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1 Abstract 

It has been long understood that fretting differs from sliding wear in that the relative displacement 

between the bodies is generally smaller than the size of the contact between them, with debris 

ejection from the contact thus playing an important role in the behaviour of the contact in fretting. 

Whilst these ideas were clearly articulated more than 30 years ago via Godet’s third-body 

approach and Berthier’s concept of the tribology circuit, calculation of wear rates in fretting have 

continued to employ Archard’s wear equation (or approaches directly derived from it), despite this 

approach assuming that the rate of wear is controlled by the rate of generation of wear debris (as 

opposed to the rate of its ejection from the contact).  

It has been shown recently that when debris ejection is the rate-determining-process in fretting, 

the instantaneous rate of wear is inversely proportional to a characteristic dimension of the wear 

scar. When non-conforming specimen pair geometries (such as cylinder-on-flat) are employed in 

fretting testing, the wear scar size increases as wear proceeds, and thus the instantaneous rate 

of wear decreases. In this paper, wear equations have been derived for three commonly employed 

non-conforming pair specimen geometries, which all take the form 𝑉𝑤 = 𝐾𝑅
𝑛−1𝐸𝑑

𝑛 (𝑉𝑤 is the wear 

scar volume, 𝑅 is the radius of the non-plane specimen(s) in the pair and 𝐸𝑑 is the frictional energy 

dissipated) where 𝑛 varies between 0.67 and 0.8 depending upon the geometry and assumptions 

made regarding the governing equation. It is argued that the assumptions on which the analysis 

is based are most valid for the cylinder-on-flat contact configuration with fretting perpendicular to 

the cylinder axis where the length of the line contact is large compared to the wear scar width.  

It is demonstrated that, despite the often apparently good fit of experimental data to an Archard-

type equation, it is not appropriate to employ such Archard-type approaches to the analysis of 

fretting data in situations where debris ejection is the rate-determining-process. The equations 

derived in this paper relating wear scar size to some measure of the duration of the test should be 

used for such analysis instead of the linear relationships generally employed in previous work.  

2 Introduction 

A key aim of much research into wear is the development of an understanding of the relationship 

between the various parameters which describe the exposure to wear and the amount of wear 

that results. In the case of fretting wear, the parameters which describe the exposure to wear 
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include the normal force across the contact, the displacement amplitude, the fretting frequency 

etc. For applications where the occurrence of fretting wear is common, it is important to understand 

and quantify how changes in these variables affect the evolution of the wear volume, so that 

damage can be predicted and its effects on the system controlled.  

When analysing bodies of experimental fretting wear data, it is a common practice to aggregate 

these data into a single parameter to represent and characterise the overall wear behaviour of the 

whole body. This single parameter is normally identified as the specific wear rate and is often 

presented as the wear volume per unit sliding distance per unit of normal force borne across the 

contact (after the work of Archard on sliding wear [1]) or the wear volume per unit of frictional 

energy dissipated proposed by Fouvry and co-workers [2], this itself being derived from the 

concept espoused by Archard but which also accounts for variations in the coefficient of friction; 

in this paper, these approaches will be grouped together and termed Archard-type approaches. 

The general agreement on Archard-type approaches has provided common ground for discussion 

of the effects of individual variables on fretting or for comparisons of the behaviour of different 

materials to be made across the wide body of literature in this area.  

Fretting wear differs from sliding wear in a variety of ways, the most significant being that in fretting, 

the magnitude of the relative displacement between the bodies is generally much smaller than the 

size of the contact between those bodies, meaning that debris ejection from the contact needs to 

be considered as part of the process of continual wear [3, 4]; more specifically, the concept of the 

“tribology circuit” proposes that in fretting, wear debris elimination from the contact is required for 

wear to proceed [5]. It is recognised that the rate of debris ejection from the contact will depend 

upon the size of the contact itself [6] since this “represents the distance the third body particles 

must travel [before ejection from the contact]” [7].  

In fretting wear of metals under conditions where debris predominantly consists of metal oxides, 

there are two key processes, either of which may be the factor that controls the observed rate of 

wear [8]: 

• the rate of formation of the oxide debris (itself dependent amongst other things upon the 
rate of oxygen ingress into the contact [9-11]); 

• the rate of debris ejection from the contact (itself dependent amongst other things upon 
the contact size and the rheology of the bed [7] and the tendency for the oxide debris 
particles to agglomerate and potentially sinter [12-14]).  

At the start of a test, there will be a transient period where (amongst other things [15]) the debris 

bed in the contact is building towards a steady state thickness [7]. Once steady state is reached, 

the rate of debris formation and the rate of its ejection from the contact must be equal [16].  

There has been significant recent research progress in considering the effect of transport 

processes in fretting, both in terms of transport of key species into the contact (in particular 

oxygen) [11] and in terms of transport of debris out of the contact [8]. Which of these processes is 

rate-determining will depend upon the conditions under which the fretting is taking place; in 

particular, it is noted that both transport of key species into the contact and transport of debris out 

of the contact depend upon the physical size of the wear scar. The work considered in the current 

paper only addresses situations where debris ejection is rate determining (i.e. it does not address 

situations where transport of key species into the contact is rate-determining). The recent work by 
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Baydoun et al. [11] indicates that transport of key species in to the contact will tend to become the 

rate-determining as the contact size increases and as the time-based rate of wear (i.e. volume lost 

per unit time) increases.  

In concluding that the wear rate may (under certain circumstances) be dependent upon the size 

of the contact means that under those circumstances, descriptions of wear rate using Archard-

type approaches are no longer adequate. Although not explicitly stated, it is implicitly assumed in 

the Archard-type approaches that the wear rate is governed by the rate of debris formation alone, 

with this being independent of any transport of species either in or out of the contact. To quote 

Fillot et al. [16]: “… Archard’s law… primarily focuses on the process of particle detachment. Its 

goal is only to measure the matter removed from the rubbing surfaces, without taking into account 

the way this matter protects the materials in contact from further degradation by accommodating 

the sliding velocity. This is why, when introducing the concept of the third body to understand 

wear, the latter is redefined as the ejection of the third body outside the contact”. 

The influence of contact size on the rate of fretting may be less of an issue in test programmes 

where comparisons between different materials or different test conditions are the primary aim of 

the research, as long as the tests are all conducted with a contact of the same size and with a 

geometry where the contact size does not change during the course of the test. However, for a 

variety of reasons, laboratory fretting testing is very often conducted using non-conforming 

specimen pair configurations where the size of the contact changes as the test proceeds; common 

geometries of this type are (i) cylinder-on-flat; (ii) sphere-on-flat; (iii) crossed-cylinders. In such 

configurations, the influence of the radii of the non-plane bodies on the wear rate is well known [9, 

17-20]. In such cases, the wear scar increases in size (in a manner dependent upon the geometry 

of the two first bodies [8]) as wear proceeds [18], and this will result in a change in the rate of 

debris flow from the contact as the test proceeds. Fillot et al.[16] noted that in the steady state, the 

rate of formation of debris (i.e. the traditional concept of the “wear rate”) and the rate of debris flow 

from the contact must be equal. This idea was developed recently in a paper where the concept 

of the rate-determining process was outlined [8]; in this, rates of the two processes (debris 

formation and debris ejection from the contact) are considered separately, with the process with 

the lower of the two rates at any point in a test being termed the rate-determining process. Figure 

1 illustrates schematically the two rates as a function of wear scar width, and indicates that for a 

non-conforming specimen pair configuration (where the wear scar grows as a test proceeds), a 

change in the rate-determining process may occur during a test as the wear scar grows in size 

due to continued material removal [8]. It is therefore argued that a nominal measure of the wear 

scar size (related perhaps to the initial contact size or to the final size [18-20]) is not sufficient in 

analysis of the evolution of fretting, and that the evolution of the scar size throughout a test needs 

to be considered and understood.  
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Figure 1: Schematic diagram illustrating the dependence of rates of debris formation and debris ejection on 
wear scar width, with regions where debris formation and debris ejection are the rate-determining processes 
(i.e. the process with the lower of the two rates at any scar width) being identified [8]. 

In the work where the concept of the rate-determining process was proposed [8], the authors 

demonstrated that for cylinder-on-flat fretting of a high strength steel (with the fretting motion 

perpendicular to the axis of the cylinder as shown in Figure 2Error! Reference source not 

found.), the instantaneous wear rate was inversely proportional to the wear scar width, 𝑥 (the scar 

width being as indicated in Figure 2), indicating that the wear rate was being controlled by debris 

ejection from the contact for almost the entire duration of each of these tests (i.e. that the period 

where debris formation was the rate determining process as indicated in Figure 1 could be 

neglected). This dependence of wear rate on the contact size invalidates the concept of a constant 

wear rate in configurations with non-conforming pairs in situations where debris ejection is the 

rate-determining process, and means that Archard-type approaches (with the total amount of wear 

being proportional to some measure of the exposure to wear) are not appropriate in the analysis 

of the evolution of wear in such situations.  

 

(a) 

 

(b)  
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Figure 2: (a) Schematic diagram of distribution of wear across two specimens in a cylinder-on-flat fretting pair 
(with a small amount of transferred material at the edge), illustrating the assumption (b) that the combined wear 
on the two specimens result in a total net wear volume equivalent to the minor segment of the cylinder [8]. 

In that work [8], data were presented relating to the evolution of wear volume (𝑉𝑤) with frictional 

energy dissipated (𝐸𝑑) in fretting for two different geometries of cylinder-on-flat contact, specifically 

with a cylinder radius, 𝑅 , of both 6 mm and 160 mm (Figure 3); these were termed 𝑅6 and 

𝑅160 pairs respectively. As can be seen, the evolution of wear volume with energy dissipated was 

very different for the two different geometries, and previously, it had been suggested that the 

Archard-type wear rate was therefore a function of contact geometry [9, 17-20]. However, it was 

demonstrated in the recent work [8] that these two data sets could be reconciled via the concept 

of the instantaneous wear rate being proportional to the instantaneous wear scar width; the lines 

predicting the evolution of wear volume with energy dissipated shown in Figure 3 were both 

derived from the formulation: 

𝑑𝑉𝑤
𝑑𝐸𝑑

=
𝑘1
𝑥

(1) 

where:  

𝑘1 =  𝑔(𝑃, 𝛿, 𝑇, 𝑓 … ) 

indicating that the constant 𝑘1 is a function of a number of important parameters in the fretting 

wear test including the normal load carried by the contact (𝑃), the slip amplitude (𝛿), the ambient 

temperature (𝑇), the fretting frequency (𝑓) along with the material properties of the two bodies.  

Zhu et al. [8] suggested that the physical rationale behind the form of Equation 1 was based upon 

either the distance which debris particles need to travel before leaving the contact or upon the 

concentration gradient down which the debris flow occurs. In the cylinder-on-flat fretting 

configuration, it was assumed that debris flow was primarily in the direction of the fretting 

displacement, with this being promoted not only by the action of the displacement itself, but also 

by the fact that the dimension of the approximately rectangular wear scar parallel to the fretting 

displacement was small compared to its dimension perpendicular to the fretting direction.  

Despite the comments made in the original paper, it is also recognised here that the form of the 

Equation 1 could also be rationalised in terms of the flow rate of debris out of the contact being 

inversely proportional to the area of the contact (𝐴 = 𝑥 𝐿) since 𝐿 is a constant in a line contact 

such as this. From this, it might be inferred that the flow rate of debris out of the contact is in fact 

proportional to the pressure in the contact (namely 𝑃 𝐴⁄ ), although it is also recognised that the 
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shape of the contact (i.e. the aspect ratio in the case of a rectangular wear scar) is also expected 

to affect debris flow. The possibility of this being a contact pressure effect is highlighted here since, 

whilst these two different physical underpinnings are indistinguishable for a line contact, they 

would lead to different outcomes for an initially point contact (such as sphere-on-flat or crossed-

cylinders) which is to be addressed in this work.  

A key issue in the previous paper where this concept was first proposed for a cylinder-on-flat 

fretting contact was that Equation 1 could not be readily transformed into a relationship directly 

describing the dependence of the wear volume (𝑉𝑤) upon the energy dissipated (𝐸𝑑). Instead, both 

𝑉𝑤 and 𝐸𝑑 were described individually as a function of the wear scar width (𝑥) and cylinder radius 

(𝑅) (amongst other things), yielding a set of parametric equations as follows [8]: 

𝑉𝑤 = 𝐿 (𝑅
2arcsin (

𝑥

2𝑅
) −

𝑥

4
√4𝑅2 − 𝑥2) (2𝑎) 

𝐸𝑑 − 𝐸𝑡ℎ = 𝑚1𝐿 (16𝑅
3 − √4𝑅2 − 𝑥2(8𝑅2 + 𝑥2)) (2𝑏) 

where 𝐸𝑡ℎ  is the energy dissipated when wear first begins to occur (often referred to as the 

threshold energy for onset of wear [21, 22]) and 𝑚1 is a constant related to 𝑘1 from Equation 1, 

such that 𝑚1 =
1

6𝑘1
. As such, the way that the wear scar volume evolved with energy dissipated 

for two very different geometries was rationalised for the first time. Curves were generated from 

Equation 2 for both 𝑅6 and 𝑅160 pairs using the same values of 𝑚1 (i.e. with the same values of 

𝑘1 ) and the same values of 𝐸𝑡ℎ  for the two cases; these curves were plotted against the 

experimental data and are shown in Figure 3. It can be seen that this approach describes these 

data well, thus validating the hypotheses that underpin Equation 1.  
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Figure 3: A comparison between the experimental data and the calculated values based on Equation 2 showing 

the wear volume as a function of dissipated energy for fretting tests conducted with 𝑹𝟔 pairs and 𝑹𝟏𝟔𝟎 pairs 
[8]. 

