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Tourette syndrome (TS) is a neurological disorder of childhood onset that is

characterized by the occurrence of motor and vocal tics. TS is associated with cortical-

striatal-thalamic-cortical circuit [CSTC] dysfunction and hyper-excitability of cortical

limbic and motor regions that are thought to lead to the occurrence of tics. Individuals

with TS often report that their tics are preceded by ‘premonitory sensory/urge

phenomena’ (PU) that are described as uncomfortable bodily sensations that precede the

execution of a tic and are experienced as a strong urge for motor discharge. While the

precise role played by PU in the occurrence of tics is largely unknown, they are

nonetheless of considerable theoretical and clinical importance as they form a core

component of many behavioural therapies used in the treatment of tic disorders. Recent

evidence indicates that the cingulate cortex may play an important role in the generation

of PU in TS, and in ‘urges-for-action’ more generally. In the current study, we utilized

voxel-based morphometry (VBM) techniques, together with ‘seed-to-voxel’ structural

covariance network (SCN) mapping, to investigate the putative role played by the

cingulate cortex in the generation of motor tics and the experience of PU in a relatively

large group of young people with TS. Whole-brain VBM analysis revealed that TS was

associated with clusters of significantly reduced grey matter volumes bilaterally within:

the orbito-frontal cortex; the cerebellum; and the anterior and mid-cingulate cortex.

Similarly, analysis of SCNs associated with bilateral mid- and anterior cingulate ‘seed’

regions demonstrated that TS is associated with increased structural covariance primarily

with the bilateral motor cerebellum; the inferior frontal cortex; and the posterior

cingulate cortex.

Tourette syndrome (TS) is a neurological disorder of childhood onset that is characterized

by the presence of chronic vocal and motor tics (Cohen, Leckman, & Bloch, 2013). Tics

are involuntary, repetitive, stereotyped behaviours that occur with a limited duration
(Cohen et al., 2013). Motor tics can be simple or complex in appearance, ranging from

repetitive movements to coordinated action sequences. Verbal tics can consist of

repetitive sounds, words or utterances, the production of inappropriate or obscene
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utterances, or the repetition of another’s words. Tics occur in bouts, typically many times

in a single day, and are themost common formofmovement disorder in children (Delgado

& Albright, 2003).

Individuals with TS perceive a relatively constant demand to suppress their tics,
particularly in social situations, and while the voluntary suppression of tics is possible in

many cases, they typically report that it can be uncomfortable and stressful to suppress

tics, and that the urge to tic becomes uncontrollable after a period of suppression (Cohen,

Leckman&Bloch, 2013). Importantly, themajority of individuals with TS report that their

tics are oftenprecededby ‘premonitory sensory/urgephenomena’ (PU) that are described

as uncomfortable cognitive or bodily sensations that occur prior to the execution of a tic

and are experienced as a strong urge for motor discharge (Cohen et al., 2013. Individuals

who experience PU often report that: these experiences are more bothersome than their
tics; that expressing their tics give them relief from, and temporarily abolishes, their PU;

and that theywould not exhibit tics if they did not experience PU (Cavanna, Black, Hallett,

& Voon, 2017). For this reason, it has been proposed that PU should be considered as the

driving force behind the occurrence of tics, and that tics are a learnt response to the

experience of PU (Cavanna et al., 2017). PU are of particular clinical importance as they

formacore component of behavioural therapies that are currently used in the treatment of

tic disorders (Cohen et al., 2013).

Ourunderstanding of PUand their relationship to tics is currently limited, and there are
grounds for thinking that the occurrence of tics and the occurrence of PU are independent

processes or only loosely associated. First, not all individuals with TS report experiencing

PU. In particular, children under 10 years of age, who present with simple tics, do not

typically report being aware of PU (Cohen et al., 2013). Second, tics have been observed

during sleep, including slow-wave sleep, indicating that at least some tics are involuntary

(Cohrs et al., 2001). Third, the occurrence of tics—and an individual’s ability to suppress

them—may occur independently of the awareness of PU (Ganos et al., 2012). Finally, the

generation of tics and the genesis of PU in TS have been linked to different brain networks
(Bronfeld, Israelashvili, & Bar-Gad, 2013; Conceicao, Dias, Farinha, &Maia, 2017; Jackson,

Parkinson, Kim, Schuermann, & Eickhoff, 2011; McCairn, Iriki, & Isoda, 2013). Previous

studies have indicated that the urge for action more generally may activate a common set

of brain areas across a wide range of behavioural domains (e.g., the urge to blink, the urge

to yawn, the urge to micturate, the urge to scratch an itch, etc.), that includes the urge to

tic in TS (Jackson, Parkinson, Kim, et al., 2011). Jackson, Parkinson, Kim et al. (2011)

conducted a quantitative meta-analysis of functional brain imaging studies that investi-

gated the ‘urge for action’ associated with everyday behaviours such as yawning,
swallowing, and micturition, and demonstrated that the right anterior insula and the mid-

cingulate cortex (MCC) were the only regions consistently activated across brain imaging

studies associated with the perception of the urge for action in different behavioural

domains. Importantly, these authors proposed that the right insula andMCCplay a central

role in a neural circuit that represents bodily sensations, generates urges for action, selects

an action based upon an estimation of the likely outcomes associatedwith that action, and

determines whether the conditions giving rise to the urge for action have been resolved

once an action has been initiated.
Consistent with this proposal, functional brain imaging studies indicate that brain

activity within the MCC increases 1 s prior to tic execution in individuals with TS

(Bohlhalter et al., 2006; Neuner et al., 2014) and structural brain imaging studies

demonstrate that there are alterations in grey matter (GM) volume throughout MCC and

anterior cingulate cortex (ACC) that are correlated with clinical measures of tic severity
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(for a recent review see O’Neill, Piacentini, & Peterson, 2019). This has led some authors

to conclude that the MCC plays an important role in the generation/representation of PU

