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Undernutrition is a leading contributor to disease and disability in people of all ages.

Several studies have reported significant association between nutritional status and

gut microbiome composition but other factors such as demographic settings may also

influence the adult microbiome. The relationship between undernourishment and gut

microbiome in adults has not been described to date. In this study, we compared the

gut microbiome in fecal samples of 48 individuals, from two demographic settings (rural

and urban slum) in Karnataka, India using 16S rRNA sequencing. Nutritional status was

assessed based on BMI, with a BMI of <18.5 kg/m2 classified as undernourished,

and a BMI in the range 18.5–25 kg/m2 as nourished. We analyzed 25 individuals

from rural settings (12 undernourished and 13 nourished) and 23 individuals from

urban slum settings (11 undernourished and 12 nourished). We found no significant

difference in overall gut microbial diversity (Shannon and Unweighted UniFrac) between

undernourished and nourished individuals in either geographical settings, however,

microbial taxa at the phylum level (i.e., Firmicutes and Proteobacteria) and beta diversity

(unweighted UniFrac) differed significantly between the rural and urban slum settings.

By predicting microbial function from 16S data profiling we found significant differences

in metabolic pathways present in the gut microbiota from people residing in different

settings; specifically, those related to carbohydrate and lipid metabolism. The weighted

sum of the KEGG Orthologs associated with carbohydrate metabolism (Spearman’s

correlation coefficient, ρ = −0.707, p < 0.001), lipid metabolism (Spearman’s correlation

coefficient, ρ = −0.330, p < 0.022) and biosynthesis of secondary metabolites

(Spearman’s correlation coefficient, ρ = −0.507, p < 0.001) were decreased in the

urban slum group compared to the rural group. In conclusion, we report that the

geographical location of residence is associated with differences in gut microbiome

composition in adults. We found no significant differences in microbiome composition

between nourished and undernourished adults from urban slum or rural settings in India.
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INTRODUCTION

In broad terms, undernourishment is defined as nutritional
deficiency of energy, protein, and other nutrients causing
measurable adverse effects on body composition, function, and
clinical outcomes (1, 2). In children, nutritional assessment is
based upon wasting, stunting, eutrophy, and weight. However,
in adults, it is based on body weight and thinness. Body Mass
Index (BMI) < 18.5 kg/m2 is used as the standard indicator
and anthropometric index for assessing undernourishment
(3). As per WHO reports, undernourishment is a global
problem affecting 462 million people worldwide (4). In India,
undernutrition is the leading disease burden contributing 17%
of the total Disability Adjusted Life Years (DALYs) in all age
groups (5).

Undernutrition in adults from LowMiddle-Income Countries
(LMICs) is multifactorial with causes ranging from inadequate
dietary intakes due to food insecurity to the presence of
underlying co-morbidities which may impair the normal
assimilation and absorption of nutrients, likely compounded by
environmental and genetic factors (6). Undernutrition associated
with energy-inadequate diets and micronutrient deficiencies
constrains metabolic capacity resulting in a range of secondary
illnesses (7–10). Rural areas in LMIC’s show a higher prevalence
of undernutrition in comparison to urban areas based on the
nutritional shortfalls.

Although poverty and its association with food insecurity
is a major risk factor for undernutrition, the etiology of the
condition is far more complex than the simple lack of food.
Recently, alterations in the gut microbiome have been recognized
as part of this cycle (6, 11). The absorption of dietary nutrients
is largely determined by the trillions of microbes present
in the human gut referred to as the gut microbiome. The
human gut microbiome provides several metabolic functions
that are not encoded in the human genome, for instance,
fermentation of complex polysaccharides, metabolism of
proteins and peptides, biosynthesis of vitamins, absorption
of ions, and regulation of several host metabolic pathways
(12, 13). These functions facilitate the pre-processing of
dietary nutrients and efficient harvest of dietary energy for the
host. An aberrant microbiota or a microbiota lacking specific
microorganisms could, therefore, result in reduced nutrient
absorption secondary to chronic inflammation (14–17). Several
studies (18–20) have looked at the gut microbiome profile of
undernourished children in India and other LMICs, which
have shown an altered or dysbiotic microbiota composition
compared to healthy controls. Furthermore, randomized
controlled nutritional intervention trials targeted specifically
to modulate the composition of the gut microbiome have
shown to be an effective strategy in improving the nutritional
status of undernourished children (21, 22). Previous studies
reported that residential location, rural, and urban based
lifestyle and dietary habits determine the gut microbiome
structure of healthy adults (23–25). These microbiome
changes based on urban and rural locations are intriguing
as it encompasses the impact of local environment and
food availability.

