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ABSTRACT
This article develops a class of adaptive cointegration tests for multivariate time series with nonstationary
volatility. Persistent changes in the innovation variance matrix of a vector autoregressive model lead to
size distortions in conventional cointegration tests, which may be resolved using the wild bootstrap, as
shown in recent work by Cavaliere, Rahbek, and Taylor. We show that it also leads to the possibility of
constructing tests with higher power, by taking the time-varying volatilities and correlations into account
in the formulation of the likelihood function and the resulting likelihood ratio test statistic. We find that
under suitable conditions, adaptation with respect to the volatility process is possible, in the sense that
nonparametric volatility matrix estimation does not lead to a loss of asymptotic local power relative to
the case where the volatilities are observed. The asymptotic null distribution of the test is nonstandard
and depends on the volatility process; we show that various bootstrap implementations may be used to
conduct asymptotically valid inference. Monte Carlo simulations show that the resulting test has good size
properties, and higher power than existing tests. Empirical analyses of the U.S. term structure of interest
rates and purchasing power parity illustrate the applicability of the tests.
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1. Introduction

An important approach to the analysis of cointegrated time
series is based on a likelihood analysis of the Gaussian vector
autoregressive (VAR) model, as developed by Johansen (1996).
The resulting estimators and test statistics, although derived
under the assumption that the disturbances are independent
and identically normally distributed, can be shown to retain
their asymptotic properties in more general circumstances. For
example, the asymptotic critical values for the likelihood ratio
(LR) test for the cointegration rank are still valid in the pres-
ence of leptokurtosis and time-varying volatilities, commonly
observed in daily financial time series, as long as the invariance
principle holds. Clearly, the resulting analysis is then based on
a misspecified model and hence on a pseudo-likelihood, such
that more efficient procedures may be based on the true like-
lihood function, which incorporates these characteristics. For
the case of stationary (generalized) autoregressive-conditional
heteroscedastic ((G)ARCH) processes, such procedures have
been developed in the univariate case by Ling and Li (1998,
2003) and Seo (1999), and for the multivariate (cointegration)
case by Li, Ling, and Wong (2001), Wong, Li, and Ling (2005),
and Seo (2007).

Recent developments in the univariate unit root literature,
however, have emphasized that volatility processes may display
nonstationary variation, such that the disturbances no longer
satisfy the conditions of an invariance principle, and hence
standard unit root tests lose their asymptotic validity. Possible
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causes of such nonstationarity include level shifts or other deter-
ministic trending patterns in the volatility, see Kim, Leybourne,
and Newbold (2002) and Cavaliere (2004), but also (near-)
integrated GARCH dynamics, see Boswijk (2001). Cavaliere
and Taylor (2007) and Beare (2018) developed two alternative
approaches to constructing unit root test statistics with the
conventional (Dickey–Fuller) asymptotic null distribution, and
Cavaliere and Taylor (2008) showed that application of the wild
bootstrap leads to asymptotically valid inference. Boswijk and
Zu (2018) derived the power envelope for unit root tests with
observable (nonstationary) volatility, and showed that consider-
able power gains may be obtained relative to procedures that do
not take the heteroscedasticity into account. They also showed
that when the volatility is unobserved, the power envelope may
be reached by an adaptive procedure based on nonparametric
volatility estimation.

This article seeks to extend Boswijk and Zu’s (2018) analysis
to a multivariate context, and hence develop powerful tests
for cointegration in the presence of nonstationary multivariate
(unconditional) heteroscedasticity. First, building on the analy-
sis of Hansen (2003), we derive the LR test for cointegration in a
VAR model with observed time-varying variance matrices and
Gaussian errors. Next, we consider the case of unknown volatil-
ity, and propose a two-step procedure where the volatility pro-
cess is estimated nonparametrically. Under suitable conditions,
the resulting cointegration test has the same asymptotic power
function as in the case of known volatility. The asymptotic
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null distribution of the test is nonstandard and depends on
the volatility function, such that asymptotic p-values have to
be obtained by Monte Carlo simulation or a bootstrap method;
we develop the theory for the wild bootstrap, as well as for the
volatility bootstrap (Boswijk and Zu 2018), where the bootstrap
errors are based on the nonparametric volatility estimate.

In a related line of research, Cavaliere, Rahbek, and Taylor
(2010, 2014) showed that application of the wild bootstrap to
the traditional (constant-variance) Gaussian pseudo-likelihood
ratio (PLR) statistic leads to a correctly sized cointegration test
in the presence of nonstationary volatility. Cavaliere et al. (2018)
showed that this result also holds if the lag order is unknown and
a consistent lag selection criterion is used. However, their anal-
ysis does not exploit the power gain potential in the presence of
nonstationary volatility.

The plan of the article is as follows. Section 2 presents the
model and assumptions, and characterizes the limiting behavior
of the process. In Section 3, we obtain an expression of the
LR statistic for the cointegration rank for the case of a known
volatility process, and we derive its limiting distribution, both
under the null hypothesis and under a sequence of local alterna-
tives. Section 4 discusses estimation of the volatility matrix, and
its impact on the resulting test for cointegration rank. Section 5
gives Monte Carlo evidence about the finite sample performance
of the test. Section 6 contains empirical applications of the test
to the term structure of interest rates in the United States, and
to purchasing power parity. Section 7 contains some conclud-
ing remarks, and proofs of all results are given in the online
Appendix.

Throughout the article, we use the notation Xn
p→X for

convergence in probability, Xn
w→X for convergence in distri-

bution, and Xn
w→pX for weak convergence in probability, see

Giné and Zinn (1990). Xn(u)
w→X(u), u ∈ [0, 1] denotes weak

convergence in D[0, 1]k, the product space of right-continuous
functions with finite left limits (càdlàg), under the Skorohod
metric. The notation �x� is used for the largest integer less than
or equal to x. For any n×m matrix A of full column rank m < n,
A⊥ denotes an n× (n−m) matrix of full column rank such that
A′⊥A = 0, and Ā = A(A′A)−1. The Euclidean norm of a column
vector x is denoted ‖x‖ = √

x′x, and similarly the Frobenius
norm of a matrix A is denoted ‖A‖ = √

tr(A′A).

2. The Model

Consider the VAR model of order k, written in error correction
form, for a p-variate time series {Xt , t = 1, . . . , n}:

�Xt = �Xt−1 +
k−1∑
j=1

�j�Xt−j + εt , (1)

where � and �j, j = 1, . . . , k − 1 are p × p coefficient matrices,
and where εt is a p-variate disturbance vector with mean zero.
The starting values {X1−k, . . . , X0} are considered fixed. For ease
of exposition, we first consider the model with no deterministic
components such as a constant or linear trend; extensions in this
direction are discussed at the end of Section 3.