(e.g., O’Neill et al., 2019) whereas others have speculated that the role of the cingulate

motor area may be to select/generate a particular action in response to PU that may be
primarily generated elsewhere, most likelywithin the anterior insula (Jackson, Parkinson,

Kim, et al., 2011). This latter view is consistent with recent studies demonstrating that

while electrical stimulation of medial wall regions of cortex, including the MCC, was

sufficient to induce movements, including goal-directed actions, there was no evidence

that electrical stimulation of this region induced a phenomenological experience of an

‘urge tomove’ (Caruana et al., 2018; Trevisi et al., 2018; although see Fried et al., 1991, for

an alternative report that electrical stimulation of the posterior supplementarymotor area

(SMA) can induce the experience of an ‘urge to move’). In the current study, we focus
specifically on the relationship between the cingulate cortex, measured using structural

magnetic resonance imaging togetherwith the analysis of structural covariance networks,

and clinical measures of tic severity and PU.

Human brain imaging studies have identified a number of functional brain networks,

often referred to as ICNs (intrinsic cortical networks) that reflect correlated brain activity

across anatomically separate brain areas. Recent evidence indicates that these networks

are dominated by common organizational principles and stable features, and may largely

reflect enduring individual characteristics, including the consequence of brain health
conditions (Gratton et al., 2018). Similarly, neuroimaging studies have repeatedly

demonstrated covariance of GM cortical thickness or volume over widespread,

distributed, brain regions; and these structural covariance networks (SCNs) have also

been shown to be highly heritable and to reflect differences in age and disease status

(Alexander-Bloch, Giedd, & Bullmore, 2013).

It has been proposed that structural covariance between brain regions may likely

reflect brain areas that are functionally co-active and exhibit common patterns of

maturational change—including shared long-term trophic influences; shared patterns of
gene co-expression (Romero-Garcia et al., 2018; Zielinski, Gennatas, Zhou, & Seeley,

2010), and are selectively vulnerable to specificbrainhealth conditions (Seeley, Crawford,

Zhou, Miller, &Greicius, 2009). Importantly, recent studies have demonstrated that SCNs

closely mirror the functional ICNs revealed using resting-state functional magnetic

resonance imaging [fMRI] (Kelly et al., 2012; Seeley et al., 2009) and co-degenerate in

distinct humanneurodegenerative conditions (Cauda et al., 2018; Seeley et al., 2009). This

suggests that analysis of SCNs, while currently under-utilized to study brain networks in

neurodevelopmental conditions, may be a particularly useful method for investigating
alterations in brain network development in children and adolescents forwhom the use of

conventional fMRI approaches is especially challenging. In this study we chose to

investigate specifically how SCNs associated with different functional regions of the

bilateral cingulate cortex may be altered in children and adolescents with TS -relative to a

group of typically developing individuals.

Materials and methods

This study was approved by an appropriate local ethical review committee. Written

informed consent was acquired from all participants and where appropriate from their

parents/caregivers. No part of the study procedures or analyses were pre-registered prior

to the research being conducted. We report howwe determined our sample size, all data

exclusions (if any), all inclusion/exclusion criteria, whether inclusion/exclusion criteria
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were established prior to data analysis, all manipulations, and all measures in themethods

below. Finally, the conditions of our ethics approval do not permit public archiving of

individual MRI data or clinical biographical data.

Participants

In total, 76 volunteers took part in this study: 39 had a confirmed diagnosis of TS (TS

group) and 37 formed our control group (CS group) of age- and sex-matched, typically

developing, individuals with no history of neurological disorders. The TS group were

recruited either from the Child and Adolescent Psychiatry Clinic at the Queens Medical

Centre in Nottingham or by advertising through the Tourettes Action charity or regional

TS support groups. The CS group were recruited from local schools, by local advertising,
and recruitment at science fairs. All volunteerswere providedwith a small inconvenience

allowance for their participation.

After magnetic resonance imaging (MRI) the scans from twelve participants were

found to be un-usable and data from these individuals were excluded from further

analyses. The participants who remained included 28 individuals in the TS group (three

females; mean age 14.62 � 3.4 years) and 36 controls (three females; mean age

14.38 � 3.2 years). 10 individuals with TS had a confirmed or suspected clinical

diagnosis of a co-occurring neuropsychiatric condition in addition to their TS (attention
deficit/hyperactivity disorder [ADHD] = 2; obsessive-compulsive disorder [OCD] = 2;

and autism spectrum disorder [ASD] = 6). 10 patients were medicated at the time of

scanning. Details of the TS group are reported in Table 1.

Diagnosis, symptom severity and screening

Diagnosis of TS was confirmed by an experienced clinician. In addition, all participants

underwent comprehensive screening for current symptoms of TS by a highly experienced
and trained research nurse/researcher. Measures of the current severity of tics were

obtained using the Yale Global Tic Severity Scale (YGTSS) (Leckman et al., 1989). The

YGTSS is a semi-structured clinician-ratedmeasure assessing the nature ofmotor and vocal

tics present over the past week. The YGTSS is a commonly used clinical assessment scale

and has been found to have good psychometric properties (Leckman et al., 1989). It

consists of three subscales: impairment rating, motor tic rating and vocal tic rating. Motor

and vocal tic ratings are made up of the composite answers from questions relating to

number, frequency, intensity, complexity and interference of tics reported in the
previous week and observed during the interview. The current frequency and severity of

premonitory sensory/urge phenomena [PU] was measured using the Premonitory Urge

for Tics Scale (PUTS) (Woods, Piacentini, Himle, &Chang, 2005). The PUTS is a self-report

measurement where items assess the intensity and frequency of PSP (on a scale of 1–4).
Nine of the 10 items on the PUTS scaled were scored based on recommendation, and thus

scores could range from 9 to 36 (Woods et al., 2005). Participants were screened for any

indication of symptoms of ADHD, OCD and Autism using the Connors-3 Parent Report

(Conners, 2008), Children’s Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) (Scahill
et al., 1997) and Social Communication Questionnaire (SCQ) (Berument, Rutter, Lord,

Pickles, & Bailey, 1999), respectively. Based on these measures, a further eight patients

were categorized as being at high risk of having OCD and/or ADHD. All participants also

completed the Wechsler’s Abbreviated Scale of Intelligence (WASI-II) (Wechsler, 1999)

used to assess intellectual ability. Two subtests were used (the verbal and performance
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subtests). Participants would be excluded from the study if their WASI score was < 70

(none were).