Based on previous findings of the association between the gut
microbiome and undernourishment in children, we hypothesized
that in Indian adults the gut microbiome composition will be
affected by nutritional status and factors associated with location.
In the current study, we have assessed the gut microbiome
composition and 16S rRNA based functional analysis of 48 adults
from rural and urban slum settings in Bangalore district of
Karnataka in India with BMI < 18.5 kg/m2 (undernourished)
and BMI ranging 18.5–25 kg/m2 (nourished). This study being
the first of its kind in India provides useful insights into how
nourishment and demographic settings are related to the gut
microbial profile.

METHODS

Study Setting
This study was conducted in an urban slum [Devarajeevanahalli
(DJ Halli)] and a rural village (Thindlu) in Karnataka. The
locations for the study were chosen based on convenience
as the community health department has been working in
these areas for several years and has a good rapport with the
community. The urban and rural settings were chosen based
on their distinct and contrasting dietary habits, lifestyle and
socioeconomic status (26).

Urban Slum
DJ Halli is one of the largest government’s notified slums
in Bangalore, extending over 1.15 km with 420 huts with a
“registered” population of 2,463 (27). DJ Halli is served by the
Urban Health Center run by the Department of Community
Health, Bangalore Baptist Hospital. Contrary to the official
statistics, the population was estimated as 50,000 (∼11,000
huts) based on community discussions and observation (28).
In the urban slum area of DJ Halli, it is reported that 75%
of the population falls below poverty line with only one-
third of the population having a regular source of income
(29). This limits the access to fresh, wholesome produce and
comprises predominantly processed foods which are cheaper and
therefore affordable.

Rural Village
According to the 2011 census information, Thindlu has a total
population of 786 people. It is located 36 km away from
Bangalore city (30). In contrast to the urban slum, families, and
individuals in the rural village own pieces of land mainly for
agrarian and animal husbandry purposes providing them with a
steady source of income and therefore a better socio-economic
status compared to the urban slum population. Furthermore,
housing in the rural village is built-in with better sanitation and
hygiene facilities and ventilation. The population in the rural
village normally consume fresh, farm-grown staples, and have a
better diet overall.

Recruitment of Study Participants
The current pilot study recruited 25 participants from the
rural location and 23 participants from the urban slum.
Both men and women with no comorbid illnesses and
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within the age range of 20–60 years were included in the
study from both study locations. Potential participants were
approached through home visits and screened based on the
inclusion and exclusion criteria. Individuals with any history of
concurrent acute illness; chronic gastrointestinal (GI) disease,
chronic constipation, chronic diarrhea, abdominal tuberculosis;
autoimmune disease such as multiple sclerosis or connective
tissue disorders; atopic disease like moderate to severe asthma,
eczema, eosinophilic disorders; cerebrovascular or peripheral
vascular disease, previous antibiotics exposure in past 4
weeks or who lacked capacity to give informed consent were
excluded from the study. Eligible participants were provided
with a stool collection kit. Dietary details as provided in
the Supplementary Information were collected using a 24-h
recall questionnaire by interview and total caloric intakes along
with the composition of carbohydrates, proteins and fats were
determined. Participants who were included in the study were
permanent residents who lived in their respective dwellings for
a minimum of 1 year.