We wish to test the null hypothesis:
H(r) : � = αβ ′,

where α and β are p × r matrices, 0 ≤ r < p. Note that H(r)
may be equivalently formulated as rank(�) ≤ r. Under this
hypothesis, the vector error correction model (VECM) becomes

�Xt = αβ ′Xt−1 +
k−1∑
j=1

�j�Xt−j + εt . (2)

This implies that Xt is integrated of order 1, with cointegration
rank r and cointegration matrix β , provided that the following
assumption is satisfied (Johansen 1996, Theorem 4.2):

Assumption 1. In model (2), (a) the p × r matrices α and
β are of full column rank r, (b) the characteristic equation∣∣∣Ip(1 − z) − �z − ∑k−1

j=1 �jzj(1 − z)
∣∣∣ = 0 has all its roots equal

to one or outside the unit circle, and (c) rank(α′⊥�β⊥) = p − r,
where � = Ip − ∑k−1

j=1 �j.

Under the assumption that the disturbances {εt}t≥1 are inde-
pendent and identically distributed (iid) Gaussian with mean
zero and positive definite variance matrix �, the likelihood
function for the model under H(r) is maximized by reduced
rank regression. From this, an explicit expression is available
for the LR test of H(r) in the unrestricted model H(p), that
is, against the alternative H(p)\H(r) : r < rank(�) ≤ p;
see Johansen (1996). Here we consider a deviation from the iid
assumption, allowing for unconditional heteroscedasticity:

Assumption 2. In model (2), the disturbances satisfy

εt = σtzt , t = 1, . . . , n,

where

(a) σt = σ(t/n), where σ(·) is a nonstochastic, nonsingular p×
p matrix valued function on [0, 1] ; its elements σij(·) are, for
all i, j = 1, . . . , p, piecewise Lipschitz continuous except on
a finite number d of discontinuity points u1, . . . , ud ∈ [0, 1].

(b) {zt}t≥1 satisfies E(zt|Ft−1) = 0 and E(ztz′
t|Ft−1) = Ip for

all t ≥ 1, where Ft = σ({zs}t
s=1), and supt≥1 E(‖zt‖8) <

∞.

The assumption directly implies E(εt) = 0 and var(εt) =
σtσ ′

t =: �t , a positive definite variance matrix. We will refer
to σt , a matrix square root of �t , as the volatility matrix of
εt . In the next section, we will analyze the likelihood function
derived from the stronger assumption εt ∼ N(0, �t), but the
asymptotic properties of the resulting procedures will continue
to hold under Assumption 2 with non-Gaussian {zt}t≥1.

If the volatility process were such that the partial averages
(un)−1 ∑�un�

t=1 �t converge to the same positive definite matrix
� as n → ∞ for all u ∈ [0, 1], then, under suitable technical
conditions, the invariance principle would apply to {εt}t≥1. This
in turn would imply that Johansen’s (pseudo-)LR test, based
on the Gaussian iid assumption on {εt}t≥1, would retain its
usual asymptotic properties, even though more efficient tests
may obtained from an analysis of the true likelihood function.
Instead, the formulation in Assumption 2 is motivated by the
notion that persistent changes in the volatility should be pre-
served in the limit. In the univariate context, this assumption
was used by Cavaliere (2004), Cavaliere and Taylor (2007), and
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Beare (2018), inter alia. The multivariate analog was considered
by Cavaliere, Rahbek, and Taylor (2010, 2014) and Boswijk et al.
(2016). Assumption 2 is also related to Assumption 2 of Boswijk
et al. (2016), who assumed σij(·) to be càdlàg, and allow for
conditional heteroscedasticity in {zt}t≥1. Càdlàg functions can
only have a finite number of discontinuities, as in Assumption 2.
The assumption of Lipschitz continuity is made to facilitate
consistent nonparametric estimation of σ(·) on its continuity
points, as considered in Xu and Phillips (2008). The analysis in
the present article could be extended to allow for conditional
heteroscedasticity, but this is not considered here to simplify the
analysis.

Before we consider likelihood-based testing for H(r) in the
model (1) under Assumption 2, we conclude this section with
a characterization of the limiting behavior of the process under
the null H(r), and under a sequence of local alternatives

Hn(r, r1) : �n = αβ ′ + n−1α1β
′
1, (3)

where α and β are the same as before, and α1 and β1 are p × r1
matrices of full column rank, r1 ≤ p − r , such that [α : α1]
and [β : β1] are both of rank r + r1. See Chapter 14 of Johansen
(1996) and Hansen and Johansen (1998) for the analysis of the
asymptotic local power of the LR test under the Gaussian iid
assumption and (3). Proofs of all results are given in the online
Appendix.

Lemma 1. In model (2) under Assumptions 1 and 2 and under
Hn(r, r1), we have

n−1/2
�un�∑
t=1

εt
w→

∫ u

0
σ(s)dW(s) =: M(u), u ∈ [0, 1],

where W(·) is a p-variate standard Brownian motion process,
and

n−1/2X�un�
w→β⊥(α′⊥�β⊥)−1UA(u) =: XA(u), u ∈ [0, 1],

(4)
where the (p − r)-variate process UA(·) is given by

UA(s) =
∫ u

0
exp ((u − s)A) σU(s)dW(s), u ∈ [0, 1],

with A = α′⊥α1β
′
1β⊥(α′⊥�β⊥)−1 and σU(u) = α′⊥σ(u), such

that UA(·) satisfies the stochastic differential equation

dUA(u) = AUA(u)du + σU(u)dW(u). (5)

The limit XA(·) of n−1/2X�·n� is a p-variate process, but of
rank p − r, in the sense that β ′XA(u) = 0 (a.s.). Note that UA(·)
may be interpreted as a multivariate heteroscedastic Ornstein–
Uhlenbeck process. The limit theory under H(r) is obtained by
setting r1 = 0 and hence A = 0, such that UA(u) reduces to
U0(u) = α′⊥M(u).

Lemma 1 implies that the PLR statistic, derived under the
constant-variance assumption, will have a limiting distribution
that depends on σ(·). In particular, in the simple case where k =
1, and we wish to test H(0), then it follows fairly directly from

Lemma 1 (see also Cavaliere, Rahbek, and Taylor 2010) that the
PLR statistic satisfies, under the null hypothesis,

PLRn(0)
w→tr

{
�̄−1

∫ 1

0
dM(u)M(u)′

(∫ 1

0
M(u)M(u)′du

)−1

∫ 1

0
M(u)dM(u)′

}
,

where �̄ = ∫ 1
0 �(u)du, with �(·) = σ(·)σ (·)′. If and only if

σ(·) is a constant matrix σ , such that M(u) = σW(u) and �̄ =
σσ ′, the usual limiting distribution tabulated in Johansen (1996)
will result.

3. The Likelihood Ratio Test With Known Volatility

In this section, we analyze the LR statistic for H(r) in model (2)
in the case where {σt}n

t=1 is known, and where the standardized
innovations {zt}n

t=1 are taken to be iid N(0, Ip). Although the
assumption that {σt}n

t=1 is observed is unrealistic in practice, the
asymptotic local power of such a test provides an optimal bench-
mark for the local power of tests in case {σt}n

t=1 is unknown and
hence has to be estimated, either based on a parametric model
or nonparametrically.

