incoming requests for requests of 5mb.

Analysis of resource utilisation for individual pod replicas across request config-

urations revealed CPU throttling to be a contributing factor to this. Heapsize

of individual pod replicas was seen to approach the configured memory limit.

Individual pods experience a large spike in CPU utilisation, followed by fail-
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ures. This utilisation spike was attributed to the engagement of GC processes

for heap management. As request sizes increased, there was a correlating

increased in the rate at which GC processes were engaged. Once CPU utilisa-

tion exceeded configured pod CPU limits, throttling of internal pod processes

was engaged. The reader may recall from previous chapters that throttling

of processes has a compounding effect on performance. CPU utilisation of

heap management processes for pod replicas handling requests of size 1mb did

not exceed configured limits when multiple pod replicas were deployed. When

request size was increased to 3mb, we saw that CPU utilisation spikes asso-

ciated with these GC processes exceeded configured CPU limits. Consequent

throttling resulted in memory utilisation exceeding configured limits, at which

point pods failed with an OOM error. When request size was increased to 5mb,

we observed that pod replicas encountered failures at lower incoming request

rates. Again, further examination revealed the same throttling behaviours as

in the case of 3mb requests. We attributed the reasonably consistent behaviour

of pod replica configurations across both request sizes to our knowledge of how

throttling impacts performance. Utilisation spikes lead to a reduced ability to

process incoming requests. We observed that when throttling was engaged,

there was a compounding impact on the observed CPU utilisation as process-

ing was deferred from one CPU period to the next. While throttling was

engaged at lower incoming rates for requests of size 5mb when compared to

those of 3mb, the compounding impact on subsequent processes along with

previously discussed behaviour relating to exponential restart delays resulted

in similar observed performance once throttling was encountered. Compari-

son between observed performance of scenarios B and D in figures 9.3 and 9.5

respectively illustrates that increased CPU allocation mitigated performance

issues related to throttling behaviours.

Figure 9.10 depicts the performance of pod replicas in Scenario B under

scaling conditions. The reader will note the divergence of the configured ex-

pected vs observed active pod counts as scaling actions were engaged. This
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occurred when scaling was engaged, but a pod replica encountered a failure

prior to the new scaled pod being ready to service requests. Delays in at-

tempted restarting of said pod resulted in a lower number of observed active

replicas than that of expected. This resulted in a situation where scaling oc-

curred, but we observed oscillations between pods being active or failed. Load

balancing did not factor much into the predicted failure of our system when

we scaled from a base pod count of 1. As the reader may recall, load balancing

errors do not contribute to performance for a single pod. The failure of pods

following scaling actions resulted in a situation where we often observed only a

single active pod replica even when our deployment was scaled. Performance

of modelled deployment configurations in Figure 9.10 reflects this behaviour.

Our produced models reflect the expected combination of states across scaling

pod replicas.

9.2.3 Further Model Refinement

Evaluation of the performance of our modelled systems against the behaviours

observed during our load testing experiments indicates that our approach of

approach of generating probabilistic models from our system classification pro-

cess has potential for predicting performance. We propose two refinements that

we anticipate will improve upon the suitability of produced models.

9.2.3.1 Restart Delays

We observed from our load testing experiments that modelled performance did

not capture the impact of delays between restart attempts on the active status

of pod replicas. As discussed, Kubernetes uses an exponential backoff delay

before attempting to restart failed pods. The effect of this was particularly

apparent from observed experimental performance in configurations consisting

of a single pod replica, or in deployment scenarios that encountered throttling.

Initially, there is a 10s delay between an observed failure and attempted restart.
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If the pod replica fails within 10 minutes of the previous restart, this delay is

doubled up to a maximum of 5 minutes. If a pod is active for more than 10

minutes without encountering a failure, this delay is reset to 10. We propose

the future inclusion of a new component to accompany deployment queues

within our probabilistic model along the following logic:

Pa_F0 = (a_fail, infty).Pa_F1;

Pa_F1 = (a_fail, infty).Pa_F2 + (a_restart, 0.1).Pa_F1

+ (reset, 0.0.16).PaF0;

Pa_F2 = (a_fail, infty).Pa_F3 + (a_restart, 0.05).Pa_F2

+ (reset, 0.0.16).PaF0;

.