Criteria Used for Assessing Undernutrition
Status
BMI was used as the criterion for assessing undernutrition status
in the current study according to the standard protocol used to
assess nutritional status in India (3). BMI in Indian population
is categorized as underweight (BMI < 18.5 kg/m2), normal (BMI
= 18.5–22.9 kg/m2), overweight (BMI = 23.0–24.9 kg/m2) and
obese (BMI≥ 25 kg/m2) (31). BMIwas calculated from the height
and weight of the participants. Any male and female in the age
group of 20–60 years with BMI range of 18.5 to 25 kg/m2 were
classified as nourished and BMI < 18.5 kg/m2 were classified as
undernourished in both rural and urban settings. In the rural
area, 12/25 individuals were classified as undernourished and
13/25 were as nourished. In the urban area, 11/23 individuals
were classified as undernourished, and 12/23 as nourished.

Sample Collection, Processing, and DNA
Extraction
Fresh fecal samples provided by the participants were received at
the collection point and then were transported on dry ice on the
same day of collection to Bangalore Baptist Hospital laboratory
and stored at−80◦C. Frozen fecal samples were then transported
to theWellcome laboratory in ChristianMedical College, Vellore
for further analysis. DNA was extracted using the QIAamp Fast
DNA Stool Mini Kit (Qiagen, Germany).

Sequencing Data Analysis and Diversity
Metrics
The V3–V5 region of 16S rRNA was amplified and processed
following the library preparation protocols for MiSeq Illumina
platforms (32). The samples were sequenced to 15 million reads
with custom barcoding according to the Fadrosh protocol (33).
Raw reads were demultiplexed, filtered, and denoized to derive
amplicon sequence variants (ASV’s) using DADA2 implemented
in QIIME2 version 2019.10 (34). Taxonomy was assigned using a
pre-trained classifier based on the SILVA Database (35, 36). The

abundance of microbes at genus level was used for downstream
analysis. Microbial diversities were calculated taking the average
of the feature table rarefied to 37,318 reads per sample with
50 iterations.

For alpha diversity estimations Shannon index (37, 38) was
calculated which accounts for both, the abundance and the
evenness of the species present. It is the sum of the proportion
of species i, relative to the total number of species (Pi) multiplied
by the natural logarithm of this proportion (ln(Pi)) multiplied
by −1. It is represented as H′

= −
∑

Pi ln(Pi), where Pi is the
proportion of individuals belonging to species i. Beta diversity
was calculated by comparing the unweighted UniFrac distances
(39) which is a phylogenetic diversity metrics and takes the
distance between the unique branch lengths into account. The
phylogenetic tree was generated by aligning the representative
sequences by multiple sequence alignment using FastTree (40).
UniFrac distance between two samples is calculated as the ratio
of the unique branch length and the observed branch length. It
is represented as UAB = unique/observed where A and B are
the two samples; unique is the branch length that leads to OTU’s
observed in samples A or B, observed is the branch length leading
to OTU’s either in sample A or sample B.

Functional Profiling From 16S Data
Significant changes in the functioning of the gut microbiome
in relation to the change in the diversity across the study
groups were predicted from the16S rRNA data using the
marker-gene based functional profiling analytical tool “Tax4fun”
available at the MicrobiomeAnalyst Pipeline (41) to transform
the SILVA-based ASV’s into a taxonomic profile of KEGG
(Kyoto Encyclopedia of Genes and Genomics) organisms
normalized by the 16S rRNA copy number from National
Center for Biotechnology Information (NCBI) annotations.
These abundance matrices were then linearly combined with
the already obtained (42, 43) functional abundances of KEGG
organisms’ functional profiles. The KEGG orthologs (KO) were
then computed based on the phylogenetic differences between
the microbial species. KEGG orthologs were assigned to KEGG
pathways based on the automated annotation through the KEGG
mapping tool. Since KO can regulate various categories of
pathways, we have narrowed them down to higher functional
KEGG metabolic pathways.