Define 
 = [�1 : . . . : �k−1] and Wt = (�X′
t−1, . . .,

�X′
t−k+1)

′, such that the model (2) under Assumption 2 with
Gaussian {σt}n

t=1 may be expressed more compactly as

�Xt = αβ ′Xt−1 + 
Wt + εt ,
εt|Xt−1 ∼ N(0, �t),

t = 1, . . . , n, (6)

where �t = σtσ ′
t as before, and Xt−1 = {Xt−1, . . ., X1,

X0, . . . , X1−k}. Recall that the starting values X0, and hence W1,
are observed but treated as fixed. The volatility matrices {σt}n

t=1
are also observed, but no specific model (such as multivariate
GARCH) is assumed; they are treated as given. Under this
condition, the log-likelihood function is given by

�n(α, β , 
) = −np
2

log 2π − 1
2

n∑
t=1

log |�t|

−1
2

n∑
t=1

(�Xt − αβ ′Xt−1 − 
Wt)
′�−1

t

(�Xt − αβ ′Xt−1 − 
Wt). (7)

Maximum likelihood estimation in a closely related class of
models was studied by Hansen (2003), who generalized the
switching algorithm developed by Boswijk (1995) in various
directions, including time-varying variance matrices. The key
idea of this so-called generalized reduced rank regression proce-
dure is that, although no closed-form expression exists for the
maximum likelihood estimator (MLE) (α̃n, β̃n, 
̃n), the maxi-
mization of �n(α, β , 
) over (α, 
) for fixed β does lead to a
closed-form expression, and similarly the MLE of β for fixed
(α, 
) has a closed-form expression. The likelihood may then be
maximized, starting from an initial guess, by switching between
maximization over (α, 
) and β . Convergence properties of
such switching algorithms have been studied by Sargan (1964)
and Oberhofer and Kmenta (1974).
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The algorithm requires that just-identifying restrictions are
imposed on β . We formulate these as c′β = Ir , for some known
p × r matrix c of full column rank. An equivalent formulation is
β = c̄+ c⊥, where  is a (p− r)× r matrix of free parameters,
such that

vecβ = vec (c̄ + c⊥) = h + Hφ, (8)

where h = vecc̄ and H = Ir ⊗ c⊥, and φ = vec. Other
restrictions are also possible, as long as they are just-identifying,
which implies r2 restrictions and hence r(p− r) free parameters
in β .

Let Zt(β) = (X′
t−1β , W′

t)
′. Maximization of �n(α, β , 
) over

(α, 
) for fixed β leads to Hansen (2003, Theorem 2)

vec[α̃n(β) : 
̃n(β)] =
( n∑

t=1

[
Zt(β)Zt(β)′ ⊗ �−1

t
])−1

vec

( n∑
t=1

�−1
t �XtZt(β)′

)
, (9)

whereas the MLE of β for fixed (α, 
) is given by

vecβ̃n(α, 
) = h + H

(
H′

n∑
t=1

[
α′�−1

t α ⊗ Xt−1X′
t−1

]
H

)−1

H′

×
n∑

t=1

{
vec

(
Xt−1(�Xt − 
Wt)

′�−1
t α

)
− [

α′�−1
t α ⊗ Xt−1X′

t−1
]

h
}

. (10)

Upon convergence of the switching algorithm, this yields the
MLE (α̃n, β̃n, 
̃n), and hence the residuals

ε̃t = �Xt − [α̃n : 
̃n]Zt(β̃n) = �Xt − α̃nβ̃
′
nXt−1 − 
̃nWt ,

t = 1, . . . , n.

In the special case r = 0 (no cointegration), corresponding to
� = αβ ′ = 0, this reduces to ε̃t = �Xt − 
̃nWt , with vec
̃n =(∑n

t=1
[
WtW′

t ⊗ �−1
t

])−1 vec
(∑n

t=1 �−1
t �XtW′

t
)
.

The unrestricted model (1), corresponding to H(p), may be
expressed as �Xt = [� : 
]Zt + εt , where Zt = Zt(Ip) =
(X′

t−1, W′
t)

′. The corresponding log-likelihood is maximized by

vec[�̂n : 
̂n] =
( n∑

t=1

[
ZtZ′

t ⊗ �−1
t

])−1

vec

( n∑
t=1

�−1
t �XtZ′

t

)
, (11)

yielding the unrestricted residuals

ε̂t = �Xt − [�̂n : 
̂n]Zt = �Xt − �̂nXt−1 − 
̂nWt ,
t = 1, . . . , n. (12)

Using these, the LR statistic for H(r) against H(p)\H(r), with
known volatility matrix, is

LRn(r) = −2
[
�n(α̃n, β̃n, 
̃n) − �n(�̂n, Ip+1, 
̂n)

]

=
n∑

t=1

(
ε̃′

t�
−1
t ε̃t − ε̂′

t�
−1
t ε̂t

)
. (13)

The limiting behavior of LRn(r) is characterized in Theo-
rem 1. Define

YA(u) =
(

YA,1(u)

YA,2(u)

)
=

(
α′⊥σ(u)′−1

α′σ(u)′−1

)
⊗ UA(u), (14)

and

ZA(u) = YA,1(u) −
∫ 1

0
YA,1(s)YA,2(s)′ds

[∫ 1

0
YA,2(s)YA,2(s)′ds

]−1
YA,2(u). (15)

Theorem 1. In model (2), under Assumptions 1–2 and under
Hn(r, r1), the LR statistic (13) satisfies, as n → ∞,

LRn(r) w→
(∫ 1

0
ZA(s)[dW(u) + ZA(u)′vec(A′)du]

)′

(∫ 1

0
ZA(u)ZA(u)′du

)−1

(∫ 1

0
ZA(u)[dW(u) + ZA(u)′vec(A′)du]

)
. (16)

We observe that the limiting distribution under the null
hypothesis H(r), such that A = 0, depends on (the pro-
cess generating) σ(u), and on α (and hence α⊥). Therefore,
no uniformly applicable tables of critical values can be con-
structed. Quantiles and p-values of the limiting distribution
can be obtained by Monte Carlo simulation of the limiting
expression in (16), discretizing the integrals and replacing α

by α̃n. Consistency of α̃n (which follows from the proof of
Theorem 1) guarantees the asymptotic validity of such p-values,
as the sample size, the number of steps in the discretization
and the number of Monte Carlo replications tend to infinity.
Alternatively, bootstrap-based approaches to approximate the
asymptotic null distribution are discussed in the next section.

In the special case of the null hypothesis H(0) (no cointe-
gration), the expression for the limiting distribution of the LR
statistic simplifies somewhat. The representation in Corollary 1
follows directly from (16), with ZA(u) = σ(u)′−1 ⊗ UA(u) and

dUA(u) = σ(u)[dW(u) + σ(u)−1AUA(u)du]
= σ(u)[dW(u) + ZA(u)′vec(A′)du].

Corollary 1. Under the conditions of Theorem 1, the LR statistic
LRn(0) for r = 0 satisfies, as n → ∞ ,

LRn(0)
w→

∫ 1

0
dUA(u)′

[
�(u)−1 ⊗ UA(u)′

]
(∫ 1

0
[�(u)−1 ⊗ UA(u)UA(u)′]du

)−1

∫ 1

0

[
�(u)−1 ⊗ UA(u)

]
dUA(u).

