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Abstract

Equivalent or condensed plate models are being used in various industries to
reduce the computation time in finite element modelling. Out of the avail-
able equivalent plate models, the model developed by J.L.Guyader in 1978
exhibits high agreement with Lamb wave theory but it requires some time
for implementation. Therefore, in this paper, a simple model is proposed to
quickly compute the dynamic equivalent parameters of a three-layer sandwich
panel. Although the model is formulated from only four parameters, which
could be easily computed via the asymptotic and transition behaviours of
the sandwich panel, it is shown to be able to capture the equivalent dynamic
response for the entire frequency range.
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Nomenclature

Symbol Unit Definition
h mm Thickness
ht mm Total thickness
ρ kg m−3 Density
M kg m−2 Total mass per unit area
E GPa Young’s modulus
Eeq GPa Dynamic Young’s modulus
G GPa Shear modulus
ν - Poisson’s ratio
η - Loss/damping factor
ηeq - Dynamic loss/damping factor
D N m Bending stiffness
Deq N m Dynamic bending stiffness
Dlow N m Low-frequency asymptote of dynamic bending stiffness
Dhigh N m High-frequency asymptote of dynamic bending stiffness
DT N m Bending stiffness at transition frequency
f Hz Frequency
ω rad s−1 Cyclic frequency
fT Hz Transition frequency

f̃T Hz Approximate and simpler form of transition frequency
R - Slope factor at transition frequency
k rad m−1 Wavenumber
keq rad m−1 Equivalent bending wavenumber

1. Introduction

Multi-layered partitions have been commonly used in recent years to en-
hance sound comfort and noise attenuation. Sandwich composites which can
exhibit high stiffness and damping with lightweight are widely employed in
the transportation and building industries. This type of multi-layer is also
called laminate and is often made up of three layers. One soft layer em-
bedded between two hard skins. This kind of laminate enables to ensure
a bending rigidity while increasing the dissipation by forcing the shear of
the viscoelastic core. Automotive [1] and aerospace [2] industries also use
sandwich structures as a passive way to reduce the structure-borne noise.
Constrained layers are typically used in automobile, aircraft and railway in-
dustries to improve the damping response of the vibrating systems. In civil
applications, acoustic plasterboards (with high-density core) are used to im-
prove the sound insulation performance.
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Due to the increasing number of applications of multi-layer structures,
there are many models available in the literature to predict their responses
and these models are broadly categorized into three groups [3, 4]. They are
1) Equivalent Single Layer (ESL) models that describe the motion of multi-
layer plate as a displacement field of a single layer [5–10], 2) Layer-Wise (LW)
models that describe the kinematics field in each layer [11–18] and 3) Hybrid
or Zig-Zag models that make use of the advantages of the two other groups
theories [19–24]. These models are applied to describe the behaviour of the
multilayer. Then, from the results of these models, equivalent methodologies
are applied to condense the behaviour of the multi-layer structure into an
equivalent single-layer governed by frequency-dependent properties. These
equivalent properties (or apparent properties [25, 26]) serve the advantage
of reducing the computation time when they are used in a finite element
modelling for example.

Based on the strain energy approach, a simple equivalent thin plate model
was developed [27–29] (typically known as RKU model in the field) for a
three-layer structure where the core layer is assumed to behave only with
shear motion (which contributes for energy dissipation) and other two layers
are assumed to behave only with bending motion. Due to this assumption,
RKU model requires to know beforehand if each layer works in bending or
shear and usually overestimates the equivalent bending stiffness and under-
estimates the equivalent loss factor [30]. Kurtze and Watters [31] developed
a theoretical model to analyse the natural wave propagation inside a sym-
metric sandwich panel made of thicker core, compared to skins, based on the
total impedance obtained from the bending and shear contributions of skins
and core respectively. The speed of the propagating wave was computed
from impedance-based dispersive relation and dynamic bending stiffness was
computed from the wave speed. Recently, Zarraga et al. [32, 33] proposed a
new equivalent plate model for a three-layer system based on the considera-
tion of the low-frequency bending and shear contributions. It may be noted
that this model does not account for the high-frequency bending behaviour
controlled by the inner bending of the skins and does not exhibit the correct
behaviour of a three-layer system at higher frequencies. Boutin and Viverge
[34] used the homogenization of symmetric sandwich structure to analyse the
asymptotic behaviours but this approach does not provide a dynamic model
valid for the entire frequency range. Guyader and Cacciolati [35] developed
an equivalent plate model (which would be referred to as Guyader model in
this work hereafter) based on the previous work by Guyader and Lesueur
[19, 20] of a hybrid model for multi-layer structures of n−layers. The equiva-
lent methodology consists in assuming that the multilayer behaves as a thin
plate under Love-Kirchhoff’s theory. As a result, an equivalent parameter