Image acquisition

Whole-brain, high-resolution, T1-weighted structural MRI brain images were acquired for

each participant. Scanningwas conducted at the Sir PeterMansfield Imaging Centre at the

University ofNottinghamusing a 3TPhilips AchievaMRI scannerwith a 32-channel SENSE

head-coil and running aMPRAGE sequence (180 contiguous axial slices, 8.6 ms repetition

time [TR], 4.0 ms echo time [TE], 256 × 224 × 180matrix size, 1 × 1 × 1mm raw voxel

size, and a scan duration of 225 s). Prior to acquisition, participants were asked to lie as

still as possible with their eyes open. Foam padding was added for extra stability and to
reduce head movements. All participants wore also noise-cancelling headphones.

MR data pre-processing

Pre-processing of all MRI images was accomplished using SPM12 and the Computational

Anatomy Toolbox (CAT12; http://www.neuro.uni-jena.de/cat/). First, raw structural T1-

w MRI scans were oriented to have the origin lying on the AC-PC line using automated

registration. Intensity normalization, bias and noise-correction was conducted using the
Spatially Adaptive Non-Local Means (SANLM) tool in CAT12 and the images were spatially

normalized using DARTEL (affine and non-linear registration, [Ashburner, 2007]) to

standard space and segmented into different tissue classes: grey matter, white matter

(WM) and cerebrospinal fluid (CSF). The images were then modulated—which involves

scaling by the amount of contraction done during the normalization step—to ensure that

GM in the normalized images remains the same as in the raw images. Finally, all de-noised,

normalized, segmented and modulated GM maps were smoothed using an 8-mm full-

width at half maximum (FWHM) Gaussian kernel. CAT12 implements a retrospective
quality assurance framework for easy quantification of brain image quality. CAT12 labels

each structural MR image with a nominal letter ranging from A+ (excellent quality) to F

(unacceptable quality). All images rated belowD-were excludedwhile acceptable quality

images were inspected further visually and images with any visible artefact were

excluded. Total intracranial volume (TIV) was estimated from all subjects. The GM maps

were co-registered to the AAL2 atlas (Tzourio-Mazoyer, et al. 2002) to enable an

anatomically defined region of interest (ROI) for the bilateral mid and anterior cingulate

cortex to be generated.

Structural covariance

Three separate functionally defined bilateral ROIs were created based upon the control

data published by Balsters and colleagues (Balsters, Mantini, Apps, Eickhoff, &

Wenderoth, 2016: connectivity based probability maps of the cingulate cortex for

typically developing young adults are available for download at http://www.ncm.hest.e

thz.ch/downloads/data.html). These functionally defined ROIs consisted of: a bilateral
posterior mid-cingulate region (pMCC); a bilateral anterior mid-cingulate region (aMCC);

and a bilateral posterior anterior cingulate region (pACC). Then, using the segmented

whole-brain GM maps and a ‘seed-to-voxel’ approach, we computed the structural

covariance between themeanGMvalues for voxelswithin each of our empirically defined

cingulate (seed) ROIs and the GM values obtained for all voxels in the GM maps.

Role of cingulate cortex in Tourette syndrome 7
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This analysis yielded a covariance map for each group in which the value at each voxel

reflected the cross-subject Pearson correlation coefficient between themeanGMvalue for

the seed region (the respective cingulate cortex ROI) and the GM value at that particular

voxel. The correlation coefficients were converted to Z scores using Fisher’s r-to-Z
transformation and the whole-brain Z(r) maps for each group were then statistically

compared at group-level using the following equation

ObsevedZ¼ ðZ1�Z2Þ
½1=N1�3�þ1=N2�3�0:5 , (1)

where, for each voxel: Z1 is the Z(r) value for that voxel for the TS group; Z2 is the Z(r)

value for that voxel for the CS group; N1 the number of participants in the TS group; and,

N2 the number of participants in the CS group. The computed Z-maps were corrected for

multiple comparisons using FDR [p-FDR < .05] (Benjamini & Hochberg, 1995) and a

cluster threshold of KE ≥ 50 voxels was applied. Labelling of statistically significant

clusters was accomplished using the Brain Anatomy Toolbox (Eickhoff et al., 2005). By

definition, two regions ‘covary’ positively when increased GM values in one region is

associatedwith increasedGMvalues in another region.Wedefinednegative covariance as
an increase in GMvalues in one region that is associatedwith a reduction inGMvalues in a

separate region.

Results

Preliminary analyses: group differences
The preliminary analyses of these data have been reported previously (Jackson et al.,

2020) but for completeness they are reported here. An independent samples t-test

confirmed that there was no significant difference in age between the TS (mean =
14.62 � 3.43) and CS (mean = 14.38 � 3.23) groups, t(62) = −0.28, p = .78. How-

ever, independent samples t-tests revealed that there was a significant between-group

difference in TIV (TS mean = 1,544.97 � 97.15; CS mean = 1,640.88 � 158.71; t

(62) = 2.81, p = .007), with controls having a higher TIV than individuals with TS, and

a significant between-group difference in IQ (TS mean = 111.36 � 13.93; CS mean =
118.58 � 12.28; t(62) = 2.20,p = .03)with controls exhibiting a slightly higher average

IQ. It should be noted however that both groups exhibited above-average IQ scores. For

thewhole-brain VBM and structural covariance analyses reported below the adjusted grey

matter volumes were used after co-varying for age, sex, IQ and TIV.