We conclude this section with a discussion of the adjustments
needed to accommodate a constant or linear trend term in the
model. We focus on models where the process has either a
constant mean or a linearly trending mean in both the stationary
and the nonstationary directions. As is well known (Johansen
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1996, chaps. 5 and 6), this is accomplished by considering the
following two extensions of (2). To allow for a constant mean,
the model becomes

�Xt = α(β ′Xt−1 + ρ0) +
k−1∑
j=1

�j�Xt−j + εt

= αβ#′X#
t−1 + 
Wt + εt , (17)

where ρ0 is an r-vector, and where β# = (β ′, ρ0)′ and X#
t−1 =

(X′
t−1, 1)′. A linear trend is included via

�Xt = μ + α(β ′Xt−1 + ρ1t) +
k−1∑
j=1

�j�Xt−j + εt

= αβ#X#
t−1 + 
#W#

t + εt , (18)

where μ is an n-vector and ρ1 is an r-vector, and where now
β# = (β ′, ρ1)′, X#

t−1 = (X′
t−1, t)′, 
# = [μ : 
] and W#

t =
(1, W′

t)
′. The log-likelihood function under Assumption 2 is

analogous to (7), with parameters and regressors replaced by
their “#” counterparts.

Adjusting the identification restrictions (8) accordingly, such
that vecβ# = vec

(
c̄# + c#⊥#) with c# of dimensions (p+1)× r

and hence c#⊥ and # of dimensions (p + 1) × (p + 1 − r) and
(p + 1 − r) × r, respectively, the switching algorithm based on
(9) and (10) remains the same, with all parameters and vectors
replaced by their “#” counterparts. The limiting distribution of
the resulting LR test statistic is stated in the following corollary
(a sketch of its proof is provided in the online Appendix).

Corollary 2. In models (17) and (18), under Assumptions 1 and
2 and under Hn(r, r1), the LR statistic (13) satisfies, as n → ∞,

LRn(r) w→
(∫ 1

0
Z#

A(u)[dW(u) + Z#
A(u)′vec(A#′)du]

)′

(∫ 1

0
Z#

A(u)Z#
A(u)′du

)−1

(∫ 1

0
Z#

A(u)[dW(u) + Z#
A(u)′vec(A#′)du]

)
,

where A# = [A : 0] and Z#
A(u) is defined analogously to

(14) and (15), with UA(u) replaced by U#
A(u) = (UA(u)′, 1)′

in model (17), whereas in model (18), UA(u) is replaced by
U#

A(u) = (UA(u)′, u)′ and YA(u) is replaced by

Y#
A(u) =

(
α′⊥σ(u)′−1

α′σ(u)′−1

)
⊗ U#

A(u)

−
∫ 1

0

((
α′⊥�(s)−1

α′�(s)−1

)
⊗ U#

A(s)
)

ds
[∫ 1

0
�(s)−1ds

]−1
σ(u)′−1.

4. Adaptive Likelihood Ratio Test

4.1. Volatility Estimation

In the previous section, we have developed a LR test for coin-
tegration when the volatility process σ(·) is known. In specific

applications to financial data, the assumption that the volatil-
ity is observed with negligible measurement error may not be
entirely unrealistic, since high-frequency intra-day data may be
used to estimate the daily or weekly volatility with a high degree
of precision (see, e.g., Andersen et al. 2003). In this section,
however, we consider the case where the only data available
is {Xt , t = 1 − k, . . . , 0, 1, . . . , n}, and hence an estimator of
the volatility matrix has to be obtained from the data at the
same observation frequency as used to construct the likelihood
function and hence the cointegration test.

The volatility matrix σt may be estimated either parametri-
cally or nonparametrically. In the presence of conditional het-
eroscedasticity, possible parametric approaches include multi-
variate GARCH models, notably the dynamic conditional cor-
relation (DCC) model of Engle (2002). The LR test statistic
may then be obtained by full maximization of the likelihood
function for the Gaussian VAR-DCC model, with and without
the reduced rank restriction. The obvious disadvantage of such a
parametric approach is that it relies on the assumption of correct
specification of the volatility process.

Alternatively, a two-step approach may be used, where the
volatility matrix is estimated based on the residuals from least-
squares estimation of the unrestricted VAR model, and the
resulting estimator �̂t is then substituted for �t in the expres-
sions for the MLE and LR statistic given in the previous section.
In this article, we propose to estimate σt by a nonparametric
kernel estimator, generalizing the approach of Boswijk and Zu
(2018), which in turn is based on Hansen (1995). However,
as analyzed by Nelson (1996), multivariate GARCH models
(with deterministic parameter sequences instead of estimated
parameters) may also be interpreted as nonparametric filters
of continuous-time multivariate stochastic volatility processes.
Indeed, Engle (2002) showed via Monte Carlo simulations that
the DCC model is rather successful in recovering time-varying
correlation paths that are not generated by a DCC process.
Therefore, in the continuous-time asymptotic framework of
Assumption 2, the difference between parametric and nonpara-
metric approaches is not as essential as it may appear at first
sight.

We closely follow the approach to nonparametric volatility
estimation and adaptive testing developed by Xu and Phillips
(2008) and Patilea and Raïssi (2012), who extended Hansen’s
(1995) approach to include leads and lags of the outer product
of the residual vector, and to allow for discontinuities in the
underlying volatility functions.

Let {et}n
t=1 denote the least-squares residual vectors of the

model (6) (or of the extended models (17) or (18)) with r = p;
or equivalently the residual vector based on the unrestricted
ML estimator (11) and (12) with �t = In (where the model
is extended by a constant and/or linear trend if applicable). Let
K(·) be a kernel function and define Kh(x) = K(x/h)/h with
h > 0 a window width. The kernel estimator for �t is defined as

�̂t =

n∑
s=1

Kh

(
t − s

n

)
ese′

s

n∑
s=1

Kh

(
t − s

n

) . (19)

By choosing different kernel functions, one could consider both
one-sided smoothing (or filtering, where �̂t is based on lags of
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ete′
t only), or two-sided smoothing (based on leads and lags).

Note, however, that the use of a one-sided filter for small t would
require a boundary value adjustment to (19), as in Hansen
(1995). We do not consider this explicitly, and correspondingly
Assumption 3 imposes two-sided smoothing.

Assumption 3. K is a bounded, continuous and nonnegative
function defined on the real line, satisfying

∫ ∞
−∞ K(x)dx = 1,∫ 0

−∞ K(x)dx > 0 and
∫ ∞

0 K(x)dx > 0.

Recall that Assumption 2 allows for a finite number of
discontinuities in the volatility matrix function. Although the
estimator defined above is consistent over the intervals where
this function is continuous, we cannot expect consistency at
the discontinuity points. Despite the potential problem, the
volatility estimator may still be used to construct a feasible like-
lihood ratio test, replacing �t by �̂t in the definition of the LR
statistic (13). Denoting the resulting statistic by L̂Rn(r), the next
theorem establishes that the volatility estimation error has an
asymptotically negligible effect on the asymptotic distribution
of the LR test statistic, both under the null and under local
alternatives.

