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A B S T R A C T

A novel Regularising Ensemble Kalman filter Algorithm based on the Bayesian paradigm was applied to RTM
processes to estimate local porosity and permeability of fibrous reinforcements using measured values of local
resin pressure and flow front positions during resin injection. The algorithm allows to detect locations of
defects in the preform. It was tested in virtual experiments with two geometries, a two-dimensional rectangular
preform and a more complex 3D shape, as well as in laboratory experiments. In both the virtual and laboratory
experiments, it was demonstrated that the proposed methodology is able to successfully discover defects and
estimate local porosity and permeability with good accuracy. The algorithm also provides confidence intervals
for the predictions and estimations of defect probabilities, which are valuable for analysis of the process.
1. Introduction

Resin Transfer Moulding (RTM) is a cost-effective and versatile
process for the manufacture of components from composite materials.
In RTM, a preform from dry fibrous reinforcement is placed in a stiff
tool. It is then impregnated with a liquid polymer system, typically a
thermoset resin, upon application of a flow-driving pressure gradient.
Once the reinforcement is fully impregnated, the composite is left
in the tool until cure is complete. The component is then removed
from the tool and finished. However, it is a well-known problem that
fibrous reinforcements may show substantial local variability in fibre
orientation and/or fibre volume fraction. This results in local variability
in the reinforcement permeability [1–3], which affects resin flow in
RTM processes [4–6], and in variability in mechanical properties of the
finished component [7,8].

The resin flow in RTM is determined by the properties of the
preform (which are related to fibre arrangement and fibre volume
fraction) and of the injected resin, the geometry of the mould and
the process parameters. The local properties of a fibre preform can be
expressed in terms of two parameters, porosity, 𝜑(𝐱), and permeability
tensor, 𝐊(𝐱), where 𝐱 can be any point within the preform. It is to
be noted that 𝐊(𝐱) depends on 𝜑(𝐱), but also on a geometrical factor
related to the fibre arrangement. The resin flow through this domain is
characterised by the resin pressure, 𝑝(𝐱, 𝑡), at position 𝐱 and time 𝑡 and
by the moving boundary (in other words, flow front), 𝛶 (𝑡), between
resin and air.

∗ Corresponding author.

A transient one-phase resin flow through a preform defined by pa-
rameters 𝜑(𝐱) and 𝐊(𝐱) can be modelled by partial differential equations
(PDEs) [5,9–12] in a domain 𝐷, which can be one-, two- or three-
dimensional. The boundary of the domain 𝐷 is 𝜕𝐷 = 𝜕𝐷𝐼 ∪ 𝜕𝐷𝑁 ∪ 𝜕𝐷𝑂,
where 𝜕𝐷𝐼 is the inlet, 𝜕𝐷𝑁 represents impermeable mould walls, and
𝜕𝐷𝑂 is the outlet. The domain 𝐷 is initially filled with the preform
and air at a pressure 𝑝0. This medium is injected with resin of viscosity
𝜇 through the inlet boundary 𝜕𝐷𝐼 at a pressure 𝑝𝐼 . The resin moves
through 𝐷 occupying a time-dependent sub-domain 𝐷∗(𝑡) ⊆ 𝐷, which
is bounded by the moving boundary 𝛶 (𝑡), i.e. flow front, and the
appropriate parts of 𝜕𝐷. Flow in the fully resin-saturated part of the
preform is frequently modelled by combining the continuity equation,

∇ ⋅ 𝐯 = 0, 𝐱 ∈ 𝐷∗(𝑡), 𝑡 > 0, (1)

with Darcy’s law,

𝐯(𝐱, 𝑡) = −
𝐊(𝐱)
𝜇

∇𝑝(𝐱, 𝑡), (2)

where 𝐯(𝐱, 𝑡) is the phase-averaged flow velocity and 𝜇 is the resin
viscosity. Eqs. (1) and (2) are accompanied by the following boundary
and initial conditions

𝑝(𝐱, 𝑡) = 𝑝𝐼 , 𝐱 ∈ 𝜕𝐷𝐼 , 𝑡 ≥ 0, (3)
∇𝑝(𝐱, 𝑡) ⋅ 𝐧(𝐱) = 0, 𝐱 ∈ 𝜕𝐷𝑁 , 𝑡 ≥ 0, (4)

𝑝(𝐱, 𝑡) = 𝑝0, 𝐱 ∈ 𝛶 (𝑡), 𝑡 > 0, (5)
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𝑝(𝐱, 𝑡) = 𝑝0, 𝐱 ∈ 𝜕𝐷𝑂 , 𝑡 > 0, (6)
𝑝(𝐱, 0) = 𝑝0, 𝐱 ∈ 𝐷, (7)

and the equation for the normal velocity 𝑉𝑛(𝐱, 𝑡) in the point 𝐱 on the
moving boundary 𝛶 (𝑡):

𝑉𝑛(𝐱, 𝑡) =
𝐯(𝐱, 𝑡) ⋅ 𝐧(𝐱, 𝑡)

𝜑(𝐱)
, 𝐱 ∈ 𝛶 (𝑡), 𝑡 ≥ 0, (8)

𝛶 (0) = 𝜕𝐷𝐼 . (9)

Here 𝐧(𝐱) and 𝐧(𝐱, 𝑡) are the unit outer normals to the corresponding
boundaries. The above model describes one-phase flow (only resin), but
it can be extended to two-phase (resin and air) flow.

For the purpose of this paper, it is convenient to view a resin flow
model as a map from parameters of interest (here, porosity, 𝜑, and
permeability, 𝐊) to the pressure, 𝑝, and the boundary, 𝛶 :

(𝜑,𝐊) ↦ (𝑝, 𝛶 ). (10)

In the case of the above one-phase model, the porosity 𝜑(𝐱) and
ermeability 𝐊(𝐱) are independent input parameters. Eq. (10) means
hat given these input parameters the moving boundary problem de-
cribed by Eqs. (1) to (9) can be solved to find the pair (𝑝, 𝛶 ). In the

language of Uncertainty Quantification, Eq. (10) is called a forward
map, as it evaluates observables at given values of the parameters. The
forward map can be a model expressed as a PDE problem (e.g. the
problem given by Eqs. (1) to (9)) or its numerical approximation. In
this paper, the models for transient two-phase flow in porous media
implemented in Ansys Fluent© [13] are used as forward maps (see
details in Section 3).

The material-inherent local variability of porosity, 𝜑(𝐱), and perme-
ability, 𝐊(𝐱), as well as the presence of defects in the reinforcement
structure, such as gaps resulting in race-tracking, have a detrimental
effect on the robustness of RTM processes. Different approaches have
been developed to characterise variability and race-tracking [14–17],
as well as model their effect on the RTM process [4,14,18–20]. While an
effective global permeability of a reinforcement can be estimated using
experimental techniques [21,22], the local variability of the permeabil-
ity is more difficult to detect and estimate. Imaging techniques, such as
micro-CT, can be used to scan small sections of the reinforcement or of
a finished component. The local fibre arrangement can be determined
with high accuracy, and the local permeability can be approximated
numerically based on this information [23]. However, this method is
not feasible for larger components. Alternatively, local permeability
and defects can be estimated using in-process measurements combined
with numerical modelling.

Unlike the forward problem outlined above, solving the inverse
problem aims at finding parameters (here, porosity, 𝜑, and permeabil-
ity, 𝐊) based on given observations (here, pressure, 𝑝, and/or location
of the moving boundary, 𝛶 ). To this end, 𝑁𝑝 pressure sensors can be
used at locations 𝐰𝑖, and 𝑁𝑓 sensors to detect the position of the flow
front, 𝛶 , so that 𝐠𝑖(𝑡) is the position of the flow front measured at the
𝑖th sensor at time 𝑡. Pressure and flow front position at all sensors are
recorded at 𝑁𝑡 times 𝑡𝑚. All acquired data of pressure and flow front
position are combined in the following variable

 =
(

{𝑝(𝐰𝑖, 𝑡1)}
𝑁𝑝
𝑖=1,… , {𝑝(𝐰𝑖, 𝑡𝑁𝑡

)}
𝑁𝑝
𝑖=1, {𝐠

𝑖(𝑡1)}
𝑁𝑓
𝑖=1,… , {𝐠𝑖(𝑡𝑁𝑡

)}
𝑁𝑓
𝑖=1

)

. (11)

The forward model given in Eq. (10) maps porosity and permeability
onto predictions of pressure and flow front at the sensor locations and
specified observation times, which is formally written as

 =  (𝜑,𝐊). (12)

The main idea of inversion methods is to minimise the difference be-
tween the data obtained using estimated parameters in a mathematical
model,  , and the data observed in an experiment. An iterative estima-
tion of the parameters will yield gradually improving approximations
2

of the experimental observations.
Various inversion methods have been used for estimation of local
permeability using in-process measurements. Comas-Cardona et al. [15]
estimated the local permeability of a random chopped glass fibre mat
by minimising the error between the predicted and observed resin flow
front positions. The initial guess for the permeability was based on
optical measurement of the local porosity. A similar approach was
used by Caglar et al. [17] to estimate the permeability of preforms
in the presence of race-tracking. Experimental flow front observations
together with numerical modelling allowed intentionally induced race-
tracking to be detected. However, the predicted extent of race-tracking,
in particular its length, deviated from the experiment because of a
lack of data at the beginning of the experiment, where the flow front
propagates too fast for tracking. Both studies used a MATLAB non-
linear optimisation solver to minimise the error between predicted and
observed flow front positions.