Exploring differences in total intracranial volume

Preliminary analysis of the anatomical MRI images revealed a significant between-group
difference in TIV, with the CS group exhibiting a significantly larger mean TIV value that

the TS group. However, interpretation of this finding is challenging without further

analyses due to differences in Age, Sex, and IQ between the groups, and because the TIV

measure includes different tissue types (i.e., GM, WM, and CSF). To further explore this

finding, and as this paper is concerned with GM morphometry, we calculated two

additional measures: first, the total number of GM voxels within each GM map for each

participant; and second, the average GM value across all of the GM voxels within each GM

map for each participant.
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For each of these measurements we conducted a separate stepwise multiple

regression analysis, with the following variables as predictors: Chronological age; Sex;

IQ; Group (CS vs. TS); and the Group x Age interaction. Note that in each case, the initial

order of entry was fixed with Chronological age entered first into the model first.

Analysis of total number of GM voxels

A scatterplot illustrating how the number of GM voxels in each GM map decreases as a

function of Chronological age for each group is illustrated in Figure 1A. Inspection of this

figure illustrates that while there is a small and only marginally significant decrease in

number of GM voxels with age for the CS group (R2 = .11, p = .054), the decrease with

age for the TS group is much steeper and statistically significant (R2 = .48, p = .0001).
The results of the stepwise multiple regression analysis demonstrated that Chronological

age (t = −3.79,p < .0003) and theAge×Group interaction (t = 2.64,p < .01)were each

independent and statistically significant and predictors of total number of GM voxels. The

final regressionmodel accounted formore than 24% of the variance in total number of GM

voxels (F = 10.87, adjusted-R2 = .24, p < .0001). The results of this analysis confirm that

after differences in chronological age have been taken into account, there is a large and

statistically significant effect of group in the form of an Age x Group interaction, which

indicates that the number of GM voxels decreases more steeply with age in the TS group.

Analysis of average GM values

Figure 1B illustrates how the mean GM values within each GM map decreases as a

function of Chronological age for each group. Inspection of this figure illustrates that

while there is a decrease inmeanGMvalueswith age for both groups (CS group:R2 = .13,

p = .05; TS group: R2 = .48, p = .0001), the mean GM value for the TS group appears

substantially lower at each age than for the CS group. The results of the stepwise multiple

Figure 1. Illustrates associations between GM measures and chronological age for each group. (a)

Shows the association between the total number of GM voxels observed for each group as a function of

chronological age. (b) Shows the association between the mean GM values observed for each group as a

function of chronological age. Error bars represent the standard deviation.
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regression analysis demonstrated that Chronological age (t = −4.05, p < .0001) and the

Age x Group interaction (t = 3.48, p < .001) were each independent and statistically

significant and predictors of the mean GM value in each GM map. The final regression

model accounted for approximately 30% of the variance in mean GM value (F = 14.54,
adjusted-R2 = .30, p < .0001).

The results of this analysis confirm that once differences in chronological age and sex

have been taken into account, there remains a large and statistically significant effect of

group,which indicates that themeanGMvalue is significantly reduced for the TS group at

all ages examined.

Overall, these data indicate that GM differences in the TS group are unlikely to be due

to between-group differences in chronological age, sex, or IQ, but instead are largely

associated with the clinical diagnosis of TS.

Whole-brain voxel-based morphometry analysis

The primary objective of this study is to use VBM techniques together with ‘seed-to-voxel’

SCN mapping to investigate the role played by the MCC and ACC, in the generation of

motor tics and the experience of PU in a relatively large group of people with TS.

However, for completeness, and given the preliminary analysis of whole-brain GM

reported above, we now report the results of a whole-brain between-group VBM analysis.
The VBM analysiswas carried out using the Computational AnatomyToolbox (CAT12)

and SPM12. An independent samples t-testwas conducted to compare theGMmaps of the

CS and TS groups. Importantly, the following variables were modelled as covariates of no

interest: chronological age; sex, TIV, and IQ. VBM violates the assumption of non-

isotropic smoothness of the data. The resultant t-maps were then corrected using the

CAT12 cluster correction function, while accounting for non-stationary (non-uniform)

smoothness in the VBM data (Ashburner & Friston, 1999; Hayasaka, et al. 2004) following

an initial cluster-forming threshold of p < .001. The resulting clusters are presented in
Table 2 below.

CS group > TS group contrast

The analysis revealed six clusters that exceeded the initial statistical threshold. Details of

these clusters are provided in Table 2. The clusters were associated primarily with the

orbito-frontal and medial frontal cortex and the anterior cingulate.

Table 2. Results of the whole-brain VBM analysis (independent groups t-test) for the CS > TS contrast

Cluster Size t-value Region Hemisphere

Peak MNI coordinates

X Y Z

1 106 4.77 middle frontal gyrus L –35 1 45

2 103 4.42 anterior cingulate cortex L –5 38 14

3 35 4.20 Pre-central gyrus R 37 1 47

4 71 3.85 medial orbital gyrus R 15 54 –14
5 17 3.75 Hippocampus R 27 –20 –23
6 40 3.62 supplementary motor cortex L −11 28 32
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TS group > CS group contrast

The analysis revealed no clusters that were statistically significant and survived correction

for multiple comparisons.