3



corresponding to the flexural rigidity of the thin plate can be identified as a
function of frequency. It may be noted that, even though the equivalent plate
models assume the multi-layer plate as equivalent Love-Kirchhoff plate, they
account for both bending and shear motions of multi-layer plate (but not
necessarily in each layer) through the frequency dependant flexural rigidity.
Since Guyader model describes two anti-symmetric motions (bending and
shear) in each layer, it exhibits high agreement with an exact model based
on Lamb waves [36] until the frequencies where symmetric motions are no
longer negligible. Marchetti et al. [37] have recently extended the Guyader
model for composite structures of orthotropic layers.

Among the above mentioned analytical models available, Guyader model
might be more appropriate to analyse the vibroacoustic performance of a
three-layer system of isotropic materials which are commonly used across var-
ious industries. Although Guyader model performs better compared to the
other equivalent plate models, it often requires some initial work for imple-
mentation as it requires many constant coefficients to be defined. Addition-
ally, it also requires the symbolic computation of solutions from a non-linear
equation which further requires solution tracing techniques to correctly cap-
ture the physically meaningful solution for the dynamic bending stiffness.
Therefore, in this paper, a simple dynamic model for sandwich structure
based on its asymptotic behaviours is proposed to reconstruct the dynamic
response of the structure in a similar manner of the principles used for the
modelling of porous media [38] or the length correction of perforated plates
[39].

The present work is organised with two main sections: first, development
of a simple model to find the dynamic equivalent bending stiffness of a three-
layer sandwich panel is presented; then the results obtained using this new
model are compared with the Guyader model for validation.

2. Development of a simple model to compute equivalent bending
stiffness of a three-layer sandwich panel

2.1. Dynamic behaviour of a three-layer sandwich panel

For the theoretical development of the proposed model, Fig. 1 is used to
schematically represent a generic three-layer sandwich panel of infinite extent.
The i−th layer of the sandwich panel is assumed to be made of isotropic ma-
terial with thickness hi, Young’s modulus Ei, mass density ρi, Poisson’s ratio
νi and loss/damping factor ηi. It is further assumed that only anti-symmetric
motions (i.e, bending, shear and membrane motions) are considered for the
analysis. Different configurations of layers are considered in this work using
the materials (aluminium, steel, plasterboard, shear layer and polymer) listed
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Figure 1: Schematic representation of the cross-section of a generic three-layer sandwich
panel. The panel is assumed to be of infinite extent along the x−axis.

in Table 1. The shear layer corresponds to a layer that is sufficiently soft
to exhibit shearing effects but still rigid enough to avoid compressional or
dilatational effects. The asymptotic behaviours on the natural propagating
wavenumber of the sandwich panel for different configurations are observed.
If all three layers are of the same material, the sandwich could be considered
as a homogeneous isotropic single layer. For this configuration, the natural
propagating wavenumber is computed from the first-order shear deformation
plate theory [5–7] and it is observed from Fig. 2a that the natural propagat-
ing wavenumber has low and high frequency asymptotes corresponding to the
bending and shear motions of the panel. In case of a sandwich panel made

Table 1: Material properties of few typical elastic isotropic layers used in this paper

Properties Aluminium Steel Plasterboard Shear layer Polymer
ρ (kg m−3) 2780 7800 700 200 580
E (GPa) 71 210 3 0.1 0.25