Theorem 2. In model (2), under Assumptions 1–3 and under
Hn(r, r1), as n → ∞, h → 0 and nh2 → ∞, L̂Rn(r) has the
same limiting distribution as LRn(r) as given in Theorem 1.

This theorem implies that under the stated conditions, adap-
tive testing is possible: the fact that the unknown volatility
process is not observed but estimated nonparametrically entails
no loss of efficiency.

We now discuss the selection of the window width h. The-
orem 2 requires h to decrease with the sample size at a certain
rate, but does not guide us in selecting a window width for a
particular sample. A leave-one-out cross-validation technique
may be defined as the h minimizing

CVn(h) =
n∑

t=1
||�̂−t

t (h) − ete′
t||2, (20)

where �̂−t
t (h) is given by (19), but with Kh(0) replaced by 0,

such that ete′
t does not enter the expression for �̂−t

t (h).
In the context of stable VAR models, Patilea and Raïssi

(2012) showed that an adaptivity result similar to Theorem 2
holds uniformly over h ∈ [hn, hn], with the upper and lower
bounds satisfying the rate condition Theorem 2. This provides
an asymptotic justification of a constrained cross-validation
procedure, where CVn(h) in (20) is minimized over [hn, hn].
However, in practice such rate conditions impose very little on
the interval for fixed n, and hence in the applications below
we use unconstrained cross-validation. As discussed in Härdle,
Hall, and Marron (1988) and Wasserman (2006), under suitable
conditions, (unconstrained) leave-one-out cross-validation has
the optimality property to deliver the bandwidth minimizing the
average squared error associated with a nonparametric kernel
estimator.

The above estimator uses a common window width to
smooth all the elements of the matrix ese′

s. In practice, when
different components of the underlying volatility matrix have

different degrees of smoothness, it may be preferable to use
different window widths for different elements. In this case,
the resulting covariance estimator is still symmetric, but not
necessarily positive definite. As discussed in Fan, Li, and Yu
(2012), one may then use a projection method to obtain a
positive definite matrix.

4.2. Bootstrap

The limiting null distribution of the adaptive test depends on
the volatility path. In this sub-section we consider two bootstrap
implementations to approximate this distribution. In both cases,
a bootstrap sample {X∗

t }n
t=1 is generated from the starting values

{X∗
t = Xt , t = 1 − k, . . . , 0} as

�X∗
t = α̃nβ̃

′
nX∗

t−1 +
k−1∑
j=1

�̃jn�X∗
t−j + ε∗

t , t = 1, . . . , n, (21)

where α̃n, β̃n, and �̃jn are the estimated parameter matrices from
the model under the reduced rank restriction. Based on this
bootstrap sample, one then estimates the unrestricted model
and the restricted model, to get corresponding residuals ε̂∗

t
and ε̃∗

t , t = 1, . . . , n, respectively, such that the bootstrap test
statistic is computed as

L̂R∗
n(r) =

n∑
t=1

(
ε̃∗′

t �̂−1
t ε̃∗

t − ε̂∗′
t �̂−1

t ε̂∗
t

)
.

Following Boswijk and Zu (2018), we propose to use the esti-
mates {�̂t}n

t=1 from the original data in the calculation of
L̂R∗

n(r), that is, we do not re-estimate {�t}n
t=1 for each bootstrap

sample.
In models with a constant term or time trend, the unre-

stricted and restricted models need be estimated using the
methods discussed in Section 3. The bootstrap data-generating
process (21) is then extended using the restricted estimates of ρ0
or (μ, ρ1), see (17) and (18).

The two bootstrap methods we consider differ in the method
for drawing the bootstrap errors. In a volatility bootstrap, we
take ε∗

t = σ̂tz∗
t , where σ̂t is a matrix square root of �̂t , and

z∗
t is iid N(0, Ip). When k = 1, X0 = 0 and the restricted

model has rank r = 0, then it can be shown that this volatility
bootstrap may be interpreted as a Monte Carlo simulation of
the asymptotic null distribution of the test statistic, replacing
the unknown �(u) by its estimate �̂n(u) and discretizing the
continuous time processes and integrals using n + 1 equidistant
points in the unit time interval.

Alternatively, we consider the wild bootstrap, which has
been considered in the literature on unit root and cointegration
inference with nonstationary volatility by Cavaliere and Taylor
(2008), Cavaliere, Rahbek, and Taylor (2010, 2014), Boswijk and
Zu (2018), and Boswijk et al. (2016), among others. Here the
bootstrap errors are constructed as ε∗

t = etw∗
t , where w∗

t is
a scalar iid sequence with zero mean and unit variance. (The
unrestricted least-squares residuals et could be replaced by the
restricted or unrestricted ML residuals, ε̃t or ε̂t , without affect-
ing the main properties of the procedure.) The most common
implementation in this literature is to take w∗

t ∼ iid N(0, 1),
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such that ε∗
t ∼ N(0, ete′

t). This shows that the wild bootstrap
may be seen as the limiting case of the volatility bootstrap as
h → 0 (for fixed n), such that �̂t → ete′

t . Comparison of
the two bootstrap implementations should therefore provide
information about the usefulness of variance smoothing for
simulation of the null distribution of the test statistic.

The asymptotic validity of both bootstrap procedures is
stated in the next theorem.

Theorem 3. In model (2), under Assumptions 1–3 and under
both the null H(r) and local alternatives Hn(r, r1), as n → ∞,
h → 0 and nh2 → ∞,

L̂R∗
n(r) w→p

(∫ 1

0
Z0(s)dW(s)

)′ (∫ 1

0
Z0(s)Z0(s)′ds

)−1

(∫ 1

0
Z0(s)dW(s)

)
.

The results in this section have been obtained under the
assumption that the VAR lag order k is known. In practice, fol-
lowing Cavaliere et al. (2018), we propose to estimate k using the
Bayesian information criterion (BIC) in the VAR model with no
cointegration imposed. Because Cavaliere et al. (2018) worked
under effectively the same nonstationary volatility assumptions
as we do, we can directly apply their results; in particular
Cavaliere et al.’s (2018, Lemma 3), proving consistency of the
BIC-based estimator of k, and the proof of their Theorem 2,
indicating that estimation uncertainty in k has no effect on the
subsequent (bootstrap-based) determination of the cointegra-
tion rank.

5. Monte Carlo Simulation

In this section, we use Monte Carlo simulation methods to
compare the finite sample performance of the two bootstrap
versions of the adaptive likelihood ratio test with that of the
wild bootstrap PLR test of Cavaliere, Rahbek, and Taylor (2010,
2014).

