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Abstract

We prove statistical limit theorems for Birkhoff sums of the form
∑n−1

k=0 φn ◦Th(n) ,
where Th(n) are a sequence of compact group extensions with non-uniformly ex-

panding base and φn are a sequence of equivariant Hölder observables. This is

done by extending the methods of Korepanov, Kosloff, and Melbourne to con-

struct two new martingale-coboundary decompositions.

Even in the case of a fixed observable and compact group extension, these

decompositions enable us not only to reprove existing results in the literature,

but also to obtain far reaching consequences. Using our primary martingale-

coboundary decomposition, we give a new proof of a central limit theorem and

weak invariance principle under very general conditions, and obtain moment esti-

mates which are optimal given our setup. Still in the case of a fixed observable and

compact group extension, we use our secondary martingale-coboundary decom-

position to prove an almost sure invariance principle with excellent error rates.

As an application, we prove a homogenisation result for discrete fast-slow

dynamical systems with additive noise, where the fast dynamics are generated by

a family of compact group extensions with non-uniformly expanding base.

vii



Chapter 1

Introduction

Broadly speaking, ergodic theory is concerned with studying the statistical prop-

erties of deterministic dynamical systems. Given such a system, one would like to

describe the behaviour of orbits in time. However, if only approximate informa-

tion regarding the starting point is available, difficulties may arise due to sensitive

dependence on initial conditions. This chaotic nature restricts our ability to make

deterministic predictions for large times into the future, and so it makes sense to

study such systems from a probabilistic viewpoint. A starting point is Birkhoff’s

ergodic theorem [11], which says that for typical orbits, the time average coin-

cides with the space average. This is a natural generalisation of the strong law

of large numbers [44] from probability theory. Further classical results such as

the Lindeberg-Lévy central limit theorem [19] and Donsker’s invariance principle

[29] have been widely studied for random variables exhibiting weak forms of de-

pendence [8, 15, 32, 48, 69]. In order to appeal to these results, it is necessary to

utilise the properties of the dynamics.

The statistical properties of uniformly expanding dynamical systems [1, 12, 80,

88, 90] and non-uniformly expanding dynamical systems [40, 72, 96, 101, 102] have

been comprehensively studied in the literature. We are interested in dynamical

systems of a product structure, where the dynamics in the base are driven by

a chaotic system and the dynamics in the fibre by compact group translations.
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CHAPTER 1. INTRODUCTION

More precisely, let T : X → X be a dynamical system on a metric space X and let

G be a compact connected Lie group with a fixed representation into O(d). Let

h : X → G be Hölder and define the compact group extension Th : X×G→ X×G
by Th(x, g) = (Tx, gh(x)). We consider equivariant observables φ : X × G → Rd

of the form φ(x, g) = g · v(x) where v is Hölder, and are interested in the long

term behaviour of

n−1∑
k=0

φ ◦ T kh (x, g) =
n−1∑
k=0

φ
(
T ky, ghk(y)

)
=

n−1∑
k=0

ghk(y) · v(T ky),

where hk = hh ◦T · · ·h ◦T k−1. The statistics of such observations arise naturally

in dynamical systems with Euclidean symmetry [79]. Regarding statistical prop-

erties, there exist results in the literature when the base is uniformly expanding

[27, 36, 70, 71] and when the base is non-uniformly expanding [16, 28, 39, 71]. In

this thesis, our attention is focussed on the latter. In particular, we give a new

proof of the results in [39] which leads to much stronger conclusions. Our aim

in the next few paragraphs is to give a “birds-eye” view of the thesis. We begin

with the new results; more details are given in the corresponding chapter outlines,

which give precise statements of the main theorems.

Chapter 4: Gordin’s method [37] for studying the statistical properties of de-

terministic dynamical systems has seen extensive development in both the proba-

bility literature [45, 56, 68, 84] and the dynamical systems literature [63, 96, 97].

Roughly speaking, the idea is to decompose observables as the sum of a mar-

tingale and an asymptotically negligible coboundary, which allows one to utilise

results from the martingale literature. Recently, Korepanov, Kosloff, and Mel-

bourne [60] introduced a new version of this method for Hölder observables of

non-uniformly expanding dynamical systems. We extend the ideas of [60] to the

compact group extension setting, working with equivariant Hölder observables as

described above. An immediate consequence is the central limit theorem (CLT)

and weak invariance principle (WIP), recovering [39, Theorem 1.10]. As well as

being more elementary, our method of proof has numerous advantages. In [39],

the result is first proved for compact group extensions of the induced uniformly

2



expanding system, and then after further arguments this is lifted to the original

system. Our approach bypasses such induced limit theorems and directly applies

to the original system. Moreover, we obtain optimal moment estimates which are

not readily available in the literature.

Chapter 5: Another advantage of our methods is that we can readily decom-

pose the square of the martingale in the decomposition described above, which

allows us to control sums of squares as is often required in more sophisticated limit

laws. As an application, we prove an almost sure invariance principle (ASIP) by

appealing to the results in [22]. This is a powerful statistical property, which im-

plies the CLT, WIP, and various other probabilistic results (see [84, Chapter 1]).

The ASIP was originally introduced in [93, 94], and has been proved for various

dynamical systems [25, 42, 47, 59, 72, 74]. However, our results appear to be the

first available for compact group extensions with a non-uniformly expanding base,

although results do exist when the base is uniformly hyperbolic [36]. Our error

rates improve on these results in the uniformly expanding setting.

Chapter 6: Our approach also allows explicit control on various constants

associated with T and h, making the method useful for studying Birkhoff sums

of the form
∑n−1

k=0 φn ◦ Th(n) , where the observables φn and cocyles h(n) vary with

n. Under mild conditions on the cocycles, we show that both the CLT and WIP

hold. Such Birkhoff sums arise naturally in homogenisation problems, in which

deterministic systems with multiple timescales converge to a stochastic differential

equation [83]. As an application, we give a homogenisation result of discrete fast-

slow dynamical systems with additive noise, where the fast dynamics are generated

by a family of compact group extensions.

Both Chapter 2 and Chapter 3 serve as an exposition of known results, and

can be seen as necessary preparation for the rest of the thesis. We briefly describe

the contents of these chapters below.

Chapter 2: We first establish notation and introduce basic notions in ergodic

theory. This is followed by a review of some classical probability theory, such as

the convergence of probability measures and martingale theory. We next introduce

the Koopman and transfer operators, and review the relevant tools from spectral

3



CHAPTER 1. INTRODUCTION

theory and harmonic analysis which we require to study these operators. Finally,

we introduce Gordin’s method and give statements of the statistical limit theorems

which we utilise.

Chapter 3: We give a precise definition of non-uniformly expanding dynam-

ical systems, as well as prove the existence of an ergodic absolutely continuous

invariant probability measure. This is done using the method of Young [101, 102],

in which we represent a non-uniformly expanding dynamical system as a tower

over its induced uniformly expanding system. By first constructing an ergodic

absolutely continuous invariant probability measure on the base of the tower, this

is then extended to the whole tower using standard arguments which we review.

Remark 1.0.1. The main new results in this thesis are the moment estimates in

Chapter 4, the ASIP in Chapter 5, and the CLT, WIP and homogenisation result

in Chapter 6.

4



Chapter 2

Preliminaries

2.1 Notation

Throughout, we use d, i, j, k, l,m, n to denote integer-valued indices. That is, if

we write n ≥ 1, we implicitly mean n ∈ Z with n ≥ 1. This nomenclature is not

reserved for other indices. For example, if we write p > 1, we mean p ∈ (1,∞).

For d ≥ 1, by x ∈ Rd we mean the column vector x = (x1, ..., xd)
T . Fix a norm | · |

on Rd. For Σ ∈ Rd,d, where Rd,d denotes the set of d× d real matrices, we denote

by ‖Σ‖ = inf{C ≥ 0 : |Σx| ≤ C|x| for all x ∈ Rd} the corresponding operator

norm. We let O(d) = {Σ ∈ Rd,d | det Σ 6= 0 and ΣT = Σ−1} denote the group of

d× d orthogonal matrices with binary product matrix multiplication.

Let (X,B, µ) be a probability space. For 1 ≤ p <∞ we denote by Lp(X;Rd)

the space of measurable functions f : X → Rd such that

|f |p =

(∫
X

|f |p dµ

)1/p

<∞.

Similarly, we denote by L∞(X;Rd) the space of essentially bounded functions

f : X → Rd. That is, measurable functions f : X → Rd such that

|f |∞ = inf
{
C : |f | ≤ C almost surely

}
<∞.

5



CHAPTER 2. PRELIMINARIES

For all 1 ≤ p ≤ ∞, we have that Lp(X;Rd) is a Banach space when equipped

with | · |p. In the case d = 1, we write Lp(X). Naturally, the above extends to

Rd,d – valued functions by replacing the norm | · | with the operator norm ‖ · ‖.
Let (X, d) be a bounded metric space and η ∈ (0, 1]. We say that v : X → Rd

is η – Hölder if

|v|η = sup
x,y∈X
x 6=y

∣∣v(x)− v(y)
∣∣

d(x, y)η
<∞.

When η = 1, we refer to v as Lipschitz and write the above semi-norm as Lip(v).

We define Cη(X;Rd) to be the space of Rd – valued η – Hölder functions. This

defines a Banach space when equipped with the norm ‖v‖η = |v|∞ + |v|η. When

η = 1, we write the above norm as ‖v‖Lip = |v|∞ + Lip(v). In the case d = 1,

we write Cη(X). Again, the above extends to Rd,d – valued functions by replacing

the norm | · | with the operator norm ‖ · ‖.
For Σ ∈ Rd,d, we denote byN (0,Σ) the (multivariate) normal distribution with

mean 0 and covariance matrix Σ. If Σ is singular, then N (0,Σ) is degenerate.

That is, N (0,Σ) is supported on a space of dimension less than d. If Σ is non-

singular, then we say that N (0,Σ) is non-degenerate, and its probability density

function is given by

f0,Σ(x) =
1

(2π)d/2(det Σ)1/2
exp

(
− 1

2
xTΣ−1x

)
.