It is noted that the term (𝐸𝑑 − 𝐸𝑡ℎ) represents the frictional energy dissipated above the threshold 

energy for wear to commence. This will be termed 𝐸𝑑𝑎𝑡  in the current study (the subscript “dat” 

being an acronym for “dissipated above threshold”) such that 𝐸𝑑𝑎𝑡 = 𝐸𝑑 − 𝐸𝑡ℎ. 

Despite the success of this formulation in rationalising the data presented in Figure 3, it is 

recognised that it fails to provide a direct description of the relationship between the wear volume 

(𝑉𝑤 ), the cylinder radius (𝑅 ) and the energy dissipated (𝐸𝑑 ) which is needed to support an 

understanding of the dependence of the wear volume upon the latter two parameters. Moreover, 

the formulation of Equation 2 was only derived for a cylinder-on-flat contact and given that other 

configurations with non-conforming specimen pairs are commonly used in fretting research, there 

is a need to derive similar equations for those configurations, and in doing so, consider the two 

plausible forms of the governing equation, namely that the instantaneous wear rate is inversely 

proportional to a characteristic linear dimension of the scar or that it is proportional to the contact 

pressure (and thus inversely proportional to the area of the contact). As such, this current work 

seeks to develop an equation (which we will term the wear equation) for situations where a non-

conforming specimen pair configuration is employed and where the wear rate is controlled by 

debris-egress from the contact; for each of the non-conforming specimen pair configurations 

commonly employed in fretting research (namely cylinder-on-flat, sphere-on-flat and crossed-

cylinder geometries), wear equations will be derived which directly describe the relationship 

between the wear volume (𝑉𝑤), the energy dissipated (𝐸𝑑), the relevant geometrical parameters 

and the initial proposed governing equations.  

3 Derivation of a wear equation for a cylinder-on-flat fretting configuration 

In the previous study [8], a parametric relationship between wear scar width and wear volume was 

derived for the cylinder-on-flat configuration (Equation 2) based upon the governing equation 

(Equation 1) which is valid in describing both of the proposals under consideration, namely (i) that 

the instantaneous wear rate is inversely proportional to a characteristic linear dimension of the 

scar or (ii) that the instantaneous wear rate is proportional to the contact pressure (and thus 

inversely proportional to the area of the contact). To simplify the development of a wear equation, 

the wear scar angle, 𝜃, is now selected as the measure of the progress of wear for a specimen 

pair (as opposed to the wear scar width, 𝑥 as was previously selected).  

As previously demonstrated [8], the total wear volume across the two samples of a cylinder-on-

flat specimen pair is well described by the minor segment of a cylinder defined by the chord of 

intersection between the cylinder and plane specimens (see Figure 2). The extent of wear is thus 

described by the angle 𝜃 as illustrated in Figure 4, where the wear scar width, 𝑥, is equal to 

2𝑅sin(𝜃). 
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Figure 4: Illustration of the relationship between the wear volume (the minor segment of the cylinder) and its 

corresponding wear scar angle for the cylinder-on-flat fretting geometry. 𝟎 ≤ 𝜽 ≤
𝝅

𝟐
. 

Using the wear scar angle, 𝜃 (0 ≤ 𝜃 ≤
𝜋

2
), allows the parametric equations (Equations 2a and 2b) 

to be rewritten as follows (see Appendix 4, section A4.1): 

𝑉𝑤 = 𝐿𝑅
2(𝜃 − sin(𝜃)cos(𝜃)) (3𝑎) 

𝐸𝑑𝑎𝑡 = 𝑚1𝐿𝑅
3(cos(3𝜃) − 9cos(𝜃) + 8) (3𝑏) 

Conducting Taylor series expansions for both Equation 3a and Equation 3b and taking their first 

non-constant polynomial terms (since these are the dominating terms), approximations for the 

wear volume and the energy dissipated above the threshold (denoted as 𝑉𝑤′  and 𝐸𝑑𝑎𝑡′ 

respectively) can be written as follows: 

𝑉𝑤′ =
2

3
𝐿𝑅2𝜃3 (4𝑎) 

𝐸𝑑𝑎𝑡′ = 3𝑚1𝐿𝑅
3𝜃4 (4𝑏) 

As can be seen in the next section (Section 3.1), the error associated with the approximations for 

a cylinder-on-flat contact is relatively low. As such, it is reasonable to assume that 𝑉𝑤  ≈ 𝑉𝑤′ when 

𝐸𝑑𝑎𝑡 = 𝐸𝑑𝑎𝑡′ for all 𝜃, with the approximation being better for smaller values of 𝜃. The formulation 

of a direct relationship between the wear volume (𝑉𝑤 ) and the energy dissipated above the 

threshold ( 𝐸𝑑𝑎𝑡 ) is now simply derived by eliminating the wear scar angle, 𝜃 , from the 

approximated equations 4a and 4b, yielding the following relationship: 

𝑉𝑤 = 2(
1

3
)
1.75

(
𝐿

𝑚1
3)

0.25

𝑅−0.25𝐸𝑑𝑎𝑡
0.75 

= 𝐴1𝑅
−0.25𝐸𝑑𝑎𝑡

0.75 (5) 
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In the previous paper [8], the threshold energy (𝐸𝑡ℎ) for the system in question was derived as 

560 J, meaning that 𝐸𝑡ℎ was therefore comparatively small in the context of the maximum values 

of energy being dissipated in those tests of around 300 kJ (see Figure 3). In situations like this 

(i.e. tests where the maximum duration is much greater than the duration at which wear is first 

observed to commence), it seems reasonable therefore to neglect this threshold energy to enable 

further simplification of the function to take place. This assumption that 𝐸𝑡ℎ ≈ 0 allows a further 

simplification of Equation 5 to yield: 

𝑉𝑤 = 𝐴1𝑅
−0.25  𝐸𝑑

0.75 (6) 

It is recognised that if there is an obvious threshold energy at which wear is first observed in a 

fretting test dataset, then Equation 5 could readily be employed in preference to Equation 6. 

However, Equation 6 allows data to be processed where the threshold energy, 𝐸𝑡ℎ, cannot be 

readily identified from the dataset available.  

3.1 Errors associated with the approximation 

The parametric equations given by Equation 3 have been shown to be able to describe well the 

dependence of wear volume on both energy dissipated and the geometry of the system for the 

data presented in Figure 3. The approximations of these equations to the forms presented in 

Equation 4 has then allowed the derivation of the wear equations as presented in Equations 5 and 

6. However, the error in moving between the exact equations (Equation 3) to the approximate 

equations (Equation 4) needs to be understood since the validity (or otherwise) of Equations 5 

and 6 are dependent upon this.  

Figure 6 shows the relationships between the normalised energy dissipated above the threshold 

energy (𝑒𝑑𝑎𝑡 =
𝐸𝑑𝑎𝑡

𝑚1𝐿𝑅
3 ) and the normalised wear volume (𝑣𝑤 =

𝑉𝑤

𝐿𝑅2
) for the exact equations 

(Equation 3) alongside the equivalent for the approximated equations (Equation 4); from the exact 

form, Equation 3 indicates that the allowable range of 𝑒𝑑𝑎𝑡  is between 0 and 8 and that the 

allowable range of 𝑣𝑤 is between 0 and 
𝜋

2
 when 𝜃 is within the range that 0 ≤ 𝜃 ≤

𝜋

2
. It should be 

noted that in Figure 5, the axes are normalised to the maximum values, max(𝑒𝑑𝑎𝑡) and max(𝑣𝑤), 

respectively (max(𝑒𝑑𝑎𝑡) = 8 , max(𝑣𝑤) =
𝜋

2
). It can be seen that the wear volume given by 

approximated equations is always less than that given by the exact equations for the same value 

of normalised energy. The error in the wear volume (𝜀𝑉) associated with the approximated form 

when 𝑒𝑑𝑎𝑡 = 𝑒𝑑𝑎𝑡′ is given by: 

𝜀𝑉 = 
𝑣𝑤

′ − 𝑣𝑤
𝑣𝑤

(7) 

Figure 5 shows that the fractional difference between the normalised wear volume given by the 

exact and the approximated equations (𝜀𝑉) increases as 𝑒𝑑𝑎𝑡 increases, but with the magnitude of 

the error never being greater than 12%. In the work on which this is based [8], the maximum value 

of 𝜃 observed in the test programme (which included fretting test durations of up to 5 × 106 cycles) 

was 0.32 which leads to a fractional error, 𝜀𝑉, of only -0.5%. As such, it can be concluded that the 

errors in making the approximations of the Taylor series expansions for cylinder-on-flat fretting 

configurations are small compared to other sources of error, such as in the measurement of 
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experimental data. As such, we conclude that the wear equation (Equation 6) is a valid equation, 

with the errors associated with the approximations required for its derivation being of an 

acceptable magnitude for any amount of wear. 

 

Figure 5: Plot of normalised energy dissipated above the threshold against normalised wear volume for both 
the exact (Equation 3) and approximate equations (Equation 4) for a cylinder-on-flat contact across the full 

range of allowable values of 𝒆𝒅𝒂𝒕 along with the fractional error in the wear volume across the same range. 

3.2 Experimental verification of the proposed relationship 

The wear data from a cylinder-on-flat fretting contact previously presented in Figure 3 are replotted 

in the form indicated by Equation 6 (i.e. now using the term 𝑅−0.25𝐸𝑑
0.75 as the abscissa) and 

presented in Figure 6. Please note that data additional to those presented in Figure 3 are also 

included in Figure 6; these data relate to tests conducted in exactly the same way as those 

presented in the previous work [8] but with different cylinder radii in the contact pair, namely 15 

mm (data points labelled 𝑅15) and 80 mm (data points labelled 𝑅80). It can be seen that the 

experimental data generated with the four different geometrical configurations are well described 

across the range of test durations by the function presented in Equation 6. The dashed lines in 

Figure 6 represent the region of 95% confidence intervals for the overall fitting line. 
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Figure 6: Wear volumes from cylinder-on-flat fretting tests of a high strength steel plotted as a function of 

𝑹−𝟎.𝟐𝟓𝑬𝒅
𝟎.𝟕𝟓. The data relating to tests with cylinders with radii of 6 mm and 160 mm  (𝑹𝟔 and 𝑹𝟏𝟔𝟎 respectively) 

are from Figure 3; data related to tests with cylinders with radii of 15 mm and 80 mm (𝑹𝟏𝟓 and 𝑹𝟖𝟎 respectively) 
are additional data which relate to experiments with identical materials conducted under the same fretting 
conditions, but simply with different cylinder radii.  

4 Derivation of wear equations for sphere-on-flat and crossed-cylinders fretting 
configurations 

The concept that the instantaneous wear rate may be inversely proportional to a characteristic 

linear dimension of the scar or that it may be proportional to the contact pressure (and thus 

inversely proportional to the area of the contact) lead to two different potential governing equations 

in the case of initially point contacts (i.e. sphere-on-flat and crossed-cylinders geometries). Wear 

equations based upon the governing equation which states that the instantaneous wear rate is 

inversely proportional to a characteristic linear dimension of the scar will be derived for the sphere-

on-flat and crossed-cylinder contact configurations; however, due to the complexities of the 

analysis, the wear equation based upon the governing equation which states that the 

instantaneous wear rate is proportional to the contact pressure (and thus inversely proportional to 

the area of the contact) will be derived only for the sphere-on-flat contact configuration. 

4.1 Wear equations based upon a characteristic linear dimension of the wear scar for the 
sphere-on-flat and crossed-cylinders contact configurations 

The work on the cylinder-on-flat contact configuration presented in Section 3 is simply an 

extension of the work previously published [8] where Equation 1 was first proposed. In those 

cylinder-on-flat fretting tests where the fretting motion is perpendicular to the axis of the cylinder 

and the wear scar dimension perpendicular to the fretting direction is generally much larger than 

its dimension parallel to the fretting motion, it was assumed that the debris flow velocity out of the 



 

 

12 February 14, 2021 

contact was parallel to the direction of the fretting motion; moreover, at any point in the evolution 

of the wear scar, it was assumed the wear scar width, 𝑥, was the same across the length of the 

contact and could therefore be readily defined.  

This geometrical simplicity does not exist in either the sphere-on-flat fretting configuration or the 

crossed-cylinders fretting configuration. In both cases, the wear scar shape will be equiaxed 

(assuming that the slip amplitude is small compared to the width of the wear scar); in the case of 

the sphere-on-flat configuration, the shape of the wear scar projection will be a circle, whereas for 

the crossed-cylinders geometry, whilst the projection of the wear scar remains equiaxed as wear 

progresses, it changes shape from circle in the early stages towards a square as wear progresses. 

Whilst the fretting displacement will tend to promote debris flow parallel to it, the equiaxed nature 

of the scars will mean that some (perhaps a significant fraction) of the debris will escape the scar 

from the sides (termed side leakage [23]) which will result in a component of its velocity 

perpendicular to the fretting direction. As such, there is no intuitively obvious definition of the wear 

scar width in the direction of the fretting motion over which the debris needs to travel to exit the 

wear scar.  

Despite this complexity, a simple proposal is made at this stage, namely that a characteristic wear 

scar width can still be defined both for the sphere-on-flat and the crossed-cylinders configurations, 

with this being the largest value of the scar width parallel to the direction of fretting since it is 

argued this will be rate-controlling in terms of the debris flow of out of the scar. Using this 

assumption in each case, and the same methodology as outlined for the cylinder-on-flat contact 

configuration (as outlined in Section 3), equivalent wear equations can be derived. The details of 

the methodology for the sphere-on-flat contact configuration are presented in Appendix 1 with 

those for the crossed-cylinders contact configuration being presented in Appendix 2.  