η 0.01 0.005 0.08 0.5 0.05
ν 0.3 0.3 0.22 0.33 0.33

of two stiff skins (5 mm aluminium each) bonded together with a shear layer
of thickness 10 mm, the asymptotic behaviour of the natural propagating
wavenumber is observed to be different from that of the isotropic single layer
as shown in Fig. 2b. Furthermore, the natural propagating wavenumber of a
three-layer sandwich panel could be characterized by the properties of three
zones namely low-frequency, transition and high-frequency regions [40].
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(a) (b)

Figure 2: Natural propagating wavenumbers for (a) plasterboard of 25 mm (b) aluminium
(5 mm)/shear layer (10 mm)/aluminium (3 mm) sandwich structure of infinite extent
(material properties are listed in Table 1).

The low and high frequency asymptotes correspond to the global and
inner bending behaviours respectively [34]. The term “global bending” de-
scribes the bending behaviour of a three-layer sandwich panel where each
layer contributes for the total bending. In case of “inner bending”, only the
outer layers (i.e, skins) contribute for the bending behaviour. One could note
that the natural propagating wavenumber of the sandwich panel in Fig. 2b
is computed from the equivalent plate model by [19, 20, 35] and this can also
be computed from other models [17, 27–29] in the literature.

2.2. Proposal of a sigmoid model

We can observe that the equivalent bending stiffness, computed from
Guyader model, has the shape of a sigmoid function for both symmetric and
asymmetric sandwich structures of different configurations (Fig. 3). Thus,
the goal of this paper consists in describing the equivalent parameter using
this function. The sigmoid function is defined by four characteristic parame-
ters (Dlow, Dhigh, fT and R) as shown in Fig. 4. Hence, the following expres-
sion is proposed for the equivalent bending stiffness of a sandwich structure
made of isotropic layers,

log10Deq(f) =
fR
T log10Dlow + fR log10Dhigh

fR + fR
T

, (1)

where f = ω/(2π), Dlow, Dhigh, fT andR are excitation frequency, low-frequency
and high-frequency dynamic bending stiffness asymptotes, transition fre-
quency and slope factor at transition frequency respectively.
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(a) (b)

Figure 3: Equivalent bending rigidity profile obtained from Guyader equivalent plate model
for (a) aluminium (5 mm)/shear layer (10 mm)/aluminium (5 mm) (b) steel (1 mm)/shear
layer (10 mm)/aluminium (5 mm) sandwich structures of infinite extent.

1

2

3

4

Low-frequency asymptote (Dlow)

High-frequency asymptote (Dhigh)

Transition frequency ( fT)

Slope factor at transition frequency (R)

Figure 4: Schematic representation of the profile of the proposed sigmoid model and
its four characteristic parameters to describe equivalent bending stiffness of a sandwich
structure made of isotropic layers.
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In the following subsections, these characteristic parameters will be de-
rived based on the relationship between the equivalent bending stiffness and
material properties of the sandwich panel (Eq. (2)), given by Guyader and
Cacciolati [35] to compute the equivalent bending stiffness of a multi-layer
structure.

A4D
3/2 + A3D − A1A4D

1/2 − A1A3 + A2 = 0, (2)

whereA1 = λ1−
λ25
λ3
, A2 = ω

√
M

(
λ4 −

λ5λ6
λ3

)2

, A3 = ω
√
M

(
λ2 −

λ26
λ3

)2

, A4 =

λ37. M =
∑
ρihi is the total mass per unit area and the constants λi are

defined in the Appendix A. Deq obtained from Eq. (2) is substituted in
the following expression to find the equivalent bending wavenumber of the
multi-layer structure.

keqbending =

√√√√ω

√
M

Deq

. (3)

Additionally, the equivalent Young’s modulus, density, Poisson’s ratio and
loss factor are computed with the following relations.

Eeq =
12Deq(1− ν2eq)

h3t
; ρeq =

M

ht
; νeq =

∑
νihi
ht

; ηeq =
Im(Eeq)

Re(Eeq)
, (4)

where ht =
∑
hi is the total thickness of the multi-layer structure.