Throughout, we use� and “big O” notation interchangeably, writing an � bn

or an = O(bn) if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1. We

write an = o(bn) if limn→∞ an/bn = 0.

2.2 Ergodicity and basic constructions

We begin by introducing some basic notions in ergodic theory (see for exam-

ple [98]). For our purposes, a dynamical system is a probability space (X,B, µ)

equipped with a measurable map T : X → X. We write this as the quadruple

(X,B, µ, T ) and refer to T as the dynamical system. The evolution of the system

6



2.2. ERGODICITY AND BASIC CONSTRUCTIONS

is studied by considering iterates T n = T ◦T ◦ · · · ◦T for n ≥ 1. We say that T (or

µ) is non-singular if for all B ∈ B, we have µ(B) = 0 if and only if µ(T−1(B)) = 0.

We say that T (or µ) is invariant, or T is measure preserving, if µ(T−1(B)) = µ(B)

for all B ∈ B. If T is measure preserving, we say that T (or µ) is ergodic if for all

B ∈ B with T−1(B) = B, one has µ(B) ∈ {0, 1}. Equivalently, T (or µ) is ergodic

if and only if v ∈ L2(X) with v ◦ T = v µ – almost surely implies v is constant

µ – almost surely. Any two distinct ergodic measures are mutually singular. That

is, if µ1 and µ2 are two distinct ergodic measures, then there exists B ∈ B such

that µ1(B) = µ2(X \B) = 1. Ergodicity is a key component in deducing statisti-

cal properties of deterministic dynamical systems. The most well-known result in

this vein is the celebrated Birkhoff ergodic theorem [11], which says that almost

everywhere, the time average and space average coincide for ergodic systems.

Theorem 2.2.1 (Birkhoff’s ergodic theorem). Let (X,B, µ, T ) be an ergodic

measure preserving dynamical system. If v ∈ L1(X), then

1

n

n−1∑
k=0

v ◦ T k →
∫
X

v dµ a.s.

In Section 4.6, we require the following consequence of Birkhoff’s ergodic the-

orem. Due to its elementary nature, we state and prove it here. We first give a

lemma.

Lemma 2.2.2. Let b > 0. Suppose (an)n≥0 ⊂ R with limn→∞ n
−ban = 0. Then

limn→∞ n
−b max0≤k≤n |ak| = 0.

Proof. Suppose first that there exists C ≥ 0 such that |an| ≤ C for all n ≥ 0.

Then n−b max0≤k≤n |ak| ≤ Cn−b → 0, proving the result in this case.

Suppose now that |an| → ∞. Note that for each n ≥ 0, there exists 0 ≤ kn ≤ n

such that max0≤k≤n |ak| = |akn|. It is immediate that (kn)n≥0 is non-decreasing

and kn →∞. Therefore

n−b max
0≤k≤n

|ak| =
|akn|
nb

=
kbn
nb
· |akn|
kbn
≤ |akn|

kbn
→ 0,

completing the proof.

7



CHAPTER 2. PRELIMINARIES

Corollary 2.2.3. Let (X,B, µ, T ) be an ergodic measure preserving dynamical

system. Suppose p ≥ 1 and v ∈ Lp(X). Then max0≤k≤n |v ◦ T k| = o(n1/p) almost

surely.

Proof. In view of Lemma 2.2.2, it suffices to show that v ◦ T n = o(n1/p) almost

surely. By Birkhoff’s ergodic theorem, we have

1

n

n−1∑
k=0

vp ◦ T k →
∫
vp dµ a.s.

Therefore

vp ◦ T n

n
=

1

n

n∑
k=0

vp ◦ T k − 1

n

n−1∑
k=0

vp ◦ T k

=
n+ 1

n
· 1

n+ 1

n∑
k=0

vp ◦ T k − 1

n

n−1∑
k=0

vp ◦ T k

→ 0 a.s.

The result follows.

A measure preserving dynamical system (X,B, µ, T ) is said to be mixing if for

all v, w ∈ L2(X), we have

lim
n→∞

∫
X

v ◦ T nw dµ =

∫
X

v dµ

∫
X

w dµ.

We say that T (or µ) is weak mixing if for all A,B ∈ B, we have

lim
n→∞

1

n

n−1∑
k=0

∣∣µ(T−k(A) ∩B)− µ(A)µ(B)
∣∣ = 0.

It is standard that mixing implies weak mixing and weak mixing implies ergodicity.

Weak mixing can be equivalently characterised as follows: T (or µ) is weak mixing

if and only if v ∈ L2(X) with v ◦T = eiωv µ – almost surely for ω ∈ [0, 2π) implies

v is constant µ – almost surely.

8



2.2. ERGODICITY AND BASIC CONSTRUCTIONS

We next give some constructions which are used throughout the thesis. We

begin with return times and their corresponding induced transformations, which

allow us to focus on specific regions of the state space of our underlying dynamical

system.

Definition 2.2.4. Let (X,B, µ, T ) be a dynamical system and Y ∈ B be such that

µ(Y ) > 0. We call a measurable function τ : Y → Z+ a return time if T τ(y)y ∈ Y
for all y ∈ Y . We define the induced transformation F : Y → Y by Fy = T τ(y)y.

Remark 2.2.5. We make the following observations:

(i) As will be seen in Chapter 3, it is often the case that inducing yields a dy-

namical system with better global properties than the original system, which

makes it easier to analyse. Moreover, interesting conclusions about the orig-

inal system can often be obtained by analysing the induced system [66, 76].

(ii) In the context of measure-preserving dynamical systems, a classical example

of a return time is the first return τ : Y → Z+ defined by τ(y) = inf{n ≥
1 | T ny ∈ Y }. This is well-defined by the Poincaré recurrence theorem [98,

Theorem 1.4] and integrable by Kac’s lemma [13, Theorem 3.2.4].

Example 2.2.6. Let X = [0, 1] and γ ∈ [0, 1). The intermittent map [65] is

defined as

T (x) =

x(1 + 2γxγ) if x ∈ [0, 1/2],

2x− 1 if x ∈ (1/2, 1].

Let Y = (1/2, 1]. We construct the first return to Y and corresponding in-

duced transformation. The first few steps of the construction are illustrated in

Figure 2.1 (A). Let x0 = 1/2 and observe that T−1x0 ∈ {x′1, 3/4} for some

x′1 ∈ (0, 1/2). We set x1 = 3/4 and a1 = (x1, 1]. Similarly, T−1x′1 ∈ {x′2, x2}
for some x′2 ∈ (0, x′1) and x2 ∈ (1/2, x1). Set a2 = (x2, x1]. We can continue this

process inductively to generate a partition α = (an)n≥1 of Y . Define τ : Y → Z+

by τ(y) = n if y ∈ an. It is immediate that τ is the first return to Y . Moreover,

F = T τ restricts to a bijection from an onto Y , as is shown in Figure 2.1 (B) for

the first 4 branches.

9



CHAPTER 2. PRELIMINARIES

0 x′2 x′1 x0 x2 x1 1
0

1

(A) Inducing scheme

x0 x4 x3 x2 x1 1
x0

1

(B) Induced transformation

Figure 2.1: Intermittent map

We next introduce compact group extensions of dynamical systems, which

belong to a class of systems called skew products (see for example [2, 81]), where

the first coordinate is determined by some given dynamical system and the second

coordinate is determined by compact group translations. We first make a remark

regarding representations of compact connected Lie groups.

Remark 2.2.7. Let G be a compact connected Lie group with Haar measure ν, and

suppose that (π,Rd) is a representation of G for some d ≥ 1. By Weyl’s unitarian

trick [34, Proposition 6.1.1], there exists a π(G) – invariant inner product [·, ·] on

Rd. By fixing an orthonormal basis of Rd with respect to this inner product, we

may suppose that π : G→ O(d). From here on, unless otherwise stated, we write

π(G) as G and by g · x we denote multiplication of the matrix g ∈ G with x ∈ Rd.

We use throughout that ‖g‖ = 1 for all g ∈ G, where ‖ · ‖ is the operator norm

corresponding to the norm induced by [·, ·].

Definition 2.2.8. Let (X,B, µ, T ) be a measure preserving dynamical system and

G ⊂ O(d) be a closed subgroup. For η ∈ (0, 1], we call h ∈ Cη(X;G) an η –

Hölder cocycle. For such h : X → G, we define the compact group extension

10



2.2. ERGODICITY AND BASIC CONSTRUCTIONS

Th : X ×G→ X ×G by Th(x, g) = (Tx, gh(x)).

Remark 2.2.9. Let ν denote the Haar measure on G and consider the product

probability measure m = µ × ν. Then m is Th – invariant. Indeed, for φ ∈
L1(X ×G), we have∫

X×G
φ ◦ Th(x, g) dm =

∫
X

∫
G

φ
(
Tx, gh(x)

)
dν dµ =

∫
X

∫
G

φ(Tx, g) dν dµ

=

∫
G

∫
X

φ(Tx, g) dµ dν =

∫
G

∫
X

φ(x, g) dµ dν =

∫
X×G

φ(x, g) dm.

For large classes of dynamical systems, ergodicity of compact group extensions

is typical (see for example [35]). To conclude this section, we give some examples

of compact group extensions for which ergodicity fails, even when the underlying

dynamical system is assumed to be ergodic.

Example 2.2.10. Let T : X → X be ergodic. Suppose G = R/2πZ with binary

product addition modulo 2π, so ν = Leb. Suppose further that we have a constant

cocycle h = 2πc, where c ∈ Q ∩ [0, 1). Note that Th(x, θ) = (Tx,Rc θ), where

Rc : G → G defined by Rc θ = θ + c mod 2π is the circle rotation by angle 2πc.

Write c = p/q where p ≥ 0, q ≥ 1, and hcf(p, q) = 1. For

H =

q−1⋃
k=0

[
2kπ

q
,
(2k + 1)π

q

]
,

note that R−1
c (H) = H and ν(H) = 1/2. It follows that T−1

h (X × H) = X × H
and m(X ×H) = ν(H) 6∈ {0, 1}, so that m is not ergodic.