For the sphere-on-flat contact configuration, the wear equation so derived is: 

𝑉𝑤 =  𝐴2𝑅
−0.2𝐸𝑑

0.8 (8) 

For the crossed-cylinders contact configuration, the wear equation so derived is: 

𝑉𝑤 =  𝐴3𝑅
−0.2𝐸𝑑

0.8 (9) 

with the basis for the constants 𝐴2 and 𝐴3 as shown in the relevant appendices. It is noted here 

that the basic form of the wear equations for these two contact types which result in equiaxed 

wear scar shapes are identical.  

4.2 Wear equations based upon a characteristic area of the wear scar for the sphere-on-
flat contact configuration 

Further to the assumptions made in the derivation of the wear equations in Section 4.1, a second 

proposal is considered here for the sphere-on-flat contact configuration, namely that that the 

instantaneous wear rate is inversely proportional to the area of the wear scar. Using this 

assumption, and the same methodology as outlined for the cylinder-on-flat contact configuration 

(as outlined in Section 3), an equivalent wear equation can be derived. The details of the 

methodology are presented in Appendix 3.  
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For the sphere-on-flat contact configuration, the wear equation so derived is: 

𝑉𝑤 =  𝐴2𝑅
−0.33 𝐸𝑑

0.67 (10) 

4.3 Experimental verification of the proposed relationships for wear scars with equiaxed 
shapes 

Experimental data are available in the literature [19] against which the two wear equations 

(Equations 8 and Equation 10) for the sphere-on-flat contact configuration can be tested. The data 

relate to fretting wear of a 52100 steel pair with a sphere-on-flat geometry, with a constant slip 

amplitude of 72 µm. Three sphere radii were examined, namely 9.525 mm, 25.4 mm and 50 mm; 

it should be noted that different loads were employed for tests with the three different radii so that 

the initial Hertzian contact pressure was the same across all three geometries. The wear data are 

presented in Figure 7 in the form of wear volume as a function of energy dissipated for the three 

different geometries along with the lines of best fit as proposed in the original paper; it can be seen 

that the evolution of the wear scar volume with energy is strongly influenced by the geometry of 

the contacting pairs, with the gradient of the regression lines (previously termed the “wear rate”) 

decreasing as the radius of the spherical body was increased. These data are now replotted in the 

forms indicated by Equation 8 (using the term 𝑅−0.2𝐸𝑑
0.8 as the abscissa) and by Equation 10 

(using the term 𝑅−0.33 𝐸𝑑
0.67  as the abscissa) and are presented in Figure 8a and Figure 8b 

respectively. It can be seen (Figure 8) that the experimental data generated with the different 

geometrical configurations and test durations are reasonably described by either the function 

presented in Equation 8 (Figure 8a) or the function presented in Equation 10 (Figure 8b), although 

it is recognised that the data for the three different sphere radii do still form distinct populations in 

both cases, indicating that the assumptions made in the derivation of either equation are not 

entirely valid.  
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Figure 7: Plot of experimental data from the literature [19] showing the wear volume as a function of dissipated 
energy for fretting of a high-strength steel conducted with a sphere-on-flat arrangement with three different 
sphere radii (namely 𝑹𝟗. 𝟓𝟐𝟓 pairs, 𝑹𝟐𝟓. 𝟒 pairs and 𝑹𝟓𝟎 pairs).  

  

(a) (b) 

Figure 8: Replot of data from Figure 7 showing the wear volumes from sphere-on-flat fretting tests of a high 

strength steel [19] plotted as a function of (a) 𝑹−𝟎.𝟐𝑬𝒅
𝟎.𝟖; (b) 𝑹−𝟎.𝟑𝟑𝑬𝒅

𝟎.𝟔𝟕. The data relate to tests with different 

sphere radii of 9.525 mm, 25.4 mm and 50 mm.  

5 Discussion 

5.1 Testing of the wear equations against experimental data 

The third body approach [3] and the concept of the tribology circuit [5] both highlight the importance 

of debris egress from the contact as a critical part of the ongoing process of wear, with the concept 

of the rate-determining process [8] (either debris formation or debris ejection from the contact) 

being based upon these. It was shown in this latter work that the rate of debris ejection from the 

contact was inversely proportional to the wear scar width for a cylinder-on-flat fretting 

configuration, and parametric equations were derived from which it was demonstrated that the 

evolution of the wear scar volume with the energy dissipated in the test was non-linear (i.e. 

Archard-type approaches are not appropriate descriptions of behaviour). However, in that work, 

the governing formulation was presented in the form of parametric equations which obscured the 

relationship desired of a wear equation, namely the direct relationship between the wear volume 

and a measure of the exposure to wear (in this case, the frictional energy dissipated). In the current 

paper, a wear equation has been derived for the cylinder-on-flat contact which is based upon the 

same assumptions as employed in the derivation of the parametric equations, namely that the rate 

of wear is always controlled by debris ejection from the contact (as opposed to debris formation 

within the contact) and that the threshold energy dissipated (below which there is no wear) is 

negligible. The wear equation derived is presented in a summary table (Table 1).  
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The success in providing a coherent framework to understand the differences in development of 

wear volume in a cylinder-on-flat fretting test as a function of the contact geometry (as can be 

seen by comparison of Figure 3 and Figure 6) gives support to the underlying assumptions upon 

which the model development was based, primarily that of wear rate being inversely proportional 

to the width of the wear scar.  

The assumption that the instantaneous wear rate is inversely proportional to the width of the wear 

scar was employed for the derivation of the equivalent equations for the sphere-on-flat and 

crossed-cylinders specimen pair configurations (also shown in the summary Table 1). In both of 

these cases, it is recognised that these begin as a point contacts and that the wear scars remain 

largely equiaxed as they grow. The assumption is still made in the derivation of the equations that 

the debris flow out of the contact which occurs in the direction of fretting motion flow controls the 

wear rate and that the rate is therefore controlled by the largest dimension of the wear scar in that 

direction; as such, whilst side-leakage of debris from the contact may occur, it is assumed to have 

no significant influence on the wear rate. Whilst this was a very reasonable assumption for the 

cylinder-on-flat contact (where the dimension of the wear scar perpendicular to the direction of 

displacement was large and therefore side-leakage was likely to be a small fraction of the overall 

debris ejection from the contact), it is clearly less so for these equiaxed contact geometries where 

side-leakage [3] is a reasonable expectation [5, 24] and may be significant. The equation for 

development of wear volume for a sphere-on-flat fretting contact based upon the assumption that 

instantaneous wear rate is inversely proportional to the wear scar radius has been tested against 

experimental data (Figure 8a) for tests conducted with spheres of different radii. In Figure 8a, the 

populations associated with the three sphere radii are still distinct (this is in contrast to the 

equivalent situation for the cylinder-on-flat configuration as presented in Figure 6) and this 

demonstrates that this wear equation derived is less well able to account for the effect of sphere 

radius; it is suggested that this indicates that the assumption that side-leakage of debris can be 

neglected when considering the (rate-determining) rate of debris ejection from the contact is less 

valid in the sphere-on flat geometry than it is in the cylinder-on-flat geometry. Despite this, the fit 

of data to the derived form of the wear equation indicated in Figure 8a is still reasonable, indicating 

the concept of the wear rate being dependent upon the size of the wear scar has clear validity 

here.  

It is noted that the form of Equation 1 used for the broadly rectangular wear scar formed in the 

cylinder-on-flat contact configuration was also consistent with the assumption that the 

instantaneous wear rate is inversely proportional to the contact area, a position which would 

accord with the work in this area which likens the particle bed to a fluid which either flows or is 

squeezed out of the contact [7, 23]. This second assumption was tested for the case of the sphere-

on-flat contact resulting in a wear equation with a slightly different form (Equation 10) which is 

again included in the summary table (Table 1). Comparison of Figure 8a and Figure 8b indicate 

that, whilst the data are fully in accord with the concept of the instantaneous wear rate being 

related to the size of the contact, the area-derived form of the wear equation is no more in accord 

with the experimental data than the linear-derived form. When the assumptions and the fit to the 

data for the sphere-on-flat configuration are compared with those for the cylinder-on-flat 

configuration, it is suggested that the essentially two-dimensional situation of the cylinder-on-flat 

configuration is preferred: in this case, the debris flow is predominantly parallel to the direction of 

fretting, driven both by the fretting motion itself and by the fact that the scar dimension in the 
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fretting direction is small compared to its dimension perpendicular to the fretting motion (with this 

short distance driving the flow as indicated in the governing equations).  

It is noted that no suitable experimental data has been found in the literature against which the 

form of the wear equation for the crossed-cylinders contact geometry can be tested. However, 

given the similarity of the developing contact shape between the sphere-on-flat geometry and the 

crossed-cylinders geometry, it is reasonable to conclude that the wear equation for the latter 

geometry has similar validity to that of the former geometry.  

Table 1: Summary of the wear equations for the three different non-conforming contact configurations 
considered in this work, namely cylinder-on-flat, sphere-on-flat and crossed-cylinders with both the linear and 
area bases of the governing equation as indicated.  

Contact configurations Wear equation 

Cylinder-on-flat (linear or area) 𝑉𝑤 = 𝐴1𝑅
−0.25𝐸𝑑

0.75 

Sphere-on-flat (linear) 𝑉𝑤 =  𝐴2𝑅
−0.2𝐸𝑑

0.8 

Crossed-cylinders (linear) 𝑉𝑤 = 𝐴3𝑅
−0.2𝐸𝑑

0.8 

Sphere-on-flat (area) 𝑉𝑤 = 𝐴2
′𝑅−0.33𝐸𝑑

0.67 

 

5.2 Dependence of wear on contact geometry and energy dissipated 

The equations for the different contact geometries and assumptions regarding the governing 

equation are presented in summary in Table 1. In all four cases, the equations take the form (when 

threshold energy is assumed to be negligible compared to the total dissipated energy into the 

contact):   

𝑉𝑤 = 𝐾𝑅
𝑛−1𝐸𝑑

𝑛 (11) 

It is noted that 𝐾 will have units which depend upon the pair geometry and assumptions regarding 

the governing equation; also, it is noted that (in contrast to the units of the constant in Archard-

type formulations), 𝐾 will not have units which have a clearly recognisable physical meaning and 

this fact will make the approach being proposed intrinsically less attractive than the traditional 

approach to the those engaged in research and development in this area.  

It was the apparent differences in the fretting wear rates observed as a function the radius of the 

non-plane members when using both cylinder-on-flat and sphere-on-flat geometries [9, 17-20] that 

prompted the research in this area (both in a prior paper [8] and in the work reported herein), with 

its focus on the effect of the developing contact size on the rate of wear. The equations presented 

in Table 1 allow the dependence of the development of wear volume on the details of the selected 

test specimen pair geometry to be accounted for; we see that for all three geometrical 

configurations examined and with the assumptions of both the linear and area dependencies of 

the instantaneous wear rate, the radius exponent 𝑛 − 1 is within the range of −0.33 ≤ 𝑛 − 1 ≤

−0.2, which indicates that for a given energy dissipated, the wear volume will decrease with 

increasing radius of the non-plane specimen in each case. This is a direct result of the fact that as 

the specimen radius increases, the scar size will be larger for a given worn volume, with that larger 

wear scar size then reducing the flow rate of the debris from the contact (Equation 1, Equation 
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A1.1, Equation A2.1 and Equation A3.1) and thus reducing the rate of wear. However, it is 

recognised that the dependence on the specimen geometry is relatively weak; for example, for the 

cylinder-on-flat contact geometry, a change in the cylinder radius by a factor of ~ 27 (as in the 

experiments reported in Figure 3 and Figure 6) is predicted to result in a change in the wear 

volume (all other things being equal) by a factor of only ~ 2.3. Notwithstanding, for the first time, 

these equations have provided a means of incorporating characteristics of the specimen test 

geometry into the wear equation with the success of this approach being demonstrated most 

strongly for the cylinder-on-flat test configuration (Figure 6) but also for the sphere-on-flat test 

configuration (Figure 8) to a lesser extent (the difference being associated with the effects of side-

leakage of debris as previously discussed).  

Perhaps more significant is the proposed dependence of the wear volume on the energy 

dissipated. Archard’s wear equation [1] was derived for sliding wear, and describes the rate of 

debris generation in a sliding contact. It has been argued previously (an argument which is 

reinforced here) that simply applying this equation (or those of other Archard-type approaches) to 

fretting contacts where debris elimination from the contact is the rate-determining process is not 

appropriate [16]. The equations (Table 1) derived in this work do (for the first time) take account 

of the size of the wear scars for the three contact geometries considered with two hypotheses 

regarding the governing equations, but also give an indication as to why Archard-type equations 

have been employed so widely in analysis of fretting data. The dependence of wear volume on 

dissipated energy takes the form as indicated in Equation 11, where across the three geometries 

examined and with the assumptions of both the linear and area dependencies of the instantaneous 

wear rate, 0.67 ≤ 𝑛 ≤ 0.8. The fact that these exponents are not far removed from unity (this 

being the exponent associated with the Archard-type equations) means that the fitting of 

experimental data to an equation of the form 𝑉𝑤 = 𝑘𝐸𝑑 + 𝑐 (where 𝑘 is considered to be the wear 

rate and 𝑐 is a constant representing an initial transient in wear associated with bedding-in [25]) is 

often apparently quite successful. It is noted that 𝑐 is often set to zero, with this being a necessary 

assumption in the many cases reported in the literature where the wear rate 𝑘 is derived from tests 

conducted with a single value of energy dissipated, 𝐸𝑑.  