Relationship between cingulate grey matter volume and clinical measures

To examine the association between the cingulate GM values and clinical measures of tic

severity (measured using the YGTSS) and PU (measured using the PUTS)we identified the

spatial location of voxels within the cingulate ROI, identified using the AAL2 atlas

(Tzourio-Mazoyer, et al. 2002), that were significantly correlated with YGTSS motor tic

scores and/or premonitory urge (PUTS) scores. In each case, the initial (absolute)

correlation thresholdwas set at r = 0.3 and the statistical thresholdwas then corrected for
multiple comparisons using the false-discovery rate [FDR] with alpha set at p < .05

(Benjamini & Hochberg, 1995).

This analysis revealed three clusters of voxels that were significantly associated with

one or other of the clinical measures. A left hemisphere posterior cingulate (PCC) cluster

and a left hemisphere aMCC were identified that were positively associated with YGTSS

motor tic severity scores. A left hemisphere mid-cingulate (MCC) cluster was identified

that was positively associated with PUTS scores. The spatial distribution of these two

clusters is summarized in Table 3 and illustrated in Figure 2.

Structural covariance network analyses

The findings outlined above, together with previous functional brain imaging (e.g.,

Balsters et al., 2016) and electrical brain stimulation studies (e.g., Caruana et al., 2018)

indicate that the cingulate cortex can bepartitioned into functionally distinct regionswith

distinct behavioural characteristics. For this reason, and in order to investigate alterations

in structural covariance networks associated with TS, we constructed three functionally
defined bilateral cingulate ROIs based upon the published control data presented in

Balsters et al., 2016 (connectivity based probability maps of the cingulate cortex for

typically developing young adults are available for download at http://www.ncm.hest.e

thz.ch/downloads/data.html). Specifically, based upon our own findings, functional MRI

Table 3. Regions in which GM values within the cingulate ‘seed’ ROI were significantly associated with

motor tic severity or premonitory urge scores in individuals with TS (r > .3, p < .05 FDR-corrected, K

(cluster-size ≥ 20)

Cluster Size r-value Region Hemisphere

Peak MNI coordinates

X Y Z

1 33 .44 Posterior CC L –11 –9 43

2 27 .44 Anterior Mid CC L –11 27 27

Cluster Size r-value Region Hemisphere

Peak MNI coordinates

X Y Z

1 30 .44 Posterior Mid CC L −5 7 27
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studies investigating the neural antecedents of tics in TS (e.g., Bohlhalter et al., 2006;

Neuner et al., 2014), MRI-based functional connectivity studies of the cingulate cortex

(e.g., Balsters et al., 2016), and electrical stimulation studies of the cingulate cortex (e.g.,

Caruana et al., 2018), we constructed the following: a bilateral posterior mid-cingulate
(pMCC) ROI; a bilateral anterior mid-cingulate (aMCC) ROI, and a posterior (pregunual)

anterior cingulate (pACC) ROI as separate structural covariance seed regions.

We then investigated whether there were statistically significant between-group

differences in the SCNs linked to each of these seed regions. As noted above (Methods),

we did this by comparing the covariance maps for each group (in which the value at each

voxel reflected the cross-subject Pearson correlation coefficient between the mean GM

value for the seed region and the GM value at that particular voxel) and computing a Z

statistic at each voxel which represented the difference between the correlation
coefficients. An initial statistical (Z) threshold of 2.5 was adopted and corrected for

multiple comparisons using FDR (Benjamini & Hochberg, 1995) together a cluster

threshold of KE ≥ 50 voxels). The results of these analyses are outlined below.

Posterior mid-cingulate (pMCC)

Analysis of the SCNs associated with the bilateral pMCC revealed four clusters of

50 + voxels in which the structural covariance with the pMCC seed region was
significantly increased in the TS group relative to the control group. Note that in this case,

Figure 2. Illustrates clusters of cingulate voxels that were significantly associated with either YGTSS

motor tic severity (warm colours) or premonitory urge (PUTS) score (cool colours). These regions

consisted of: a posterior cingulate and separate anterior mid-cingulate cluster that was positively

associated with motor tic severity, and a separate anterior mid-cingulate cluster that was significantly

positively correlated with premonitory urge (PUTS) scores.
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these clusters exhibited significantly larger correlationswith the seed region thanwas the

case for the typically developing controls (i.e., Z difference scores). Details of these

clusters are presented in Table 4 (upper panel) and illustrated in Figure 3. They include:

the bilateral cerebellum (Lobule VI); the bilateral PCC and the right inferior temporal

cortex. There were no clusters in which the structural covariance with the pMCC seed

region was significantly decreased in the TS group.

Table 4. Regions in which structural covariance values with the cingulate ‘seed’ ROI were significantly

increased in individuals with TS relative to those for typically developing controls (Z > 2.5, p < .05 FDR-

corrected, K (cluster-size ≥ 50)

Cluster Size z-value CS r(Z) TS r(Z) Region Hemisphere

MNI coordinates

X Y Z

TS > CS: posterior mid-cingulate seed

1 548

3.65 –0.33 0.48

Cerebellum

(Lobule VI)

R 37 –67 –19

2 382

3.66 –0.29 0.59

Cerebellum

(Lobule VI)

L –33 –61 –23

3 345

4.31 0.14 0.82

Post-cingulate

cortex

L/R –5 –19 41

4 64

3.30 0.02 0.49

Inf. Temporal cortex R 21 –5 –47

TS > CS: anterior mid-cingulate seed

1 844 3.86

–0.27 0.63

Cerebellum (Lobule VI) R 33 –45 –21

2 618 4.26

–0.32 0.67

Cerebellum (Lobule VI) L –31 –61 –23

3 112 3.52

–0.27 0.58

Pre-central Gyrus R 47 –15 67

4 54 3.47

–0.19 0.41

Mid. Temporal Gyrus R 55 11 –27

TS > CS: posterior anterior cingulate seed

1 1,238 4.18

–0.28 0.68

Cerebellum (Lobule VI) R 33 –45 –21

2 775 3.60

–0.27 0.59

Cerebellum (Lobule VI) L –29 –61 –21

3 219 3.46

0.11 0.77

Mid Frontal Gyrus R 39 –11 59

4 147 3.38

–0.16 0.63

Precuneus R 11 –69 33

5 138 3.69

–0.32 0.47

Cerebellum (Lobule V) R 3 –65 –1

6 132 3.55

0.44 0.82

Sup. Medial Gyrus L –13 55 5

7 112 3.65

–0.12 0.69

Temporal Pole L –39 21 –15

8 105 2.94

–0.38 0.39

Cerebellum (Lobule IX) L –7 –59 –41

9 103 3.12

–0.12 0.46

Cerebellum (Lobule VIIIb) R 25 –39 –41
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Anterior mid-cingulate (aMCC)