Example 2.2.11. Let T : X → X be ergodic. Suppose G is a non-abelian compact

connected Lie group with compatible bi-invariant metric d. Suppose further that

for some h ∈ G, we have h(x) = h for all x ∈ X. Let H = 〈h〉. Since H is closed,

it is a Lie subgroup of G. Moreover, by an approximation argument, H is abelian.

Therefore dimH < dimG, so that ν(H) = 0. Consider the thickening of H by

ε > 0 small, given by Bε(H) = {g ∈ G | infh′∈H d(g, h′) < ε}. Then g ∈ Bε(H)

if and only if gh ∈ Bε(H), so that T−1
h (X × Bε(H)) = X × Bε(H). However,

m(X ×Bε(H)) = ν(Bε(H)) 6∈ {0, 1}, and so ergodicity fails.

11



CHAPTER 2. PRELIMINARIES

2.3 Convergence of probability measures

As noted in Remark 1.0.1, the main results in this thesis are of a probabilistic

nature. In this section, we give an overview of the relevant probability theory

required to formulate these.

We begin with a brief recap of weak convergence (see for example [10]). Sup-

pose we have a probability space (X,B, µ) and let M be a metric space. We say

that W : X → M is a random element of M if it is measurable as a function

from (X,B) → (M,B(M)), where B(M) denotes the Borel σ – algebra of M. If

M = R or C, we call W a random variable, and if M = Rd for d > 1, we call

W a random vector. The probability distribution or law of W is the pushforward

measure µW = µ ◦W−1 induced by W on B(M). Let (Wn)n≥0 be a sequence of

random elements taking values in M. We say that the sequence of probability

measures µWn converges weakly to µW , written µWn →w µW , or that the random

elements Wn converge weakly to W , written Wn →w W , if

lim
n→∞

∫
M
f dµWn =

∫
M
f dµW for all f ∈ Cb(M),

where Cb(M) is the set of all bounded, continuous, real-valued functions on M.

Equivalently, Wn →w W if

lim
n→∞

E
[
f(Wn)

]
= E

[
f(W )

]
for all f ∈ Cb(M),

where E denotes the expectation with respect to the underlying probability mea-

sure µ.

Remark 2.3.1. We also refer to weak convergence as convergence in distribu-

tion, and use these interchangeably throughout. Almost sure convergence, Lp –

convergence, and convergence in probability all imply weak convergence.

One of the most classical results regarding weak convergence is the Lindeberg-

Lévy central limit theorem [9, 19, 31]. We recall this below.

12



2.3. CONVERGENCE OF PROBABILITY MEASURES

Theorem 2.3.2 (Lindeberg-Lévy central limit theorem). Let (Xk)k≥0 be a

sequence of independent and identically distributed random vectors with E[Xk] = 0

and E[XkX
T
k ] = Σ ∈ Rd,d for all k ≥ 0. Then

1√
n

n−1∑
k=0

Xk →w N (0,Σ).

We next state the definition of Brownian motion. From here on, we use ∼ to

denote equivalence in distribution. Recall that a stochastic process is a family of

measurable functions.

Definition 2.3.3. Let W = (W (t))t≥0 be an Rd – valued stochastic process with

W (0) = 0. We say that W is a Brownian motion on Rd with mean 0 and covari-

ance matrix Σ ∈ Rd,d if the following hold:

(i) For all t ≥ 0, we have W (t) ∼ N (0, tΣ).

(ii) For 0 = t0 < t1 < t2 < · · · < tn, the random variables W (t1), W (t2) −
W (t1),. . . , W (tn)−W (tn−1) are independent.

(iii) For all t > s ≥ 0, we have W (t)−W (s) ∼ W (t− s).

(iv) t 7→ W (t) is almost surely continuous.

The existence of Brownian motion was first shown by Wiener [99]. We next

recall the space of càdlàg functions [82]. Let d ≥ 1 and E ⊂ R. We denote by

D(E;Rd) the space of functions f : E → Rd which are right continuous and admit

left limits. Let Λ denote the set of strictly increasing continuous bijections from

E to itself. Define the Skorokhod metric s on D(E;Rd) by

s(f, g) = inf
λ∈Λ

max
{
|λ− I|∞, |f − g ◦ λ|∞

}
.

This makes D(E;Rd) into a complete separable metric space [91]. It is immediate

from the definition that s(f, g) ≤ |f − g|∞. If E = [0,∞), we have by [92] that

weak convergence in D(E;Rd) is equivalent to weak convergence in D([0, T ];Rd)

for all T > 0.

13



CHAPTER 2. PRELIMINARIES

The next result we state is Donsker’s invariance principle [29, 33]. This can

be seen as a generalisation of the central limit theorem to stochastic processes.

Donsker’s invariance principle says that Brownian motion is the limit of suitably

rescaled random walks. More precisely:

Theorem 2.3.4 (Donsker’s invariance principle). Let (Xk)k≥0 be a sequence

of independent and identically distributed random vectors with E[Xk] = 0 and

E[XkX
T
k ] = Σ ∈ Rd,d for all k ≥ 0. For n ≥ 1, define the random elements

Wn : X → D([0,∞);Rd) by Wn(t) = n−1/2
∑[nt]−1

k=0 Xk for t ≥ 0. Then Wn →w

W in D([0,∞);Rd), where W denotes the Brownian motion with mean 0 and

covariance matrix Σ.

Remark 2.3.5. In later chapters, we prove an analogue of Donsker’s invariance

principle for sequences of random vectors which are not independent in general.

To make this distinction clear, we call such a result a weak invariance principle.

The next result is the continuous mapping theorem [10, 45, 67], which says that

continuous functions between metric spaces preserve limits even if their arguments

are sequences of random elements. We then use this to show how Donsker’s

invariance principle implies the Lindeberg-Lévy central limit theorem.

Theorem 2.3.6 (Continuous mapping theorem). Let X and Y be metric

spaces and consider random elements (Wn)n≥0 and W taking values in X . If

h : X → Y is continuous and Wn →w W , then h(Wn)→w h(W ).

Remark 2.3.7. Let Wn and W be as in Theorem 2.3.4, and note that Wn →w W

in D([0, 1];Rd). Take X = D([0, 1];Rd) and Y = Rd in Theorem 2.3.6, and let

h : X → Y be defined by h(f) = f(1). Let Λ denote the set of all strictly increasing

bijections from [0, 1] → [0, 1], and note that λ(1) = 1 for all λ ∈ Λ. Letting s

denote the Skorokhod metric on X , we have for f, g ∈ X that

s(f, g) = inf
λ∈Λ

max
{
|λ− I|∞, |f − g ◦ λ|∞

}
≥
∣∣f(1)− g(1)

∣∣ =
∣∣h(f)− h(g)

∣∣,
so that h is continuous. Therefore n−1/2

∑n−1
k=0 Xk = h(Wn)→w h(W ) ∼ N (0,Σ),

recovering the Lindeberg-Lévy central limit theorem.
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We next recall the Cramér-Wold device [9, 21], which relates distributional

convergence of random vectors to that of its one-dimensional projections.

Theorem 2.3.8 (Cramér-Wold). Suppose (Xn)n≥0 and X are d – dimensional

random vectors. Then Xn →w X if and only if c ·Xn →w c ·X for all c ∈ Rd.

The next result is an analogue of Slutsky’s theorem for random elements, from

[10]. Roughly speaking, this allows us to deduce weak convergence of a sequence

of random elements from that of another, “closely related” sequence of random

elements. More precisely:

Theorem 2.3.9. Let (X , s) be a separable metric space. Suppose that (Xn)n≥0 and

(Yn)n≥0 are sequences of random elements of X . If Xn →w X and s(Xn, Yn)→ 0

in probability, then Yn →w X.

We now recall the definition of uniform integrability. We restrict to what is

needed for the thesis. For a more detailed exposition, see [31, 87].

Definition 2.3.10. Let (X,B, µ) be a probability space and let (Mn)n≥0 be a

sequence of random variables. The collection (Mn)n≥0 is said to be uniformly

integrable if

lim
K→∞

sup
n≥0

∫
X

|Mn|1{|Mn|≥K} dµ = 0.

We require the following sufficient condition for uniform integrability.

Proposition 2.3.11. Suppose (Mn)n≥0 is a sequence of random variables. If

supn≥0 |Mn|p <∞ for some p > 1, then (Mn)n≥0 is uniformly integrable.

The next result says that weak convergence and uniform integrability implies

convergence of moments.

Proposition 2.3.12. Let (X,B, µ) be a probability space and suppose (Mn)n≥0

and M are random vectors with Mn →w M . If (|Mn|p)n≥0 is uniformly integrable

for some p > 1, then for all 0 < q ≤ p we have

lim
n→∞

∫
X

|Mn|q dµn =

∫
X

|M |q dµ.

15



CHAPTER 2. PRELIMINARIES

To conclude this section, we recall the notion of tightness, which roughly

speaking, prevents the escape of mass to infinity. A more detailed exposition

can be found in [10].

Definition 2.3.13. Let (X,B, µ) be a probability space and let (Wn)n≥0 be a se-

quence of random elements of a metric space M. We say that (Wn)n≥0 is tight if

for every ε > 0, there exists a compact set K ⊂M such that µ(Wn ∈ K) > 1− ε
for all n ≥ 0.

The fundamental result relating tightness to weak convergence is the following:

Theorem 2.3.14 (Prokhorov’s theorem). Let (Wn)n≥0 be a sequence of ran-

dom elements of a complete separable metric space. Then (Wn)n≥0 is tight if and

only if every subsequence of (Wn)n≥0 contains a weakly convergent subsubsequence.

Remark 2.3.15. Our formulation of Prokhorov’s theorem follows immediately

from the classical formulation in [85].

2.4 Martingale theory

As was mentioned in the introduction, much of our approach relies heavily on

martingale techniques. In this section, we give a minimal, for the purpose of this

thesis, review of martingale theory. Much of this is classical and can be found in

[9, 10, 31, 100]. In what follows, (X,B, µ) is our underlying probability space. We

begin by recalling the definition of conditional expectation [58] and some basic

properties which we require.

Theorem 2.4.1. Let Y ∈ L1(X) and A ⊂ B be a σ – algebra on X. Then there

exists a random variable Z such that

(i) Z ∈ L1(X).