To illustrate this, a dataset was formed of 1001 equally-spaced points in 𝐸𝑑 and values of wear 

volume calculated for each of those points according to the relationship 𝑉𝑤 =  𝐾𝐸𝑑
0.75 (i.e. the form 

relevant to a cylinder-on-flat contact configuration). Linear regressions of the form 𝑉𝑤 = 𝑘𝐸𝑑 and 

𝑉𝑤 = 𝑘𝐸𝑑 + 𝑐 were then applied to this dataset. The regression lines to these data are shown in 

Figure 9a, where the solid line represents the data of the form 𝑉𝑤 =  𝐾𝐸𝑑
0.75 and the dashed lines 

represent the two different forms of linear regression to these data; it can be seen that it is 

apparently not unreasonable to apply a linear relationship of either of these types to such a dataset 

(in both cases, the coefficient of determination, R2 > 0.99). Moreover, with the natural errors 

associated with experimental data, the apparent appropriateness of a linear fit to a set of 

experimental data of this form is even more understandable. 

  



 

 

18 February 14, 2021 

  

(a) (b) 

Figure 9: Schematic diagram showing data distributed in the form 𝑽𝒘 =  𝑲 𝑬𝒅
𝟎.𝟕𝟓 (solid line) along with linear 

regressions to those data; (a) linear fit in the form 𝑽𝒘 = 𝒌 𝑬𝒅 (long dashes) and 𝑽𝒘 = 𝒌 𝑬𝒅 + 𝒄 (short dashes); 

(b) linear regression in the form 𝑽𝒘 = 𝒌 𝑬𝒅 + 𝒄 to data from tests of five different durations; the test with the 

longest duration (in terms of 𝑬𝒅 is labelled 100%) with the four shorter tests having a maximum dissipated 
energy of 1%, 10%, 25% and 50% of that of the longest test. The linear regressions to the datasets from the 
tests with the five different durations are as indicated by the dashed lines.  

If it is (incorrectly) assumed is that the relationship between wear volume (𝑉𝑤)  and energy 

dissipated (𝐸𝑑) (or any similar measure of the exposure to wear) is in fact linear (of the general 

form 𝑉𝑤 = 𝑘𝐸𝑑 + 𝑐), then given that enough data have been gathered to identify the value of the 

initial transient (𝑐) and to ensure that steady-state conditions have been established, the duration 

of the test (in terms of the total energy dissipated) should not affect the value of the wear rate 

derived.(It is noted that in previous work, it is not clear that the tests lengths were always 

adequately long, especially for more conforming contact geometries, to allow steady state 

conditions to be established as can be seen by a comparison of the data in references [9] and [8]). 

However, if it is instead assumed (as is argued here) that the data actually take the form 𝑉𝑤 =

 𝐾𝐸𝑑
0.75, the gradient of any linear regressions to such data will depend upon the duration of the 

test (i.e. the maximum value of 𝐸𝑑 in the dataset). This is schematically illustrated in Figure 9b; 

here five tests are simulated with the only difference between those tests being their duration (in 

terms of 𝐸𝑑). The four shorter tests have durations of 1%, 10%, 25% and 50% of that of the longest 

test. Linear regressions (of the type 𝑉𝑤 = 𝑘𝐸𝑑 + 𝑐) are applied over the data from the five test 

durations (labelled 100% for the test with the longest duration and then 1%, 10%, 25% and 50% 

for those of the shorter durations). It is notable again that in each of these cases, the coefficient 

of determination, R2 > 0.99. It can be thus seen that the 𝑘 (traditionally assumed to be the wear 

rate) is strongly dependent upon the duration of the test, with this gradient decreasing as the 

duration of the test, 𝐸𝑑, is increased. To give some measure of the significance of these changes, 

the variation in 𝑘  with the test duration (represented by 𝐸𝑑 ) is presented in Figure 10. The 

implication of this is that when employing a non-conforming geometry for a fretting test 

programme, if two otherwise identical tests are conducted with different test durations, then the 
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gradient, 𝑘 (of the general form 𝑉𝑤 = 𝑘𝐸𝑑 + 𝑐) of the linear regression to the resulting data is 

dependent upon the ratio of the test durations. For example, whichever form (either 𝑉𝑤 = 𝑘𝐸𝑑 + 𝑐 

or 𝑉𝑤 = 𝑘𝐸𝑑) is assumed, increasing the test duration by a factor of 10 leads to a reduction of 𝑘 

(the Archard-type wear rate) to 56% of its former value. In fact, the linear regression line is close 

to the tangent line of data distribution; the gradient of the linear regression can be approximated 

as the derivative of Equation 11, i.e. it can be shown that as 𝐸𝑑 → 𝛼𝐸𝑑, 
𝑑𝑉𝑤

𝑑𝐸𝑑
(𝛼𝐸𝑑) = 𝛼

𝑛−1 𝑑𝑉𝑤

𝑑𝐸𝑑
(𝐸𝑑) 

(with 𝑛 being defined as in Equation 11) and thus the change of 𝑘 (the Archard-type wear rate) 

follows a similar pattern. 

 

Figure 10: Normalised values of the gradients (𝒌) of linear regressions to data of the form 𝑽𝒘 =  𝑲𝑬𝒅
𝟎.𝟕𝟓 with for 

data of a range of durations, 𝑬𝒅, compared to that of the duration of the longest dataset.  Linear regressions 

both of the form 𝑽𝒘 = 𝒌𝑬𝒅 and 𝑽𝒘 = 𝒌𝑬𝒅 +  𝒄 are shown. The values of 𝒌 have been normalised to that resulting 

from the regression of the form 𝑽𝒘 = 𝒌𝑬𝒅 +  𝒄 to the longest dataset.  

To further illustrate this, linear regression (to the general form 𝑉𝑤 = 𝑘𝐸𝑑 + 𝑐) was applied to the 

experimental data presented in Figure 3 for the 6 mm radius cylinders for different maximum test 

durations; in each case all the data available both at and below the defined test duration were 

employed for the linear regression. The gradient of the linear regression (𝑘) to the experimental 

data is plotted against the test duration as shown in Figure 11; it can be seen that 𝑘 falls as the 

test duration was increased, but that in all cases, the coefficient of determination remained high, 

giving (false) confidence that the experimental data were well described by the form of the 

equation 𝑉𝑤 = 𝑘𝐸𝑑 + 𝑐 . The ratio of dissipated energy between the test with the largest and 

smallest duration here is ~ 50. The ratio 𝛼𝑛−1 indicates that the gradient of the linear regression 

(𝑘) should be 2.65 times larger at the smallest duration than at the largest, with the data in Figure 

11 demonstrating an equivalent ratio of 2.26. The accord between observations and predictions 

here adds further weight to this approach.  
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Figure 11: Plot of gradients, 𝒌, (of the form 𝑽𝒘 = 𝒌𝑬𝒅 + 𝒄) along with the associated coefficients of determination 
from linear regression of the data for the 6 mm radius cylinders presented in Figure 3 as a function of the 
maximum energy included in the linear regression.  

As such, we see that for fretting conditions where debris ejection from the contact is the rate 

determining process, linear regression to the general form 𝑉𝑤 = 𝑘𝐸𝑑 + 𝑐 generally produces a 

good fit to the data, but that the high quality of the fit unfortunately provides misplaced assurance 

that the gradient of such a regression can be regarded as the wear rate. The true form of the 

relationship (𝑉𝑤 = 𝐾𝑅
𝑛−1𝐸𝑑

𝑛) indicates the dependence upon both the geometrical make-up of the 

contact (𝑅) and the duration of the test (𝐸𝑑) since both of these affect the development of the size 

of the contact. It is recognised that 𝐾 itself is likely to be a function of many other parameters which 

are regarded as variable in the fretting test such as applied load, slip amplitude, environmental 

temperature, fretting frequency etc. However, this constant 𝐾 is independent of test durations and 

contact geometry and will facilitate understanding of the development of wear in fretting, both in 

service and in laboratory testing. Whilst these equations have been derived for specific test 

geometries, the need to consider debris ejection from the contact as a potential rate-determining 

process is general to all situations where fretting occurs; moreover, it is argued that in any situation 

where debris egress is seen to be rate-determining (irrespective of geometry), the instantaneous 

wear rate will be inversely proportional to a characteristic dimension of the size of the wear scar 

related either to the distance over which debris have to migrate before they can be ejected or to 

the area of the contact. For laboratory tests where a non-conforming specimen pair geometry is 

employed, it is recognised that it is helpful to have data across a wide range of values of dissipated 
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energy, or to have data with the specimen pairs having non-plane specimens over a range of radii, 

and to plot those data via the appropriate form of wear equation 𝑉𝑤 = 𝐾𝑅
n−1𝐸𝑑

𝑛. 

6 Conclusions 

It has been shown that under certain circumstances, the instantaneous wear rate in fretting is 

either inversely proportional to a characteristic dimension of the wear scar (the maximum size of 

the scar parallel to the direction of fretting) or is inversely proportional to the wear scar area. This 

means that when non-conforming specimen pair geometries are employed in fretting testing 

(where the scar size grows as wear proceeds), then the instantaneous wear rate changes as the 

test proceeds. On outcome of this assertion is that the traditional concept of wear rate for such a 

test is meaningless since it is constantly changing. 

Wear equations have been generated for three commonly employed non-conforming specimen 

pair geometries with the assumptions of both the linear and area dependencies of the 

instantaneous wear rate which describe the evolution of wear volume with test duration (which is 

here described by the frictional energy dissipated). The basis of these equations is that of debris-

flow out of the contact, and it is shown that the simple assumption that the debris flow rate is 

inversely proportional to the maximum size of the scar parallel to the direction of fretting is most 

reasonable when that dimension of the scar is small compared to the size of the scar in other 

directions. As such, the validity of the equations developed is much higher for cylinder-on-flat test 

configurations than it is for sphere-on-flat or crossed-cylinders test configurations. 

Examination of the form of the wear equations developed provides an understanding of how 

Archard-type approaches have been inappropriately employed for so long in fretting research, 

despite the wide consensus regarding the validity of Godet’s third body approach and Berthier’s 

tribology circuit which indicate the key role of debris egress from the contact; moreover, it also 

provides an indication as to how the test duration will affect the traditional measure of the wear 

rate derived from inappropriate application of an Archard-type equation to such data.  
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Appendix 1: Derivation of an equation to describe the relationship between wear 

volume and energy dissipated for sphere-on-flat contacts assuming wear scar 

width dependence of wear rate 

As for the cylinder-on-flat contact, it is proposed that the instantaneous wear rate is inversely 

proportional to a characteristic wear scar width (i.e. the wear scar diameter, 2𝑟) as follows:  

𝑑𝑉𝑤
𝑑𝐸𝑑

=
𝑘2
2𝑟

(𝐴1.1) 

where: 

𝑘2 =  𝑔(𝑃, 𝛿, 𝑇, 𝑓 … ) 

indicating that the constant 𝑘2 is a function of various test parameters as previously defined. 

As for the cylinder-on-flat case, it is assumed that the total wear volume across the two 

components of a sphere-on-flat specimen pair can be described by the spherical cap of 

intersection of the sphere with the plane. The extent of wear is again defined by the wear scar 

angle 𝜃 as illustrated in Figure 12, where the diameter of the circular wear scar, 2𝑟, is equal to 

2𝑅sin(𝜃).  

 

Figure 12: Illustration of the relationship between the wear volume (defined by a spherical cap) and its 

corresponding wear scar angle for the sphere-on-flat fretting geometry. 𝟎 ≤ 𝜽 ≤
𝝅

𝟐
. 

Parametric equations for both the wear volume and the energy dissipated above the threshold 

energy as functions of the wear scar angle 𝜃 can be derived as follows (see Appendix 4, 

section A4.2): 

𝑉𝑤 =
𝜋𝑅3

12
(cos(3𝜃) − 9cos(𝜃) + 8) (𝐴1.2𝑎) 
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𝐸𝑑𝑎𝑡 = 𝑚2𝜋𝑅
4(sin(4𝜃) − 8sin(2𝜃) + 12𝜃) (𝐴1.2𝑏) 

By performing Taylor series expansions for both Equations A1.2a and A1.2b and again taking 

their first non-constant polynomial terms, the wear volume and the energy dissipated above 

the threshold can be approximated (denoted as 𝑉𝑤′ and 𝐸𝑑𝑎𝑡′ respectively) as follows:  

𝑉𝑤′ =
𝜋𝑅3𝜃4

4
(𝐴1.3𝑎) 

𝐸𝑑𝑎𝑡′ =
32

5
𝑚2𝜋𝑅

4𝜃5 (𝐴1.3𝑏) 

Again, as shown in the next section concerning error analysis for the sphere-on-flat contact 

(Section A1.1), the error associated with the approximation is relatively low, which leads to the 

conclusion that 𝑉𝑤  ≈ 𝑉𝑤′ when 𝐸𝑑𝑎𝑡 = 𝐸𝑑𝑎𝑡′ for all 𝜃, with the approximation being better for 

smaller values of 𝜃. The formulation of a direct relationship between the wear volume (𝑉𝑤) and 

the energy dissipated above the threshold (𝐸𝑑𝑎𝑡) is now simply derived by eliminating the wear 

scar angle, 𝜃, from the approximated equations presented in Equations A1.3a and A1.3b, 

yielding the following relationship: 

𝑉𝑤 =
1

4
(
5

32
)
0.8

(
𝜋

𝑚2
4)

0.2

𝑅−0.2𝐸𝑑𝑎𝑡
0.8  

= 𝐴2𝑅
−0.2𝐸𝑑𝑎𝑡

0.8 (𝐴1.4) 

As for the cylinder-on-flat configuration, using the assumption that 𝐸𝑡ℎ ≈ 0 here allows a further 

simplification of Equation A1.4 to yield a simplified wear equation for a sphere-on-flat contact 

in fretting: 

𝑉𝑤 =  𝐴2𝑅
−0.2𝐸𝑑

0.8 (𝐴1.5) 

A1.1 Errors associated with the approximation 

As for the cylinder-on-flat case, the approximate parametric equations have allowed a wear 

equation (Equation A1.4) to be derived. However, as before, the errors associated with moving 

from the exact parametric equations (Equation A1.2) to the approximated parametric equations 

(Equation A1.3) need to be understood in order that the validity of the approximation can be 

assessed.  