2.3. Low-frequency asymptote

The lower frequency asymptote of the equivalent bending stiffness could
be obtained by letting ω → 0 in the Eq. (2). This results in

A4D
3/2 − A1A4D

1/2 = 0⇒ D = Dlow = A1. (5)

One may note that A1 is equal to the sum of bending stiffness contribution
from each layer with respect to the neutral layer position of the multi-layer
structure. Assuming the top layer as the reference layer (denoted with the
subscript ”ref”) with unit width, the transformed widths (bi) of the remaining
layers are found with the relation [41]

bi =
Ei (1− ν2ref)
Eref (1− ν2i )

. (6)

By keeping the origin of the z−axis at the midplane of the multi-layer plate,
the neutral axis location is computed as,

z̄ =

∑
zibihi∑
bihi

. (7)
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Finally, Dlow is computed by adding the flexural rigidities of all the layers:

Dlow =
n∑

i=1

Ei

1− ν2i
(zui − z̄)3 − (zli − z̄)3

3
, (8)

where zi, zui and zli are the middle, upper and lower coordinates respectively
of i−th layer along z−direction.

In case of a symmetric sandwich panel, Dlow would reduce to the form:

Dlow = D1

(
8 +

12h2
h1

+
6h22
h21

)
+D2, (9)

where Di represents the bending stiffness of the i−th layer. If the core
layer of the sandwich is soft compared to the skins (or outer layers), then
D1, D3 � D2 which gives the following form for the low-frequency asymptote
(Dlow) of the equivalent bending stiffness (Deq) of the sandwich panel.

Dlow = D1

(
8 +

12h2
h1

+
6h22
h21

)
(for soft core). (10)

It may be noted that this asymptotic limit can be deduced from the work
by Boutin and Viverge [34] and Dlow can be understood as the result due
to a phenomenon where all the layers in the sandwich panel behave as a
monolithic plate governed by the global bending.

2.4. High-frequency asymptote

The high-frequency asymptote of the equivalent bending stiffness could
be obtained by letting ω →∞ in the Eq. (2). This results in

A3D − A1A3 + A2 = 0⇒ D = Dhigh = A1 −
A2

A3

. (11)

If the core layer of the sandwich is soft compared to the skins (or outer layers),
then D1, D3 � D2 and this gives the following form for the high-frequency
asymptote (Dhigh) of the equivalent bending stiffness (Deq) of the sandwich
panel:

Dhigh = D1 +D3. (12)

Dhigh can be understood as the result due to a phenomenon where all three
layers in the sandwich panel slide on each other and the value of Dhigh is
governed by the intrinsic bending of each skin layers [34].
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2.5. Transition frequency

Since the proposed sigmoid curve in Eq. (1) changes its sign of curvature
at the geometric mean value (DT ) of the curve (or arithmetic mean value in
the log-log scale (Fig. 3)),

log10DT =
log10Dlow + log10Dhigh

2
⇒DT =

√
DlowDhigh, (13)

the transition frequency (with respect to the curvature sign of the sigmoid)
is computed by substituting D = DT in Eq. (2) as,

fT =
1

2π

A4
4
√
DT (
√
DT − A1)

A′3DT + A′2 − A1A′3
, (14)

where A′2 =
√
M

(
λ4 −

λ5λ6
λ3

)2

andA′3 =
√
M

(
λ2 −

λ26
λ3

)2

.