(ii) Z is A – measurable.

(iii) E[Y 1A] = E[Z1A] for all A ∈ A.
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Such a random variable Z is unique up to sets of measure zero, and is denoted by

E[Y | A].

Proposition 2.4.2. Let Y, Z ∈ L1(X) and A ⊂ B be a σ – algebra. The following

hold true:

(i) If Y ≥ 0, then E[Y | A] ≥ 0 almost surely.

(ii) For all c ∈ R, we have E[cY + Z | A] = cE[Y | A] + E[Z | A] almost surely.

(iii) If Y is A – measurable, then E[Y Z | A] = Y E[Z | A] almost surely.

(iv) E[E[Y | A]] = E[Y ].

(v) |E[Y | A]|p ≤ |Y |p for all 1 ≤ p <∞.

(vi) If T : X → X is measure preserving, then E[Y ◦ T |T−1(A)] = E[Y | A] ◦ T
almost surely.

We next define martingales. Recall that a family of σ – algebras (Bn)n≥0 on X

is called a filtration if Bn ⊂ Bn+1 ⊂ B for all n ≥ 0.

Definition 2.4.3. A sequence of random variables (Mn)n≥0 defined on (X,B, µ)

is called a martingale with respect to the filtration (Bn)n≥0 if for all n ≥ 0, we

have

(i) Mn is Bn – measurable.

(ii) Mn ∈ L1(X).

(iii) E[Mn+1 | Bn] = Mn almost surely.

We call (Mn)n≥0 a martingale difference sequence with respect to the filtration

(Bn)n≥0 if it satisfies (i), (ii), and the additional property that

(iii’) E[Mn+1 | Bn] = 0 almost surely.

17
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Remark 2.4.4. The above definition naturally extends to random vectors and

random matrices by the requirement that each component is a martingale (respec-

tively martingale difference sequence) in the above sense.

The next proposition describes the connection between a martingale and a

martingale difference sequence.

Proposition 2.4.5. The following hold true:

(i) If (Mn)n≥0 is a martingale with respect to the filtration (Bn)n≥0, then (Yn)n≥0

defined by Y0 = 0 and Yn = Mn −Mn−1 for n ≥ 1 is a martingale difference

sequence with respect to (Bn)n≥0.

(ii) If (Yn)n≥0 is a martingale difference sequence with respect to (Bn)n≥0, then

(Mn)n≥0 defined by Mn =
∑n

k=0 Yk is a martingale with respect to (Bn)n≥0.

Proof. Measurability with respect to the filtration (Bn)n≥0 and integrability is

immediate in both cases. For (i), note that if (Mn)n≥0 is a martingale, then for

all n ≥ 0 we have

E
[
Yn+1

∣∣Bn] = E
[
Mn+1 −Mn

∣∣Bn] = E
[
Mn+1

∣∣Bn]− E
[
Mn

∣∣Bn] = Mn −Mn = 0,

where the second equality uses Proposition 2.4.2 (ii), and the third equality uses

the definition of a martingale and Proposition 2.4.2 (iii). Similarly for (ii), if

(Yn)n≥0 is a martingale difference sequence, then for all n ≥ 0 we have

E
[
Mn+1

∣∣Bn] = E
[
Yn+1 +

n∑
k=0

Yk

∣∣∣∣Bn] = E
[
Yn+1

∣∣Bn]+
n∑
k=0

Yk = Mn,

completing the proof.

The next proposition tells us that any martingale difference sequence satisfies

a useful orthogonality property. For our purposes, we state this in the random

vector setting.
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Proposition 2.4.6. Let d ≥ 1. Suppose (Yn)n≥0 is a martingale difference se-

quence taking values in Rd with respect to the filtration (Bn)n≥0. Then E[YiY
T
j ] = 0

for i 6= j.

Proof. Suppose first that j < i. We have from Proposition 2.4.2 (iv) and (iii) that

E[YiY
T
j ] = E

[
E
[
YiY

T
j

∣∣Bi−1

]]
= E

[
E
[
Yi
∣∣Bi−1

]
Y T
j

]
= 0.

Similarly, when i < j, we have

E[YiY
T
j ] = E

[
E
[
YiY

T
j

∣∣Bj−1

]]
= E

[
Yi E

[
Y T
j

∣∣Bj−1

]]
= E

[
Yi
(
E
[
Yj
∣∣Bj−1

])T ]
= 0.

This completes the proof.

We now give some classical inequalities which we require for estimating mo-

ments in Section 4.8. We begin with Doob’s Lp – inequality [30].

Theorem 2.4.7 (Doob’s Lp – inequality). Suppose (Mn)n≥0 is a martingale.

Then for p > 1, we have∣∣ max
0≤j≤n

|Mj|
∣∣
p
≤ p

p− 1
|Mn|p for all n ≥ 0.

We next state Burkholder’s inequality [17].

Theorem 2.4.8 (Burkholder’s inequality). Suppose (Mn)n≥0 is a martingale.

For each p > 1, there exists C(p) > 0 such that

|Mn|p ≤ C(p)

∣∣∣∣( n∑
k=0

|Mk −Mk−1|2
)1/2∣∣∣∣

p

for all n ≥ 0.

We conclude with Rio’s inequality [86]. The formulation given here is due to

[23] (see also [78]).

Theorem 2.4.9 (Rio’s inequality). Let (Xn)n≥0 ⊂ Lp(X) be a sequence of

random variables for some p ≥ 2 with E[Xn] = 0 for all n ≥ 0. Suppose (Bn)n≥0

is a filtration for which Xn is Bn – measurable for all n ≥ 0. Define

b`,n = max
0≤`≤m≤n

∣∣∣∣X`

m∑
k=`

E
[
Xk

∣∣B`]∣∣∣∣
p/2

.
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Under this setup, there exists C(p) > 0 such that∣∣∣∣∣ max
0≤j≤n

∣∣∣∣ j∑
k=0

Xk

∣∣∣∣
∣∣∣∣∣
p

≤ C(p)

( n∑
`=0

b`,n

)1/2

for all n ≥ 0.

2.5 The Koopman and transfer operators

The Koopman and transfer operators form key tools when studying the statistical

properties of deterministic dynamical systems. In this section, we define these

operators and give some immediate consequences which are used throughout.

Much of this section is classical, and can be found in many ergodic theory books

(see for example [4, 13]). Throughout, we suppose that our underlying probability

space is given by (X,B, µ).

Definition 2.5.1. Let T : X → X be a transformation. The Koopman operator

U : L1(X)→ L1(X) for T is defined by Uv = v ◦ T .

Definition 2.5.2. Let T : X → X be a non-singular transformation. The transfer

operator P : L1(X)→ L1(X) for T is defined as follows: For v ∈ L1(X), we define

Pv to be the unique element in L1(X) which satisfies∫
X

Pv w dµ =

∫
X

v Uw dµ for all w ∈ L∞(X).

We next give some basic properties of these operators.

Proposition 2.5.3. Let T : X → X be a non-singular transformation with asso-

ciated Koopman and transfer operators U and P respectively. The following hold

true:

(i) U ,P : L1(X)→ L1(X) are linear operators with U1 = 1.

(ii)
∫
X
Pv dµ =

∫
X
v dµ for all v ∈ L1(X).

(iii)
∫
X
Pnv w dµ =

∫
X
v Unw dµ for all n ≥ 1, v ∈ L1(X), and w ∈ L∞(X).

(iv) |Uw|∞ ≤ |w|∞ for all w ∈ L∞(X) and |Pv|1 ≤ |v|1 for all v ∈ L1(X).
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If T is measure preserving, then in addition to the above, we have

(v) P1 = 1.

(vi)
∫
X
Uv dµ =

∫
X
v dµ for all v ∈ L1(X).

(vii) PUv = v and UPv = E[v |T−1(B)] for all v ∈ L1(X).

(viii) |Uv|p = |v|p and |Pv|p ≤ |v|p for all 1 ≤ p ≤ ∞ and v ∈ Lp(X).

Proof. We prove (iv), (vii), and (viii). The other assertions are immediate from

the definitions of U , P , and invariance of the measure. We begin with (iv). Since

T (X) ⊂ X, we have |Uw|∞ = |w ◦ T |∞ ≤ |w|∞ for all w ∈ L∞(X). Next note

that for v ∈ L1(X), we have

|Pv|1 = sup
w∈L∞(Y )
|w|∞≤1

{∣∣∣∣ ∫
Y

Pv w dµ

∣∣∣∣} = sup
w∈L∞(Y )
|w|∞≤1

{∣∣∣∣ ∫
Y

v Uw dµ

∣∣∣∣}

≤ sup
w∈L∞(Y )
|w|∞≤1

{∫
Y

|v||Uw| dµ
}
≤ |v|1,

proving (iv).

We next prove (vii). We have for v ∈ L1(X) and w ∈ L∞(X) that∫
X

P(Uv)w dµ =

∫
X

Uv Uw dµ =

∫
X

U(vw) dµ =

∫
X

vw dµ.

Since w is arbitrary, PUv = v as required. To show that UPv = E[v |T−1(B)], we

first note that UPv is T−1(B) – measurable. Indeed, for A ⊂ R Borel measurable,

we have

(UPv)−1(A) = (Pv ◦ T )−1(A) = T−1
(
(Pv)−1(A)

)
∈ T−1(B)

since Pv ∈ L1(X) is measurable. Moreover, we have for T−1(B) ∈ T−1(B) that∫
T−1(B)

UPv dµ =

∫
X

(Pv ◦ T )1T−1(B) dµ =

∫
X

(Pv ◦ T ) (1B ◦ T ) dµ

=

∫
X

Pv 1B dµ =

∫
X

v 1B ◦ T dµ =

∫
T−1(B)

v dµ,
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which proves (vii).