Analysis of the SCNs associated with the bilateral aMCC revealed four clusters of
50 + voxels in which the structural covariance with the aMCC seed region was

significantly increased in the TS group relative to the control group. Details of these

clusters are presented in Table 4 (middle panel) and illustrated in Figure 3. Inspection of

Table 4 shows that the clusters of increased covariance with the aMCC seed are highly

similar to those identified for the pMCC. They include: the bilateral cerebellum (Lobule

VI); the right motor and right temporal cortex. There were no clusters in which the

structural covariance with the aMCC seed region was significantly decreased in the TS

group.

Posterior anterior cingulate (pACC)

Analysis of the SCNs associated with the bilateral pACC revealed nine clusters of

50 + voxels in which the structural covariance with the pACC seed region was

significantly increased in the TS group relative to the control group. Details of these

clusters are presented in Table 4 (lower panel) and illustrated in Figure 4. Inspection of

Table 4 again shows that the clusters of increased covariance associated with the pACC
seed are highly similar to those identified for both the pMCC and aMCC. They include: the

Figure 3. Illustrates the results of the structural covariance analysis for eachof the three bilateral cingulate

ROIs (shown in the yellow boxes). The upper panel shows clusters of voxels with increased structural

covariance with themeanGMvalue of the pMCCROI region (green) in the TS group relative to the healthy

control group. Themiddle panel shows clusters of voxelswith increased structural covariancewith themean

GM value of the aMCC ROI region (red) in the TS group. The lower panel shows clusters of voxels with

increased structural covariance with the mean GM value of the pACCROI region (cyan) in the TS group.
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bilateral cerebellum (Lobules V, VI, VIII, and IX), bilateral frontal lobe, right precuneus,

and the left temporal pole. Therewere no clusters inwhich the structural covariancewith

the pACC seed region was significantly decreased in the TS group.

Discussion

In this study we utilized voxel-based morphometry techniques together with ‘seed-to-

voxel’ structural covariance network (SCN) mapping to investigate the putative role

played by the mid and anterior cingulate cortex in the generation of motor tics and the

experience of PU in a relatively large group of young people TS. Our findings demonstrate
the following. First, that globalmeasures of GMvolume such as total number of GMvoxels

or average GM volume are significantly reduced in individuals with a diagnosis of TS,

independently of chronological age, sex, or IQ. Second, that whole-brain VBM analysis

demonstrate that TS is associated primarily with significant reduction in GM volume

within the orbito-frontal cortex and the anterior and mid-cingulate cortex. Third, that

clinical measures of motor tic severity were positively associated with two separate

clusters of voxels within the left hemisphere PCC and aMCC, delineated using the AAL2

atlas. Whereas clinical measures of PU (PUTS) were associated with a left hemisphere
aMCCcluster. Fourth,whenweexamined the SCNs associatedwith three bilateral regions

of the cingulate cortex (pMCC, aMCC and pACC, defined by Balsters et al. (2016)), we

found that these networks differed in individuals with TS compared to the group of

typically developing individuals. In each casewe found that therewas increased structural

covariance between the cingulate cortex ROI and a set of brain areas that included in each

case: the bilateral motor cerebellum (Lobule VI); the PCC; and inferior frontal cortex.

There were no regions identified in which structural covariance with the cingulate was

reduced for the TS group.

Reduction in GM volume

The finding that there are widespread decreases in GM volume in individuals with TS has

reported on many previous studies (e.g., Draganski et al. 2010; Draper, Jackson, Morgan,

& Jackson, 2016; Fahim, Yoon, Sandor, Frey, & Evans, 2009; Greene et al., 2017; Müller-

Vahl et al., 2009; Peterson, Pine, Cohen, Pine, Cohen, & Brook, 2001; Sowell et al., 2008;

Worbe et al., 2010), and the results of the current study confirm this finding. Two aspects
of our current findings are worthy of note. First, it has been suggested previously that

alterations in brain structure during adolescence in TS – such as reduced GM volume or

decreased WM connectivity—might reflect neuroplastic adaptations that result in a

reduction in clinical symptoms such as tic severity (e.g., Jackson, Parkinson, Jung, et al.,

2011; Plessen, Bansal, & Peterson, 2009; Plessen et al., 2004). In the current study,we find

that the rate at which GM volume decreases with chronological age, as indexed by the

total number ofGMvoxels identifiedwithin each individual’sGMmap, is greater for theTS

group compared to the healthy controls, and that this effect is independent of
chronological age, sex or IQ. This finding is consistent with that previously reported by

Draganski et al., (2010), who demonstrated that GM volume within the ACC decreases

faster with age in their TS group compared to healthy controls. One might speculate that

the increased rate at which GM volume decreases in TS over adolescence might well

reflect increased synaptic pruning or a related developmental process. However, this

question is best answered by a longitudinal investigation of how brain structure changes

over adolescence, and how such changes are related to clinical symptoms in TS.
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Second, our VBM analysis demonstrated that for the TS group there were decreases in

GM volume primarily within: the orbito-frontal, medial frontal, and motor cortices and

within the cingulate cortex (all p < .001uncorrected). However, none of these clusters

survived statistical correction for multiple comparison andmust therefore be interpreted
with this in mind. These brain regions have previously been particularly associated with

the pathophysiology of tics in TS (see Cavanna et al., 2017; O’Neill et al., 2019; Palomero-

Gallagher et al., 2015; Plessen et al., 2009 for reviews) and our results confirm previous

MRI studies that report structural alteration in TS within: the orbito-frontal cortex (e.g.,

Draganski et al., 2010; Greene et al., 2017); and the MCC and pACC regions of the

cingulate cortex (e.g., Draganski et al., 2010; Müller-Vahl et al., 2009; Worbe et al., 2010).