A more efficient inversion method based on an Ensemble Square-
root Filter was used by Matsuzaki et al. [24,25]. It was demonstrated
that this method can detect defects in complex 3D and thick structures
fibre structures using flow front observations as input data. However,
the detection of outlines of the defects was not very accurate. An
approach based on Machine Learning, used by Gonzalez and Fernandez-
Leon [26], showed that it can detect defects in RTM processes if they
are similar to those used for training of a neural network. However,
the neural network predictions become unreliable when type, shape,
or total number of defects change.

Some studies focus on detecting race-tracking only, as it is one of
the most common and severe issues in RTM processes. It is typically
assumed that race-tracking affects flow along the entire lengths of re-
inforcement edges. This assumption implies that only a finite number of
combinations of race-tracking regions can exist in a mould. It is possible
to detect one of the race-tracking scenarios by simulating all possible
scenarios, i.e. all combinations of race-tracking/no race-tracking along
the edges, and performing a flow pattern recognition using experimen-
tal data [14,27,28]. An alternative assumption is that race-tracking
affects only part of an edge. A similar methodology as before can be
followed, though the total number of all possible combinations will be
higher [29]. This approach can be efficient in detecting race-tracking
but, because it relies on parametrised simulations, the estimations can
be incorrect in cases where experiments severely deviate from the
simulated scenarios.

This paper presents a methodology to predict local porosity and
permeability of a preform based on Bayesian inference. In-process
data, pressure values and resin arrival times at defined positions,
are collected during resin injection as input data for the inversion
algorithm. The inversion uses a novel Regularising Ensemble Kalman
filter Algorithm (REnKA) [12] and ideas of Bayesian level set methods
for geometric inverse problems [30,31]. The methodology is based on
the recently developed infinite-dimensional Bayesian theory [32] and
algorithms for data assimilation in problems with complex geometries
and local non-uniformity [12,30,33].

Unlike in previous studies, the use of Bayesian inference makes it
possible to detect defects in local porosity and permeability based on
in-process data without making assumptions on the shape and positions
of the defects. The presented methodology is validated using virtual
experiments as well as lab experiments. The detection of defects can
be used to create realistic RTM simulations and to characterise material
variability.

2. Bayesian inversion algorithm

2.1. Introduction

Bayesian inversion algorithms in the context of RTM are based
on measurement of fluid (resin) pressure at several locations in the
preform and/or of flow front positions at several moments in time
during the process. A Bayesian inversion algorithm starts with an initial
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guess, a prior distribution in the Bayesian Statistics terminology, of
local porosity and permeability. This distribution is characterised by
an ensemble of samples of these material properties weighted with
their probabilities. The prior distributions are based on available prior
knowledge of porosity and permeability, e.g. their target values accord-
ing to the design and expected level of variability, but otherwise they
are random. Parametrisation of a prior distribution, which can be used
to capture complex defect distributions, is described in Section 2.2.

Once an initial ensemble is generated, the RTM process is simulated
for every sample of porosity and permeability fields to obtain pressure
values and flow front positions at specified locations and moments in
time using a mathematical/computational model,  . Based on these
simulation results, the Bayesian inversion algorithm iteratively evolves
the samples, updating the distribution of local porosity and perme-
ability, so that the calculated pressure values and flow front positions
become consistent with the measurements. Details of the REnKA algo-
rithm are described in Section 2.3. Using the updated samples from
the calculated distribution (the posterior distribution in the Bayesian
Statistics terminology), estimates of local porosity and permeability
can be computed together with their standard deviations. As described
in Section 2.4, knowledge of the standard deviations is important to
provide a measure of uncertainty (error) of the obtained estimates.

2.2. Parametrisation of local variabilities

The selection of the prior in the Bayesian algorithm is crucial for
accurate estimation of physical properties of the material. Choosing
priors is particularly challenging in cases where the local properties are
determined by complex geometrical features of the component and/or
show discontinuities arising from material defects. This challenge is
addressed in this work by applying three levels of parametrisation of
the physical properties: (i) level-set parametrisation to separate the
regions with and without defects, (ii) random field parametrisation
to account for material variability, and (iii) parametrisation of length
scales to account for defects and variabilities of different sizes. Com-
bined within the modern Bayesian methodology [30], this three-level
parametrisation allows to infer the geometry of regions with higher or
lower porosity and permeability than the nominal designed values.

The idea behind the level-set parametrisation in a 2D domain is
shown in Fig. 1a for the porosity field. An underlying random field,
𝜉𝐿(𝐱), often called the level-set function, is generated to parametrise
porosity and permeability via truncation at some prescribed level, 𝜆.
Fig. 1b shows the truncated level set function which gives a piece-
wise constant porosity distribution. The region with low porosity (Re-
gion 1) corresponds to values of the level-set function greater than 𝜆,
while higher porosity values (Region 2) corresponds to values below
𝜆. Heterogeneity within each region can be incorporated by assigning
additional random fields with different mean values in each of those
regions (Fig. 1c). The combined random fields correspond to the second
level of parametrisation introduced above. Third-level parametrisation
can be used to introduce variable correlation lengths of the random
fields. The mathematical description of the parametrisations is given
in Appendix A. For simplicity, the functions and scalar parameters
comprising the parametrisation can be written in a single function 𝑢(𝐱),
and the resulting parametrisation of porosity and permeability can be
denoted as

(𝑢) = (𝜑,𝐊), (13)

where the parametrisation map,  , is a relation defined for functions
rather than only for the values of these functions.

The inference problem is posed in terms of the Bayesian calibration
of a parameter-to-output map, denoted as (𝑢), which maps all parame-
ters in 𝑢 defining porosity and permeability (𝜑(𝐱),𝐊(𝐱)) into a variable,
3

. This consists of values of pressure and flow front recorded at a set
of specific times during the resin injection as explained below. More
specifically,

(𝑢) =  ((𝑢)) =  (𝜑,𝐊) = , (14)

where  is the map described in the Introduction.
The aim is to solve the following inverse problem: for given mea-

surements, possibly corrupted by noise, of  defined in Eq. (14), find
𝑢(𝐱). These measurements, denoted by 𝜂 , are assumed to satisfy

𝜂 = (𝑢) + 𝜂, (15)

where 𝜂 is a vector of random noise. It is assumed that 𝜂 follows a
Gaussian distribution with zero mean and covariance 𝛴, which can be
expressed as 𝜂 ∼ 𝑁(0, 𝛴). Note that Eq. (15) simply states that, in the
absence of modelling errors, the empirical measurements, 𝜂 , can be
obtained from the predictions of the RTM model by accounting for an
additive random error in those predictions.

Once 𝑢 from Eq. (15) has been found, Eq. (13) can be used to find
and 𝐊. It should be noted that 𝜑 and 𝐊 are assumed to be indepen-

ent of each other in all examples discussed below. This assumption
ccounts for the fact that, in reality, there is no unique relation between
orosity and permeability. Typically, the permeability is assumed to
epend on the porosity and a geometry factor. The geometry factor,
hich is often assumed to be constant, depends on the cross-sectional

hape, arrangement and orientation of the fibres. All are to some extent
tochastic, and fibre arrangement and orientation also depend on the
nter-fibre angle (affected by shear) and the material porosity (affected
y shear and compaction). Anisotropy of the permeability, 𝐊, can also
e implemented by introducing an additional parametrisation of the
ensor components. This additional parametrisation does not alter the
lgorithm proposed here, but it adds more variables which need to be
stimated.

The parametrisation of porosity and permeability presented cannot
escribe all possible cases. However, other parametrisations can be
asily combined with REnKA to accommodate more complex scenarios.
or example, multiple level-sets [34] can be used to identify sev-
ral types of defects with substantially different material properties.
ince the truth is unknown in a general case, choosing an accurate
arametrisation a priori can be a challenging task.