For (viii), suppose first that 1 ≤ p < ∞ and v ∈ Lp(X). By µ – invariance

of T , we have |Uv|p = |v|p. To show that |Pv|p ≤ |v|p, note that by Proposi-

tion 2.4.2 (v), we have |E[v |T−1(B)]|p ≤ |v|p. Therefore

|Pv|pp =

∫
X

|Pv|p dµ =

∫
X

|UPv|p dµ =

∫
X

∣∣E[v ∣∣T−1(B)
]∣∣p dµ

≤
∫
X

|v|p dµ = |v|pp,

and the result follows. We now suppose that p = ∞ and v ∈ L∞(X). Note that

for all M ≥ 0, we have (|v| ◦ T )−1((M,∞)) = T−1(|v|−1((M,∞))). Therefore, by

T – invariance of µ, we have

|Uv|∞ = inf
{
M ≥ 0 | µ

(
(|v| ◦ T )−1

(
(M,∞)

))
= 0
}

= inf
{
M ≥ 0 | µ

(
|v|−1

(
(M,∞)

))
= 0
}

= |v|∞.

To show |Pv|∞ ≤ |v|∞, note that since ±v ≤ |v|∞, we have by Proposition 2.4.2 (i)

that |E[v |T−1(B)]| ≤ |v|∞. Therefore

|Pv|∞ = |UPv|∞ =
∣∣E[v ∣∣T−1(B)

]∣∣
∞ ≤ |v|∞,

completing the proof.

Example 2.5.4. Consider the doubling map T : [0, 1] → [0, 1] given by Tx = 2x

mod 1, as shown in Figure 2.2. The Lebesgue measure µ on [0, 1] is ergodic and

invariant for T [13]. Let P denote the transfer operator for T . Note that for

v ∈ L1([0, 1]) and w ∈ L∞([0, 1]), we have∫ 1

0

Pv w dµ =

∫ 1

0

v(x)w(Tx) dx =

∫ 1/2

0

v(x)w(2x) dx+

∫ 1

1/2

v(x)w(2x− 1) dx

=
1

2

∫ 1

0

v

(
y

2

)
w(y) dy +

1

2

∫ 1

0

v

(
y + 1

2

)
w(y) dy,

so that

Pv(x) =
1

2
v

(
x

2

)
+

1

2
v

(
x+ 1

2

)
.
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0 1
2

1
0

1

Figure 2.2: Doubling map

Recall that a measure µ on B is absolutely continuous with respect to a measure

ρ on B if ρ(B) = 0 implies µ(B) = 0 for all B ∈ B. We denote by dµ/ dρ the

Radon-Nikodym derivative of µ with respect to ρ. One of the major uses of the

transfer operator is the construction of absolutely continuous invariant probability

measures. Moreover, as we see in Section 3.3, it allows us to establish various

useful properties of these measures and their densities. On this note, we conclude

this section by giving a criterion to identify such densities.

Proposition 2.5.5. Let T : X → X be a non-singular transformation with trans-

fer operator P : L1(X) → L1(X) and underlying probability measure ρ. Suppose

f ∈ L1(X) with |f |1 = 1 and f ≥ 0. Then Pf = f if and only if the measure µ

given by dµ = f dρ is T – invariant.

Proof. Let us suppose that µ is T – invariant. Then for any B ∈ B, noting that

1T−1(B) = 1B ◦ T , we have∫
B

f dρ =

∫
T−1(B)

f dρ =

∫
X

f 1B ◦ T dρ =

∫
X

Pf 1B dρ =

∫
B

Pf dρ.

Since B ∈ B is arbitrary, Pf = f .
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Conversely, let us suppose that Pf = f . Then by the above calculation, for

any B ∈ B we have ∫
T−1(B)

f dρ =

∫
B

Pf dρ =

∫
B

f dρ,

so that µ is T – invariant.

Remark 2.5.6. As one would expect, the Koopman and transfer operators extend

component-wise to Rd and Rd,d – valued observables.

2.6 Peter-Weyl theorem

In this section we state the Peter-Weyl theorem [34], which gives us an explicit

orthonormal basis of L2(G) when G is a compact group. This is required in

Section 4.3, when we study the transfer operator for compact group extensions.

We begin with some preliminary definitions, which can be found in [14, 34]. Let

(π, V ) be a finite-dimensional complex representation of G with inner product [·, ·]
on V . If G preserves [·, ·], then we say that π is a unitary representation. We say

that π is irreducible if the only closed subspaces W ⊂ V such that π(G)W ⊂ W

are W = {0} and W = V . Finally, two representations (π, Vπ) and (ρ, Vρ) of a

compact group G are equivalent if there exists an isomorphism A : Vπ → Vρ such

that Aπ(g) = ρ(g)A.

Theorem 2.6.1 (Peter-Weyl theorem). Let Σ denote the equivalence classes

of irreducible unitary representations of the compact group G. Suppose that a

representative π is chosen from each equivalence class, and let u
(π)
i,j (g) = [π(g)ei, ej]

denote the matrix coefficients of π in an orthonormal basis of V . Letting d(π) =

dim(Vπ) denote the degree of the representation π, we have that the set of functions{√
d(π)u

(π)
i,j | π ∈ Σ, 1 ≤ i, j ≤ d(π)

}
form an orthonormal basis of L2(G).
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Example 2.6.2. Consider the group T = {z ∈ C : |z| = 1}. In this case, the

irreducible representations are one-dimensional and given by πn(eiθ) = einθ. There

is a single matrix coefficient for each representation, which is given by the function

un(eiθ) = einθ. The Peter-Weyl theorem then states that these functions form an

orthonormal basis of L2(T) — a standard result from Fourier theory.

2.7 Separation of spectrum

Probabilistic limit laws for deterministic dynamical systems often follow from good

spectral properties of the associated transfer operator (see for example [43]). In

this section, we give a brief overview of the spectral theory we require throughout

the thesis. A major reference on this topic is [50].

Let X be a Banach space over the complex scalar field C and let I be the iden-

tity operator on X. Let P : X → X be a bounded linear operator. The spectrum

of P , denoted σ(P), is defined by σ(P) = {z ∈ C | zI−P is not invertible.}. The

spectral radius of P , denoted r(P), is defined by r(P) = sup{|z| : z ∈ σ(P)}. The

spectral radius formula says that r(P) = limn→∞ ‖Pn‖1/n, where ‖ · ‖ denotes the

operator norm.

The following theorem from [50] is required in Section 4.5. Informally, it says

that if we can separate the spectrum of some bounded linear operator, then the

underlying Banach space can also be separated in a convenient way.

Theorem 2.7.1. Let B(X) denote the space of bounded linear operators on the

Banach space X and let P ∈ B(X). Suppose σ(P) = σin∪σext, where σin and σext

are compact and disjoint. Let C be a smooth closed curve which does not intersect

σ(P), and which contains σin in its interior and σext in its exterior. Then the

following hold true:

(i) π = 1
2π

∫
C(zI − P)−1 dz ∈ B(X) is a projection. That is, π2 = π, so that

X = Imπ ⊕ kerπ.

(ii) π ◦ P = P ◦ π, so that P(Im π) ⊂ Im π and P(kerπ) ⊂ kerπ.
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(iii) σ(P|Imπ) = σin and σ(P|kerπ) = σext.

Definition 2.7.2. We refer to π defined in (i) above as the spectral projection

of σin. It is independent of the choice of C, since (zI − P)−1 is holomorphic in

C \ σ(P).

Remark 2.7.3. If z ∈ σ(P) is an isolated eigenvalue, then we can separate the

spectrum and define the projection πz as above. The multiplicity of z is defined as

dim(Imπz). If this is finite, then Im πz coincides with the generalised eigenspace

corresponding to z.

Let us denote by σess(P) the essential spectrum of P . That is, σess(P) consists

of those points in σ(P) which are not isolated eigenvalues of finite multiplicity. We

denote by ress(P) = sup{|z| : z ∈ σess(P)} the essential spectral radius of P . For

any ε > 0, one can think of P as a finite matrix outside of {z ∈ C : |z| ≤ ress(P)+ε}
and something more complicated inside this set. To conclude this section, we

introduce the following criteria [46] (c.f. [26, 62, 95]) which allows us to estimate

ress(P). The formulation given here is adapted from [64].

Proposition 2.7.4. Suppose we have the following setup:

(i) Two Banach spaces X1 ⊂ X2 with norms ‖·‖X1 and ‖·‖X2 satisfying ‖·‖X2 ≤
‖ · ‖X1.

(ii) An operator P : X1 → X1 and constants C > 0 and θ ∈ (0, 1) satisfying

‖Pnv‖X2 ≤ C‖v‖X2

and

‖Pnv‖X1 ≤ C
(
θn‖v‖X1 + ‖v‖X2

)
for all v ∈ X1 and all n ≥ 1.

(iii) The unit ball of X1 is relatively compact in X2.

Then ress(P) ≤ θ.

Remark 2.7.5. We refer to the inequality ‖Pnv‖X1 ≤ C(θn‖v‖X1 + ‖v‖X2) as a

Lasota-Yorke inequality.
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2.8 Martingale-coboundary decomposition

In this section, we give an abstract formulation of the main method used in the

thesis. It is assumed that (X,B, µ, T ) is an ergodic measure preserving dynamical

system with associated transfer operator P and d ≥ 1. We call an integrable func-

tion v : X → Rd an observable. We consider the sequence of functions (v ◦T k)k≥0,

which resemble a stochastic process when our underlying dynamical system is

“sufficiently chaotic”.

Remark 2.8.1. Note that for k ≥ 0 and A ⊂ Rd Borel measurable, we have

(v ◦ T k)−1(A) = T−k(v−1(A)). Therefore, by µ – invariance of T , we have

µ
(
(v ◦ T k)−1(A)

)
= µ

(
(v ◦ T k−1)−1(A)

)
= · · · = µ

(
v−1(A)

)
,

so that the sequence (v ◦ T k)k≥0 is identically distributed. However, in general,

this sequence is not independent.

Birkhoff’s ergodic theorem tells us the sequence (v ◦T k)k≥0 satisfies the strong

law of large numbers. It is natural to ask whether we can deduce stronger in-

formation about the limiting behaviour of this sequence, such as a central limit

theorem or weak invariance principle. To answer such questions, we introduce the

method of Gordin [37], which decomposes observables into a sum of a martingale

and an asymptotically negligible coboundary.