The method by which the errors associated with the approximation are as described in Section 

3.1 of the main body of the paper and will not be described again in detail, with simply the 

outputs being presented. Figure 13 shows the relationship between the normalised energy 

dissipated above the threshold energy (𝑒𝑑𝑎𝑡 =
𝐸𝑑𝑎𝑡

𝑚2𝜋𝑅
4) and the normalised wear volume (𝑣𝑤 =

𝑉𝑤

𝜋𝑅3
) across the full range of allowable wear scar angles 𝜃 (0 ≤ 𝜃 ≤

𝜋

2
) for the exact equations 

(Equation A1.2). Alongside is plotted the equivalent relationship for the approximated 

equations (Equation A1.3) across the same range. It should be noted that in Figure 13, the 

axes are normalised to the maximum values, max(𝑒𝑑𝑎𝑡)  and max(𝑣𝑤)  respectively 
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(max(𝑒𝑑𝑎𝑡) = 6𝜋, max(𝑣𝑤) =
2

3
 ). It can be seen from Figure 13 that across the full range of 

allowable wear scar angles, the magnitude of the error in the wear volume associated with the 

approximations (𝜀𝑉, defined in Equation 7) is never greater than 11%. As such, we conclude 

that wear equation (Equation A1.5) (which has been derived from the Taylor series expansions 

and the additional assumption that 𝐸𝑡ℎ ≈ 0) is a valid equation, with the errors associated with 

the approximations required for its derivation being of an acceptable magnitude for any amount 

of wear.  

 

Figure 13: Plot of normalised energy dissipated above the threshold against normalised wear volume for 
both the exact (Equation A1.2) and approximate equations (Equation A1.3) for a sphere-on-flat contact 
across the full range of allowable values of 𝒆𝒅𝒂𝒕 along with the fractional error in the wear volume across 
the same range. 
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Appendix 2: Derivation of an equation to describe the relationship between wear 

volume and energy dissipated for a crossed-cylinder contact assuming wear 

scar width dependence of wear rate 

Here, it is proposed that the instantaneous wear rate is again inversely proportional to the 

characteristic wear scar width, i.e. the maximum scar width parallel to the direction of fretting 

(𝑤): 

𝑑𝑉𝑤
𝑑𝐸𝑑

=
𝑘3
𝑤

(𝐴2.1) 

where:  

𝑘3 =  𝑔(𝑃, 𝛿, 𝑇, 𝑓 … ) 

indicating that the constant 𝑘3 is a function of various parameters as previously defined. 

As was previously assumed for the other two geometrical configurations, it is again assumed 

that the total wear volume across the two components of a crossed-cylinders specimen pair 

can be described by the volume of intersection of two crossed cylinders. The extent of wear is 

again defined by the wear scar angle 𝜃 as illustrated in Figure 14, where the maximum of wear 

scar width, 𝑤, is equal to 2𝑅sin(𝜃).  

 

Figure 14: Illustration of the relationship between the wear volume (intersection of two crossed cylinders) 

and its corresponding wear scar angle for the crossed-cylinders fretting geometry. 𝟎 ≤ 𝜽 ≤
𝝅

𝟐
. 

Parametric equations for both the wear volume and the energy dissipated above the threshold 

energy as functions of the wear scar angle 𝜃 can be derived as follows (see Appendix 4, 

section A4.3): 

𝑉𝑤 =
𝜋𝑅3

16
(cos(3𝜃) + 2cos(2𝜃) − 17cos(𝜃) + 14) (𝐴2.2𝑎) 
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𝐸𝑑𝑎𝑡 = 𝑚3𝜋𝑅
4(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204 𝜃) (𝐴2.2𝑏) 

By performing Taylor series expansions for both Equation A2.2a and Equation A2.2b and 

taking only their first non-constant polynomial terms, the wear volume and the energy 

dissipated above the threshold can be approximated (denoted as 𝑉𝑤′ and 𝐸𝑑𝑎𝑡′) as follows:  

𝑉𝑤′ =
𝜋𝑅3𝜃4

4
(𝐴2.3𝑎) 

𝐸𝑑𝑎𝑡′ =
384

5
𝑚3𝜋𝑅

4𝜃5 (𝐴2.3𝑏) 

Again, as shown in the next section concerning error analysis for the crossed-cylinders contact 

(Section A2.1), the error associated with the approximation is relatively low, which leads to the 

conclusion that 𝑉𝑤  ≈ 𝑉𝑤′ when 𝐸𝑑𝑎𝑡 = 𝐸𝑑𝑎𝑡′ for all 𝜃, with the approximation being better for 

smaller values of 𝜃. The formulation of a direct relationship between the wear volume (𝑉𝑤) and 

the energy dissipated above the threshold (𝐸𝑑𝑎𝑡) is now simply derived by eliminating the wear 

scar angle, 𝜃, from the approximated equations presented in Equations A2.3a and A2.3b, 

yielding the following relationship: 

𝑉𝑤 =
1

4
(
5

384
)
0.8

(
𝜋

𝑚3
4)

0.2

𝑅−0.2𝐸𝑑𝑎𝑡
0.8  

= 𝐴3𝑅
−0.2𝐸𝑑𝑎𝑡

0.8 (𝐴2.4) 

Using the aforementioned assumption that 𝐸𝑡ℎ ≈ 0 allows a further simplification of Equation 

A2.4 to yield: 

𝑉𝑤 = 𝐴3𝑅
−0.2𝐸𝑑

0.8 (𝐴2.5) 

A2.1 Errors associated with the approximation 

As before, the errors associated with moving from the exact parametric equations (Equation 

A2.2) to the approximated parametric equations (Equation A2.3) need to be understood in 

order that the validity of the approximation can be assessed.  

The method by which the errors associated with the approximation are as descried in Section 

3.1 of the main body of the paper and will not be described again in detail, with simply the 

outputs being presented. Figure 15 shows the relationships between the normalised energy 

dissipated above the threshold energy (𝑒𝑑𝑎𝑡 =
𝐸𝑑𝑎𝑡

𝑚3𝜋𝑅
4) and the normalised wear volume (𝑣𝑤 =

𝑉𝑤

𝜋𝑅3
) across the full range of allowable wear scar angles 𝜃 (0 ≤ 𝜃 ≤

𝜋

2
) for the exact equations 

(Equation A2.2). Alongside is plotted the equivalent relationship for the approximated 

equations (Equation A2.3) across the same range. It should be noted that in Figure 15, the 

axes are normalised to the maximum values, max(𝑒𝑑𝑎𝑡)  and max(𝑣𝑤)  respectively 

(max(𝑒𝑑𝑎𝑡) = 102𝜋 − 64, max(𝑣𝑤) =
3

4
). It can be seen from Figure 15 that across the full range 

of allowable wear scar angles, the magnitude of the error is never greater than 13%. As such, 

we conclude that the wear equation (Equation A2.5) (which has been derived from the Taylor 
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series expansions and the additional assumption that 𝐸𝑡ℎ ≈ 0) is a valid equation, with the 

errors associated with the approximations required for its derivation being of an acceptable 

magnitude for any amount of wear.  

 

Figure 15: Plot of normalised energy dissipated above the threshold against normalised wear volume for 
both the exact (Equation A2.2) and approximate equations (Equation A2.3) for a crossed-cylinders contact 

across the full range of allowable values of 𝒆𝒅𝒂𝒕 along with the fractional error in the wear volume across 
the same range. 
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Appendix 3: Derivation of an equation to describe the relationship between wear 

volume and energy dissipated for a sphere-on-flat contact assuming wear scar 

area dependence of wear rate 

Here, it is proposed that the instantaneous wear rate is inversely proportional to the circular 

wear scar area, 𝐴, as follows (the characteristic wear scar width in Appendix 1, 2𝑟, is defined 

as the diameter of the area):  

𝑑𝑉𝑤
𝑑𝐸𝑑

=
𝑘2
′

𝐴
(𝐴3.1) 

where: 

𝑘2
′ =  𝑔(𝑃, 𝛿, 𝑇, 𝑓 … ) 

indicating that the constant 𝑘2
′  is a function of various test parameters as previously defined. 

Similar to the definition in Appendix 1, the extent of wear is again defined by the wear scar 

angle 𝜃 as illustrated in Figure 12, where the diameter of the circular wear scar, 2𝑟, is equal to 

2𝑅sin(𝜃). Therefore, the area of wear scar for the sphere-on-flat contact, 𝐴, can be calculated 

as 𝑅2 sin2(𝜃). 

Parametric equations for both the wear volume and the energy dissipated above the threshold 

energy as functions of the wear scar angle 𝜃 can be derived as follows (see Appendix 4, 

section A4.3): 

𝑉𝑤 =
𝜋𝑅3

12
(cos(3𝜃) − 9cos(𝜃) + 8) (𝐴3.2𝑎) 

𝐸𝑑𝑎𝑡 = 𝑚2
′ 𝜋2𝑅5(−3cos(5𝜃) + 25cos(3𝜃) − 150 cos(𝜃) + 128) (𝐴3.2𝑏) 

By performing Taylor series expansions for both Equations A3.2a and A3.2b and again taking 

their first non-constant polynomial terms, the wear volume and the energy dissipated above 

the threshold can be approximated (denoted as 𝑉𝑤′ and 𝐸𝑑𝑎𝑡′ respectively) as follows:  

𝑉𝑤′ =
𝜋𝑅3𝜃4

4
(𝐴3.3𝑎) 

𝐸𝑑𝑎𝑡′ = 40𝑚2
′𝜋2𝑅5𝜃6 (𝐴3.3𝑏) 

Again, as shown in the next section concerning error analysis for the sphere-on-flat contact 

(Section A3.1), the error associated with the approximation is relatively low, which leads to the 

conclusion that 𝑉𝑤  ≈ 𝑉𝑤′ when 𝐸𝑑𝑎𝑡 = 𝐸𝑑𝑎𝑡′ for all 𝜃, with the approximation being better for 

smaller values of 𝜃. The formulation of a direct relationship between the wear volume (𝑉𝑤) and 

the energy dissipated above the threshold (𝐸𝑑𝑎𝑡) is now simply derived by eliminating the wear 

scar angle, 𝜃, from the approximated equations presented in Equations A3.3a and A3.3b, 

yielding the following relationship: 
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𝑉𝑤 =
1

4
(
1

40
)
0.67

(
1

𝜋𝑚2
′ 2
)

0.33

𝑅−0.33𝐸𝑑𝑎𝑡
0.67 

= 𝐴2
′ 𝑅−0.33𝐸𝑑𝑎𝑡

0.67 (𝐴3.4) 

As for the cylinder-on-flat configuration, using the assumption that 𝐸𝑡ℎ ≈ 0 here allows a further 

simplification of Equation A3.4 to yield a simplified wear equation for a sphere-on-flat contact 

in fretting: 

𝑉𝑤 = 𝐴2
′ 𝑅−0.33𝐸𝑑

0.67 (𝐴3.5) 

A3.1 Errors associated with the approximation 

The method by which the errors associated with the approximation are as described in Section 

3.1 of the main body of the paper, with simply the outputs being presented. Figure 16 shows 

the relationship between the normalised energy dissipated above the threshold energy (𝑒𝑑𝑎𝑡 =
𝐸𝑑𝑎𝑡

𝑚2
′𝜋2𝑅5

) and the normalised wear volume (𝑣𝑤 =
𝑉𝑤

𝜋𝑅3
) across the full range of allowable wear 

scar angles 𝜃 (0 ≤ 𝜃 ≤
𝜋

2
) for the exact equations (Equation A3.2). Alongside is plotted the 

equivalent relationship for the approximated equations (Equation A3.3) across the same range. 

In Figure 16, the axes are normalised to the maximum values, max(𝑒𝑑𝑎𝑡)  and max(𝑣𝑤) 

respectively (max(𝑒𝑑𝑎𝑡) = 128, max(𝑣𝑤) =
2

3
 ). It can be seen from Figure 16 that across the 

full range of allowable wear scar angles, the magnitude of the error in the wear volume 

associated with the approximations (𝜀𝑉, defined in Equation 7) is never greater than 19%. As 

such, we conclude that wear equation (Equation A3.5) (which has been derived from the Taylor 

series expansions and the additional assumption that 𝐸𝑡ℎ ≈ 0) is a valid equation, with the 

errors associated with the approximations required for its derivation being of an acceptable 

magnitude for any amount of wear.  
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Figure 16: Plot of normalised energy dissipated above the threshold against normalised wear volume for 
both the exact (Equation A3.2) and approximate equations (Equation A3.3) for a sphere-on-flat contact 

across the full range of allowable values of 𝒆𝒅𝒂𝒕 along with the fractional error in the wear volume across 
the same range. 
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Appendix 4: Details of the methodology for the derivation of the wear equations 

for all three contact configurations 

The steps to determine the relationship between wear volume (𝑉𝑤) and dissipated energy (𝐸𝑑) 

for all three configurations (cylinder-on-flat, sphere-on-flat and crossed-cylinders) are identical, 

and can be categorised as follows:  

(i) derive an expression for 𝑉𝑤 in terms of radius (𝑅) and wear scar angle (𝜃); 

(ii) differentiate the expression to yield 
𝑑𝑉𝑤

𝑑𝜃
; 

(iii) determine the derivative of 𝐸𝑑 with respect to 𝜃, 
𝑑𝐸𝑑

𝑑𝜃
, based on the assumption that the 

wear rate is inversely proportional to the wear scar width or on the assumptions that 
wear rate is inversely proportional to the wear scar area; 

(iv) integrate 
𝑑𝐸𝑑

𝑑𝜃
 to find an expression for 𝐸𝑑 (and 𝐸𝑑𝑎𝑡) in terms of 𝜃; 

(v) express 𝑉𝑤  and 𝐸𝑑𝑎𝑡  as an infinite sum of polynomial terms (Taylor series) and 
approximate their expressions by taking their first non-constant polynomial terms; 

(vi) express 𝑉𝑤 as a function of 𝐸𝑑𝑎𝑡. 