It is noteworthy that electrical stimulation of the pMCC, aMCC and pACC regions of the

cingulate cortex is sufficient to initiate goal-directed movements in humans (Caruana
et al., 2018).

Anatomical separation of clinical measures of tic severity and PU within the cingulate

cortex

The cingulate cortex has long been divided into different anatomical regions. Most

schemes separate the cingulate cortex into anterior (ACC), mid (MCC) and posterior

(PCC) regions, but theACCandMCChave been further divided into posterior (pre-genual)
and anterior (sub-genual) regions for the ACC, and posterior and anterior areas for the

MCC (Palomero-Gallagher et al., 2015; Palomero-Gallagher, Mohlberg, Zilles, & Vogt,

2008; Palomero-Gallagher, Vogt, Schleicher, Mayberg, & Zilles, 2009). However, the

functional roles of the cingulate, including any functional specialization of anatomically

defined sub-regions, has been less clear.

In the current study we conducted a correlation analysis which demonstrated that

there were clusters of voxels in the PCC and aMCC that were positively associated

with motor tic severity scores, and a separate cluster within the aMCC that was
positively correlated with premonitory urge scores. Our finding that clusters of GM

volume of voxels within the cingulate cortex are associated with clinical measures of

motor tic severity and premonitory urge scores in TS is consistent with the proposed

involvement of the cingulate cortex in the generation of tics in response to

premonitory urges (e.g., Devinsky, 1983; 1995; Jackson, Parkinson, Kim, et al., 2011)

and with the finding that the MCC is activated ahead of tic execution in individuals

with TS (Bolhalter et al., 2006; Neuner et al., 2014). Recent electrical stimulation

studies of human cingulate cortex have demonstrated functional differences between
the PCC, MCC and ACC. In one study, stimulation of the pre-genual region of the ACC

produced emotional, interoceptive and autonomic responses, whereas stimulation of

the MCC, particularly the anterior region, produced goal-directed movements. By

contrast, the PCC was generally unresponsive in this study when stimulated (Caruana

et al., 2018). However, in another study of electrical stimulation of the medial wall in

humans, it was found that stimulation of the caudal cingulate zone (corresponding to

the posterior MCC) produced primarily somatosensory responses (primarily paraes-

thesias, dysesthesias, or pain) but not overt movement (Trevisi et al., 2018). These
findings are broadly consistent with our finding that increases in GM volume in the

PCC and aMCC were associated with increased motor tic severity whereas increases

in GM volume in the aMCC region was associated with increased premonitory sensory

phenomena.
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Between-group differences in structural covariance networks (SCNs) associated with

the functionally defined the MCC and ACC

As noted above, previous studies have reported that SCNs closely mirror the intrinsic

functional connectivity networks identified using resting-state fMRI (e.g., (Kelly et al.,
2012; Seeley et al., 2009), and it has been proposed that SCNs likely reflect brain areas that

are functionally co-active and subject to common patterns of maturational change and

gene co-expression (Romero-Garcia et al., 2018; Zielinski et al., 2010). Such SCNs are

selectively vulnerable to specific brain health conditions (Seeley et al., 2009) and co-

degenerate in specific neurodegenerative conditions (Cauda et al., 2018; Seeley et al.,

2009).

In their urge for action model, Jackson, Parkinson, Jung, et al. (2011) proposed that

signals associated with the bodily experienced as PU in TS are relayed from the insula to
the cingulate motor areas that, together with the ventral striatum, may participate in the

selection of a particular action based upon an analysis of the likely “value” of that action

given the organism’s previous history of action outcomes. This proposal is consistentwith

reports that the cingulate motor areas (e.g., MCC) is activated immediately prior to the

execution of tics in TS (e.g., Bohlhalter et al., 2006; Neuner et al., 2014) and that electrical

stimulation of theMCC region of the cingulate cortex is sufficient to induce the execution

of goal-directed movements (e.g., Caruana et al., 2018).

In the current studywe compared the SCNs associatedwith three functionally defined
bilateral regions of the cingulate cortex (pMCC, aMCC and pACC) in our TS group to those

of a group of typically developing controls (having first controlled for the effects of

chronological age, TIV, IQ and sex). We found that each of these SCNs differed in

individuals with TS compared to the group of typically developing individuals in quite

similar ways. Specifically, we found that in each case there was increased structural

covariance between the cingulate cortex ROI and a set of brain areas that included: the

bilateral motor cerebellum (Lobule VI); the posterior cingulate cortex; the inferior

temporal cortex. There were no regions identified in which structural covariance was
reduced for the TS group.

Given the putative role outlined above for the cingulate cortex in generating

movements in response to premonitory urge signals most likely arising from the right

insula cortex (Jackson, Parkinson, Kim, et al., 2011), it is not a surprise that the TS group

exhibit significantly increased structural covariancewithmotor regions of the cerebellum

bilaterally. It is noteworthy that recent physiological recording studies have indicated that

the cerebellummay play a key role in gating the expression of tic-likemovements in a non-

human primate model of motor tics in TS (McCairn et al., 2013), and that structural brain
imaging studies of TS have reported significantly reduced GM volume relative to healthy

controls in the cerebellum (e.g., Tobe et al., 2010) and cingulate cortex (e.g., Müller-Vahl

et al., 2009; for a recent review see O’Neill et al., 2019).

