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Enantioselective Nickel-Catalyzed anti-Arylmetallative Cyclizations
onto Acyclic Ketones
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Abstract: Domino reactions involving nickel-catalyzed ad-

ditions of (hetero)arylboronic acids to alkynes, followed by
cyclization of the alkenylnickel intermediates onto teth-

ered acyclic ketones to give chiral tertiary-alcohol-contain-
ing products in high enantioselectivities, are described.

The reversible E/Z isomerization of the alkenylnickel inter-

mediates enables overall anti-arylmetallative cyclization to
occur. The ring system of the products are substructures

of certain diarylindolizidine alkaloids.

Stereogenic cyclic tertiary alcohols are important structural

units that feature prominently in biologically active natural
products and therapeutic compounds. Accordingly, new meth-

ods for the enantioselective construction of these units pro-
vide valuable tools for target synthesis. Of the strategies avail-

able, the catalytic asymmetric addition of carbon nucleophiles
to ketones ranks highly in directness, versatility, and overall
synthetic efficiency.[1] One subset of these reactions are metal-

catalyzed domino sequences initiated by the addition of an ar-
ylboron reagent to an alkyne, followed by enantioselective cyc-
lization of the resulting alkenylmetal species onto a tethered
ketone, which are applicable to the synthesis of diverse carbo-
and heterocycles.[2] Recently, nickel-catalyzed variants of these
reactions have been developed in which reversible E/Z isomeri-

zation of the alkenylnickel intermediates is essential for cycliza-
tion.[3] Application of this general method to achiral products
has also been reported,[4] and other related nickel-catalyzed

processes have also appeared.[5–7] In addition to nickel being
much less expensive than comparable rhodium- or palladium-

catalyzed reactions,[2] the diverse reactivity of nickel catalysis[5]

often enables unique transformations not available to other
metal catalysts.

Our first contribution to this field included a study of enan-

tioselective nickel-catalyzed desymmetrizations of cyclic 1,3-di-
ketones, which give fused bicycles in high diastereo- and enan-

tioselectivities (Scheme 1 A).[3a] Although effective, the ability to

use acyclic ketones in non-desymmetrizing cyclizations would
also be valuable to significantly broaden the substrate scope

and provide simpler, non-fused products. However, acyclic ke-
tones are potentially less reactive than cyclic 1,3-diketones be-

cause of their greater conformational flexibility, and because
they lack the activation from the second ketone through its

electron-withdrawing effect as well as the electronic repulsion

caused by having aligned dipoles. Two individual examples of
non-asymmetric nickel-catalyzed arylative cyclizations onto

acyclic ketones have been reported recently,[6d] but to our
knowledge, corresponding enantioselective processes have yet

to be described.
Herein, we describe the successful use of acyclic dialkyl and

alkyl-aryl ketones in these reactions in the enantioselective
preparation of aza- and carbocyclic tertiary alcohols
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Scheme 1. Enantioselective nickel-catalyzed arylative cyclizations onto ke-
tones.
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(Scheme 1 B). Most of the products contain the 4,5-diaryl-
1,2,3,6-tetrahydropyridine ring system, which appears in indoli-

zidine natural products such as (@)-phyllosteminine,[8] (@)-sep-
ticine,[9] and (@)-fistulopsine A[10] (Scheme 1 C).

This investigation began with the reaction of PhB(OH)2 with
acyclic substrates 1, which contain an alkyne tethered to a

ketone through a sulfonamide (Table 1). Chiral phosphine-oxa-
zoline (PHOX) ligands have proven to be excellent ligands in
related studies[3] and we found (S)-tBu-PHOX (L1) to be highly

effective in these reactions. Heating a mixture of the substrate
1 and PhB(OH)2 (2.0 equiv) in the presence of 10 mol % each of
Ni(OAc)2·4 H2O and L1 in TFE (2,2,2-trifluoroethanol) at 60 or
80 8C for 24 h provided azacycles 2 a-2 k in 44–90 % yield and

up to 99 % ee.[11] Small quantities of minor arylative cyclization
products 3, resulting from initial phenylnickelation of the

alkyne with the regioselectivity opposite to that required for
the formation of the major products 2, were also observed by
1H NMR spectroscopy, but with the exception of the reaction
producing 2 k and 3 k, these were not isolated. A range of aro-

matic ketones are tolerated in these reactions, with substrates
containing phenyl (2 a), 4-chlorophenyl (2 b), (3-trifluorometh-
yl)phenyl (2 c), or 2-methylphenyl ketones (2 d) readily under-

going arylative cyclization. Simple dialkyl ketones are also com-
petent electrophiles, with ketones containing methyl (2 e, 2 f,

2 i, and 2 j), ethyl (2 k), isopropyl (2 g), or methyl propanoate
(2 h) groups reacting successfully. Regarding the alkynyl sub-

stituent, the process is tolerant of phenyl (2 a-2 h), (4-
carbomethoxy)phenyl (2 i), and 3-methoxyphenyl groups (2 j).
A substrate with a vinyl group on the alkyne also reacted
smoothly, but the enantiomeric excess of the resulting product
2 k (45 % ee) was lower than in the other cases. Replacing the
para-toluenesulfonamide with a 4-nitrophenylsulfonamide
group is also possible (2 f), which has implications for subse-

quent product manipulation because 4-nitrophenylsulfonyl
groups are more readily deprotected than tosyl groups.