The simulation DGP is a VAR(2) process of dimension p = 2:

�Xt = n−1α1β
′
1Xt−1 + 
1�Xt−1 + εt ,

α1 =
(

a
0

)
,

β1 =
(

1
0

)
,


1 =
(

0 0.5
0 0.5

)
,

with X0 = 0. For a = 0, the process Xt is integrated of order
one (�Xt is a stationary VAR(1) process), and this is used to
study the size of tests for no cointegration, that is,H(0) . We also
consider the cases a = −15 and a = −30 to study the power of
the tests for H(0) against H(2)\H(0), under local alternatives
Hn(0, 1).

The errors are defined as εt = σtzt , with zt ∼ iid N(0, I2).
Four versions of the unconditional variance matrix �t = σtσ ′

t

are considered:

�
(1)
t = � =

[
1 ρ

ρ 1

]
,

�
(2)
t = v(2)

t �,

�
(3)
t = (v(3)

t − 1)I2 + �,

�
(4)
t = v(4)

t �

which we label Case 1, 2, 3, and 4, respectively. We set ρ = 0.4
(implying a moderate (average) degree of correlation between
the components of εt),

v(2)
t = v(3)

t = 0.5 + 2.5 × 1[s,1](t/n), (22)

with s = 0.8, and

v(4)
t = exp(2H(t/n)),

dH(u) = −κH(u)du + ζdB(u),
u ∈ [0, 1], (23)

with B(·) a standard Brownian motion, κ = 1 and ζ = 1. Cases
1–3 are inspired by the simulations in Boswijk et al. (2016); Case
1 corresponds to homoscedasticity, and Cases 2 and 3 involve
a deterministically changing �t , with a late positive shift in the
variances and covariances (�(2)

t ), or in the variances only (�(3)
t ).

Case 4 corresponds to continuous variation in the variances and
covariances, driven by a single realization of a log-Ornstein–
Uhlenbeck stochastic volatility process.

We analyze results for sample sizes n ∈ {500, 1000}. A
restricted constant term is included in the estimation. All exper-
iments are run over 5000 Monte Carlo replications using B =
499 bootstrap replications. In each replication, the VAR lag
order is selected by the BIC in the unrestricted model with max-
imal lag order 5, and the window width for the volatility matrix
estimation is selected using the leave-one-out cross-validation
method. The tables report the empirical size (or actual rejection
frequency under the null, a = 0) and size-corrected power
(a = −15 and a = −30) of all tests at the 5% nominal level.

In all tables, PLR-VBS and PLR-WBS indicate the volatility
bootstrap and wild bootstrap versions of the pseudo-LR test
(imposing homoscedasticity), respectively; ALR-VBS and ALR-
WBS indicate the volatility and wild bootstrap based adaptive
LR tests; and LR-VBS indicates the infeasible LR test based on
known volatility (used both in computing the LR test statistic
and in the volatility bootstrap), included to assess the effect of
volatility estimation on test size and power.

Table 1 gives the size and size-corrected power of the tests for
each of the four cases. Size distortions appear to be slightly larger
for the adaptive test than for the PLR test, but are moderate
in all cases, and clearly decrease with the sample size. The
two versions of the bootstrap seem to lead to similar size and
power, although the size distortions appear to be smallest for
the volatility bootstrap. With a few exceptions, the power of
the test slightly increases with the sample size, despite the fact
that we are considering local alternatives (the error correction
coefficient in the first equation is a/n); this may be explained
by the reduced volatility estimation error in larger samples. The
adaptive tests are more powerful than the PLR test when the
volatility is time-varying; their power is close to but falls slightly
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Table 1. Size and power, 5% level.

Case n PLR-VBS PLR-WBS ALR-VBS ALR-WBS LR-VBS

Size

1 500 0.046 0.045 0.057 0.051 0.037
1000 0.051 0.050 0.056 0.057 0.047

2 500 0.053 0.061 0.089 0.073 0.041
1000 0.059 0.048 0.074 0.070 0.039

3 500 0.058 0.073 0.075 0.067 0.048
1000 0.057 0.060 0.069 0.058 0.055

4 500 0.055 0.086 0.099 0.092 0.040
1000 0.052 0.075 0.084 0.068 0.049

Power a = −15

1 500 0.252 0.248 0.235 0.239 0.265
1000 0.241 0.248 0.235 0.244 0.262

2 500 0.209 0.219 0.200 0.215 0.263
1000 0.201 0.197 0.242 0.244 0.260

3 500 0.156 0.156 0.597 0.601 0.666
1000 0.157 0.154 0.659 0.671 0.720

4 500 0.089 0.089 0.175 0.175 0.242
1000 0.077 0.078 0.195 0.207 0.246

Power a = −30

1 500 0.747 0.750 0.732 0.737 0.772
1000 0.770 0.783 0.762 0.776 0.797

2 500 0.595 0.607 0.641 0.673 0.756
1000 0.614 0.611 0.746 0.758 0.791

3 500 0.459 0.462 0.969 0.970 0.979
1000 0.498 0.497 0.991 0.992 0.994

4 500 0.285 0.284 0.584 0.606 0.729
1000 0.296 0.309 0.678 0.698 0.766

NOTES: This table displays rejection frequencies under the null hypothesis (size)
and under the alternative (power), using critical values simulated under the null
hypothesis (size-corrected power). “Case” refers to the four different volatility
specifications explained in the text, and n is the sample size. PLR, ALR, and LR
are the pseudo-LR, the adaptive LR, and the (true-volatility) LR test, respectively;
VBS and WBS refer to the volatility and wild bootstrap based tests, respectively.

short of the benchmark optimal power of the LR test with known
volatility. In Case 1 (constant volatility), the adaptive tests and
PLR tests have similar power, suggesting that there is no serious
disadvantage to using the adaptive test even in such cases.

In the remainder of this section, we investigate the sensitivity
of the size and power for parameter variations in Cases 2 and
4. For Case 2, we consider three possible values of the break
time s; see Table 2. We observe that the break time has little
effect on the size of the PLR tests, but the size of the ALR tests
increases slightly as the break happens toward the end of the
sample, although the size distortion is still mild. On the other
hand, the power of the two adaptive tests decreases slightly as the
break happens toward the end of the sample, while the power of
the PLR test decreases more. This illustrates that the potential
for increasing the power relative to the PLR test is highest for
the late positive break, which as shown by Cavaliere (2004) also
has the largest effect on the asymptotic null distribution of PLR
tests for a unit root.

Finally, we study the sensitivity of the simulation results for
different volatility-of-volatility parameter values ζ for the log-
volatility H(u) in (23), Case 4; see Table 3. We first note that
the size distortion of the bootstrap adaptive tests becomes more
severe as the volatility-of-volatility parameter gets higher, with
the volatility bootstrap performing slightly better than the wild
bootstrap.