For softer core (D1, D3 � D2), the transition frequency takes the follow-
ing form.

fT =
1

2π

G2

12h2

Dlow√
MDT

(
h21
D1

+
h23
D3

)
. (15)

In case of symmetric sandwich panel, the above expression can be written
as,

fT =
1

2π

G2h
2
1

3h2

Dlow

Dhigh

1√
MDT

. (16)

From the wavenumber analysis of the sandwich panel with a thicker core
(h2 � h1, h3), an alternate and simpler expression for the transition fre-
quency could be derived. From Fig. 5a and 5b, it is observed that both
equivalent bending (Eq. (3)) and shear wavenumbers (Eq. (17)) are equal at
the transition zone when the core thickness is greater than that of the skins.

keqshear = ω

√
M

G2ht
. (17)

On the contrary, it is also observed that this may not be valid when the core
thickness is lower or equal to that of the skins. For example, from Fig. 5c,
it is seen that both equivalent bending and shear wavenumbers do not have
the same values at the transition zone. From the parametric study, it is
further observed that the influence of the material properties of the core is
less significant than the influence of the core thickness to have the equal
values of equivalent bending and shear wavenumber at the transition zone.
This is also complying with impedance and wave speed analysis of symmetric
sandwich panel by Kurtze and Watters [31].
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(a)

(b) (c)

Figure 5: Equivalent bending and shear wavenumbers for a sandwich panel of infinite
extent with steel skins of 1 mm and shear layer as core with thickness (a) 10 mm (b)
3 mm (c) 0.5 mm. Influence of core thickness on the transition zone can be observed from
these plots.
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Hence, for a thicker core, the transition frequency takes the following
simpler form.

keqbending = keqshear ⇒

√
ωT

√
M

DT

= ωT

√
M

G2ht
⇒ f̃T =

1

2π

G2ht√
MDT

. (18)

It may be noted that, for a typical sandwich panel with a soft core, the
deviation percentage of Eq. (18) from Eq. (15) would serve as an indicator
on the influence of core layer in determining the transition frequency.

2.6. Slope factor at the transition frequency

Slope of the sigmoid curve at the transition frequency is given by (from
Eq. (1)),

dDeq

df

∣∣∣∣
f=fT

= R

[
DT

4fT
ln

(
Dhigh

Dlow

)]
(19)

Since analytical computation of the slope ,
dDeq

df

∣∣∣∣
f=fT

, from Guyader model

is cumbersome, a parametric study is preferred to compute the slope factor
(R). Following range of values are used for this parametric study (with
symmetric case) for Young’s modulus and density of the core respectively:
1 × 10−5Es < E2 < 0.1Es, 0.2ρs < ρ2 < 2.4ρs where Es and ρs are the
reference values for Young’s modulus and density for the skin respectively
and Gamma distribution is considered for each parameter. As an example,
the mechanical properties of aluminium could be taken for the skin to decide
the range of values for the mechanical properties of the core.

From the parametric study, the envelope of the values of R and its mean
value are plotted in the Fig. 6 and for the practical values of core to skins
thickness ratio, mean curve of R is fitted into the following polynomial.

R = 1.16− 27φ6 − 52φ5 − 189φ4 + 275φ3 + 995φ2 + 291φ

104
, (20)

where φ = log10

(
h2

h1 + h3

)
. It is to be noted that the parametric study is

also conducted for the asymmetric case by varying the material and geometric
parameters of the core and skin layers (for example, 0.5h1 < h3 < 3h1). The
mean curve for R-value obtained for asymmetric case results in maximum
deviation to be lower than 1.5% to that of the symmetric case. Therefore,
the polynomial fit for R-value given by the Eq. (20) could be applied for
asymmetric configurations as well.
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Figure 6: Envelope of R and its mean against the ratio between thicknesses of core and
skins.

3. Numerical examples

In this section, numerical examples of the proposed sigmoid model to
compute equivalent bending stiffness (from Eq. (1)) of a sandwich panel
and the corresponding equivalent bending wavenumber (from Eq. (3)) are
presented. For the reasons mentioned and demonstrated by Ege et al. [30],
Guyader model [35] is taken as a reference to compare the results of the
proposed model.