.3. The Bayesian approach

The solution of the inverse problem is not unique. Different 𝑢 may
e consistent with the observed data, 𝜂 , i.e. satisfy Eq. (15). Therefore,
deterministic approach which produces a single estimate of 𝑢 can

verlook a possible range of admissible solutions. Here, a probabilistic
ramework is considered that allows to compute a distribution for 𝑢
nd thus facilitates the quantification of uncertainties associated with
he estimated parameters. The infinite-dimensional Bayesian frame-
ork [32] is adopted, in which 𝑢 is a random function with a specified
rior probability distribution, P(𝑢). The prior is based on probabilistic
nowledge of the material properties of the preform, before any data
re acquired (i.e. before resin injection). For example, the prior may
ncorporate design values of porosity and permeability as well as infor-
ation on regions where defects such as race tracking [9] are likely to

e present.
In the Bayesian framework, the solution to an inverse problem is

he conditional (posterior) distribution of the unknown 𝑢 for given 𝜂 .
he posterior, denoted by P(𝑢|𝜂), can be expressed via Bayes’ rule as
ollows [32]:

(𝑢|𝜂) =
P(𝜂

|𝑢)P(𝑢)
P(𝜂)

, (16)

where P(𝜂
|𝑢) is the probability of the observed measurements, 𝜂 ,

given a particular realisation of the unknown, 𝑢(𝑥). The term P(𝜂) in
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Fig. 1. Two-level parametrisation of a porosity field: (a) level-set function; (b) truncated level-set function defining regions of porosity (Region 1 in blue, Region 2 in red); (c)
random porosity field. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Eq. (16) denotes the probability of 𝜂 . This term is a normalisation
constant defined by

P(𝜂) = ∫ P(𝜂
|𝑢)P(𝑑𝑢). (17)

Taking into account Eq. (15) and the assumption that 𝜂 is a
Gaussian, it follows that 𝜂

|𝑢 ∼ 𝑁((𝑢), 𝛴), and thus Eq. (16)
becomes

P(𝑢|𝜂) = 1
𝑍
P(𝑢) exp

[

−1
2
||𝛴−1∕2(𝜂 − (𝑢))||2

]

, (18)

where

𝑍 = ∫ P(𝑢) exp
[

−1
2
||𝛴−1∕2(𝜂 − (𝑢))||2

]

𝑑𝑢. (19)

Given a prior, Eq. (18) entirely defines the posterior, P(𝑢|𝜂), pro-
vided that the normalisation constant, 𝑍, defined in Eq. (19) can be
computed. However, due to the nonlinearity of the parameter-to-output
map, , which appears in Eq. (19), this normalisation constant can
generally not be computed analytically. Hence, the resulting posterior
distribution, P(𝑢|𝜂), cannot be expressed in a closed form. Sampling
methods need to be applied for the approximation of the Bayesian
posterior [33]. Here, REnKA is used for this purpose [12,35]. The un-
derlying idea of the method is to compute a sequence of 𝑞 intermediate
distributions between the prior and the posterior:

P(𝑢) = P0(𝑢) → P1(𝑢) → ⋯ → P𝑞(𝑢) = P(𝑢|𝜂). (20)

Each of these distributions is approximated via an ensemble of
particles, {𝑢(𝑗)𝑛 }𝐽𝑗=1 (note that 𝑢(𝑗)𝑛 ∼ P𝑛(𝑢)). The transition between
two consecutive distributions is performed by using Bayes’ rule under
Gaussian assumptions on the underlying parameter 𝑢, which, in turn,
determines porosity and permeability via the parametrisation intro-
duced in Section 2.2 and Appendix A. Algorithm 1 gives all steps
needed to approximately solve Eq. (18) by constructing the sequence
in Eq. (20). The number of intermediate distributions, 𝑞, is computed
adaptively [35] in MATLAB©. The parameter 𝑠𝑛 in Algorithm 1 con-
trols convergence. The algorithm is designed so that once 𝑠𝑛+1 = 1, the
algorithm is converged in the sense that the distribution P𝑛+1(𝑢) is a
Gaussian approximation of the sought posterior P(𝑢|𝜂).

It is to be noted that the map  (𝜑,𝐊) used in Algorithm 1 is an
RTM process simulation, which is used in a black-box fashion. The total
computational cost of REnKA is given by 𝑐 = 𝐽 × 𝑞 RTM simulations,
where 𝑞 as defined above is the total number of iterations. As REnKA
scales with respect to the number of particles, 𝐽 , its computational
execution time can be substantially reduced via the use of parallel
computing. The cost of updating the samples of the ensemble is
negligible when compared to the cost of RTM simulations.
4

Algorithm 1 Regularising ensemble Kalman Algorithm (REnKA)
Inputs: (1) 𝜂 : measurements; (2) 𝛴 measurements’ error covari-

ance; (3) {𝑢(𝑗)0 }𝐽𝑗=1: initial ensemble.
Output: {𝑢(𝑗)}𝐽𝑗=1: posterior ensemble.

Set 𝑠0 = 0
while 𝑠𝑛 < 1 do

(1) Prediction step. Evaluate

(𝑗)𝑛 = (𝑢(𝑗)𝑛 ), 𝑗 ∈ {1,… , 𝐽},

and define 𝑛 =
1
𝐽
∑𝐽

𝑗=1 
(𝑗)
𝑛 .

(2) Compute regularisation parameter 𝛼𝑛:.

𝛼∗𝑛 = 1
𝑀

1
𝐽

𝐽
∑

𝑗=1
||𝛴−1∕2(𝜂 − (𝑗)𝑛 )||2

if 𝑠𝑛 +
1
𝛼∗𝑛

≥ 1 then Set 𝛼𝑛 =
1

1−𝑠𝑛
, 𝑠𝑛+1 = 1;

else Set 𝛼𝑛 = 𝛼∗𝑛 , 𝑠𝑛+1 = 𝑠𝑛 +
1
𝛼𝑛

.
end if
(3)Analysis step. Define 𝐶𝑢

𝑛 , 𝐶
𝑛 by

𝐶
𝑛 = 1

𝐽 − 1

𝐽
∑

𝑗=1
((𝑢(𝑗)𝑛 ) − 𝑛)((𝑢(𝑗)𝑛 ) − 𝑛)𝑇 ,

𝐶𝑢
𝑛 = 1

𝐽 − 1

𝐽
∑

𝑗=1
(𝑢(𝑗)𝑛 − 𝑢𝑛)((𝑢(𝑗)𝑛 ) − 𝑛)𝑇 .

Update each ensemble member:

𝑢(𝑗)𝑛+1 = 𝑢(𝑗)𝑛 + 𝐶𝑢
𝑛 (𝐶

𝑛 + 𝛼𝑛𝛴)−1(𝑦𝜂 − (𝑗)𝑛 + 𝜂(𝑗)𝑛 ), 𝑗 ∈ {1,… , 𝐽},

where 𝜂(𝑗)𝑛 ∼ 𝑁(0, 𝛴).
𝑛 + 1 → 𝑛

end while

2.4. Post-processing the results of the inversion algorithm

The ensemble of particles obtained via REnKA (Algorithm 1) can
be used to compute an approximation of the posterior distributions of
porosity and permeability as described above. For the permeability, the
posterior mean and standard deviation can be computed as:

𝐊(𝐱) = 1
𝐽

𝐽
∑

𝑗=1
𝐊(𝑗)(𝐱), 𝜎𝐊(𝐱) =

√

√

√

√

√

1
𝐽

𝐽
∑

𝑗=1
(𝐊(𝑗)(𝐱) −𝐊(𝐱))2 , (21)

where the 𝐊(𝑗)(𝐱) are computed from 𝑢(𝑗) using Eq. (13).
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In analogy to Eq. (21), the corresponding posterior mean, 𝜑(𝐱),
and standard deviation, 𝜎𝜑(𝐱), of the porosity can be computed. The
dependence on 𝐱 in Eq. (21) indicates that statistical measures of the
unknown properties are functions of the position within the preform.
Incorporating local variability in those properties is crucial to identify
locations of material defects.

In addition, it is possible to evaluate the probability of a material
point to be in a defect region: for a fixed 𝐱, the probability that the
level-set function 𝜉𝐿(𝐱) from the top-level parametrisation is above a
threshold value 𝜆 is:

𝑃 (𝐱) = P
(

𝜉𝐿(𝐱) > 𝜆
)

. (22)

This probability gives the confidence level for whether a defect is
present or not at the point 𝐱.