The power of the PLR test is very sensitive to the degree
of variation in the volatility: in the high ζ scenario, the power

Table 2. Size and power, 5% level, Case 2, varying break times s.

s n PLR-VBS PLR-WBS ALR-VBS ALR-WBS LR-VBS

Size

0.2 500 0.045 0.043 0.063 0.042 0.037
1000 0.053 0.048 0.062 0.048 0.043

0.5 500 0.049 0.055 0.074 0.062 0.048
1000 0.053 0.053 0.063 0.061 0.046

0.8 500 0.053 0.061 0.089 0.073 0.041
1000 0.059 0.048 0.074 0.070 0.039

Power a = −15

0.2 500 0.336 0.331 0.290 0.276 0.279
1000 0.308 0.309 0.269 0.279 0.280

0.5 500 0.259 0.253 0.248 0.229 0.284
1000 0.266 0.261 0.271 0.269 0.281

0.8 500 0.209 0.219 0.200 0.215 0.263
1000 0.201 0.197 0.242 0.244 0.260

Power a = −30

0.2 500 0.820 0.825 0.784 0.778 0.787
1000 0.837 0.843 0.796 0.804 0.816

0.5 500 0.692 0.689 0.724 0.706 0.784
1000 0.725 0.720 0.783 0.783 0.810

0.8 500 0.595 0.607 0.641 0.673 0.756
1000 0.614 0.611 0.746 0.758 0.791

NOTES: This table displays rejection frequencies under the null hypothesis (size)
and under the alternative (power), using critical values simulated under the null
hypothesis (size-corrected power). s refers to the fraction of the sample at which
the break occurs in Case 2, and n is the sample size. PLR, ALR, and LR are the
pseudo-LR, the adaptive LR, and the (true-volatility) LR test, respectively; VBS and
WBS refer to the volatility and wild bootstrap based tests, respectively.

Table 3. Size and power, 5% level, Case 4, varying volatility of volatility ζ .

ζ n PLR-VBS PLR-WBS ALR-VBS ALR-WBS LR-VBS

Size

0.5 500 0.051 0.072 0.071 0.070 0.033
1000 0.050 0.068 0.066 0.067 0.048

1 500 0.055 0.086 0.099 0.092 0.040
1000 0.052 0.075 0.084 0.068 0.049

2 500 0.067 0.093 0.184 0.117 0.040
1000 0.060 0.074 0.139 0.079 0.063

Power a = −15

0.5 500 0.147 0.149 0.204 0.205 0.241
1000 0.151 0.155 0.200 0.209 0.244

1 500 0.089 0.089 0.175 0.175 0.242
1000 0.077 0.078 0.195 0.207 0.246

2 500 0.040 0.040 0.111 0.121 0.356
1000 0.032 0.034 0.209 0.208 0.374

Power a = −30

0.5 500 0.513 0.522 0.663 0.673 0.739
1000 0.567 0.585 0.710 0.719 0.775

1 500 0.285 0.284 0.584 0.606 0.729
1000 0.296 0.309 0.678 0.698 0.766

2 500 0.087 0.084 0.270 0.332 0.733
1000 0.079 0.090 0.557 0.567 0.789

NOTES: This table displays rejection frequencies under the null hypothesis (size)
and under the alternative (power), using critical values simulated under the null
hypothesis (size-corrected power). ζ refers to the volatility of volatility in Case 4,
and n is the sample size. PLR, ALR, and LR are the pseudo-LR, the adaptive LR, and
the (true-volatility) LR test, respectively; VBS and WBS refer to the volatility and
wild bootstrap based tests, respectively.

of the PLR test is rather low. Still, the power of the two adap-
tive tests seems stable, staying at a high level throughout all
scenarios. Therefore, the high volatility-of-volatility scenario is
a clear example where the adaptive tests outperform the PLR
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test. In unreported additional simulations, we found similar
but less pronounced effects from varying the mean-reversion
parameter κ .

In all cases, the size and power properties of the tests does not
seem to be affected too much by varying the sample size, and all
tests perform reasonably well in a sample size typical for macro-
economic applications, an example of which is considered in the
next section.

In summary, the Monte Carlo simulation results in this sec-
tion indicate that the volatility bootstrap, based on the nonpara-
metric volatility estimator, performs slightly better than the wild
bootstrap in controlling the size of the adaptive test. Further-
more, we have seen that for various scenarios, the adaptive tests
outperform the wild bootstrap based pseudo-LR test in terms of
power.

6. Empirical Applications

6.1. U.S. Term Structure of Interest Rates

Boswijk et al. (2016) provided a cointegration analysis of the
term structure of interest rates in the United States, showing that
allowing for heteroscedasticity affects inference on the cointe-
gration rank, as well as on structural hypotheses on the cointe-
grating vectors and the adjustment coefficients. Their analysis
is based on wild bootstrap versions of Wald and likelihood ratio
tests based a Gaussian iid pseudo-likelihood. We will investigate
to what extent their empirical results change if we use adaptive
tests as developed in this article.

We analyze the same time series Xt = (X1t , . . . , X5t)′
of monthly zero-coupon treasury yields, 1970:1–2009:12, for
maturities equal to 3 months (X1t), 1 year (X2t), 3 years (X3t), 5
years (X4t), and 10 years (X5t). Following Boswijk et al. (2016),
we estimate a VAR(2) model with a constant term for Xt , using
observations on the first two months of 1970 as starting values;
hence n = 478. The lag order k = 2 is selected by the Hannan–
Quinn information criterion, and supported by (wild bootstrap)
residual serial correlation tests. Further details on the source of
the data are provided by Boswijk et al. (2016).

Table 4. Cointegration test results for the U.S. term structure data.

r ALR-VBS ALR-WBS PLR-WBS

0 0.000 0.000 0.000
1 0.000 0.000 0.000
2 0.000 0.001 0.087
3 0.038 0.011 0.286
4 0.172 0.124 0.795

NOTES: This table displays p-values based on the volatility bootstrap (VBS) and wild
bootstrap (WBS) of the adaptive (ALR) and pseudo-likelihood ratio (PLR) tests for
cointegration rank in the U.S. term structure data.

Before we present the cointegration test results, Figure 1 dis-
plays the nonparametric estimates of the time-varying volatili-
ties σit of Xit , i = 1, . . . , 5. The window width chosen by cross-
validation is h = 0.0217. We observe similar patterns in all five
volatilities, with the most pronounced variation in the short-
maturity interest rate. Most striking is the high volatility period
around 1980, and the lower volatility after 1985, the period
known as the Great Moderation.