Statistical Analysis
Differential microbial abundance across the study groups tested
by analysis of the composition of the microbiome (ANCOM
2.0) (44) adjusted for age and gender at 0.9 detection, meaning
that there was a significant change in the ASV compared
to the rest of the ASVs in the community in at least 90%
of the comparisons with an FDR corrected p-value of 0.05.
Multiple independent t-tests were performed to determine the
statistical differences between microbial diversities, ANCOM
based differentially abundant microbial taxa and functional
pathways based on the nutritional status and geographical
locations. Spearman correlations were used to determine the
association of gut microbial taxa with total calories, estimated
nutritional intakes and KEGG functional pathways adjusting for
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TABLE 1 | Characteristics of the study participants based on nutritional status (normal vs. undernourished) or location (rural vs. urban slum).

Sample-category Rural-nourished Rural-undernourished p-values Urban slum nourished Urban slum undernourished p-values

(A) Clinical Characteristics

N 13 12 12 11

Age in years: mean (SD) 31 (7.01) 35.33 (10.87) 0.244 28.67 (8.78) 31.00 (12.51) 0.608

Gender-Male 6 (46.16) 6 (50) 0.855 6 (50) 5 (45.45) 0.837

Female: N (%) 7 (53.84) 6 (50) 6 (50) 6 (54.55)

Weight in Kg: mean (SD) 57.71 (9.63) 45.27 (5.07) 0.001** 58.42 (8.68) 41.94 (5.04) <0.001**

Height in Cm mean (SD) 165.00 (12.67) 194.33 (112.97) 0.361 162.58 (7.28) 158.18 (10.30) 0.247

BMI in kg/m2: mean (SD) 21.37 (1.64) 17.45 (0.83) <0.001** 22.05 (2.20) 16.74 (1.14) <0.001**

Caloric Intake per day: mean (SD) 1,656.53 (355.22) 859.66 (85.70) <0.001** 1,901.66 (517.22) 1,150.54 (294.62) <0.001**

Carbohydrates Intake 293.61 (45.18) 209.16 (34.39) <0.001** 313.50 (67.18) 202.09 (10.24) <0.001**

Protein Intake 51.30 (11.45) 42.08 (7.12) 0.025* 52.50 (11.55) 39.18 (4.60) 0.002*

Fat Intake 31.83 (3.26) 29.83 (3.68) 0.164 31.08 (3.62) 28.09 (3.50) 0.058

(B) Bacterial phylum relative abundance

Actinobacteria mean (SD) 0.059 (0.032) 0.041 (0.032) 0.181 0.045 (0.047) 0.078 (0.046) 0.110

Bacteroidete mean (SD) 0.144 (0.082) 0.172 (0.082) 0.413 0.225 (0.122) 0.165 (0.094) 0.201

Firmicutes mean (SD) 0.744 (0.120) 0.746 (0.078) 0.957 0.609 (0.120) 0.605 (0.113) 0.945

Proteobacteria mean (SD) 0.040 (0.052) 0.033 (0.034) 0.703 0.111 (0.098) 0.139 (0.152) 0.610

Others mean (SD) 0.013 (0.026) 0.008 (0.014) 0.539 0.008 (0.013) 0.011 (0.018) 0.561

(A) Clinical Traits, (B) Bacterial phylum abundances expressed as relative abundance. The data is expressed as Mean (Standard Deviation). p-values are for independent sample t-tests.

**p-values significant at the level of ≤0.001; *p-values significant at the level of <0.05.

multiple testing (FDR < 0.1). All statistical analyses were carried
out in R v3.5.2 and SPSS Version 26.