A4.1 Cylinder-on-flat configuration assuming either wear scar width or wear scar area 

dependence of instantaneous wear rate 

Find 𝑽𝒘 . As shown in the previous study [8], finding 𝑉𝑤  can be simplified as a geometric 

problem, i.e. 𝑉𝑤  can be written as a function in terms of 𝑅  and 𝜃 . For the cylinder-on-flat 

configuration, 𝑉𝑤  can be approximated as the volume of a minor segment of a cylinder. 

Therefore, it can be shown that: 

𝑉𝑤 = 𝐿𝑅
2(𝜃 − sin(𝜃) cos(𝜃)) (𝐴4.1.1) 

where terms are as previously defined.  

Calculate 
𝒅𝑽𝒘

𝒅𝜽
. The derivative of 𝑉𝑤 with respect to 𝜃 can be shown to be: 

𝑑𝑉𝑤
𝑑𝜃

= 𝐿𝑅2(1 − cos(2𝜃)) (𝐴4.1.2)  

Determine 
𝒅𝑬𝒅

𝒅𝜽
. It was proposed in [8] that wear rate (

𝑑𝑉𝑤

𝑑𝐸𝑑
) is dependent upon the scar width 

(𝑥) in the following relationship: 

𝑑𝑉𝑤
𝑑𝐸𝑑

=
𝑘1
𝑥

(𝐴4.1.3) 

For the cylinder-on-flat configuration, wear scar width is roughly uniform throughout the 

damaged area. Therefore, 𝑥 can be approximated as the chord length of the minor segment, 

which is: 

𝑥 = 2𝑅sin(𝜃) 
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Therefore, the wear rate expression can be rewritten as: 

𝑑𝑉𝑤
𝑑𝜃

𝑑𝜃

𝑑𝐸𝑑
 =

𝑘1
2𝑅sin(𝜃)

(𝐴4.1.4) 

Substituting Equation A4.1.2 into Equation A4.1.4 yields:  

𝐿𝑅2(1 − cos(2𝜃))
𝑑𝜃

𝑑𝐸𝑑
=

𝑘1
2𝑅sin(𝜃)

 

which can be rearranged as follows: 

𝑑𝐸𝑑
𝑑𝜃

=
2𝐿𝑅3(1 − cos(2𝜃))sin(𝜃)

𝑘1
(𝐴4.1.5) 

Integrate 
𝒅𝑬𝒅

𝒅𝜽
. 𝐸𝑑 can be calculated by taking the integral of both sides of Equation A4.1.5 with 

respect to 𝜃: 

𝐸𝑑 =
2𝐿𝑅3

𝑘1
∫(1 − cos(2𝜃))sin(𝜃) 𝑑𝜃  

By use of trigonometric identities, this can be integrated as follows: 

∫(1 − cos(2𝜃))sin(𝜃)  𝑑𝜃 ≡
1

2
∫3sin(𝜃) − sin(3𝜃) 𝑑𝜃 =

1

2
(
1

3
cos(3𝜃) − 3cos(𝜃)) + 𝑐1  

where: 𝑐1 is a constant of integration. 

Substituting the integral of (1 − cos(2𝜃))sin(𝜃) into the expression for 𝐸𝑑 gives: 

𝐸𝑑 =
𝐿𝑅3

3𝑘1
(cos(3𝜃) − 9cos(𝜃)) +

2𝐿𝑅3

𝑘1
𝑐1 

which can be rewritten as: 

𝐸𝑑 = 𝑚1𝐿𝑅
3(cos(3𝜃) − 9 cos(𝜃)) + 𝐶1 (𝐴4.1.6) 

where: 𝑚1 =
1

3𝑘1
; 

𝐶1 =
2𝐿𝑅3

𝑘1
𝑐1. 

To evaluate the constant, 𝐶1, it is noted that in a fretting contact, there is a threshold of energy 

dissipated, 𝐸𝑡ℎ, below which 𝜃 = 0 (i.e. there is no wear); in this region, Equation A4.1.6 does 

not describe the relationship between 𝐸𝑑 and 𝜃. However, once 𝐸𝑑 has exceeded 𝐸𝑡ℎ, then 

wear occurs (and thus 𝜃 > 0). Evaluating Equation A4.1.6 when 𝐸𝑑 = 𝐸𝑡ℎ and 𝜃 = 0 yields the 

following: 

𝐸𝑡ℎ = −8𝑚1𝐿𝑅
3 + 𝐶1 
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and thus: 

𝐶1 = 𝐸𝑡ℎ + 8𝑚1𝐿𝑅
3 

Substituting the expression of 𝐶1 into Equation A4.1.6, the final equation for 𝐸𝑑 is: 

𝐸𝑑 = 𝑚1𝐿𝑅
3(cos(3𝜃) − 9cos(𝜃) + 8) + 𝐸𝑡ℎ (𝐴4.1.7) 

A new term (𝐸𝑑𝑎𝑡) can be defined, which represents the frictional energy dissipated above the 

threshold energy for wear to commence so that 𝐸𝑑𝑎𝑡 = 𝐸𝑑 − 𝐸𝑡ℎ (the subscript “dat” being an 

acronym for “dissipated above threshold”). 

In summary, a parametric function of 𝑉𝑤  and 𝐸𝑑𝑎𝑡  in terms of 𝜃  for the cylinder-on-flat 

configuration has been obtained: 

(

𝑉𝑤(𝜃)
 
 

𝐸𝑑𝑎𝑡(𝜃)

) = (

𝐿𝑅2(𝜃 − sin(𝜃) cos(𝜃))
  

𝑚1𝐿𝑅
3(cos(3𝜃) − 9cos(𝜃) + 8)

) (𝐴4.1.8) 

Express 𝑽𝒘 and 𝑬𝒅𝒂𝒕 as an infinite polynomial sum (Taylor series). With the parametric 

function, 𝑉𝑤 and 𝐸𝑑 can both be represented as a Taylor series. 

The definition of a Taylor series expansion of a function 𝑓(𝑥) at a point 𝑥 = 𝑎 is as follows: 

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 

where: 𝑓(𝑛)(𝑎) = the 𝑛𝑡ℎ derivative of 𝑓(𝑥) with respect to 𝑥 evaluated at 𝑥 = 𝑎. 

Finding the Taylor series for 𝑉𝑤 and 𝐸𝑑𝑎𝑡 at the point 𝜃 = 0 (the Taylor series of a function at 0 

is also known as a Maclaurin series), then 𝑉𝑤 and 𝐸𝑑𝑎𝑡 can be written as: 

(

𝑉𝑤(𝜃)
 
 

𝐸𝑑𝑎𝑡(𝜃)

) =

(

 
 
 
 
∑

𝑉𝑤
(𝑛)(0)

𝑛!
𝜃𝑛

∞

𝑛=0   

∑
𝐸𝑑𝑎𝑡
(𝑚)(0)

𝑘!
𝜃𝑚

∞

𝑚=0 )

 
 
 
 

 

Express 𝑽𝒘 as a function of 𝑬𝒅𝒂𝒕. The first-degree polynomial term of each Taylor series for 

both 𝑉𝑤 and 𝐸𝑑𝑎𝑡 were taken as approximations as follows: 

(

𝑉𝑤(𝜃)
 
 

𝐸𝑑𝑎𝑡(𝜃)

) ≈ (

2

3
𝐿𝑅2𝜃3

  
3𝑚1𝐿𝑅

3𝜃4

) (𝐴4.1.9) 

Eliminating the parameter 𝜃 from the parametric equations in Equation A4.1.9 yields: 
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𝑉𝑤 =
2

31.75
(
𝐿

𝑚1
3)

0.25

𝑅−0.25𝐸𝑑𝑎𝑡
0.75 (𝐴4.1.10) 

A4.2 Sphere-on-flat configuration assuming wear scar width dependence of 

instantaneous wear rate 

Find 𝑽𝒘. For the sphere-on-flat configuration, 𝑉𝑤 can be approximated as the volume of a 

spherical cap, which is given by the following equation: 

𝑉𝑤 =
𝜋𝑅3

3
(cos3(𝜃) − 3 cos(𝜃) + 2) (𝐴4.2.1) 

where terms are as previously defined.  

Calculate 
𝒅𝑽𝒘

𝒅𝜽
. Using trigonometric identities, it can be shown that: 

cos3(𝜃) − 3cos(𝜃) + 2 ≡
cos(3𝜃) − 9cos(𝜃) + 8

4
 

Accordingly, the expression for 𝑉𝑤 for the sphere-on-flat configuration (Equation A4.2.1) can 

be written as follows: 

𝑉𝑤 =
𝜋𝑅3

12
(cos(3𝜃) − 9cos(𝜃) + 8) 

The derivative of 𝑉𝑤 with respect to 𝜃 for the sphere-on-flat configuration can thus be written 

as follows: 

𝑑𝑉𝑤
𝑑𝜃

= 𝜋𝑅3 sin3(𝜃) (𝐴4.2.2) 

Determine 
𝒅𝑬𝒅

𝒅𝜽
. As has been shown for the cylinder-on-flat contact geometry, it is again 

proposed that wear rate (
𝑑𝑉𝑤

𝑑𝐸𝑑
) is dependent upon the width of the wear scar. In this case, the 

shape of the wear scar approximates to that of a circle, and therefore (in contrast to the 

cylinder-on-flat geometry), the wear scar width in the direction of fretting displacement is not 

uniform. As such, it is assumed that the instantaneous wear rate is inversely proportional to a 

characteristic wear scar width which is defined as the maximum width of the wear scar (i.e. the 

wear scar diameter, 2𝑟) as follows: 

𝑑𝑉𝑤
𝑑𝐸𝑑

=
𝑘2
2𝑟

(𝐴4.2.3) 

Using the geometrical relationship: 

 𝑟 = 𝑅sin(𝜃) 

the expression for the wear rate can be rewritten as follows: 
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𝑑𝑉𝑤
𝑑𝜃

𝑑𝜃

𝑑𝐸𝑑
 =

𝑘2
2𝑅sin(𝜃)

(𝐴4.2.4) 

Substituting Equation A4.2.2 into Equation A4.2.4 and rearranging yields:  

𝑑𝐸𝑑
𝑑𝜃

=
2𝜋𝑅4 sin4(𝜃)

𝑘2
(𝐴4.2.5) 

Integrate 
𝒅𝑬𝒅

𝒅𝜽
. 𝐸𝑑 can be calculated by taking the integral of Equation A4.2.5 with respect to 𝜃: 

𝐸𝑑 =
2𝜋𝑅4

𝑘2
∫sin4(𝜃)  𝑑𝜃 

By use of trigonometric identities, this can be integrated as follows: 

∫sin4(𝜃) 𝑑𝜃 ≡
1

8
∫cos(4𝜃) − 4cos(2𝜃) + 3 𝑑𝜃  =

1

32
(sin(4𝜃) − 8sin(2𝜃) + 12𝜃) + 𝑐2 

where: 𝑐2 is a constant of integration. 

Substituting the integral of sin4(𝜃) into the expression for 𝐸𝑑 yields: 

𝐸𝑑 =
𝜋𝑅4

16𝑘2
(sin(4𝜃) − 8sin(2𝜃) + 12𝜃) +

2𝜋𝑅4

𝑘2
𝑐2 

which can be rewritten as: 

𝐸𝑑 = 𝑚2𝜋𝑅
4(sin(4𝜃) − 8sin(2𝜃) + 12𝜃) + 𝐶2 (𝐴4.2.6) 

where: 𝑚2 =
1

16𝑘2
; 

𝐶2 =
2𝜋𝑅4

𝑘2
𝑐2. 

As previously, it can be seen that the constant 𝐶2 can be evaluated as follows: 

𝐶2 = 𝐸𝑡ℎ 

A final equation for 𝐸𝑑𝑎𝑡 can therefore be written as follows: 

𝐸𝑑𝑎𝑡 = 𝑚2𝜋𝑅
4(sin(4𝜃) − 8sin(2𝜃) + 12𝜃) (𝐴4.2.7) 

In summary, a parametric function of 𝑉𝑤  and 𝐸𝑑𝑎𝑡  in terms of 𝜃  for the sphere-on-flat 

configuration assuming wear scar width dependence of instantaneous wear rate has been 

obtained: 

(

𝑉𝑤(𝜃)
  

𝐸𝑑𝑎𝑡(𝜃)

) = (

𝜋𝑅3

12
(cos(3𝜃) − 9cos(𝜃) + 8)

  
𝑚2𝜋𝑅

4(sin(4𝜃) − 8sin(2𝜃) + 12𝜃)

) (𝐴4.2.8) 
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Express 𝑽𝒘 and 𝑬𝒅𝒂𝒕 as an infinite polynomial sum (Taylor series). With the establishment 

of the parametric function, the Taylor series for 𝑉𝑤 and 𝐸𝑑  can be expressed as follows: 

(

𝑉𝑤(𝜃)
 
 

𝐸𝑑𝑎𝑡(𝜃)

) =

(

 
 
 
 
∑

𝑉𝑤
(𝑛)(0)

𝑛!
𝜃𝑛

∞

𝑛=0   

∑
𝐸𝑑𝑎𝑡
(𝑚)(0)

𝑘!
𝜃𝑚

∞

𝑚=0 )

 
 
 
 

 

Express 𝑽𝒘 as a function of 𝑬𝒅. The first non-constant term of each Taylor series for both 𝑉𝑤 

and 𝐸𝑑𝑎𝑡 were taken as approximations as follows: 

(

𝑉𝑤(𝜃)
 
 

𝐸𝑑𝑎𝑡(𝜃)

) ≈

(

 
 

𝜋𝑅3𝜃4

4  
32

5
𝑚2𝜋𝑅

4𝜃5
)

 
 

(𝐴4.2.9) 

Eliminating the parameter 𝜃 from the parametric equations in Equation A4.2.9 yields: 

𝑉𝑤 =
1

4
(
5

32
)
0.8

 (
𝜋

𝑚2
4)

0.2

𝑅−0.2𝐸𝑑𝑎𝑡
0.8 (𝐴4.2.10) 

A4.3 Sphere-on-flat configuration assuming wear scar area dependence of 

instantaneous wear rate 

Find 𝑽𝒘. The expression of 𝑉𝑤 as a function of 𝑅 and 𝜃 remains the same as Equation A4.2.1: 

𝑉𝑤 =
𝜋𝑅3

3
(cos3(𝜃) − 3 cos(𝜃) + 2) (𝐴4.3.1) 

where terms are as previously defined.  