Definition 2.8.2. We say that an observable v ∈ L1(X;Rd) admits a martingale-

coboundary decomposition if there exist m ∈ L1(X;Rd) and χ : X → Rd measur-

able such that v = m+ χ ◦ T − χ and m ∈ kerP.

We next justify why we call v = m + χ ◦ T − χ a martingale-coboundary

decomposition.

Proposition 2.8.3. For n ≥ 1 and 1 ≤ k ≤ n, define Bn,k = T−(n−k)(B). Suppose

m ∈ L1(X;Rd) with Pm = 0. Then (m◦T n−k,Bn,k)nk=1 is a sequence of martingale

differences.
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Proof. Fix n ≥ 1. Note that T−1(B) ⊂ B. Therefore for 1 ≤ k ≤ n− 1, we have

Bn,k = T−(n−k)(B) ⊂ T−(n−k)+1(B) = T−(n−(k+1))(B) = Bn,k+1.

Now, observe that if A ⊂ Rd is Borel measurable, then

(m ◦ T n−k)−1(A) = T−(n−k)
(
m−1(A)

)
∈ Bn,k, (2.8.1)

so that m ◦ T n−k is Bn,k – measurable. Integrability is immediate by invariance of

T . Finally, letting U denote the Koopman operator for T , we have from Proposi-

tion 2.4.2 (vi) and Proposition 2.5.3 (vii) that

E
[
m ◦ T n−k

∣∣Bn,k−1

]
= E

[
m
∣∣T−1(B)

]
◦ T n−k = (UPm) ◦ T n−k = 0,

where the final equality follows from the fact that m ∈ kerP .

Remark 2.8.4. By similar arguments, one can show that (T−n(B))n≥0 is a non-

increasing filtration, m◦T n is T−n(B) – measurable, and E[m◦T n |T−(n+1)(B)] = 0

for all n ≥ 0 almost surely.

Example 2.8.5. Recall from Example 2.5.4 that the doubling map T : [0, 1] →
[0, 1] defined by Tx = 2x mod 1 has transfer operator P : L1([0, 1]) → L1([0, 1])

given by

Pv(x) =
1

2
v

(
x

2

)
+

1

2
v

(
x+ 1

2

)
for v ∈ L1([0, 1]).

We show that if v : [0, 1] → R is Lipschitz with
∫ 1

0
v(x) dx = 0, then v admits a

martingale-coboundary decomposition. Note first that for x, y ∈ [0, 1], we have∣∣Pv(x)− Pv(y)
∣∣ ≤ 1

2

∣∣∣∣v(x2
)
− v
(
y

2

)∣∣∣∣+
1

2

∣∣∣∣v(x+ 1

2

)
− v
(
y + 1

2

)∣∣∣∣
≤ 1

2
Lip(v)

∣∣∣∣x2 − y

2

∣∣∣∣+
1

2
Lip(v)

∣∣∣∣x+ 1

2
− y + 1

2

∣∣∣∣
=

1

2
Lip(v)|x− y|,

so that Lip(Pv) ≤ Lip(v)/2. Inductively, one has

Lip(Pnv) ≤ 1

2n
Lip(v) for all n ≥ 1. (2.8.2)
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Next, note from Proposition 2.5.3 (ii) that
∫ 1

0
Pnv(y) dy =

∫ 1

0
v(y) dy = 0 for all

n ≥ 1. Therefore, for x ∈ [0, 1] we have

∣∣Pnv(x)
∣∣ =

∣∣∣∣Pnv(x)−
∫ 1

0

Pnv(y) dy

∣∣∣∣
≤
∫ 1

0

∣∣Pnv(x)− Pnv(y)
∣∣ dy

≤ 1

2n
Lip(v),

where the final inequality uses (2.8.2) and the fact that |x−y| ≤ 1 for x, y ∈ [0, 1].

It follows that |Pnv|∞ ≤ Lip(v)/2n for all n ≥ 1, and so

‖Pnv‖Lip = Lip(Pnv) + |P nv|∞ ≤
1

2n−1
Lip(v) for all n ≥ 1.

Define χ,m : [0, 1]→ R by

χ =
∞∑
n=1

Pnv

and

m = v + χ− χ ◦ T.

Note that

‖χ‖Lip ≤
∞∑
n=1

‖Pnv‖Lip ≤
∞∑
n=1

1

2n−1
Lip(v) = 2 Lip(v),

so that χ is well-defined and Lipschitz. Also note that

|m|∞ ≤ |v|∞ + |χ|∞ + |χ ◦ T |∞ ≤ |v|∞ + 2|χ|∞ ≤ ‖v‖Lip + 2‖χ‖Lip <∞,

so that m ∈ L∞([0, 1]). Finally, we have from Proposition 2.5.3 (vii) that P(χ ◦
T ) = χ, so that

Pm = Pv + Pχ− P(χ ◦ T ) = Pv +
∞∑
n=2

Pnv −
∞∑
n=1

Pnv = 0.

Thus v admits a martingale-coboundary decomposition as claimed.
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We next move on to martingale limit theorems. We begin with a central limit

theorem for sequences of martingale differences. By Theorem 2.3.8, the proof is

an immediate consequence of [32] (see also [69]).

Theorem 2.8.6. Suppose that m ∈ L2(X;Rd) with Pm = 0. Write Σ =∫
X
mmT dµ ∈ Rd,d. Then

1√
n

n−1∑
k=0

m ◦ T k →w N (0,Σ).

The next result is a weak invariance principle from [10] for sequences of mar-

tingale differences. The form given here is a special case of [60, Theorem A.1],

where the authors allow the probability space and underlying dynamics to vary

with each iterate. For our purposes, we keep fixed the probability space but let

the transformation vary with each iterate.

Theorem 2.8.7. Let (X,B, µ, Tn) be a sequence of ergodic measure preserving

transformations with Koopman and transfer operators Un and Pn respectively.

Suppose that mn ∈ L2(X;Rd) with Pnmn = 0. For n ≥ 1, define the random

elements Mn : X → D([0,∞);Rd) by Mn(t) = n−1/2
∑[nt]−1

k=0 mn ◦ T kn for t ≥ 0.

Suppose that the family (|mn|2)n≥0 is uniformly integrable, and suppose there exists

a constant matrix Σ ∈ Rd,d such that for each t ≥ 0, we have

1

n

[nt]−1∑
k=0

UnPn(mnm
T
n ) ◦ T kn →w tΣ.

Then Mn →w W in D([0,∞);Rd), where W is the Brownian motion with mean

0 and covariance matrix Σ.

Remark 2.8.8. The proof of Theorem 2.8.7 in [60] is a standard argument in

probability theory. Namely, by Prokhorov’s theorem, weak convergence of Mn to

W is equivalent to showing convergence of the associated finite-dimensional dis-

tributions and tightness of (Mn)n≥0 in D([0,∞);Rd) (see [10, Example 5.1]).
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To conclude this section, we state the results from [22, Section 2] which we

require. These are known as almost sure invariance principles. We return to the

setup of (X,B, µ, T ) being an ergodic measure preserving transformation with

transfer operator P , and take d = 1. Let m ∈ Lp(X) for some p ≥ 2 and

let σ2 =
∫
X
m2 dµ. Suppose that m ∈ kerP . By Remark 2.8.4, (Bn)n≥0 =

(T−n(B))n≥0 is a non-increasing filtration for which m◦T n is Bn – measurable and

E[m ◦ T n | Bn+1] = 0 for all n ≥ 0 almost surely.

Theorem 2.8.9. If p = 2, then there exists a probability space supporting a se-

quence of random variables (Sn)n≥1 with the same joint distributions as (
∑n−1

k=0 m◦
T k)n≥1 and a sequence of independent and identically distributed random variables

(Zn)n≥1 with distribution N (0, σ2), such that

sup
1≤k≤n

∣∣∣∣Sk − k∑
j=1

Zj

∣∣∣∣ = o
(
(n log log n)1/2

)
a.s.

Theorem 2.8.10. Suppose that 2 < p < 4 and

n−1∑
k=0

(
E
[
m2 ◦ T k

∣∣Bk+1

]
− σ2

)
= o(n2/p) a.s.

Then there exists a probability space supporting a sequence of random variables

(Sn)n≥1 with the same joint distributions as (
∑n−1

k=0 m ◦ T k)n≥1 and a sequence of

independent and identically distributed random variables (Zn)n≥1 with distribution

N (0, σ2), such that

sup
1≤k≤n

∣∣∣∣Sk − k∑
j=1

Zj

∣∣∣∣ = o(n1/p(log n)1/2) a.s.

Theorem 2.8.11. Suppose that p ≥ 4 and

n−1∑
k=0

(
E
[
m2 ◦ T k

∣∣Bk+1

]
− σ2

)
= O

(
(n log log n)1/2

)
a.s.

Then there exists a probability space supporting a sequence of random variables

(Sn)n≥1 with the same joint distributions as (
∑n−1

k=0 m ◦ T k)n≥1 and a sequence of
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independent and identically distributed random variables (Zn)n≥1 with distribution

N (0, σ2), such that

sup
1≤k≤n

∣∣∣∣Sk − k∑
j=1

Zj

∣∣∣∣ = O(n1/4(log n)1/2(log log n)1/4) a.s.
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Chapter 3

Non-uniformly expanding

dynamical systems

3.1 Outline

In this chapter, we introduce non-uniformly expanding dynamical systems and

show that they admit an ergodic absolutely continuous invariant probability mea-

sure. Roughly speaking, these can be thought of systems for which expansion

holds only on a subset of the state space, and its onset is non-uniform in time. A

precise definition and some examples which are referred to throughout are given in

Section 3.2. By an inducing scheme, one obtains a piecewise uniformly expanding

dynamical system which belong to a class of maps called Gibbs-Markov maps [1].