RESULTS

Subject and Clinical Characteristics
A total of 48 patients were recruited for the study with
a BMI of 18.5–25 kg/m2 classified as nourished and BMI
< 18.5 kg/m2 classified as undernourished. The details
and clinical characteristics are present in Table 1A and
Supplementary Table 1A. There were no significant differences
in age and gender, based on nutritional status (undernourished
vs. nourished) and location (urban slum vs. rural). There
were significant differences (p < 0.001) in the average caloric
intakes and estimated intakes of carbohydrates and proteins
between undernourished and nourished individuals from both
urban slum and rural settings. Based on the 24 h dietary
recalls, the estimated daily intake of calories was less than
the recommended daily intake ranging from 1,700 to 2,200
kcal (45). However, the intakes for carbohydrates, protein, and
fats followed the recommended daily intakes of carbohydrates
(200–320 g), proteins (42–59 g), and fats (25–30 g) in all groups
(46) (Table 1A). There was no significant difference in the
average caloric intakes and estimated intakes of carbohydrates,
proteins and fats based on location (i.e., rural vs. urban slum) as
shown in Supplementary Table 1A.

Overall Difference and Diversity Indices in
the Microbial Community
On average, the most dominant phyla were Firmicutes (68%)
followed by Bacteroidetes (18%), Proteobacteria (8%), and

Actinobacteria (6%). There were no significant differences
between the dominant phyla based on nutritional status
as shown in Table 1B. However, there was a significant
increase in the abundance of Firmicutes and Proteobacteria
in the rural and urban slum cohort, respectively, as shown
in Figures 1A,B (details in Supplementary Table 1A and
Supplementary Figure 1). After taxonomic assignments to
the family level, a total of 111 families were found. The
independent t-tests on the rarefied table resulted in eight
statistically significant families based on location which
mostly belonged to the phyla Firmicutes and Proteobacteria
(Supplementary Table 2). Undernourished adults showed
higher alpha diversity (Shannon Index) compared to nourished
in both geographical settings but this was not statistically
significant (Figure 2A). No significant differences were observed
in beta diversity (unweighted UniFrac) between undernourished
and nourished in rural or urban slum settings, however, there
was a significant difference in the beta diversity based on
location (i.e., rural and urban slum) as shown in Figure 2B

and Supplementary Figure 2. Specifically, urban slum settings
showed significantly higher beta diversity (p < 0.001) compared
to rural settings. This is mirrored by the Principal Coordinates
Analysis (PCoA) plotted based on the unweighted UniFrac
distances (Figure 3), demonstrating greater variation within the
urban slum cohort and homogeneity in the rural cohort.

Location Is the Strongest Determinant of
the Gut Microbiota Variation Across the
Samples
There were no differentially abundant taxa when tested based
on nutritional status. However, taxa significantly associated with
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FIGURE 1 | Box and Whisker plot depicting relative abundance of significant phylum. (A) Firmicutes and (B) Proteobacteria in undernourished and nourished from

rural and urban-slum settings. p-values indicate statistical significance from independent t-tests comparing nourished and undernourished study groups in both the

locations (i.e., rural normal vs. rural undernourished and urban normal vs. urban-undernourished) and independent t-test based on location (i.e., rural vs. urban-slum).

Box-and-whisker plots show high, low, and median values, with lower and upper edges of each box denoting first and third quartiles, respectively. ns indicates

non-significant p-values. Black dots represent the outliers.

the rural settings were Erysipelotrichaceae UCG-003,Turicibacter,
and Marvinbryantia. In the urban slum region, the taxa that
were significantly associated belong to the genus Megasphaera,
Prevotella, and Prevotellaceae family as shown in Figure 4. There
were no taxa significantly associated with the estimated intakes
of carbohydrates, proteins, and fats after correcting for multiple
testing at the threshold of FDR < 0.05.

KEGG Orthologs and Functional Pathways
Based on the 16S rRNA marker gene amplicon data, we
compared the functional gene content based on nutritional
status and geographical locations, respectively. Although alpha
diversity based on the genus level did not show a statistical
difference in either of the study groups, reports suggest there
may be differences at the functional level (47, 48). To gain a
deeper insight into whethermicrobiota compositional differences
may have effects within the subgroups, we computed the
abundance of higher functional categories (based on KEGG
ortholog abundances).