Finally, the posterior ensemble of porosity and permeability,
{𝜑(𝑗)(𝐱)}𝐽𝑗=1 and {𝐊(𝑗)(𝐱)}𝐽𝑗=1, is used to approximate the posterior
istribution of measured process data via

(𝑗) =  (𝜑(𝑗),𝐊(𝑗)) + 𝜂(𝑗), 𝑗 = 1,… , 𝐽 , (23)

here 𝜂(𝑗) ∼ 𝑁(0, 𝛴). The ensemble {(𝑗)}𝐽𝑗=1 can be used to assess
hether the posterior distribution of material properties is consistent
ith experimental data. More importantly, confidence intervals for the
osterior can be computed from this calculated distribution.

Note that the computational cost of setting up the prior and of
ost-processing the results is negligible in comparison with running
EnKA.

. Virtual experiments

.1. Simulation setup

Algorithm 1 was validated in virtual experiments using computer
enerated input data. RTM processes were simulated in ANSYS Flu-
nt©. Through-thickness flow was neglected, which made it possible to
se a 2D implementation of the numerical algorithm. It was assumed
hat the permeability of the reinforcement does not change with time
no compaction or relaxation, no change of properties with saturation)
ut varies locally. The permeability was assumed to be uniform on
ach cell of the mesh used in simulations but varied between cells.
he local distribution was generated in MATLAB© and imported into

ANSYS Fluent© via a user-defined function. The viscosity of the fluid
was assumed to be constant at a value of 0.1 Pa s, i.e. the process was
assumed to be isothermal with no resin cure present. No-slip boundary
conditions were imposed at the walls of the cavity. The settings of the
ANSYS Fluent© solver are summarised in Appendix C.

True porosity, 𝜑†(𝐱), and true permeability, 𝐊†(𝐱), are the pre-
scribed properties of a preform in virtual experiments. Data, , from
virtual sensors are recorded during simulations of flow through a
preform with these properties, i.e.  =  (𝜑†,𝐊†). At any time, data
consisting of fluid pressures and flow front positions are superimposed
with Gaussian random noise, 𝜂, i.e. 𝜂 =  + 𝜂. It is assumed that
the error covariance matrix, 𝛴, is diagonal with elements equal to the
variance of each of the measurements. The generated data, 𝜂 , are used
as the input for Algorithm 1.

The algorithm requires computing predicted data (𝑗) = (𝑢(𝑗)), 𝑗 =
1,… , 𝐽 , at the prediction step. The computations are performed using
porosity, 𝜑(𝑗), and permeability, 𝐊(𝑗), calculated for every 𝑢(𝑗)𝑛 using
Eq. (13). The parameter 𝑢(𝑗)𝑛 is updated at the end of each iteration of
Algorithm 1.
5

3.2. Rectangular 2D component

The aim of this virtual experiment is to identify defects in a flat
rectangular preform. A schematic drawing of a rectangular injection
tool is shown in Fig. 2(a). Six pressure sensors and seven equally spaced
linear flow sensors were placed in the tool. A constant pressure of
0.4⋅105 Pa was set at the three inlets and 0 Pa at the outlet. Mesh
convergence studies indicated that the mesh consisting of 1346 cells
shown in Fig. 2(b) is suitable to obtain accurate results.

It is assumed that the reinforcement contains two circular defects of
radius 𝑟 = 0.025 m with centres at coordinates (0.042 m, 0.108 m) and
(0.055 m, 0.205 m), respectively. The porosity and permeability values
are lower in the defect regions than in the background regions (outside
of defect regions). Both porosity and permeability are represented using
Gaussian random fields (see details in Appendix A) to account for
variability within the defects and the background regions. The true
porosity, 𝜑†(𝐱), and true permeability, 𝐾†(𝐱), for this virtual experiment
are shown in Fig. 2(c). It is to be noted that the permeability is assumed
to be isotropic in this example. Hence, it can be represented as a
scalar. Parameters of the Gaussian random field generation are given
in Appendix B.

The true values, 𝜑†(𝐱) and 𝐾†(𝐱), are used to simulate the RTM
process and generate virtual (noise-free) data, . Standard deviations
of 475 Pa and 1.4 × 10−3 m for pressure and flow measurements,
respectively, were used to generate the corresponding components of
𝜂. These values correspond to 0.5% of the maximum pressure and 1.5%
of the maximum flow front distance. The (squares of) these values
are used in the diagonal of the error covariance matrix, 𝛴. Virtual
measurements are used to infer 𝜑†(𝐱) and 𝐾†(𝐱) within the Bayesian
approach discussed in Section 2.3.

A prior for 𝑢, i.e. an initial guess of porosity and permeability, is
selected to be un-informative, which in particular means that porosity
and permeability can take values from a wide range. Selection of the
prior does not rely on information about defects (neither on their
sizes nor locations). Details of the selected values for the parameters
are given in Appendix B. An initial ensemble {𝑢(𝑗)0 }𝐽𝑗=1 with 𝐽 = 350
amples, which is generated from the prior 𝑢, is used to compute the

corresponding ensemble of porosity and permeability using Eq. (13).
Several samples from the prior ensembles of porosity are shown in
Fig. 3. Permeability samples have the same structure as porosity sam-
ples, but no functional dependence between permeability and porosity
values is imposed. The samples from the priors show substantial
variability between them in terms of location and shape of defects and
values of porosity and permeability , which is the result of selecting
a wide range of parameters of the prior 𝑢. The mean and standard
deviation of both distributions are almost uniform over the entire
domain. The probability of the presence of a defect, as defined by
Eq. (22), for this prior is close to zero everywhere in the domain.

Reconstructing the true material properties, the REnKA algorithm
converged after 7 iterations using the selected prior. The computational
time for a single sample was about 90 s on a desktop PC (Intel Xeon E5-
1660 v4 @ 3.2 GHz) using Ansys Fluent© 19.1, which brings the total
cost of the problem to about 61 CPU-hours. The total time required
can be reduced significantly by running samples in parallel (e.g. the
total time will be about 36 min if executed on 100 CPUs). Fig. 4
shows several samples from the posterior ensemble. Each of these
samples contains defects of similar shape as well as some variability
outside of these defects which varies from sample to sample. Fig. 5
shows a comparison between the true porosity and permeability and
the inferred mean values, the standard deviation of the porosity and
permeability, and the local defect probability as computed by Eq. (22).
This comparison shows that, although the selected prior contained no
knowledge about mean porosity values or correlation length of defects,
the position and shape of the defects are predicted with high accuracy
as can be seen from both mean estimates and defect probability plots. It

also can be seen that the correlation length in porosity and permeability
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Fig. 2. (a) Geometry of the rectangular tool with its dimensions in mm; (b) Corresponding mesh and positions of injection gates and vent; (c) True porosity 𝜑†(𝑥) and true
permeability 𝐾†(𝑥).
Fig. 3. Porosity samples from the prior distributions.
Fig. 4. Porosity samples from the posterior distributions.
field is restored and that it is possible to use these posterior prediction
to restore a relationship between porosity and permeability. Another
observation is that the variability of the estimates is significant around
the defects and near some of the edges, which is a result of uncertainty
in predictions.

The accuracy of the inversion can be estimated by comparing the
input data with data from the posterior after the algorithm converged.
Prior and posterior values of resin pressure at one of the pressure
sensors (the bottom-left sensor on Fig. 2(a)) are shown in Fig. 6
along with prior and posterior predictions for flow front positions as
measured by the flow sensor on the left in Fig. 2(a). It can be seen
that the values from the prior ensemble have wide uncertainty around
the experimental results, which shows that the selected prior covers the
range of expected results. The resin pressure and flow front position
6

from the posterior distributions have very narrow confidence intervals
and have good fit to the results based on the input data.

From the good quality of the inversion (i.e. accurate estimates
of pressure and flow front measurements), it is possible to conclude
that the algorithm can produce accurate estimations of properties and
defects using an un-informative (wide) prior together with sufficiently
informative pressure and flow front data. Therefore, a prior has no
substantial effect on the posterior estimates in a data-rich setting, pro-
vided that the prior reflects possible variety of properties encountered
in the physical problem. However, selection of a prior in a less data-
rich setting becomes more important and would require employing
additional techniques such as Bayesian model selection [36].

Apart from the prior selection, the number, type (pressure or flow)
and accuracy of sensors also play an important role in the quality of
the produced estimates. Numerical experiments conducted in a similar
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Fig. 5. True porosity and permeability and their inferred estimates (mean and standard deviation) along with the defect probability as defined by Eq. (22).
Fig. 6. (a) Prior predictive equal-tailed 95% confidence intervals of resin pressure and flow front measurements and virtual data (red line); (b) Posterior predictive equal-tailed
95% confidence intervals of resin pressure and flow front measurements and virtual data. The data are obtained at the bottom-left pressure sensor and the left flow sensor shown
in Fig. 2(a).
setting [12] showed that lower number of sensors can be used to
detect large defects but the uncertainty of the predictions will be higher
than shown in the experiment above. However, other features such as
correlation lengths are often not recovered precisely, unless the number
of sensors is sufficiently high and the measurement error is relatively
low. It also should be noted that flow front sensors can be replaced by
pressure sensors with no reduction in the inversion quality [12].