In Section 3.3 we prove the existence of an ergodic absolutely continuous invariant

probability measure for such maps, whose densities have “good” regularity. The

approach we use is by now standard [61, 101, 102], however introduces techniques

which are utilised throughout. Finally, in Section 3.4, we introduce the notion

of Young towers [101, 102]. By representing our non-uniformly expanding system

T as a Young tower over its induced Gibbs-Markov map, we see how to extend

the measure constructed in Section 3.3 to obtain an ergodic absolutely continuous

invariant probability measure for T .
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3.2 Definition and examples

Let (X, d) be a bounded metric space with Borel probability measure ρ and let

T : X → X be a non-singular transformation. Without loss of generality, we

suppose that diam(X) = sup{d(x, y) | x, y ∈ X} = 1. Let Y ⊂ X be a subset

of positive measure, and let α be a countable measurable partition of Y (mod 0)

with ρ(a) > 0 for all a ∈ α. We suppose that there is an integrable return time

τ : Y → Z+ which is constant on each a ∈ α. We also suppose there are constants

λ > 1, η ∈ (0, 1], and C0, C1 ≥ 1 such that for all a ∈ α, the following hold:

(i) The map F = T τ restricts to a bijection from a onto Y with measurable

inverse.

(ii) d(Fx, Fy) ≥ λ d(x, y) for all x, y ∈ a.

(iii) d(T `x, T `y) ≤ C0 d(Fx, Fy) for all x, y ∈ a and 0 ≤ ` < τ(a).

(iv) ζ0 = dρ
dρ◦F satisfies | log ζ0(x)− log ζ0(y)| ≤ C1 d(Fx, Fy)η for all x, y ∈ a.

Such a dynamical system T : X → X is called non-uniformly expanding, with

induced map F = T τ : Y → Y . We refer to condition (ii) as expansiveness and

condition (iv) as bounded distortion.

Example 3.2.1. The simplest class of examples are (piecewise) uniformly ex-

panding maps, which are non-uniformly expanding with τ = 1. The doubling map

from Example 2.5.4 is uniformly expanding. Another example is the Gauss map

T : [0, 1]→ [0, 1] which is defined by

T (x) =

1/x− [1/x] if x ∈ (0, 1],

0 if x = 0,

where [1/x] denotes the integer part of 1/x. This is shown in Figure 3.1.
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0 · · · 1
4

1
3

1
2

1
0

1

Figure 3.1: Gauss map

Example 3.2.2. Let X = [0, 1] and γ ∈ [0, 1). Recall the intermittent map in

Example 2.2.6 defined by

T (x) =

x(1 + 2γxγ) if x ∈ [0, 1/2],

2x− 1 if x ∈ (1/2, 1].

This is non-uniformly expanding. From Figure 2.1, we see that uniform expansion

occurs everywhere except at the neutral fixed point at 0. In Example 2.2.6 we

explicitly constructed an inducing scheme as described above with first return time

τ and partition α = (an)n≥1 of Y = (1/2, 1].

Example 3.2.3. Let X = [−1, 1] and a ∈ [0, 2]. Unimodal maps T : X → X

defined by T (x) = 1 − ax2 which satisfy the Collet-Eckmann condition [20] are

non-uniformly expanding [101]. Recall the Collett-Eckman condition says that

there are constants b, c > 0 such that |(T n)′(1)| ≥ cebn for all n ≥ 1. By [5, 49]

this condition holds for a set of parameters a with positive Lebesgue measure.

Example 3.2.4. In [97], Viana introduced a C3 – open class of multidimensional

non-uniformly expanding maps. To be definite, we restrict attention to maps on
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X = R/Z× R. Let λ ∈ Z with λ ≥ 16 and define T0 : X → X by

T0(θ, y) = (λθ mod 1, a0 + a sin(2πθ)− y2),

where a0 ∈ (1, 2) is chosen so that 0 is a preperiodic point for the quadratic map

y 7→ a0 − y2, and a is sufficiently small. Then C3 – maps sufficiently close to T0

are non-uniformly expanding [3].

3.3 Existence of ergodic absolutely continuous

invariant probability measures for Gibbs -

Markov maps

Let (Y, ρY ) be a probability space and suppose that α is a countable measurable

partition of Y with ρY (a) > 0 for all a ∈ α. For n ≥ 1 and a0, . . . , an−1 ∈ α, we

define the n – cylinder

[a0, . . . , an−1] =
n−1⋂
k=0

F−k(ak)

and we let αn denote the partition of Y into n – cylinders. It is assumed that

the partition separates points in Y , meaning if x, y ∈ Y with x 6= y, there exists

n ≥ 1 such that x and y lie in distinct n – cylinders. Fix γ ∈ (0, 1) and define the

symbolic metric dγ(x, y) = γn(x,y) for x, y ∈ Y , where the separation time n(x, y)

is the greatest n ≥ 0 such that x and y lie in the same n – cylinder. We say that

F : Y → Y is Gibbs-Markov if there exists C1 > 0 such that for all a ∈ α, the

following hold:

(i) F |a : a→ Y is a bijection with measurable inverse.

(ii) ζ0 = dρY
dρY ◦F

satisfies | log ζ0(x)− log ζ0(y)| ≤ C1 dγ(Fx, Fy) for all x, y ∈ a.

Remark 3.3.1. If T : X → X is non-uniformly expanding as in Section 3.2, then

the induced map F : Y → Y is Gibbs-Markov for γ ∈ [λ−η, 1). This follows from
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the fact that if x, y ∈ Y , then d(x, y)η ≤ dγ(x, y). To see this, note first that if

n(x, y) = 0, then

d(x, y)η ≤ diam(X)η = 1 = dγ(x, y).

Next note that if n(x, y) = n > 0, then by expansiveness of F on partition ele-

ments, we have

d(x, y) ≤ λ−n d(F nx, F ny) ≤ λ−n ≤ γn/η = dγ(x, y)1/η,

as claimed.

For the rest of this section, we fix γ ∈ (0, 1) and let F : Y → Y be Gibbs-

Markov as above. We aim to construct an absolutely continuous invariant proba-

bility measure for F by utilising Proposition 2.5.5. We begin by giving a pointwise

expression of iterates of the transfer operator for F .

Proposition 3.3.2. Let P : L1(Y ) → L1(Y ) denote the transfer operator for F .

Then for n ≥ 1, V ∈ L1(Y ), and y ∈ Y , we have

PnV (y) =
∑
a∈αn

(ζ0)n(ya)V (ya),

where (ζ0)n = ζ0 ζ0 ◦ F · · · ζ0 ◦ F n−1 and ya is the unique element in a such that

F nya = y.

Proof. We proceed by induction. For W ∈ L∞(Y ), we have∫
Y

PV W dρY =

∫
Y

V W ◦ F dρY =
∑
a∈α

∫
a

V (y)W (Fy)ζ0(y) dρY ◦ F

=
∑
a∈α

∫
a

ζ0(F−1y)V (F−1y)W (y) dρY =
∑
a∈α

∫
Y

ζ0(ya)V (ya)W (y) dρY

=

∫
Y

(∑
a∈α

ζ0(ya)V (ya)

)
W (y) dρY ,

where the third equality uses a change of variables. Since W ∈ L∞(Y ) is arbitrary,

the base case follows.
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Let n > 1 and suppose that for all V ∈ L1(Y ) and y ∈ Y , we have

Pn−1V (y) =
∑

a∈αn−1

(ζ0)n−1(ya)V (ya).

Then noting that Pn = Pn−1 ◦ P , we have

PnV (y) =
∑

a∈αn−1

(ζ0)n−1(ya)PV (ya) =
∑

a∈αn−1

(ζ0)n−1(ya)

(∑
b∈α

ζ0(yab)V (yab)

)
=
∑

a∈αn−1

∑
b∈α

(ζ0)n−1(Fyab)ζ0(yab)V (yab) =
∑
a∈αn

(ζ0)n(ya)V (ya),

where the final equality follows from relabelling. This completes the proof.

We next introduce a space of observables which is used throughout the thesis.

For d ≥ 1 and γ ∈ (0, 1), we say that an observable V : Y → Rd is Lipschitz if

‖V ‖γ = |V |γ + |V |∞ <∞, where

|V |γ = sup
x,y∈Y
x 6=y

∣∣V (x)− V (y)
∣∣

dγ(x, y)
.

The space of Lipschitz observables Fγ(Y ;Rd) is a Banach space under the norm

‖ · ‖γ. When d = 1, we write Fγ(Y ). It is immediate that if γ1 ≤ γ2, then

Fγ1(Y ;Rd) ⊂ Fγ2(Y ;Rd). The next proposition is a standard observation of the

symbolic metric dγ, which is useful for showing that various observables are Lip-

schitz.

Proposition 3.3.3. Let x, y ∈ Y . Then dγ(F
jx, F jy) = γ−j dγ(x, y) for all

0 ≤ j ≤ n(x, y).

Proof. Write n(x, y) = n and observe that n(F jx, F jy) = n− j. Therefore

dγ(F
jx, F jy) = γn−j = γ−jγn = γ−j dγ(x, y),

as claimed.
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Let PρY : L1(Y ) → L1(Y ) denote the transfer operator for F with respect

to the measure ρY . To construct an absolutely continuous invariant probability

measure, we consider the Cesàro averages

Rn =
1

n

n−1∑
j=0

PjρY 1 (3.3.1)

and show they have a convergent subsequence in L1(Y ). To do this, we work

via the auxiliary Banach space Fγ(Y ). Our first step is to verify that (Rn)n≥1 ⊂
Fγ(Y ). This is an immediate consequence of the next two lemmas.

Lemma 3.3.4. There exists C > 1 such that for all n ≥ 1, a ∈ αn, and x, y ∈ a,

we have (ζ0)n(x) ≤ CρY (a) and |(ζ0)n(x)− (ζ0)n(y)| ≤ CρY (a) dγ(F
nx, F ny).

Proof. First note that log(ζ0)n =
∑n−1

k=0 log(ζ0 ◦ F k) for all n ≥ 1. Therefore, for

all a ∈ αn and x, y ∈ a, we have∣∣ log(ζ0)n(x)− log(ζ0)n(y)
∣∣ ≤ n−1∑

k=0

∣∣ log
(
ζ0(F kx)

)
− log

(
ζ0(F ky)

)∣∣
≤ C1

n∑
k=1

dγ(F
kx, F ky) = C1

n∑
k=1

γn−k dγ(F
nx, F ny)

≤ C1

∞∑
k=0

γk dγ(F
nx, F ny) =

(
C1

1− γ

)
dγ(F

nx, F ny),

where the first equality uses Proposition 3.3.3. It follows that

log

(
(ζ0)n(x)

(ζ0)n(y)

)
≤
(

C1

1− γ

)
dγ(F

nx, F ny).