A KEGG ortholog can be a part of many functional pathways,
so the functional profiles across the study groups were computed
based on the sum of weighted hits of the KEGG orthologs
present across the samples in the study groups. Based on
nutritional status, there were no significant associations of
specific functions, however, pathways for carbohydrate and lipid
metabolism, glycan biosynthesis, and nucleotide metabolism

along with biosynthesis of other amino acids, metabolism
of terpenoids and polyketides, xenobiotic biodegradation, and
metabolism were found to be negatively associated with the
nourished cohort. Functions for the metabolism of amino-
acid and energy, metabolism of cofactors, and vitamins,
biosynthesis of secondary metabolites were found to be
positively associated with the nourished cohort as shown in
Table 2. We then looked at the associations with geographical
location and found significant associations for the functional
pathways of biosynthesis of other secondary metabolites,
carbohydrate metabolism, and lipid metabolism (p < 0.05), as
shown in Figure 5. Specifically, pathways identified for amino
acid, nucleotide, lipid, carbohydrate, and glycan biosynthesis
metabolism along with xenobiotics biodegradation, biosynthesis
for secondary metabolites, and metabolism of terpenoids and
polyketides were negatively associated with the rural settings
and functions for energy metabolism, metabolism of cofactors,
and vitamins and other amino acids were found to be positively
associated with the rural settings as shown in Table 2.

DISCUSSION

In the current study, we looked at the impact of nutritional
status and geographical location of residence as possible factors
influencing the composition and function of the gut microbiome
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FIGURE 2 | Box and Whisker plot depicting. (A) Shannon Diversity (α diversity index) in undernourished and nourished from urban and rural settings; (B) Beta

Diversity (unweighted Unifrac distances) in undernourished and nourished in urban and rural settings. p-values indicate statistical significance from independent t-tests

comparing nourished and undernourished study groups in both the locations (i.e., rural normal vs. rural undernourished and urban normal vs. urban-undernourished)

and independent t-test based on location (i.e., rural vs. urban-slum). Box-and-whisker plots show high, low, and median values, with lower and upper edges of each

box denoting first and third quartiles, respectively. ns indicates non-significant p-values. Black dots represent the outliers.

of adults in Karnataka, India. We find no significant differences
in microbial diversities (Shannon and Unweighted UniFrac)
between undernourished (BMI < 18.5 kg/m2) and nourished
individuals (BMI in the range 18.5–25 kg/m2) from either rural
or urban slum locations even though calorie, carbohydrate, and
protein intake was significantly lower in the undernourished
group (Table 1A). This may be because, in adults, the core
microbiome becomes stable over time (49, 50), which tends
to change with the effect of environment and other factors
(51, 52). However, beta diversity was found to be significantly
different between locations (rural and urban slum settings)
and we found several differentially abundant microbial taxa
suggesting that location has significant effect in modulating
the composition of the microbiome and associated metabolic
pathways as reported previously (53). This could be due to
substantial differences in food availability, environment, and
social practices between the urban slum and rural settings.
For example, urban slum settings comprise predominantly of
overcrowded and ill-ventilated houses with poor sanitation
practices and lower socioeconomic status compared to the rural
settings. Furthermore, the people in the urban slum generally
have a diet comprising mainly processed foods while the rural
population has a higher socioeconomic status with a healthier
living environment and a diet comprising fresh traditional staple
foods (54, 55). This is reflected in lower average calorie intakes
per day in the rural settings compared to the urban slum,

however, we observe similar protein, carbohydrates, and fat
intakes. Our work supports previous suggestion that extrinsic
factors beyond nutritional status appear to be associated with
microbial profiles (23–25, 40, 47).