The number of particles, 𝐽 , was chosen on the basis that it provided
robust estimates of the unknown properties. Specifically, additional
simulations using more particles for the initial ensemble produced
similar posterior statistics but did not improve the quality of the
inversion. While the optimal choice for the number of particles used
within REnKA is still an open problem, existing work confirms that
7

𝐽 ∈ [200, 400] is a good compromise between computational cost and
accuracy [12,35]

3.3. 3D component

An adapted geometry of a 3D component was used to validate
REnKA for a more complex 3D problem. The component, shown in
Fig. 7(left), has overall dimensions of 0.34 m × 0.10 m × 0.02 m,
which is close to the dimensions of the rectangular 2D component, and
is fitted with 167 virtual pressure sensors located approximately on a
grid of 0.015 m × 0.015 m × 0.010 m. Resin flow through the preform
is simulated using ANSYS Fluent© under the same assumptions as
described in Section 3.1. The geometry was meshed with 33,622 cells.
The pressure at the inlet, located at the narrow end of the component,
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Fig. 7. Overall view of the component geometry (left); Permeability defects in the component preform (right).
Fig. 8. Samples from the prior porosity ensembles.
Fig. 9. True, predicted mean and standard deviation of porosity and permeability.
is set to 105 Pa. The pressure at the vent, located at the wide end of the
component, is set to 0 Pa.

The preform in this virtual experiment contains three defects, where
porosity and permeability are higher than the corresponding properties
of the background. It was assumed that the true porosity, 𝜑†(𝐱), has
values of 0.5 in the background and of 0.7 in the defects, as shown in
Fig. 7(right). For simplicity, there is no local variability in porosity and
permeability within the background or defect regions. The true per-
meability, 𝐾†(𝐱), was again assumed to be isotropic. It was calculated
assuming that the dependence on porosity can be expressed as

𝐾(𝐱) = 𝑎(1 − 𝜑(𝐱))𝑏, (24)

where the parameters were selected as 𝑎 = 10−10 m2 and 𝑏 = −1.4.
However, this relationship is assumed only between the true porosity
and true permeability and is not used within the inversion algorithm.

As gaps may form between the preform and the female part of the
RTM tool along the bends in the component, effects similar to race-
tracking may occur during mould filling. These defects are modelled
explicitly as regions with higher porosity and permeability.

Virtual measurements, 𝜂 , are used to infer 𝜑†(𝐱) and 𝐾†(𝐱) within
the Bayesian approach discussed in Section 2.3. The virtual pressure
measurements are superimposed with 1% noise. For the inversion, a
2D three-level parametrisation of porosity and permeability fields is
8

employed as described in Appendix A.4. The parametrisation assumes
that porosity and permeability for each region are fixed for each
sample, but these values vary between samples. The generated 2D fields
are mapped onto the 3D geometry preserving the in-plane distances
between points.

An initial ensemble of 𝐽 = 400 particles is used to compute the
corresponding ensembles of porosity and permeability. The compu-
tational time for a single sample was about 700 s on the desktop PC
as specified above, which brings the total cost of the problem to about
855 CPU-hours. The computational time can be reduced significantly by
running the analysis in parallel (e.g. the total time will be about 8.5 h
if executed on 100 CPUs). Selected samples of the prior ensembles of
porosity are shown in Fig. 8. Permeability samples follow same the pat-
tern, but no functional dependence between permeability and porosity
values is imposed. This choice of prior does not assume any knowledge
of the positions of defects and has a substantial local variability.

Using the described setting, REnKA converged after 11 iterations.
The mean is computed from the ensembles of porosity and permeability
to identify locations of the defects. It is shown in Fig. 9 along with
the true porosity, 𝜑†(𝐱), and permeability, 𝐾†(𝐱). It can be seen that
the inferred porosity and permeability match the true porosity and
permeability in the preform in terms of position and shape of the
defects. However, the mean values of porosity and permeability in the
background and defect regions are not exactly equal to the true porosity
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Fig. 10. Predicted defect probability.

Fig. 11. Experimental setup in the lab.

and permeability values. Yet, the difference between these values is
less than 5%. The calculated standard deviations do not show large
variability anywhere but around the intentionally induced defects. The
defect probability, shown in Fig. 10, also shows high values only for
the regions where the defects were placed intentionally. This accurate
detection of complex defects in the 3D preform is enabled by the large
number of sensors employed in this virtual experiment. It is expected
that smaller numbers of sensors will yield higher standard deviations
of porosity and permeability, and hence a defect probability map with
less sharp boundaries between regions with and without defects.

4. Lab experiments

A rectangular mould with a geometry and a configuration of pres-
sure sensors identical to that used in Section 3.2 (three inlet gates and
one outlet) was used in the experiments. The mould consists of a steel
bottom, a steel spacer frame of 2 mm thickness, and a transparent
PMMA top. Each of the three inlets is connected to a separate pres-
surised fluid tank fitted with an electro-pneumatic pressure regulator.
Six pressure transducers are mounted in the bottom plate of the mould.
A digital video camera was used to record the mould filling process and
obtain flow front positions. The experimental setup is shown in Fig. 11.

A continuous glass fibre random mat with an areal weight of (259±
15) g/m2 was used in the experiments. Preforms consisted of 7 layers
of the reinforcement compacted to a porosity of approximately 0.71.
Defects were created by placing circular patches of 4 additional layers
of the reinforcement in the middle of the preforms, between the second
and third layers, as shown in Fig. 12. Size and positions of the defects
are the same as described in Section 3.2. The injected fluid was engine
oil with a viscosity of 0.106 Pa s at the test temperature. The injection
pressure at all three gates was set to 0.4⋅105 Pa.

Measurements from the pressure transducers were collected at a
rate of 10 s−1 during the experiments. These measurements were
9

Fig. 12. (a) Defects in a dry preform; (b) Defects (red dashed circles) and their effect
on the fluid flow during an injection.

resampled to create a data vector with length of about 200 readings.
The video of the mould filling was analysed in MATLAB© to emulate
data from seven linear flow front sensors. The collected experimental
data, 𝜂 , were used to infer preform porosity and permeability using
the Bayesian approach. The algorithm was initialised with the same
initial ensemble as in Section 3.2. Gaussian Process (GP) Regression
was used to estimate the measurement error via the MATLAB© toolbox
GPStuff [37]. Assuming that sensors are independent of each other, a
GP was fitted to the experimental data from each sensor. Using the
GP built-in routine for maximum likelihood estimation, the variance of
each GP is inferred. These variances are used to construct the diagonal
of the measurement error covariance 𝛴.

REnKA converged after 8 iterations. The posterior ensemble of
unknown parameters was used to infer the porosity and permeability
distributions, the mean and standard deviation of which are shown in
Fig. 13. The defect probability map computed using Eq. (22) is also
shown in Fig. 13. The porosity and permeability distributions indicate
the presence of defects which were intentionally induced. Additional
variability in porosity and permeability (in the background) reflects
material-inherent variability of the reinforcement but also possible
residual errors in the algorithm. Apart from the two large defects in the
porosity and permeability, the restored mean distributions of porosity
and permeability show a number of smaller defects. However, the
corresponding calculated standard deviations show higher values near
these smaller defects, indicating higher uncertainty of results at these
locations. The probability for most of these smaller defects is below
0.9, which is lower than the probability of the two large defects. These
smaller defects can be attributed to uncertainty of the experiment or
local variability as well as to the lack of experimental data, noise in
the measurements or modelling errors.

The posterior values of pressure and flow front positions, which
show how well the inversion algorithm approximated the input data,
show an excellent fit to the data in Fig. 14.

5. Conclusions

The Bayesian inversion algorithm, REnKA, has been applied in this
study to reconstruct local porosity and permeability values using data
obtained during the resin injection process in RTM. The algorithm
requires a smaller number of samples than a straightforward Monte
Carlo algorithm. It can perform computations on each of the samples
in parallel, which makes this algorithm faster and more scalable than
the inversion methods based on non-linear optimisation.
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Fig. 13. Mean and standard deviations of posterior porosity and permeability distributions along with the defect probability map.
Fig. 14. Left: Posterior predictive equal-tailed 95% confidence intervals for resin pressure and experimentally measured resin pressure values for the bottom-left sensors in Fig. 2(a);
Right: Posterior predictive equal-tailed 95% confidence intervals for flow front position and experimental data for the two left flow sensors in Fig. 2(a).
The ensemble of samples makes it possible to estimate statistical
characteristics of the material parameters, such as mean and standard
deviation. Similarly, the probability for the presence of defects can be
computed. This is not possible in deterministic inversion algorithms
including those based on Machine Learning.