Next, different boronic acids were investigated in reactions

with substrate 1 f, and we were pleased to observe that aryla-
tive cyclization products 2 l-2 p were obtained in up to 79 %

yield and uniformly high enantioselectivities (98 % to >99 %
ee, Table 2). Various substituted phenylboronic acids are com-

patible with this process including, notably, 3-hydroxyphenyl-
boronic acid (2 m). 2-Naphthylboronic acid (2 o) and 3-thienyl-

boronic acid (2 p) also readily underwent the reaction.

Table 1. Scope of alkynyl-tethered ketones.[a]

[a] Reactions were conducted using 0.30 mmol of 1 in TFE (3 mL). Yields
are of isolated products. Values in parentheses refer to the ratio of 2 :3 as
determined by 1H NMR analysis of the crude reactions. Unless stated oth-
erwise, the minor isomers 3 were not evident in the isolated products.
Enantiomeric excesses were determined by HPLC analysis on a chiral sta-
tionary phase. [b] At 80 8C. [c] At 60 8C. [d] Product 2 k was obtained as an
inseparable 12:1 mixture together with the minor product 3 k in 90 %
combined yield.

Table 2. Scope of boronic acids.[a]

[a] Reactions were conducted using 0.30 mmol of 1 f in TFE (3 mL). Yields
are of isolated products. Values in parentheses refer to the ratio of 2 :3 as
determined by 1H NMR analysis of the crude reactions. Unless stated oth-
erwise, the minor isomers 3 were not evident in the isolated products.
Enantiomeric excesses were determined by HPLC analysis on a chiral sta-
tionary phase.
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Further experiments to explore the scope of this process in
the reactions of various other substrates with PhB(OH)2 are

shown in Schemes 2–6. Changing the alkynyl substituent to a
chloride was only moderately successful ; substrate 1 l reacted

to give chloroalkene-containing tetrahydropyridine 2 q in 12 %
yield and 71 % ee, with the remainder of the material being

predominantly unreacted 1 l (Scheme 2). Next, the preparation
of carbocyclic products was attempted by changing the sulfon-

amide connecting the alkyne and the ketone to a malonyl

group. Interestingly, the reaction of substrate 4 did give the
six-membered product 5 in 25 % yield and 84 % ee, but the cy-

clopent-2-enone 6 a resulting from cyclization of the intermedi-
ate alkenylnickel species onto one of the ester groups was also

obtained in 14 % yield[12] and 85 % ee (Scheme 3). The enantio-
selective formation of cyclopent-2-enones in this manner was

described by our group previously,[3c] and in this case, it ap-

pears that despite the lower electrophilicity of the methyl
esters in 4 compared with the phenyl ketone, the kinetic pref-

erence to form a five-membered ring over a six-membered
ring makes the formation of 6 a competitive with 5. An at-

tempt to prepare a five-membered cycloalkanol by the reac-
tion of PhB(OH)2 with substrate 7 was unsuccessful, and gave a

complex mixture of unidentified products (Scheme 4). Howev-

er, it should be noted that the formation of five-membered
rings by anti-carbometallative cyclizations onto cyclic 1,3-dike-

tones was successful in our previous work (see Scheme 1 A).[3a]

Attempts to form seven-membered ring products are shown

in Schemes 5 and 6. Substrate 8 reacted with PhB(OH)2 to give

cyclopent-2-enone 6 b in 55 % yield and 19 % ee[13] but no
product resulting from cyclization onto the ketone was ob-

served (Scheme 5). In addition, the reaction of substrate 9 with
PhB(OH)2 led to the trisubstituted alkene (Z)-10 resulting from

alkyne hydroarylation as the only isolable product in 34 % yield
(Scheme 6). The identity of the remainder of the material in

this reaction was not clear; although this did not appear to
contain an appreciable quantity of the corresponding E-isomer

of 10, we cannot rule out its presence resulting from E/Z iso-

merization of the alkenylnickel intermediate.
In summary, we have described enantioselective nickel-cata-

lyzed anti-arylmetallative cyclizations of (hetero)arylboronic
acids with substrates containing an alkyne tethered to an acy-

clic ketone, which proceed to give chiral tertiary alcohols with
high enantioselectivities in most cases (often +99 % ee). Com-
pared with a previous study,[3a] this work demonstrates a sub-

stantial increase in scope of ketones that can be used as elec-
trophiles. The products are 4,5-diaryl-1,2,3,6-tetrahydropyri-

dines, a ring system that is seen in certain indolizidine alka-
loids. The formation of carbocyclic products is also possible.[14]
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Scheme 4. Attempted reaction of substrate 7.

Scheme 6. Attempted formation of a seven-membered azacycle.

Scheme 2. Reaction of chloroalkyne 1l.

Scheme 3. Formation of carbocyclic products 5 and 6 a.

Scheme 5. Attempted formation of a seven-membered carbocycle.
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