In the current study, a significant increase in Proteobacteria
and decrease in Firmicutes in the urban slum settings may
indicate associations with the risk of diseases as reported
previously (56–58). Also, the significant association of
genera such as Prevotella and the Prevotellaeceae family in
the urban slum settings may reflect the differences in the
enzymes responsible for the breakdown of complex indigestible
polysaccharides (59). The family Prevotellaeceae and different
oligotypes of the genus Prevotella have been previously shown
to be associated with different dietary patterns (60) and with
rural and urban locations (47, 53, 61). In the current study, we
also find significant increases in butyrate producing genera such
as Marvinbryantia and Turicibacter associated with the rural
location which may indicate a fiber rich diet. The higher-level
functional pathways related to carbohydrate, protein and lipid
metabolism were also found to be significantly associated with
the rural location compared to urban slum location. These
differences could be attributed to migration from rural to urban
settings which has been previously reported to impair metabolic
pathways (62) and gut microbiome composition (63, 64).
Although, the gut microbiome has been shown to affect the
metabolism of macronutrients with the help of enzymes such as
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FIGURE 3 | Principal Coordinates Analysis (PCoA) of the similarity across the study groups based on the nutritional status (nourished vs. undernourished) and location

(rural vs. urban slum) based on the Unweighted UniFrac distances. Each point corresponds to a sample colored according to the nutritional status and corresponding

location and the size of the point corresponds to the Shannon diversity index. Principal Coordinates (PC) axis expresses the percent variance across the samples.

of CAZymes, deaminases, lipases, and others maintaining the
homeostasis of metabolic pathways (65), however, the causal
factors contributing to this remain speculative. In addition, the
positive association of the xenobiotic degradation pathways and
the pathways for the metabolism of terpenoids and polyketides
with the urban slum population likely reflects the exposure
to industrial products as these molecules exist as glycosides
in their natural forms and are chemically engineered in the
pharmaceutical and nutraceutical industries (66, 67).

Various previous studies have reported no change in diversity
metrics but a change in functional profiles that are associated
with specific metabolic pathways (68, 69). Our observed
variation in beta diversity, differences in specific microbial
taxa and functional pathways probably reflect the intake of
substantially different dietary resources in rural and urban slum
dwellers (e.g., processed foods more commonly available in
urban location).

There are substantial strengths to our study. This is the
first study that has investigated the role of nutritional status
and location of residence on the composition of the gut
microbiome in undernourished and nourished adults. The
inclusion of undernourished and nourished individuals from two
distinct locations within the same region enabled us to gain a
deeper understanding of the impact of nutritional status and
environment on the composition of the gutmicrobiome. Also, we
have inferred the functioning of the gut microbiome from the 16s

rRNA marker-based functional profiling tools. Few studies have
compared the outputs of pipelines such as PICRUST, Tax4Fun
(70, 71) with shotgunmetagenome sample sequencing generating
comparable results thus making the process cost-effective against
the shotgun metagenomic sequences (47, 72). Although there are
many caveats of the functional profile generated from the 16S
rRNA marker gene-based microbial profile, the current analysis
provides some indication that the gut microbiome although
not significantly different in diversity may still alter metabolic
capacity by producing secondary metabolites that alters gene
expression and associated metabolic pathways. Our study has
several limitations. Firstly, the small sample size reduces the
power to show significant associations and therefore needs to
be replicated on larger sample size. Secondly, dietary data was
limited to a single administration of a 24-h food recall diary
rather than a standardized Food Frequency Questionnaire (FFQ)
restricting analysis of dietary patterns and duration of nutritional
status between urban slum and rural populations. Furthermore,
the study also lacked detailed information on lifestyle as
a specific questionnaire on lifestyle was not administered.
The current study also lacked biomarkers for the cross-
validation of nutritional status and the composition of the
gut microbiome.

In conclusion, the current study suggests that in adults, the
composition of the gut microbiome is driven more by the
demographic settings of residence than nutritional status.
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FIGURE 4 | Box and Whisker plot depicting the relative abundance of significant taxa associated with undernourished and nourished from urban slum and rural

settings. p-values indicate statistical significance from independent t-tests comparing nourished and undernourished study groups in both the locations (i.e., rural

normal vs. rural undernourished and urban normal vs. urban-undernourished) and independent t-test based on location (i.e., rural vs. urban-slum). Box-and-whisker

plots show high, low, and median values, with lower and upper edges of each box denoting first and third quartiles, respectively. ns indicates non-significant p-values.