To the extent that SCNs have been demonstrated to closely mirror the intrinsic

functional connectivity networks identified using resting-state fMRI (e.g., (Kelly et al.,

2012; Seeley et al., 2009), and may reflect brain areas that are functionally co-active and

subject to common patterns of maturational change and gene co-expression (Romero-

Garcia et al., 2018; Zielinski et al., 2010), it is tempting to speculate that the increased
structural covariance between cingulate and motor cerebellum represents long-term

increased functional connectivity of this urge for action network in individuals with TS.

However, we recognize that this proposal can best be investigated by looking directly at

functional connectivity between these areas using functional brain imaging techniques.
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In the current study we found increased structural covariance between the cingulate

cortex and the inferior frontal cortex in TS. It is widely believed that the prefrontal cortex,

and in particular the right inferior frontal cortex, plays a key role in the inhibitory control

of other brain regions (Aron, 2007), including brain areas associated with the urge for
action (Berman, Horovitz,Morel, &Hallett, 2012). Consistentwith this view, Berman et al.

(2012) demonstrated that increased brain activity within the right inferior frontal cortex,

bilateral insula and mid-cingulate cortex were associated with a build-up of the urge to

blink, and they concluded that the right inferior frontal cortex may function to maintain

volitional control over motor output in spite of an increasing sense of urge for action

(Berman et al., 2012).

It has been suggested that individuals with TS may gain control over their tics through

the development of compensatory self-regulation mechanisms, implemented through
changes in neural pathways linking inhibitory control regions of prefrontal cortex with

primary and secondary motor areas (e.g., Jackson, Draper, Dyke, Pépés, & Jackson, 2015;

Jackson, Parkinson, Jung, et al., 2011; Peterson et al., 2001; Plessen et al., 2009; Serrien,

Orth, Evans, Lees, & Brown, 2005). Consistent with this proposal, studies of cognitive

control of motor outputs demonstrated that individuals with ‘uncomplicated’ TS (i.e.,

those without co-morbid disorders such as ADHD) exhibit paradoxically enhanced

volitional control over their motor behaviour (Jackson, Mueller, Hambleton, & Hollis,

2007; Jackson, Parkinson, Jung, et al., 2011; Mueller, Jackson, Dhalla, Datsopoulos, &
Hollis, 2006) and reduced corticospinal excitability ahead of volitional movements

(Draper et al., 2014; Heise et al., 2010; Jackson et al., 2013). These findings are consistent

with the proposal that the frequent need to actively suppress tics leads to a generalized

enhancement in the efficacyof volitional controlmechanisms inTS.Our current findingof

increased structural covariance between inferior frontal and anterior cingulate cortex

may represent increased long-term functional connectivity associated with volitional

suppression of the cingulate urge for action network in individuals with TS.

Limitations of this study

Throughout this paper we have assumed that SCNs closely mirror the intrinsic

connectivity networks (ICNs) measured and robustly demonstrated using resting-state

fMRI. This assumption is based upon a number of studies, referred to above, that have

directly compared seed-based SCNs and ICNs. However, given that our study investigates

SCNs in adolescents and young adults with TS – a period duringwhich the brain is known

to undergo considerable maturation – it is possible that during this period there could be
differences in the maturation of structural and functional brain networks, and that these

may be exacerbated by the presence of TS. For this reason, as we have not directly

measured functional brain connectivity in this study, we advocate caution in drawing

strong conclusions about functional connectivity based upon our findings of structural

covariance differences in TS.

While the majority of our sample of adolescents and young adults with TS were

unmedicated, we accept that we are unable to say much about the effects of medication

based upon our findings. Thus, while we have controlled for variables such as age, sex, IQ
and intracranial volume in our analyses, we were unable to investigate the effects of

medication or co-morbidities due to the heterogeneous nature of the sample, andwe have

therefore interpreted our results with this in mind. However, as our sample included a

small number of individuals (N = 6)whopresentedwith co-occurring ASD symptoms,we

carried out additional re-analyses of the data to determine whether removing these
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participants from the analysis changed the results that we observed. These analyses

confirmed that removing the six participants with co-occurring ASD did not change the

findings in any material way. Specifically, all of the major clusters identified in the

structural covariance analyses, and reported in Table 3, remained in the re-analyses.

Conclusion

In summary, in the current study, we used VBM together with ‘seed-to-voxel’ structural

covariance mapping to investigate the role played by the cingulate cortex in the

generation of motor tics and the experience of PU in a group of young people TS. We

demonstrated that global measures of GM volume such as total number of GM voxels or

average GM volume are significantly reduced in individuals with a diagnosis of TS,
independently of chronological age, sex, or IQ, and that TS is associatedwith reduction in

GM volume particularly within the cerebellum and the cingulate cortex. We also

demonstrated that motor tic severity and PU scores were associated with anatomically

separate regions of the cingulate cortex. Specifically, a PCC cluster and aMCC cluster that

was positively associated with motor tic severity; and a discrete aMCC cluster that was

positively associated with premonitory urge scores. Finally, we examined the SCNs

associated with three bilateral regions of the cingulate cortex (pMCC, aMCC and pACC)

and found that these networks differed in individuals with TS compared to the group of
typically developing individuals. Specifically, we found increased structural covariance

between the cingulate cortex ROI and a set of brain areas that included in each case the

bilateral motor cerebellum (Lobule VI), the PCC, and in the case of the ACC only, the

inferior frontal cortex. This suggests that analysis of SCNs, while currently under-utilized

in the study of brain networks in neurodevelopmental conditions, may be a particularly

useful method for investigating alterations in brain network development in children and

adolescents, in particular for those for whom the use of conventional fMRI approaches is

especially challenging.
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