The algorithm also employs a novel three-level parametrisation,
which is important in modelling complex random fields. In particu-
lar, the parametrisation enabled to describe random fields with two
(possibly unconnected) regions with different properties, characterised,
e.g. by different mean values and different length scales.

The algorithm was tested using both simulated and experimental
in-process data. It was demonstrated that the algorithm can restore the
defects with high precision in terms of shape and position, as well as
values of porosity and permeability. The variability of the calculated
values was shown to be high near the defect interfaces, and, in some
cases, near the edges of the domain, where in-process data could not
be obtained. It was shown that the algorithm is capable of detecting
defects such as race-tracking in 3D components for which the two
length scales differ by an order of magnitude.

The algorithm was validated using experimental data obtained from
injection experiments with two intentionally induced defects. Both of
10
the defects were detected with a good precision in terms of shape and
position. The uncertainty in the calculations was higher than for the
virtual experiments owing to the presence of experimental errors as
well as possibly limited precision of the algorithm and accuracy of the
resin flow model.

This study shows that in-process data can be successfully used
to infer local porosity and permeability distributions. The inversion
algorithm can be used either for characterisation of material or for
defect detection to estimate the manufacturing process and product
quality.

Additional studies on finding optimum numbers and positions of
sensors for engineering problems are required based on the theory of
optimal experimental design. Applicability of the algorithm in less data-
rich settings also depends on appropriate selection of the prior which
can be constructed using more complex parametrisation than presented
here or generated using a narrow range of parameters. Speeding up
the algorithm is another area for future work. It can be made faster
by having a quicker RTM solver (e.g. by making use of Model Order
Reduction techniques) and better selection of priors (e.g. by quickly
informing them by collected data). Further testing of the algorithm in
virtual and lab settings is also of substantial interest with the ultimate
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objective to use it in an industrial environment or in active control
systems.
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Appendix A. Parametrisation of physical properties

A.1. First level parametrisation: level-set

The first level of the parametrisation is based on defining a random
level-set function, 𝜉𝐿(𝐱), which divides a preform domain, 𝐷, into two
egions using a prescribed parameter, 𝜆 ∈ R:

𝜆
𝜉𝐿

= {𝐱 ∈ R𝑑
| 𝜉𝐿(𝐱) > 𝜆}, and 𝐷 ⧵ 𝐴𝜆

𝜉𝐿
. (A.1)

Then, the porosity and permeability fields are parametrised by four
andom functions 𝜉𝐾1

(𝐱), 𝜉𝐾2
(𝐱), 𝜉𝜑1

(𝐱), 𝜉𝜑2
(𝐱), and the random level-set

function 𝜉𝐿(𝐱) as follows:

𝜑(𝐱) = exp(𝜉𝜙1 (𝐱)) + (exp(𝜉𝜙2 (𝐱)) − exp(𝜉𝜙1 (𝐱)))1𝐴𝜆
𝜉𝐿
(𝐱), (A.2)

𝐊(𝐱) = exp(𝜉𝐾1
(𝐱)) + (exp(𝜉𝐾2

(𝐱)) − exp(𝜉𝐾1
(𝐱)))1𝐴𝜆

𝜉𝐿
(𝐱), (A.3)

where 1𝐴𝜆
𝑥𝑖𝐿

(𝐱) is the indicator function defined by

1𝐴𝜆
𝜉𝐿
(𝐱) =

{

1 if 𝐱 ∈ 𝐴𝜆
𝜉𝐿
,

0 if 𝐱 ∉ 𝐴𝜆
𝜉𝐿
.

(A.4)

If 𝐱 belongs to 𝐴𝜆
𝜉𝐿

, (𝜑(𝐱),𝐊(𝐱)) = (exp(𝜉𝜙1 ), exp(𝜉𝐾1
)), else (𝜑(𝐱),

𝐊(𝐱)) = (exp(𝜉𝜙2 ), exp(𝜉𝐾2
)). For example, it can be assumed that the

first region has nominal/design values of (𝜑(𝐱),𝐊(𝐱)), and the second
region (not necessarily connected) contains possible material defects
as shown in Fig. 1). The exponentials in Eqs. (A.2) and (A.3) are used
to ensure that porosity and permeability are always positive.

Parametrisation in Eqs. (A.2) to (A.4) can be expressed in the
operator form:

{𝜉𝛼}𝛼∈ ↦ 1({𝜉𝛼}𝛼∈ ) = (𝜑,𝐊), (A.5)
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where  = {𝐾1, 𝐾2, 𝜙1, 𝜙2, 𝐿} is the set of indices.
A.2. Second level parametrisation: random fields

The second level of parametrisation defines variability within the
two regions defined by the level-set parametrisation. For this purpose,
each 𝜉𝛼(𝐱) is parametrised in terms of random fields (RFs) [38,39]. For
simplicity, the 2D case is considered here, but the formulation can be
extended to 3D RFs.

For a fixed 𝛼, the function 𝜉𝛼(𝑥) is found by solving the following
fractional stochastic PDE:
[

𝐼 − ∇ ⋅

(

𝐿2
𝛼,1 0
0 𝐿2

𝛼,2

)

∇

](𝜈𝛼+1)∕2

(𝜉𝛼(𝐱) − log 𝛽𝛼) =

[

4
√

𝐿𝛼,1𝐿𝛼,2𝜎
2
𝛼𝜋

𝛤 (𝜈𝛼 + 1)
𝛤 (𝜈𝛼)

]

𝜔𝛼(𝐱), (A.6)

here 𝜔𝛼(𝐱) is a generalised random function (e.g., Gaussian white
oise), 𝐼 is the identity operator, and 𝛤 is the gamma function. The
alue of log 𝛽𝛼 defines the mean value of 𝜉𝛼 , 𝜈𝛼 is a parameter that con-
rols the smoothness (or roughness) of 𝜉𝛼(𝐱), 𝜎𝛼 is an amplitude scale,
nd 𝐿𝛼,1 and 𝐿𝛼,2 are positive scalars which describe intrinsic length-
cales in the two orthogonal directions. These length-scales characterise
orrelation lengths of 𝜉𝛼(𝐱). For simplicity, it is assumed here that the
alue of 𝐿1 is specified along the horizontal direction. Anisotropic vari-
bility along a specific direction can also be incorporated via suitable
odifications of Eq. (A.6) [38].

Computing 𝜉𝛼 via solving Eq. (A.6) requires the following set of
nputs parameters:

𝛼 = (𝛽𝛼 , 𝜎𝛼 , 𝜈𝛼 , 𝐿𝛼,1, 𝐿𝛼,2, 𝜔𝛼), (A.7)

here the subindex 𝛼 is included in the parameters to indicate that each
𝛼(𝐱) has its own parametrisation. Therefore, Eq. (A.6) can be written
n operator form as

𝛼 ↦ 2(𝑢𝛼) = 𝜉𝛼 . (A.8)

y composing the operators introduced in Eqs. (A.5) and (A.8), the
ollowing mapping,  , is obtained

= {𝑢𝛼}𝛼∈ ↦ 1({2(𝑢𝛼)}𝛼∈ ) = (𝑢) = (𝜑,𝐊) (A.9)

rom the inputs, 𝑢, to the porosity and permeability, (𝜑,𝐊).
The parametrisation defined in Eq. (A.6) is used in a deterministic

ashion once the parameters 𝑢𝛼 in Eq. (A.7) are specified.
If the function 𝜔𝛼(𝐱) is Gaussian white noise, 𝜉𝛼(𝐱) is a Gaussian RF

ith mean log 𝛽𝛼 , as shown in [39], and a covariance operator given
y an auto correlation function of the Matern class [38,40,41]:

CF(𝐱) = 𝜎2𝛼
1

2𝜈𝛼−1𝛤 (𝜈𝛼)
‖𝐱‖𝜈𝐿𝛼,1 ,𝐿𝛼,2

𝐾𝜈

(

‖𝐱‖𝐿𝛼,1 ,𝐿𝛼,2

)

, (A.10)

where 𝐾𝜈 is the modified Bessel function of the second kind of order 𝜈,
and

‖𝐱‖𝐿𝛼,1 ,𝐿𝛼,2
≡

√

√

√

√

𝑥21
𝐿2
𝛼,1

+
𝑥22
𝐿2
𝛼,2

.

While there are other approaches (e.g. Karhunen–Loeve expansion)
to characterise Gaussian RFs, the advantages of the formulation in
Eq. (A.6) is that it allows to consider the case of spatially variable
length scales, which is essential to identify defects within complex
geometries.