Black dots represent the outliers.

TABLE 2 | Correlation between the pathways identified and the study groups based on the nutritional status (normal vs. undernourished) or location (rural vs. urban slum).

Pathways Nutritional status Location

(Nourished vs. Undernourished) (Rural vs. Urban slum)

Coefficient p-value Coefficient p-value

Amino-acid metabolism 0.071 0.633 −0.083 0.576

Biosynthesis of secondary metabolites 0.056 0.707 −0.507** <0.001

Carbohydrate metabolism −0.113 0.445 −0.727** <0.001

Energy metabolism 0.011 0.943 0.089 0.548

Glycan biosynthesis and metabolism −0.122 0.409 −0.059 0.692

Lipid metabolism −0.113 0.445 −0.330* 0.022

Metabolism of co-factors and vitamins 0.017 0.911 0.074 0.618

Metabolism of other amino-acids −0.047 0.753 0.059 0.692

Metabolism of terpenoids and polyketides −0.047 0.753 −0.254 0.081

Nucleotide metabolism −0.011 0.943 −0.173 0.239

Xenobiotic biodegradation and metabolism −0.014 0.927 −0.05 0.737

Data is expressed as Spearman’s coefficient and raw p-values in parentheses. *correlation is significant at the level of <0.05; **correlation is significant at the level of <0.001. The

p-values are significant after correcting for multiple testing at the threshold of ≤0.1.

Contrary to previous studies that have shown significant
differences in the microbial diversities of the gut microbiome
amongst undernourished children (18, 19), no associations were
observed in undernourished adults from either rural or urban
settings. Microbiome differences associated with the location
of residence and differences in host metabolic pathways may

have important consequences on human health influencing
metabolism, immunity, development and behavior (73). It may
therefore be of value to consider environmental and social factors
to address dysbiosis in adults in LMICs. This may enable some
health improvement in undernourished individuals. Further
studies will be required to understand the interplay between the
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FIGURE 5 | Box and Whisker plot depicting the pathways significantly associated with undernourished and nourished from urban slum and rural settings in (A)

Carbohydrate metabolism (p < 0.001), (B) Lipid metabolism (p = 0.006), (C) Biosynthesis of secondary metabolites (p < 0.001). p-values indicate statistical

significance from independent t-tests comparing nourished and undernourished study groups in both the locations (i.e., rural normal vs. rural undernourished and

urban normal vs. urban-undernourished) and independent t-test based on location (i.e., rural vs. urban-slum). Box-and-whisker plots show high, low, and median

values, with lower and upper edges of each box denoting first and third quartiles, respectively. ns indicates non-significant p-values. Black dots represent the outliers.

nutritional status and residual location, socioeconomic factors,
and gut microbiome for improved health in adults.
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undernourished and nourished from rural and urban slum settings, and (C) Across

the location (rural and urban slum).

Supplementary Figure 2 | Box and Whisker plot depicting Beta Diversity

(unweighted Unifrac distances) based on location. p-values indicate independent

t-tests statistical significance categorizing the study groups based on the location

(i.e rural vs urban slum). Box-and-whisker plots show high, low, and median

values, with lower and upper edges of each box denoting first and third quartiles,

respectively. ns indicates non-significant p-values. Black dots represent

the outliers.

Supplementary Table 1 | Characteristics of the study participants based on the

location (rural vs. urban slum). (A) Clinical Traits, (B) Bacterial phylum abundances

expressed as relative abundance. The data is expressed as Mean (Standard

Deviation). p-values are for independent sample t-tests. ∗∗p-values significant at

the level of ≤0.001; ∗p-values significant at the level of <0.05.

Supplementary Table 2 | Abundances of taxa at the family level based on

location (i.e., rural vs. urban slum). The data is expressed as Mean (Standard

Deviation). p-values are for independent sample t-tests. ∗∗p-values significant at

the level of ≤0.001; ∗p-values significant at the level of <0.05.
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