In Fig. 7, for a symmetric sandwich panel made of aluminium (5 mm)/soft
core (10 mm)/aluminium (5 mm), Deq and keqbending computed from the sig-
moid model are presented for comparison, along with the transition frequency
computed from Eq. (15). It can be seen from these plots that, the sigmoid
model is in high agreement with the Guyader model throughout the frequency
range and the observed maximum error percentage is 4.9% in comparison
with Guyader model. Furthermore, it is observed from Fig. 7b that the tran-
sition frequency zone is controlled by the shear of the sandwich core as the
core has double the thickness of the skin. Due to this reason, the simpler
expression from Eq. (18) estimates the transition frequency as 237 Hz which
is deviated around 14% from the value (276 Hz) computed by Eq. (15). One
may note that this percentage of deviation would be further reduced if the
thickness of the core layer is increased.
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(a) (b)

Figure 7: (a) Equivalent bending rigidity and (b) equivalent wavenumbers obtained from
the proposed sigmoid model for aluminium (5 mm)/shear layer (10 mm)/aluminium
(5 mm) symmetric sandwich panel of infinite extent. Guyader model is taken as refer-
ence to compare the proposed model.

In Fig. 8, for an asymmetric sandwich panel made of steel (1 mm)/shear
layer (0.5 mm)/aluminium (5 mm), Deq and keqbending computed from the
sigmoid model are presented for comparison, along with the transition fre-
quency computed from Eq. (15). From these plots as well, it can be seen that
the sigmoid model is in high agreement with the Guyader model throughout
the frequency range and the observed maximum error percentage is 2.1% in
comparison with Guyader model. Unlike the previous sandwich configura-
tion, it is observed from Fig. 8b that the transition frequency zone is not
controlled by the shear of the sandwich core as the core has a lesser value of
thickness to that of the skins. This also reflects with a greater percentage
of deviation (around 83%) for the simpler expression of transition frequency
from Eq. (18) with that of the same from Eq. (15).
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(a) (b)

Figure 8: (a) Equivalent bending rigidity and (b) equivalent wavenumbers obtained from
the proposed sigmoid model for steel (1 mm)/shear layer (0.5 mm)/aluminium (5 mm)
asymmetric sandwich panel of infinite extent. Guyader model is taken as reference to
compare the proposed model.

4. Experimental validation and further observation

In this section, the proposed model is compared with the experimental
data, measured by Ege et al. [30], for the purpose of validation. A sym-
metric sandwich plate made of steel (0.18 mm)/polymer (0.69 mm)/steel
(0.18 mm) with in-plane dimensions 300 × 400 mm2, is considered for the
experimental study and the data are measured through the contactless mea-
surements (scanning laser vibrometer). Further, the CFAT (Corrected Force
Analysis Technique) [42] methodology is used to estimate the bending stiff-
ness of the structure. The dynamic bending stiffness can be quickly con-
structed, through the proposed sigmoid model, using only four parameters
from Eqs. (8), (12), (15) and (20) which are substituted in Eq. (1). Finally,
the equivalent Young’s modulus, Eeq, is computed from Eq. (4) and compared
against experimental data as shown in Fig. 9. A high agreement is observed
between the estimation by equivalent plate models and the measured data
which validates the applicability of the proposed model.
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Figure 9: Comparison of equivalent plate models (proposed sigmoid model and Guyader
model) with experimentally measured data of the equivalent Young’s modulus for the steel
(0.18 mm)/polymer (0.69 mm)/steel (0.18 mm) sandwich panel with in-plane dimensions
300× 400 mm2.

Through these numerical examples discussed in this work, on the im-
plementation side, the proposed model has its advantage of using only five
equations (i.e, Eqs. (1), (8), (12), (15) and (20)) whereas Guyader model
requires to define seven constants and few other matrix definitions to com-
pute the equivalent bending stiffness (see Appendix A). Further, in the
Guyder model, Eq. (2) need to be solved symbolically to obtain the solutions
and solution tracing techniques have to be applied to correctly capture the
physically meaningful solution for Deq. Such complexities do not present in
the proposed model and it gives a straightforward solution for Deq. On an
additional note, although the proposed model focuses on reconstructing the
equivalent dynamic bending stiffness values of Guyader model, it is observed
from the Figs. 10 and 11 that the new model captures the equivalent dynamic
loss factor of the system with the high agreement with Guyader model and
experimental data. It may be noted that the noise in the measured data of
Fig. 11 may be due to the instability of experimental method at low frequen-
cies. Further, it is also observed that a slightly different Young’s modulus
(300 MPa) is used for the polymer by Ege et al. [30] to improve their fit
on the damping loss factor. The reader may note that, although equivalent
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plate models account for both bending and shear motions of the multi-layer
structures through dynamic bending stiffness, they overestimate the equiva-
lent loss factor at high frequencies. Nevertheless, it can be corrected by the
ratio between the phase and group velocities of the structure [37].