Calculate 
𝒅𝑽𝒘

𝒅𝜽
. Direct use of Equation A4.2.2: 

𝑑𝑉𝑤
𝑑𝜃

= 𝜋𝑅3 sin3(𝜃) (𝐴4.3.2) 

Determine 
𝒅𝑬𝒅

𝒅𝜽
. The assumption here is that the wear rate (

𝑑𝑉𝑤

𝑑𝐸𝑑
) is dependent upon the area of 

the wear scar (𝐴). In this case, the shape of the wear scar approximates to that of a circle, and 

therefore (in contrast to the cylinder-on-flat geometry), the maximum width of the wear scar 

(2𝑅sin(𝜃)) is defined as the diameter of the wear scar area 2𝑟: 

𝑑𝑉𝑤
𝑑𝐸𝑑

=
𝑘2
′

𝐴
(𝐴4.3.3) 

Using the geometrical relationship: 
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 𝐴 = 𝜋𝑟2 = 𝜋𝑅2 sin2(𝜃) 

the expression for the wear rate can be rewritten as follows: 

𝑑𝑉𝑤
𝑑𝜃

𝑑𝜃

𝑑𝐸𝑑
 =

𝑘2
′

𝜋𝑅2 sin2(𝜃)
(𝐴4.3.4) 

Substituting Equation A4.3.2 into Equation A4.3.4 and rearranging yields:  

𝑑𝐸𝑑
𝑑𝜃

=
𝜋2𝑅5 sin5(𝜃)

𝑘2
′ (𝐴4.3.5) 

Integrate 
𝒅𝑬𝒅

𝒅𝜽
. 𝐸𝑑 can be calculated by taking the integral of Equation A4.3.5 with respect to 𝜃: 

𝐸𝑑 =
𝜋2𝑅5

𝑘2
′ ∫sin5(𝜃)  𝑑𝜃 

By use of trigonometric identities, this can be integrated as follows: 

∫sin5(𝜃) 𝑑𝜃 ≡
1

16
∫sin(5𝜃) − 5 sin(3𝜃) + 10 sin(𝜃)𝑑𝜃 

=
1

240
(−3cos(5𝜃) + 25cos(3𝜃) − 150cos(𝜃)) + 𝑐2

′  

 

where: 𝑐2
′ is a constant of integration. 

Substituting the integral of sin5(𝜃) into the expression for 𝐸𝑑 yields: 

𝐸𝑑 =
𝜋2𝑅5

240𝑘2
′ (−3cos(5𝜃) + 25cos(3𝜃) − 150cos(𝜃)) +

𝜋2𝑅4

𝑘2
′ 𝑐2

′  

which can be rewritten as: 

𝐸𝑑 = 𝑚2
′ 𝜋2𝑅5(−3cos(5𝜃) + 25cos(3𝜃) − 150cos(𝜃)) + 𝐶2

′ (𝐴4.3.6) 

where: 𝑚2
′ =

1

240𝑘2
′ ; 

𝐶2
′ =

𝜋2𝑅5

𝑘2
′ 𝑐2

′ . 

As previously, it can be seen that the constant 𝐶2
′  can be evaluated as follows: 

𝐶2
′ = 𝐸𝑡ℎ + 128𝑚2

′ 𝜋2𝑅5 

A final equation for 𝐸𝑑𝑎𝑡 can therefore be written as follows: 

𝐸𝑑𝑎𝑡 = 𝑚2
′ 𝜋2𝑅5(−3cos(5𝜃) + 25cos(3𝜃) − 150cos(𝜃) + 128) (𝐴4.3.7) 
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In summary, a parametric function of 𝑉𝑤  and 𝐸𝑑𝑎𝑡  in terms of 𝜃  for the sphere-on-flat 

configuration assuming wear scar area dependence of instantaneous wear rate has been 

obtained: 

(

𝑉𝑤(𝜃)
 
 

𝐸𝑑𝑎𝑡(𝜃)

) = (

𝜋𝑅3

12
(cos(3𝜃) − 9cos(𝜃) + 8)

  
𝑚2
′ 𝜋2𝑅5(−3cos(5𝜃) + 25cos(3𝜃) − 150 cos(𝜃) + 128)

) (𝐴4.3.8) 

Express 𝑽𝒘 and 𝑬𝒅𝒂𝒕 as an infinite polynomial sum (Taylor series). With the establishment 

of the parametric function, the Taylor series for 𝑉𝑤 and 𝐸𝑑  can be expressed as follows: 

(

𝑉𝑤(𝜃)
 
 

𝐸𝑑𝑎𝑡(𝜃)

) =

(

 
 
 
 
∑

𝑉𝑤
(𝑛)(0)

𝑛!
𝜃𝑛

∞

𝑛=0   

∑
𝐸𝑑𝑎𝑡
(𝑚)(0)

𝑘!
𝜃𝑚

∞

𝑚=0 )

 
 
 
 

 

Express 𝑽𝒘 as a function of 𝑬𝒅. The first non-constant term of each Taylor series for both 𝑉𝑤 

and 𝐸𝑑𝑎𝑡 were taken as approximations as follows: 

(

𝑉𝑤(𝜃)
 
 

𝐸𝑑𝑎𝑡(𝜃)

) ≈ (

𝜋𝑅3𝜃4

4  
40𝑚2

′ 𝜋2𝑅5𝜃6

) (𝐴4.3.9) 

Eliminating the parameter 𝜃 from the parametric equations in Equation A4.3.9 yields: 

𝑉𝑤 =
1

4
(
1

40
)
0.67

 (
1

𝜋𝑚2
′ 2
)

0.33

𝑅−0.33𝐸𝑑𝑎𝑡
0.67 (𝐴4.3.10) 

A4.4 Crossed-cylinder configuration assuming wear scar width dependence of 

instantaneous wear rate 

Find 𝑽𝒘. For the crossed-cylinder configuration, defining the shape of the intersection between 

two orthogonally crossed cylinders is not straightforward, and therefore the derivation of 𝑉𝑤 is 

similarly not straightforward.  

We define the system as two orthogonally crossed cylinders with the same radius (𝑅) in 

cartesian coordinates. The shortest distance between the central axes of these two cylinders, 

2𝑑, is defined as follows:  

2𝑑 = 𝑅 + 𝑅cos(𝜃) 

The axis of one cylinder (𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑎) has its axis parallel to the 𝑥-axis and crosses the 𝑧-axis 

at 𝑧 = 𝑑, whilst the axis of the other cylinder (𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑏) is parallel to the 𝑦-axis and crosses 

the 𝑧-axis at 𝑧 = −𝑑. This geometry is illustrated in Figure 17. 
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Figure 17: Illustration of two orthogonally crossed cylinders with identical radius (𝑹 ) in cartesian 

coordinates. The distance between their central axes is 𝑫. 

For 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑎, all the points inside satisfy the inequality that:  

𝑦2 + (𝑧 − 𝑑)2 ≤ 𝑅2 

For 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑏, all the points inside satisfy the inequality that:  

𝑥2 + (𝑧 + 𝑑)2 ≤ 𝑅2 

Rearranging these two inequalities gives the boundary of the intersection on 𝑥-axis and 𝑦-axis: 

|𝑦| ≤ √𝑅2 − (𝑧 − 𝑑)2 

|𝑥| ≤ √𝑅2 − (𝑧 + 𝑑)2  

The limits on the 𝑧-axis are determined by the requirement that the arguments of both the 

square roots in the above inequalities are not negative: 

−𝑅 ≤ 𝑧 − 𝑑 

𝑧 + 𝑑 ≤ 𝑅 

Therefore: 

𝑑 − 𝑅 ≤ 𝑧 ≤ 𝑅 − 𝑑 

As shown in Figure 18, every cross-section parallel to the 𝑥 − 𝑦 plane is a rectangle with sides 

of length 𝑙1 and 𝑙2. Therefore, the volume of the intersection can be described as: 

𝑉𝑤 = lim
𝑛→∞

∑𝑙1(𝑧𝑗)𝑙2(𝑧𝑗)∆𝑧

𝑛

𝑗=1

 

where:  

∆𝑧 =
2𝑅 − 2𝑑

𝑛
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𝑧𝑗 = (𝑑 − 𝑅) + ∆𝑧 ∙ 𝑗 

 

Figure 18: Illustration of the intersection volume being calculated by integration of each slice parallel to the 

𝒙 − 𝒚 plane within the boundary. 

As 𝑛 → +∞, the volume of the intersection can be written as an integral: 

𝑉𝑤 = ∫ 𝑙1(𝑧)𝑙2(𝑧) 𝑑𝑧
𝑅−𝑑

𝑑−𝑅

 

Since 𝑙1 is a line segment defined by the boundary of the intersection on 𝑥-axis, and 𝑙2 is 

defined by the boundary on 𝑦-axis, the following equations can be derived: 

𝑙1 = 2√𝑅
2 − (𝑧 + 𝑑)2 

𝑙2 = 2√𝑅
2 − (𝑧 − 𝑑)2 

Therefore, 𝑉𝑤 can be expressed as: 

𝑉𝑤 = ∫ 4
𝑅−𝑑

𝑑−𝑅

√(𝑅2 − (𝑧 + 𝑑)2)(𝑅2 − (𝑧 − 𝑑)2) 𝑑𝑧 = 8∫ √(𝑅2 − (𝑧 + 𝑑)2)(𝑅2 − (𝑧 − 𝑑)2) 𝑑𝑧
𝑅−𝑑

0

  

Rearranging this equation yields: 

𝑉𝑤 = 8∫ √((𝑅 − 𝑑)2 − 𝑧2)((𝑅 + 𝑑)2 − 𝑧2) 𝑑𝑧
𝑅−𝑑

0

 

Let: 

𝑧 = (𝑅 − 𝑑)sin(𝜃) 

Then: 

𝑑𝑧 = (𝑅 − 𝑑)cos(𝜃) 𝑑𝜃 

Changing the variable of the integration gives: 

𝑉𝑤 = 8∫ √(𝑅 − 𝑑)2 cos2(𝜃)√(𝑅 + 𝑑)2 − (𝑅 − 𝑑)2 sin2(𝜃) (𝑅 − 𝑑)cos(𝜃) 𝑑𝜃

𝜋
2

0
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Rearranging this equation yields: 

𝑉𝑤 = 8(𝑅 − 𝑑)
2(𝑅 + 𝑑)∫ cos2(𝜃)√1 − (

𝑅 − 𝑑

𝑅 + 𝑑
)
2

sin2(𝜃)  𝑑𝜃

𝜋
2

0

 

To solve this integral, a standard formula [26] (Chapter 3.67 - “Square roots of expressions 

containing trigonometric functions”) is applied: 

∫ sin𝛼(𝑥) cos𝛽(𝑥)√1 − 𝑘2 sin2(𝑥)  𝑑𝑥

𝜋
2

0

=
1

2
B (
𝛼 + 1

2
,
𝛽 + 1

2
)F (

𝛼 + 1

2
,−
1

2
;
𝛼 + 𝛽 + 2

2
; 𝑘2) 

for 

𝛼 > −1;  𝛽 > −1; |𝑘| < 1 

In the expression of 𝑉𝑤, it can be found that: 

𝛼 = 0;  𝛽 = 2;  𝑘 =
𝑅 − 𝑑

𝑅 + 𝑑
 

Therefore, an expression for 𝑉𝑤 can be written as follows: 

𝑉𝑤 = 8(𝑅 − 𝑑)
2(𝑅 + 𝑑) ∙

1

2
B (
1

2
,
3

2
) F (

1

2
,−
1

2
; 2; (

𝑅 − 𝑑

𝑅 + 𝑑
)
2

) (𝐴4.4.1) 

This can be solved to yield:  

𝑉𝑤 =
𝜋𝑅3

4
(cos3(𝜃) + cos2(𝜃) − 5cos(𝜃) + 3) (𝐴4.4.2) 

where terms are previously defined. For the detailed derivation of Equation A4.4.2 from 

Equation A4.4.1, see Section A4.5.  