A.3. Third level parametrisation: non-constant length scales

The parametrisation in Eq. (A.9) assumes constant length scales,
𝐿𝐿,1 and 𝐿𝐿,2, for the level-set function, 𝜉𝐿, which parametrises the
interface between two regions with different physical properties. How-
ever, in order to infer/capture defects with various geometries, the
function 𝜉𝐿(𝐱) in Eqs. (A.2) to (A.3) needs to have spatially varying
length-scale. This is crucial in the case where the defect regions display
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significant changes throughout the preform. For example, regions of
race tracking are typically long and thin [9], while defects due to
manufacturing errors in laying up preforms are of arbitrary shape
which can have the same characteristic lengths in both directions.
Hence, in

𝜉𝐿(𝐱) = 2(𝑢𝐿) = 2(𝛽𝐿, 𝜎𝐿, 𝜈𝐿, 𝐿𝐿,1, 𝐿𝐿,2, 𝜔𝐿), (A.11)

𝐿𝐿,1 and 𝐿𝐿,2 are no longer assumed to be positive scalars but expo-
entials of RFs:

log𝐿𝐿,𝑖(𝐱) = 2(𝛽𝑖, 𝜎𝑖, 𝜈𝑖, 𝐿𝑖,1, 𝐿𝑖,2, 𝜔𝑖), 𝑖 = 1, 2, (A.12)

where 𝑢𝑖 = (𝛽𝑖, 𝜈𝑖, 𝐿𝑖,1, 𝐿𝑖,2, 𝜃𝐿𝑖
, 𝜔𝑖) are the RF parametrisation inputs.

All the inputs from the considered 3-layer parametrisation can be
combined as

𝑢 ≡
{

{

𝑢𝛼
}

𝛼∈{𝐾1 ,𝐾2 ,𝜑1 ,𝜑2 ,1,2,}
, 𝛽𝐿, 𝜎𝐿, 𝜈𝐿, 𝜔𝐿

}

. (A.13)

Composition of the operators introduced in Eqs. (A.12), (A.11), (A.8)
and (A.5) gives the parametrisation,  , for the variable length scale
case

𝑢 ↦ (𝑢) = (𝜑,𝐊) = 1({𝜉𝛼}𝛼∈ ) = 1

(

{

{2(𝑢𝛼)}𝛼∈⧵{𝐿}, 𝜉𝐿

}

)

= 1

({

{2(𝑢𝛼)}𝛼∈⧵{𝐿},2(𝛽𝐿, 𝜎𝐿, 𝜈𝐿, 𝐿𝐿,1, 𝐿𝐿,2, 𝜔𝐿)

})

= 1

({

{2(𝑢𝛼)}𝛼∈⧵{𝐿},2(𝛽𝐿, 𝜎𝐿, 𝜈𝐿, exp(2(𝑢1)), exp(2(𝑢2)), 𝜔𝐿)

})

.

(A.14)

A.4. A simplified 3-level parametrisation

A simplified version of the 3-level parametrisation described in Ap-
pendix A.3 was used for experiments in Section 3.3. More specifically,
it was assumed that the porosity and isotropic permeability are given
by:

𝜑(𝐱) = 𝛽𝜑1
+ (𝛽𝜑2

− 𝛽𝜑1
)1𝐴𝜆

𝜉𝐿
(𝐱), (A.15)

𝐾(𝐱) = 𝛽𝐾1
+ (𝛽𝐾2

− 𝛽𝐾1
)1𝐴𝜆

𝜉𝐿
(𝐱), (A.16)

where 𝛽𝐾1
, 𝛽𝐾2

, 𝛽𝜑1
and 𝛽𝜑2

are constants, 1𝐴𝜆
𝑥𝑖𝐿

(𝐱) is the indicator func-
tion defined in Eq. (A.4), and 𝜉𝐿(𝐱) is the level-set function. Eqs. (A.15)
to (A.15) define the first level of the parametrisation:

(𝛽𝐾1
, 𝛽𝐾2

, 𝛽𝜑1
, 𝛽𝜑2

, 𝜉𝐿) ↦ 1(𝛽𝐾1
, 𝛽𝐾2

, 𝛽𝜑1
, 𝛽𝜑2

, 𝜉𝐿) = (𝜑(𝐱), 𝐾(𝐱)) (A.17)

The second level parametrisation is applied to level-set function as
before, i.e.

𝜉𝐿(𝑥) = 2(𝑢𝐿) = 2(𝛽𝐿, 𝜎𝐿, 𝜈𝐿, 𝐿𝐿,1, 𝐿𝐿,2, 𝜔𝐿). (A.18)

Finally, the third-level parametrisation defines non-constant length
scales, 𝐿𝐿,1 and 𝐿𝐿,2, as discussed in Appendix A.3 with the exponential
of RFs:

log𝐿𝐿,𝑖(𝐱) = 2(𝑢𝑖), 𝑖 = 1, 2, (A.19)

where 𝑢𝑖 = (𝛽𝑖, 𝜎𝑖, 𝜈𝑖, 𝐿𝑖,1, 𝐿𝑖,2, 𝜔𝑖) are the RF parametrisation inputs.
All inputs from the considered 3-level parametrisation can be com-

bined as

𝑢 ≡
{

𝑢1, 𝑢2, {𝛽𝛼}𝛼∈ , 𝜎𝐿, 𝜈𝐿, 𝜔𝐿

}

. (A.20)

Composition of the operators introduced in Eqs. (A.12), (A.11), (A.8)
and (A.5) gives the parametrisation,  , for the variable length scale
case

𝑢 ↦ (𝑢) = (𝜑,𝐾) = 1(𝛽𝐾1
, 𝛽𝐾2

, 𝛽𝜑1
, 𝛽𝜑2

, 𝜉𝐿)

=  (𝛽 , 𝛽 , 𝛽 , 𝛽 , (𝑢 ))
12

1 𝐾1 𝐾2 𝜑1 𝜑2 2 𝐿 t
= 1

(

𝛽𝐾1
, 𝛽𝐾2

, 𝛽𝜑1
, 𝛽𝜑2

,2(𝛽𝐿, 𝜎𝐿, 𝜈𝐿, 𝐿𝐿,1, 𝐿𝐿,2, 𝜔𝐿)
)

= 1

(

𝛽𝐾1
, 𝛽𝐾2

, 𝛽𝜑1
, 𝛽𝜑2

,2(𝛽𝐿, 𝜎𝐿, 𝜈𝐿, exp(2(𝑢1)), exp(2(𝑢2)), 𝜔𝐿)
)

.

(A.21)

A.5. Numerical implementation

The main challenge for the numerical implementation of the
parametrisation maps, (𝑢), from the previous subsections lies in
computing RFs by solving Eq. (A.6). This challenge is addressed by
implementing the techniques proposed by Lindgren et al. [39] in
MATLAB©. A regular grid of 100 × 100 cells is used to discretise these
RFs which, in turn, define the porosity and permeability (𝜑(𝑗),𝐊(𝑗)) =
(𝑢(𝑗)𝑛 ). These properties are then interpolated on the mesh used in
ANSYS Fluent© (see Section 3.2).

Eq. (A.6), which needs to be solved for each particle at every
iteration of the REnKA algorithm, is a relatively simple linear equation
that can be solved in a few seconds with standard computer resources.
Hence the cost is negligible compared to the cost of running the flow
simulations. As stated earlier, the equation is solved using an in-house
MATLAB© script, but existing PDE solvers can be used as well. For the
sake of simplicity, the examples presented here used 2D random fields
or 2D random fields mapped into a 3D mesh (Section 3.3). However,
REnKA can be applied to directly infer 3D random fields using the
corresponding 3D version of Eq. (A.6) and more sophisticated PDE
solvers (e.g. FEniCS [42]) which can work with arbitrary geometries.

A.6. Probability to find a defect

The probability of a point 𝐱 to be in the defective region is charac-
terised via Eq. (A.4) (recall that 𝜆 is fixed a priori). For a fixed 𝐱 ∈ 𝐷∗,
the probability for the value of the level-set function 𝜉𝐿(𝐱) to be above
the threshold that defines the defective region is:

𝑃 (𝐱) = P
(

𝜉𝐿(𝐱) > 𝜆
)

. (A.22)

This probability can be expressed as

𝑃 (𝐱) = ∫

∞

𝜆
𝜋𝜉 (𝑦)𝑑𝑦 = ∫

∞

−∞
1{𝑦>𝜆}𝜋𝜉 (𝑦)𝑑𝑦, (A.23)

where 𝜋𝜉 is the probability density of the random variable 𝜉𝐿(𝐱) for the
fixed 𝐱. From the prior/posterior ensemble for 𝑢, the ensemble 𝜉(𝑗)𝐿 (𝐱)
can be constructed. This ensemble is a sample distribution of 𝜉𝐿(𝐱).
Therefore, using Eq. (A.4) again:

𝑃 (𝐱) = ∫

∞

−∞
1{𝑦>𝜆}𝜋𝜉 (𝑦)𝑑𝑦 ≈ 1

𝐽

𝐽
∑

𝑗=1
1𝜉(𝑗)𝐿 (𝐱)>𝜆 = 1

𝐽

𝐽
∑

𝑗=1
1𝐴𝜆

𝜉(𝑗)𝐿

(𝐱). (A.24)

This approximation gives the confidence level for whether a defect is
present or not at a point 𝐱.