(a) (b)

Figure 10: Equivalent loss factor for (a) symmetric aluminium (5 mm)/shear
layer (10 mm)/aluminium (5 mm) (b) asymmetric steel (1 mm)/shear layer
(0.5 mm)/aluminium (5 mm) sandwich panel of infinite extent. Guyader model is taken
as reference to compare the proposed model.

Figure 11: Comparison of equivalent plate models (proposed sigmoid model and Guyader
model) with experimentally measured data of the equivalent loss factor for the steel
(0.18 mm)/polymer (0.69 mm)/steel (0.18 mm) sandwich panel with in-plane dimensions
300× 400 mm2.
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Considering all the observations made in this work, the proposed model
has its following advantages over the existing models in the literature: first,
this model can be quickly implemented compared to the other equivalent
plate models to compute the equivalent parameters of a three-layer sandwich
panel (symmetric and asymmetric configurations); second, since the model
is based on the asymptotic behaviours at different frequency regimes (low,
high and transition), it can be used to understand the physics behind the
response of a three-layer sandwich system at those frequency regimes and to
identify the corresponding governing parameters; third, the new model will be
a handy tool to optimize the layer parameters to achieve the desired damping
performance of the three-layer sandwich panel due to its straightforward
formulation. The reader may refer to Table 2 for the summary of all the
expressions for the proposed sigmoid model.
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=
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5. Concluding remarks

A simple equivalent plate model is proposed to compute the dynamic
equivalent properties of a three-layer sandwich panel of infinite extent and
made of isotropic materials. Though the formalisation of the proposed model
is based on the physical behaviours at only three frequency regimes (low, high
and transition), described by Fahy and Gardonio [40], it is showed that the
simple model is indeed valid for the entire frequency range. In comparison
with other existing equivalent plate models, the new model will be easier to
implement and would serve as a tool to quickly optimize the sandwich panel
parameters to obtain the desired performance.
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Appendix A. Definitions of constants used in Guyader model

For n−layer multi-layer structure, the constants used in Guyader model
[35] to compute equivalent bending stiffness are,

λ1 =
n∑

i=1

Ci
11

(
h3i
12

+ hiβ
2
i

)
(A.1)

λ2 =
n∑

i=1

Ci
11

(
h3iα

2
i

12
+ hiγ

2
i

)
(A.2)

λ3 =
n∑

i=1

Ci
11hi (A.3)

λ4 =
n∑

i=1

Ci
11

(
h3iα

2
i

12
+ hiβiγi

)
(A.4)

λ5 =
n∑

i=1

Ci
11hiβi (A.5)

λ6 =
n∑

i=1

Ci
11hiγi (A.6)

λ37 =
n∑

i=1

Ci
55hiα

2
i (A.7)

20



where Ci
11 =

Ei

1− ν2i
andCi

55 =
Ei

2(1 + νi)
.

The constants αi, βi and γi are computed as follows:
For i = 1, 

α1

β1
γ1

 =


1
0
0

 (A.8)

For i ≥ 2, 
αi

βi
γi

 =


Ni(2, 2)
Ni(3, 1)
Ni(3, 2)

 (A.9)

where

Ni =

 1 0 0
0 Bi 0
Ci Fi 1

Ni−1 (A.10)

with N1 being the unit matrix and the constants Bi, Ci and Fi are defined
as,

Bi = Ci−1
55 /Ci

55 (A.11a)

Ci = −(hi−1 + hi)/2 (A.11b)

Fi = −(hi−1 + Aihi)/2 (A.11c)
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