Using trigonometric identities, it can be shown that: 

cos3(𝜃) + cos2(𝜃) − 5cos(𝜃) + 3 ≡
1

4
(cos(3𝜃) + 2cos(2𝜃) − 17cos(𝜃) + 14) 

which leads to: 

𝑉𝑤 =
𝜋𝑅3

16
(cos(3𝜃) + 2cos(2𝜃) − 17 cos(𝜃) + 14) (𝐴4.4.3) 

Calculate 
𝒅𝑉𝑤

𝒅𝜽
. The derivative of 𝑉𝑤 with respect to 𝜃 can be shown to be: 

𝑑𝑉𝑤
𝑑𝜃

=
𝜋𝑅3

4
sin(𝜃)(−3 cos2(𝜃) − 2cos(𝜃) + 5) (𝐴4.4.4) 
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Determine 
𝒅𝑬𝒅

𝒅𝜽
. It is proposed that wear rate (

𝑑𝑉𝑤

𝑑𝐸𝑑
) is also dependent upon the scar width (𝑥) 

for the crossed-cylinder configuration: 

𝑑𝑉𝑤
𝑑𝐸𝑑

=
𝑘3
𝑥

  

However, the wear scar width in the direction of fretting movement is not uniform across the 

damaged area for the crossed-cylinders configuration. A characteristic wear scar width is 

defined as the maximum width of the wear scar, which is given by the following: 

𝑥 = 2𝑅sin(𝜃) 

Therefore, the wear rate expression can be rewritten as: 

𝑑𝑉𝑤
𝑑𝜃

𝑑𝜃

𝑑𝐸𝑑
 =

𝑘3
2𝑅sin(𝜃)

(𝐴4.4.5) 

Substituting Equation A4.4.4 into Equation A4.4.5 gives:  

𝜋𝑅3

4
sin(𝜃)(−3 cos2(𝜃) − 2cos(𝜃) + 5)

𝑑𝜃

𝑑𝐸𝑑
=

𝑘3
2𝑅sin(𝜃)

 

which can be rearranged to yield: 

𝑑𝐸𝑑
𝑑𝜃

=
𝜋𝑅4 sin2(𝜃) (−3 cos2(𝜃) − 2cos(θ) + 5)

2𝑘3
(𝐴4.4.6) 

Integrate 
𝒅𝑬𝒅

𝒅𝜽
. 𝐸𝑑 can be calculated by taking the integral of Equation A4.4.6 with respect to 𝜃: 

𝐸𝑑 =
𝜋𝑅4

2𝑘3
∫sin2(𝜃) (−3 cos2(𝜃) − 2cos(θ) + 5) 𝑑𝜃 

By use of well-known trigonometric identities, this can be integrated as follows: 

∫sin2(𝜃) (−3 cos2(𝜃) − 2cos(θ) + 5) 𝑑𝜃 

≡
1

8
∫3cos(4𝜃) + 4cos(3𝜃) − 20cos(2𝜃) − 4cos(𝜃) + 17 𝑑𝜃 

=
1

96
(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃) + 𝑐3  

where: 𝑐3 is a constant of integration. 

Substituting the integral of sin2(𝜃) (−3 cos2(𝜃) − 2cos(θ) + 5)  into the expression for 𝐸𝑑 

yields: 

𝐸𝑑 =
𝜋𝑅4

192𝑘3
(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃) +

𝜋𝑅4

192𝑘3
𝑐3 
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which can be rewritten as: 

𝐸𝑑 = 𝑚3𝜋𝑅
4(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃) + 𝐶3 (𝐴4.4.7) 

where:  

𝑚3 =
1

192𝑘3
 

and 

𝐶3 =
𝜋𝑅4

192𝑘3
𝑐2 

As previously, it can be seen that the constant 𝐶3 can be evaluated as follows: 

𝐶3 = 𝐸𝑡ℎ 

A final equation for 𝐸𝑑𝑎𝑡 can therefore be written as follows: 

𝐸𝑑𝑎𝑡 = 𝑚3𝜋𝑅
4(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃) (𝐴4.4.8) 

Therefore, a set of parametric function of 𝑉𝑤 and 𝐸𝑑 in terms of 𝜃 for the crossed-cylinders 

configuration has been obtained: 

(

𝑉𝑤(𝜃)
  

𝐸𝑑𝑎𝑡(𝜃)

) = (

𝜋𝑅3

16
(cos(3𝜃) + 2cos(2𝜃) − 17 cos(𝜃) + 14)

  
𝑚3𝜋𝑅

4(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃)

) (𝐴4.4.9) 

 

Expand 𝑽𝒘 and 𝑬𝒅𝒂𝒕 as an infinite polynomial sum (Taylor series). With the establishment 

of the parametric function, the Taylor series for 𝑉𝑤 and 𝐸𝑑  can be expressed as follows: 

(

𝑉𝑤(𝜃)
 
 

𝐸𝑑𝑎𝑡(𝜃)

) =

(

 
 
 
 
∑

𝑉𝑤
(𝑛)(0)

𝑛!
𝜃𝑛

∞

𝑛=0   

∑
𝐸𝑑𝑎𝑡
(𝑚)(0)

𝑘!
𝜃𝑚

∞

𝑚=0 )

 
 
 
 

 

Express 𝑽𝒘 as a function of 𝑬𝒅. The first non-constant term of each Taylor series for both 𝑉𝑤 

and 𝐸𝑑𝑎𝑡 were taken as approximations as follows: 

(

𝑉𝑤(𝜃)
 
 

𝐸𝑑𝑎𝑡(𝜃)

) ≈

(

 
 

𝜋𝑅3𝜃4

4  
384

5
𝑚3𝜋𝑅

4𝜃5
)

 
 

(𝐴4.4.10) 
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Eliminating the parameter 𝜃 from the parametric equations in Equation A4.4.10 yields: 

𝑉𝑤 =
1

4
(
5

384
)
0.8

(
𝜋

𝑚3
4)

0.2

𝑅−0.2𝐸𝑑𝑎𝑡
0.8 (𝐴4.4.11) 

A4.5 The beta function, gamma function and hypergeometric function 

In the previous section (Section A4.4), an expression for 𝑉𝑤 for a crossed-cylinders contact 

was written in the form of Equation A4.4.1. The right side of the equation involves the use of 

the Beta function, Β, the Gamma function, Γ, and the Hypergeometric function, F. 

The definition of the Beta function is given by: 

B(𝑥, 𝑦) = ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1 𝑑𝑡
1

0

, Re(𝑥) > 0; Re(𝑦) > 0 

The Gamma function is an extension of the factorial function from positive integers to complex 

numbers, and its definition is: 

Γ(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡 𝑑𝑡
∞

0

, Re(𝑧) > 0 

There is an important relationship between Beta function and Gamma function (for a proof, 

see Chapter 2 of Artin's book “The Gamma Function” [27]): 

Β(𝑥, 𝑦) =
Γ(𝑥)Γ(𝑦)

Γ(𝑥 + 𝑦)
 

As such, the Beta function in Equation A4.4.1 is equal to: 

Β(
1

2
,
3

2
) =

Γ (
1
2) Γ (

3
2)

Γ(2)
(𝐴4.5.1) 

With the definition of Γ, it can be shown that: 

Γ(𝑧 + 1) = ∫ 𝑡𝑧𝑒−𝑡 𝑑𝑡
∞

0

 

Let: 

𝑑𝑢

𝑑𝑡
= 𝑒−𝑡 

𝑣 = 𝑡𝑧 

which yields: 

𝑢 =  −𝑒−𝑡 

𝑑𝑣

𝑑𝑡
= 𝑧𝑡𝑧−1 
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Thus: 

Γ(𝑧 + 1) = −𝑡𝑧𝑒−𝑡 |
∞
0
+ ∫ 𝑧𝑡𝑧−1𝑒−𝑡 𝑑𝑡

∞

0

= lim
𝑡→∞

(−𝑡𝑧𝑒−𝑡) − (0𝑒0) + ∫ 𝑧𝑡𝑧−1𝑒−𝑡 𝑑𝑡
∞

0

 

As 𝑡 → +∞, −𝑡𝑧𝑒−𝑡 →  0, which means that Γ(𝑧 + 1) can be written as: 

Γ(𝑧 + 1) = 𝑧∫ 𝑡𝑧−1𝑒−𝑡 𝑑𝑡
∞

0

 

= 𝑧Γ(𝑧) 

Equation A4.5.1 can therefore be simplified as follows: 

Β(
1

2
,
3

2
) =

Γ (
1
2) Γ (

1
2 + 1)

Γ(1 + 1)
 

=
1

2

Γ (
1
2
)
2

Γ(1)
(𝐴4.5.2)

 

The gamma functions Γ (
1

2
) and Γ(1) can be evaluated as follows: 

Γ (
1

2
) = ∫ 𝑡−

1
2𝑒−𝑡 𝑑𝑡

∞

0

 

Γ(1) = ∫ 𝑒−𝑡 𝑑𝑡
∞

0

 

For Γ (
1

2
), let: 

𝑡 = 𝑢2 

then: 

𝑑𝑡 = 2𝑢 𝑑𝑢 

which leads to: 

Γ (
1

2
) = 2∫ 𝑒−𝑢

2
 𝑑𝑢

∞

0

 

Recognizing that the right-hand side of the equation for Γ (
1

2
) is the Gaussian integral, which is 

evaluated as follows: 

∫ 𝑒−𝑥
2
 𝑑𝑥 = √𝜋

∞

−∞

 

therefore: 

Γ (
1

2
) = √𝜋 (𝐴4.5.3) 
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The value of Γ(1) can be readily evaluated as: 

Γ(1) = ∫ 𝑒−𝑡 𝑑𝑡
∞

0

 

= lim
𝑡→∞

(−𝑒−𝑡) − (−𝑒0) 

= 1 (A4.5.4) 

Substituting Equation A4.5.3 and Equation A4.5.4 into the Beta function in Equation A4.5.1 

yields: 

Β(
1

2
,
3

2
) =

1

2

Γ (
1
2)
2

Γ(1)
 

=
1

2

(√𝜋)
2

1
 

=
𝜋

2
(𝐴4.5.5) 

In addition to Beta function and gamma function, Equation A4.4.1 requires the knowledge of 

Hypergeometric function, F, which is defined by the Gaussian series: 

F(𝑎, 𝑏; 𝑐; 𝑧) = ∑
(𝑎)𝑛(𝑏)𝑛
(𝑐)𝑛

∞

𝑛=0

𝑧𝑛

𝑛!
 

= 1 +
𝑎𝑏

𝑐
𝑧 +

𝑎(𝑎 + 1)𝑏(𝑏 + 1)

𝑐(𝑐 + 1)

𝑧2

2!
+ ⋯ 

Therefore, by substituting the values 𝑎 =
1

2
, 𝑏 =

3

2
, 𝑐 = 2 and 𝑧 =  (

𝑅−𝑑

𝑅+𝑑
)
2
, the Hypergeometric 

function in Equation A4.4.1 can be written as follows: 

F(
1

2
,−
1

2
; 2; (

𝑅 − 𝑑

𝑅 + 𝑑
)
2

) = 1 −
1

8
(
𝑅 − 𝑑

𝑅 + 𝑑
)
2

−
1

64
(
𝑅 − 𝑑

𝑅 + 𝑑
)
4

+⋯ (𝐴4.5.6) 

It is noted that from the second term of the Gaussian series for F (
1

2
, −

1

2
; 2; (

𝑅−𝑑

𝑅+𝑑
)
2
), the 

absolute coefficient has dropped to 
1

8
 or even less, meaning it is reasonable to take only the 

first term as the approximation of the whole series. Therefore, we can simplify the 

Hypergeometric function in Equation A4.4.1 as follows: 

F(
1

2
,−
1

2
; 2; (

𝑅 − 𝑑

𝑅 + 𝑑
)
2

) ≈ 1 (𝐴4.5.7) 

With the knowledge of the Beta function, Β (
1

2
,
3

2
) , and the Hypergeometric function, 

F (
1

2
, −

1

2
; 2; (

𝑅−𝑑

𝑅+𝑑
)
2
), Equation A4.4.1 can be evaluated as follows: 
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𝑉𝑤 = 8(𝑅 − 𝑑)
2(𝑅 + 𝑑) ∙

1

2
B (
1

2
,
3

2
) F (

1

2
, −
1

2
; 2; (

𝑅 − 𝑑

𝑅 + 𝑑
)
2

) 

≈ 8(𝑅 − 𝑑)2(𝑅 + 𝑑) ∙
1

2

𝜋

2
∙ 1 

≈ 2𝜋(𝑅 − 𝑑)2(𝑅 + 𝑑) (𝐴4.5.8) 

Since: 

𝑑 =
𝑅 + 𝑅cos(𝜃)

2
 

the expression for 𝑉𝑤 in Equation A4.5.8 can be written as: 

𝑉𝑤 ≈ 2𝜋(𝑅
2 − 𝑑2)(𝑅 − 𝑑) 

≈ 2𝜋𝑅3 (
3 − 2cos(𝜃) − cos2(𝜃)

4
)(
1 − cos(𝜃)

2
) 

Finally, rearranging the equation above gives: 

𝑉𝑤 ≈
𝜋𝑅3

4
(cos3(𝜃) + cos2(𝜃) − 5cos(𝜃) + 3) (𝐴4.5.9) 

To understand the error associated with this approximation, 3D modelling software was used 

to construct the shape of the intersection between two orthogonally crossed cylinders with 

varying 𝜃. Using the software, the volume of intersection was evaluated numerically, and this 

was then compared with the approximated values evaluated by Equation A4.5.9. As can be 

seen from Figure 19, the differences between the normalised wear volume, 𝑣𝑤 (where 𝑣𝑤 =
4𝑉𝑤

𝜋𝑅3
),  calculated by these two methods are negligible across the whole range of 𝜃. It is therefore 

reasonable to assert that Equation A4.5.9 derived from the simplification of Equation A4.5.7 

well describes the relationship between 𝑉𝑤 and 𝜃 for the crossed-cylinder contact. 
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Figure 19: Plot of normalised wear volume evaluated numerically via 3D modelling software compared with 
equivalent values calculated from Equation A4.5.9. 