.

.

Pa_F6 = (a_fail, infty).Pa_F6 + (a_restart, 0.0032).Pa_F1

+ (reset, 0.016).PaF0;

Synchronisation between the above outlined component and failure/restart ac-

tions of modelled deployments is expected to better capture the impact of such

delays through variation in the rate with which restart actions are fired. The

infty rate associated with failure means that synchronisation of components

on these actions does not impact performance. Rates associated with other

activities represent the number of times per second each activity is expected

to be fired. Synchronisation over restart actions means transition firing is

determined by the lowest rate across activities of synchronised components.

We anticipate that the addition of such a component will result in a steeper

gradient about the point of inflection for modelled active pods.

9.2.3.2 Classification

We identify two areas of improvement regarding the classification process of

our systems.
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We observed from the results of our load testing across requests of different du-

rations that the CPU utilisation of our microservice application was impacted

by the rate at which requests entered the system. We learned from further

analysis that this was indicative of a more complex relationship between JVM

memory management and CPU utilisation. We propose refining our classifica-

tion process to better capture this relationship. Our initial approach calculated

service rates based on average CPU utilisation identified through concurrency

testing. Consequent modelled performance was reflective of incoming request

rates required to meet concurrency levels. The next step in refining this ap-

proach is to identify CPU coefficients based on the rate of incoming requests

rather than the cost of concurrent request handling.

9.2.4 Modelling at Runtime

Models were produced automatically to fit deployment scenarios and configu-

rations. The statespace and derived and analysed for each modelled system.

This was repeated for incoming request rates ranging from 1-10. Statespaces

and steadystate probabilities were exported as csv files. A filtering spread-

sheet was used to automate the evaluation of pod replica state combinations

across each set of models. The next implementation stage of our architecture

is the automation of statespace generation and analysis. Following this is the

incorporation of automated classification and modelling processes as runtime

components. Finally is the application of modelled strategies to a system at

runtime.



Chapter 10

Conclusions

Within this research, we established the increasing complexity associated with

the management of distributed cloud systems. We discussed the need for Cloud

Service Providers to adhere to defined SLOs to maintain profitability, and how

this often leads to the underprovisioning of cluster resources. We established

the role of self-adaptive systems within the context of cloud management and

our aim of providing guarantees of predicted performance under uncertainty.

We presented an architecture for a predictive self-management component of a

Kubernetes Cluster. We presented work toward runtime modelling of microser-

vice performance within a Kubernetes Cluster. We established a mechanism

to facilitate automated classification of microservice properties. We presented

a DES model using EFSMs that can be easily adapted to represent different

cluster and deployment configurations at design time. We verified properties

of this model and presented a generator tool that automates the creation of a

probabilistic model using the PEPA syntax. We compared the performance of

our modelled system against the observed behaviours of deployed application

scenarios. We determined that our presented results indicate the potential for

such a modelling approach to provide guarantees of performance under uncer-

tainty. Finally, we identified areas of future refinement for our classification

and modelling processes, and discussed the next implementation phases of our

self-adaptive architecture.
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10.1 Appraisal of Research Questions

At the outset to this thesis, we established three questions that we sought to

answer during our research process. They are reiterated as follows.

1. How accurately are we able to capture the behaviours of the Kubernetes

management platform using EFSMs?

2. Can we classify aspects of microservice applications to generate equiva-

lent performance models?

3. Is there potential for such models to be used for predictive management?

With regard to our first research question, we find that our approach to mod-

elling components as EFSMs provides a useful mechanism through which to

plan potential system configurations. It captures the possible scaling of ten-

ant pods, and establishes potential configurations of pod replicas at the cluster

level. It also serves to model the allocation of a resource pool across distributed

applications. Model properties were checked using the WATERS verification

framework. Our produced model can be quickly adapted to suit different ap-

plication scenarios based on known information. It allows for the visualisation

of possible failure conditions under differing degrees of load balancing error.