Appendix B. The prior

B.1. Rectangular part

For the experiments in Sections 3.2 and 4, the 2-level parametrisa-
tion from Appendix A.2 was used. In this case, the unknown parameters
are comprised in

𝑢 ≡ {𝑢𝛼}𝛼∈ =
{(

𝛽𝛼 , 𝜎𝛼 , 𝜈𝛼 , 𝐿𝛼,1, 𝐿𝛼,2, 𝜔𝛼

)}

𝛼∈
. (B.1)

While the proposed Bayesian inversion algorithm can be used to
nfer all the parameters encapsulated in 𝑢, for simplicity, some of these
arameter are kept constant. The amplitude scales, 𝜎𝛼 , were selected
ccording to the changes (i.e., an order of magnitude) expected in
he RFs for porosity and permeability within each region. Similarly,
he smoothness parameters 𝜈 are chosen so that the samples of these
𝛼
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Table 1
Fixed parameters for 2D problems. Unit of 𝜎𝐾1

and 𝜎𝐾2
is

log(m2).
𝛼 𝜈𝛼 𝜎𝛼
𝜑1 1.0 0.025
𝜑2 1.0 0.025
𝐾1 1.0 0.05
𝐾2 1.0 0.05
𝐿 3.0 0.5

fields display realistic degrees of variability as shown in Fig. 3. For
example, it is expected that the level-set function, which defines the
interface between two region, is sufficiently smooth while the porosity
and permeability fields exhibit more irregularities and variations. This
is ensured by choosing 𝜈𝐿 = 3.0 and 𝜈𝛼 = 1.0, respectively. Values of
the constant parameters are given in Table 1.

Since parameters 𝜎𝛼 and 𝜈𝛼 are constants and do not need to be
inferred, the focus is on the parameters 𝛽𝛼 , 𝐿𝛼,1, 𝐿𝛼,2, and 𝜔𝛼(𝐱). It is
assumed that, under the prior, the unknown parameters are indepen-
dent random variables/functions (for all 𝛼 ∈ ), and so the joint prior
can be written as

P(𝑢) =
∏

𝛼∈
P(𝑢𝛼) =

∏

𝛼∈
P(𝛽𝛼)P(𝐿𝛼,1)P(𝐿𝛼,2)P(𝜔𝛼), (B.2)

where P(𝛽𝛼), P(𝐿𝛼,1), P(𝐿𝛼,2) and P(𝜔𝛼) are the corresponding prior
distributions. Additional prior knowledge of these parameters, such
as correlations between them, can be also incorporated within the
proposed framework.

For all 𝛼 ∈ , 𝜔𝛼 are chosen to be Gaussian white noise (informally
denoted as P(𝜔𝛼) = 𝑁(0, 𝐼)). As discussed earlier, this choice implies
that all RFs [39], {𝜉𝛼}𝛼∈ , employed for the parametrisation are, under
the prior, Gaussian with Matern covariance. The mean of each field 𝜉𝛼
is log 𝛽𝛼 . The prior distributions for the 𝛽𝛼 are selected as follows

P(𝛽𝜑1
) = 𝑈 [0.65, 0.75], P(𝛽𝜑2

) = 𝑈 [0.4, 0.6], (B.3)
P(𝛽𝐾1

) = 𝑈 [4.8 × 10−10, 7.2 × 10−10] m2,

P(𝛽𝐾2
) = 𝑈 [0.9 × 10−10, 3.7 × 10−10] m2, (B.4)

where 𝑈 [𝑎, 𝑏] denotes the uniform distribution on the interval [𝑎, 𝑏].
This selection of distributions for the 𝛽𝜑1

, 𝛽𝜑2
, 𝛽𝐾1

and 𝛽𝐾2
ensures that

the average values for the RFs are within a reasonable range for the
corresponding regions of low/high porosity and permeability.

The parameter 𝛽𝐿 is set to be equal to 1, which amounts to selecting
a zero mean field (i.e., log 𝛽𝐿 = 0) throughout the inversion process.
This is possible because the level-set function 𝜉𝐿 is an artefact that is
employed to define two regions in the preform. For this experiment,
the threshold 𝜆 in Eq. (A.1) is chosen to be equal to 0.5.

For the distribution of the length scales, the following priors were
used

P(𝐿𝛼,1) = 𝑈 [𝑑𝑥∕20, 𝑑𝑥∕4], P(𝐿𝛼,2) = 𝑈 [𝑑𝑦∕20, 𝑑𝑦∕4], 𝛼 ∈  ⧵ 𝐿,

(B.5)

and

P(𝐿𝐿,1) = 𝑈 [𝑑𝑥∕20, 𝑑𝑥∕10], P(𝐿𝐿,2) = 𝑈 [𝑑𝑦∕20, 𝑑𝑦∕10], (B.6)

where 𝑑𝑥 = 0.12 m and 𝑑𝑦 = 0.28 m are the lengths of edges of the
rectangular preform.

The intervals in Eq. (B.5) ensure a wide range of correlation values
for the variability of porosity and permeability which are described via
the RFs 𝜉𝜑1

, 𝜉𝜑2
, 𝜉𝐾1

, 𝜉𝐾2
. Samples from these RFs, shown in Fig. 3,

show substantial differences in the values. Similarly, the intervals in
Eq. (B.6) enable description of, under the prior, different shapes of
interface between defects and background.
13
Table 2
Fixed parameters for 3D problem.
𝛼 𝜈𝛼 𝜎𝛼 𝐿𝛼,1 𝐿𝛼,2

1 2.0 0.2 𝑑𝑥/5 𝑑𝑥/5
2 2.0 0.2 𝑑𝑥/5 𝑑𝑥/5
L 2.0 0.5 – –

B.2. 3D component

For the experiment of Section 3.3, the simplified 3-level parametri-
sation described in Appendix A.4 was used. The parametrisation in
Eq. (A.20) was simplified by fixing some of these parameters as dis-
played in Table 2, and the inversion was conducted on

𝑢 =
(

𝜔𝐿, 𝛽1, 𝛽2, 𝜔1, 𝜔2, {𝛽𝛼}𝛼∈⧵𝐿
)

.

All elements in 𝑢 are assumed to be independent, so that the prior can
be written as

P(𝑢) ≡ P(𝜔𝐿)P(𝛽1)P(𝛽2)P(𝜔1)P(𝜔2)
∏

𝛼∈⧵𝐿
P(𝛽𝛼). (B.7)

s before, the 𝜔𝛼 represent Gaussian white noise. Furthermore,

P(𝛽𝜑1
) = 𝐿𝑁(−0.9182, 0.0179), P(𝛽𝜑2

) = 𝐿𝑁(−0.3592, 0.0204), (B.8)

(𝛽𝐾1
) = 𝐿𝑁(−22.3097, 0.0167), P(𝛽𝐾2

) = 𝐿𝑁(−21.3211, 0.0677), (B.9)

P(𝛽1) = 𝑈 [𝑑𝑥∕25, 𝑑𝑦∕10], P(𝛽2) = 𝑈 [𝑑𝑥∕12, 𝑑𝑦∕6], (B.10)

here 𝐿𝑁(𝜇, 𝜎) is the log-normal distribution with parameters 𝜇 and 𝜎.
In Eq. (B.10), 𝑑𝑥 = 0.3257 m and 𝑑𝑦 = 0.0862 m are the dimensions of the
rectangular region used to generate the 2D porosity and permeability
distributions which were subsequently transformed into 3D fields as
described in Section 3.3.

Appendix C. ANSYS Fluent© solver settings

The following solver settings were used in ANSYS Fluent© 19.1: im-
plicit VOF-model formulation; SIMPLE algorithm was used for pressure–
velocity coupling. Spatial discretisation schemes were: (i) Green–Gauss
Node Based scheme for gradients, (ii) PRESTO! scheme for pressures;
(iii) third-order MUSCL methods for momentum; (iv) modified HRIC
method for volume fraction. Under-relaxation parameters were kept to
their default values. The convergence settings were set to 10−3 for all
variables.
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