To calculate the cointegration test statistics and their boot-
strap p-values, we have implemented the switching algorithm
discussed in Section 3 to implement the restricted maximum
likelihood estimation. The tolerance level used for the switching
algorithm is 10−6, which means that we stop the algorithm when
the increase in the likelihood function is smaller than 10−6.
The results, based on B = 999 bootstrap replications, are given
in Table 4; the final column (the wild bootstrap p-value of the
constant-variance PLR statistic) is taken from Boswijk et al.
(2016). As considered in the previous sections, all test are for
H(r) : rank(�) ≤ r against the alternative H(p)\H(r) : r <

rank(�) ≤ p.
We observe that using the adaptive test leads to a higher

cointegration rank: whereas the PLR test would lead us to select
a cointegrating rank r = 3 only if we are willing to use a sig-
nificance level of 10%, the adaptive tests lead to the conclusion
of r = 4 even if we use the conventional 5% significance level.
This implies a single stochastic trend driving the five different
yields. The adaptive ML estimators of α and β for r = 4 (with
β normalized on X2t , . . . , X5t) together with QMLE standard

Figure 1. Estimated volatilities, U.S. 3-month and 1-, 3-, 5-, and 10-year treasury yields.
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errors, are as follows:

α̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.282
(0.085)

−0.030
(0.143)

−0.019
(0.131)

0.003
(0.051)

−0.234
(0.092)

0.356
(0.162)

−0.231
(0.149)

0.035
(0.055)

−0.125
(0.083)

−0.022
(0.157)

0.009
(0.143)

0.040
(0.050)

−0.178
(0.077)

0.113
(0.149)

−0.111
(0.133)

0.058
(0.044)

−0.149
(0.071)

−0.114
(0.134)

0.218
(0.121)

−0.085
(0.041)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

β̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1.092
(0.040)

−1.213
(0.128)

−1.238
(0.173)

−1.227
0.213)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We may be interested in the hypothesis that the first row of β

are all −1’s; this corresponds to the hypothesis that the single
stochastic trend affects only the height, and not the slope or
curvature of the yield curve (so that all spreads are stationary).
The adaptive likelihood ratio statistic for this hypothesis is
14.650 with volatility and wild bootstrap p-values of 0.030 and
0.012, respectively, indicating that this hypothesis is rejected.
Note that the asymptotic theory for adaptive likelihood ratio
tests for hypotheses on β has not been developed in this article,
but following the analysis of Boswijk et al. (2016), we expect the
bootstrap to yield asymptotically valid inference again.

6.2. Purchasing Power Parity

As discussed in Section 2.4 of Froot and Rogoff (1995), long-
run purchasing power parity (PPP) can be formulated as the
hypothesis of cointegration between the log-exchange rate st of

a currency against the U.S. dollar and the log relative price level
pt−p∗

t (domestic relative to the United States). The cointegrating
vector β for Xt = (st , pt − p∗

t )
′ implied by PPP is β =

(1, −1)′, implying stationarity of the real exchange rate. Boswijk
and Klaassen (2012) showed that allowing for conditional het-
eroscedasticity can lead to stronger evidence in favor of long-
run PPP from unit root tests applied to real exchange rates
(especially at higher observation frequencies). It is therefore of
interest to see if a similar conclusion holds based on multivariate
tests allowing for unconditional heteroscedasticity, as developed
in this article.

We investigate the cointegration hypothesis for the United
Kingdom, Germany, and Japan, all relative to the United States.
Nominal exchange rate and Consumer Price Index data have
been obtained from the Bank of International Settlements’ web-
site (https://www.bis.org/statistics/xrusd.htm and https://www.
bis.org/statistics/cp.htm, respectively). We use monthly obser-
vations from January 1968 to August 2019, in total 620 obser-
vations. For Germany, the exchange rate after 2001 has been
converted from the EUR/USD exchange rate.

Separate bivariate VAR models with a constant and linear
trend have been selected and estimated for each of the three
currencies. The linear trend has been included primarily to
allow for divergent inflation rates and hence linear trends in
the relative log-price data. The VAR order selected by BIC is
k = 1 in all cases. The residuals from this model have been used
for nonparametric estimation of the time-varying exchange rate
and price volatilities (σ1 and σ2, respectively) and their cor-
relation ρ, with the bandwidths selected by cross-validation.
These are displayed in Figure 2. We observe an initial increase
in exchange rate volatility (as expected from the collapse of
the Bretton Woods system in the early 1970s), followed by a
slight decrease in recent decades. The relative price volatilities
show a downward trend, in particular for the United Kingdom

Figure 2. Estimated volatilities (σ1, σ2) and correlations (ρ) of effective exchange rates and relative prices of the United Kingdom, Germany (GER), and Japan (JP) vis-à-vis
the United States.

https://www.bis.org/statistics/xrusd.htm
https://www.bis.org/statistics/cp.htm
https://www.bis.org/statistics/cp.htm


JOURNAL OF BUSINESS & ECONOMIC STATISTICS 11

Table 5. Cointegration test results for the PPP data.

Country PLR ALR PLR-VBS PLR-WBS ALR-VBS ALR-WBS

United Kingdom 33.836 23.754 0.006 0.007 0.047 0.024
Germany 30.663 32.406 0.010 0.004 0.004 0.001
Japan 34.055 25.453 0.009 0.004 0.034 0.013

Notes: This table displays test statistics and p-values based on the volatility
bootstrap (VBS) and wild bootstrap (WBS) for the adaptive (ALR) and pseudo-
likelihood ratio (PLR) tests for the null hypothesis of no cointegration in the PPP
data.

and Japan, which may be related to the changes in monetary
policy and the resulting Great Moderation since the mid-1980s.
Correlations appear to fluctuate around zero, without a clearly
interpretable pattern.

The cointegration test results for no cointegration (H(0))
against the alternative of at least one cointegrating vector, based
on 999 bootstrap replications, are presented in Table 5. We
observe that both the PLR tests and the ALR tests reject the no-
cointegration hypothesis in all cases at the 5% level (although the
volatility bootstrap-based adaptive test for the United Kingdom
has a p-value close to 5%).

In all three cases, the estimated cointegrating vectors dif-
fer substantially but not significantly from the theoretically
expected β = (1, −1)′. This is a reflection of the fact that stan-
dard errors are rather large, due to the presence of a restricted
trend in the cointegrating relation (which itself has a coefficient
not significantly different from zero in all cases). In summary,
we find that both testing approaches find evidence in favor of
long-run PPP. We observe that in this application, the adaptive
tests do not yield more evidence for cointegration than the
nonadaptive test; this may be related to the fact that the time
variation in volatility in this example is less pronounced than in
the term structure example.

7. Discussion

In this article, we have proposed a new class of cointegration
tests, which have higher power than existing tests by exploit-
ing time variation in the unconditional error variance matrix.
Monte Carlo simulations have indicated that a bootstrap imple-
mentation of the test has good size and power properties for
moderately sized samples. Two empirical examples have illus-
trated that applying our newly developed tests can indeed lead to
stronger evidence for cointegration than alternative tests. These
applications are related to the fixed income and foreign exchange
markets, but the methods could also be applied to equity mar-
kets (analyzing statistical arbitrage) or macro-economic rela-
tions.

The theory and methods used in this article can be extended
in various directions. First, we have considered time-variation
in the unconditional variance matrix only. The analysis could
be extended to also allow for conditional heteroscedasticity,
but this would lead to a more complicated likelihood analysis
(e.g., of a DCC-VAR model), and furthermore one would need
to allow for the time-varying unconditional variance matrix in
the estimation and identification of the conditional variance
process. Second, our tests are based on a Gaussian likelihood
function. In practice, one often observes that standardized
financial returns still display excess kurtosis. The asymptotic
results in this article are robust to this type of nonnormality,

but in such cases more powerful tests could be derived from,
for example, a Student’s t likelihood.

Supplementary Materials

Ox code and data files that can be used to replicate the empirical and
simulation results are provided as supplementary materials. Further details
are provided in the readme.txt file.
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