We suggest that our EFSM model serves as a useful tool for predicting limits

and the state of pods within a cluster at design time.

With regard to our second research question, we find that evaluation of

probabilistic models using a PEPA syntax has potential for performance pre-

diction of distributed cloud systems. We established the potential for auto-

mated approaches to microservice classification and presented a tool to auto-

matically produce models across a variety of deployment configurations. Ex-

amination of experimental results revealed potential areas of refinement to

improve the suitability of produced models. We suggest that our modelling ap-

proach demonstrates potential for modelling performance of Kubernetes clus-

ters.
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With regard to our third research question, we find that comparisons be-

tween modelled and observed performance illustrated the potential of our au-

tomatic modelling approach in predicting performance of microtenant appli-

cations. Our experimental evaluations provided new insights into future re-

finement of our classification and modelling approaches. We anticipate that

further development of these techniques will improve upon the accuracy with

which performance is predicted.

10.2 Threats to Validity

We recognise that there are threats to the validity of the presented research

due to limitations of our approach. We seek to address these limitations within

this section.

The first limitation comes as an issue of scale. As has been discussed within

this work, we seek to model cluster environments that house applications fol-

lowing a microservice architecture. The reason for this is largely due to the

issues relating to the generation of explosive state spaces. Due to limitations

in available computational power, we have not tested our approach on larger

systems, and are unable to provide assurances as to the accuracy of this ap-

proach with regard to modelling systems of scale. We would seek to explore

this approach in future.

We establish experimental environments using Minikube as our cluster

management software. Our experiments deal explicitly with local resources,

which does not account for factors that contribute to performance within a

distributed Kubernetes architecture such as communication latency between

nodes, or issues relating to inconsistent infrastructure. As clusters grow in

size, the impact of these issues is expected to grow in line with the complexity

of the managed system. Capturing this level of complexity within a modelled

scenario is an area for future development, but goes beyond the scope of what

we present in this research.
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We acknowledge that there is a limitation relating to the generation of

load to test our deployed applications. PEPA utilises exponentially distributed

rates for transitions, including rates relating to request generation and han-

dling. Within our load testing scripts, we make use of constant request rates

that increase incrementally from 1-10 per second. Such a consistent load pat-

tern is not reflective of what one might expect within a real-world scenario. As

such, the evaluation of the efficacy of our modelling approach is not indicative

of accuracy when the deployed system encounters more dynamic load patterns.

This is an area that has room for future development.

The calculation of service rate based on our CPU coefficient does not ac-

curately capture the complex relationship between memory management and

CPU utilisation. In future, we seek to evaluate this approach under applica-

tion scenarios that are not memory intensive as well as develop a more robust

algorithm for calculating CPU utilisation.

Time constraints were a limiting factor within this research. Each experi-

mental round required a minimum of 12 minutes to run, allowing for pods to

become active and requests to be sent. We ran a minimum of 30 such rounds

per number of pod replicas for each application scenario. Use of logical formu-

lae contributed to the automated filtering of generated statespaces. Further

development of these techniques would reduce associated processing time.

10.3 Further Future work

We have identified the room for further development of our CPU coefficient

calculation that forms the basis of our performance evaluation. We have pro-

posed a potential approach that accounts for scaling of associated CPU util-

isation based on the observed rate of incoming requests. We also recognise

that performance interference of microservices due to GC processes is an area

of increasing research interest [70]. We anticipate that performance modelling

of GC interactions is a potential area for future expansion.
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We see potential for future extensions toward performance evaluation of

Kubernetes clusters at design time. A major factor in performance across

large distributed systems is network latency. This leads to request backlogs

and load spikes. Our modelling approach is suited to microservices distributed

across local resources. As such, it does not make allowances for delays based

on infrastructure. There is scope for future work to evaluate our modelling

approach across clusters that span multiple nodes.

The next phase of our architectural implementation involves further de-

velopment regarding the automation of system classification and subsequent

model generation processes. We anticipate future research into the suitability

of our modelling approach for self-adaptive management.
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