Therefore

(ζ0)n(x)

(ζ0)n(y)
≤ exp

((
C1

1− γ

)
dγ(F

nx, F ny)

)
≤ exp

(
C1

1− γ

)
=: c <∞,

where the second inequality uses that diamγ(Y ) = sup{dγ(x, y) | x, y ∈ Y } = 1.

Now, since C1 > 0 and γ ∈ (0, 1), we have c > 1. Taking the supremum over

x ∈ a and then taking the infimum over y ∈ a gives us

sup
a

(ζ0)n ≤ c inf
a

(ζ0)n. (3.3.2)
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Therefore

ρY (a) =

∫
Y

1a dρY =

∫
Y

PnρY 1a dρY ≥ inf
Y
PnρY 1a = inf

a
(ζ0)n ≥ c−1 sup

a
(ζ0)n,

proving the first estimate.

For the second estimate, we first note that for s, t > 0, we have |s − t| ≤
max{s, t}| log s − log t|. Indeed, supposing without loss of generality that s > t,

we have

s− t =

∫ s

t

dx = s

∫ s

t

dx

s
≤ s

∫ s

t

dx

x
= s(log s− log t).

Therefore ∣∣(ζ0)n(x)− (ζ0)n(y)
∣∣ ≤ sup

a
(ζ0)n

∣∣ log(ζ0)n(x)− log(ζ0)n(y)
∣∣

≤
(
cC1

1− γ

)
ρY (a) dγ(F

nx, F ny).

The result now follows with C = max{c, (1− γ)−1cC1} > 1.

Lemma 3.3.5. For all n ≥ 1, we have PnρY 1 ∈ Fγ(Y ) with ‖PnρY 1‖γ ≤ 2C + 1,

where C is as in Lemma 3.3.4.

Proof. For x, y ∈ Y , and xa, ya ∈ a with F nxa = x, F nya = y, we have that∣∣PnρY 1(x)− PnρY 1(y)
∣∣ ≤∑

a∈αn

∣∣(ζ0)n(xa)− (ζ0)n(ya)
∣∣

≤ C
∑
a∈αn

ρY (a) dγ(F
nxa, F

nya)

= C dγ(x, y),

where the second inequality follows from Lemma 3.3.4. Therefore |PnρY |γ ≤ C.

Now, from Proposition 2.5.3 (iv), we have |PnρY 1|1 ≤ 1. For x ∈ Y , it follows that∣∣PnρY 1(x)
∣∣ ≤ ∣∣∣∣PnρY 1(x)−

∫
Y

PnρY 1(y) dρY (y)

∣∣∣∣+ |PnρY 1|1

≤
∣∣∣∣ ∫

Y

(
PnρY 1(x)− PnρY 1(y)

)
dρY (y)

∣∣∣∣+ 1

≤ |PnρY 1|γ diamγ(Y ) + 1 = |PnρY 1|γ + 1.

Therefore |PnρY 1|∞ ≤ |PnρY 1|γ + 1 ≤ C + 1, and the result follows.
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Proposition 3.3.6. For n ≥ 1, let Rn be as in (3.3.1). Then Rn ∈ Fγ(Y ) with

‖Rn‖γ ≤ 2C + 1, where C is as in Lemma 3.3.4.

Proof. Using Lemma 3.3.5, we have

‖Rn‖γ ≤
1

n

n−1∑
j=0

‖PjρY 1‖γ ≤ 2C + 1,

as claimed.

It remains to verify that (Rn)n≥1 has a convergent subsequence in L1(Y ). This

follows directly from the next proposition. For later purposes, we state and prove

this result in the general setting d ≥ 1.

Proposition 3.3.7. The unit ball of Fγ(Y ;Rd) is compact in L1(Y ;Rd).

Proof. We show that every (Vn) ⊂ Fγ(Y ;Rd) with ‖Vn‖γ ≤ 1 has a subsequence

which converges in L1(Y ;Rd) to an element of the unit ball of Fγ(Y ;Rd). We

begin by finding a pointwise convergence subsequence.

For a ∈ ∪k≥1αk, let ya ∈ a be a representative of a. Since |Vn|∞ ≤ ‖Vn‖γ ≤ 1,

the sequence Vn(ya) is bounded, so by Bolzano-Weierstrass, has a convergent

subsequence. Since ∪k≥1αk is countable, we may suppose via a diagonal argument

and by relabelling that Vn(ya) converges for all a ∈ ∪k≥1αk. We show that (Vn)

converges pointwise on Y by showing it is pointwise Cauchy. Fix ε > 0. Let k be

sufficiently large so that for all a ∈ αk, we have diamγ(a) = γk < ε. Let y ∈ Y ,

and suppose y ∈ a for some a ∈ αk. Then for n,m ≥ 1, we have∣∣Vn(y)− Vm(y)
∣∣ ≤ ∣∣Vn(y)− Vn(ya)

∣∣+
∣∣Vn(ya)− Vm(ya)

∣∣+
∣∣Vm(ya)− Vm(y)

∣∣
≤
(
|Vn|γ + |Vm|γ

)
dγ(y, ya) +

∣∣Vn(ya)− Vm(ya)
∣∣

< 2ε+
∣∣Vn(ya)− Vm(ya)

∣∣.
Now, since Vn converges at ya, there exists Na ≥ 1 such that |Vn(ya)−Vm(ya)| < ε

for n,m ≥ Na. It follows that |Vn(y) − Vm(y)| < 3ε for n,m ≥ Na. Therefore,

there exists V : Y → Rd such that Vn → V pointwise.
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We next show that V ∈ Fγ(Y ;Rd) with ‖V ‖γ ≤ 1. Note that for y ∈ Y , using

pointwise convergence of Vn to V , we have∣∣V (y)
∣∣ = lim inf

n→∞

∣∣Vn(y)
∣∣ ≤ lim inf

n→∞
|Vn|∞,

so that |V |∞ ≤ lim infn→∞ |Vn|∞. Moreover, for x, y ∈ Y , we have∣∣Vn(x)− Vn(y)
∣∣

dγ(x, y)
≤ |Vn|γ and

∣∣Vn(x)− Vn(y)
∣∣

dγ(x, y)
→
∣∣V (x)− V (y)

∣∣
dγ(x, y)

,

so that ∣∣V (x)− V (y)
∣∣

dγ(x, y)
≤ lim inf |Vn|γ.

Therefore |V |γ ≤ lim infn→∞ |Vn|γ. It follows that

‖V ‖γ ≤ lim inf
n→∞

|Vn|∞ + lim inf
n→∞

|Vn|γ ≤ lim inf
n→∞

(
|Vn|∞ + |Vn|γ

)
≤ 1,

as claimed.

To conclude, we show that Vn → V in L1(Y ;Rd). Note that |Vn − V | ≤ 2 for

all n ≥ 1. Combining this with pointwise convergence, it follows that Vn → V in

L1(Y ;Rd) by the dominated convergence theorem. This completes the proof.

We now have the machinery to construct the required measure µY on Y .

Proposition 3.3.8. There exists a unique ergodic F – invariant probability mea-

sure µY on Y which is equivalent to ρY . Moreover, dµY / dρY ∈ Fγ(Y ) and

log(dµY / dρY ) ∈ Fγ(Y ).

Proof. For n ≥ 1, let Rn be as in (3.3.1). From Proposition 3.3.6, (Rn) ⊂ Fγ(Y )

is bounded, and so by Proposition 3.3.7 there exists a subsequence (Rnk) ⊂ (Rn)

and R ∈ Fγ(Y ) such that Rnk → R in L1(Y ). We show that R is the required

density by appealing to Proposition 2.5.5.

First note that R ≥ 0. Indeed, L1(Y ) convergence of Rnk to R implies there is

a subsequence (Rnk`
) ⊂ (Rnk) such that Rnk`

→ R almost surely. Since Rnk`
≥ 0

for all `, non-negativity of R follows. Moreover, note that∣∣∣∣ ∫
Y

R dρY − 1

∣∣∣∣ =

∣∣∣∣ ∫
Y

R dρY −
∫
Y

Rnk dρY

∣∣∣∣ ≤ |R−Rnk |1 → 0,
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so that
∫
Y
R dρY = 1. Now, PρY is a bounded operator on L1(Y ) by Proposi-

tion 2.5.3 (iv). In particular,

PρYR = lim
k→∞
PρYRnk = lim

k→∞

1

nk

nk∑
j=1

PjρY 1 = lim
k→∞

(
1

nk

nk∑
j=0

PjρY 1− 1

nk

)
= R,

so that R is an invariant density.

Define dµY = R dρY . By absolute continuity, to prove ergodicity of µY , it

suffices to show that any F – invariant set B with ρY (B) > 0 has ρY (B) = 1.

Note that for any ε > 0, there exist k ≥ 1 sufficiently large and a ∈ αk such that

ρY (B ∩ a)

ρY (a)
> 1− ε.

Next, noting that (ξ0)k = dρY /(dρY ◦ F k), we have

ρY
(
F k(B ∩ a)

)
=

∫
B∩a

dρY ◦ F k =

∫
B∩a

(ξ0)−1
k dρY ≥

ρY (B ∩ a)

CρY (a)
,

where the final inequality follows from Lemma 3.3.4. Moreover, observe that

ρY (F k(a)) = ρY (Y ) = 1 < C. Finally, since B = F−1(B), we have F k(B) ⊂ B.

Combining the above, we conclude that

ρY (B) ≥ ρY
(
F k(B)

)
≥ ρY

(
F k(B ∩ a)

)
=
ρY
(
F k(B ∩ a)

)
ρY
(
F k(a)

) >
ρY (B ∩ a)

ρY (a)
> 1− ε.

Since ε > 0 is arbitrary, we have that ρY (B) = 1, and ergodicity of µY follows.

To prove that µY is equivalent to ρY , we show that R is bounded away from

0. Note that as
∫
Y
R dρY = 1, there exists y0 ∈ Y with R(y0) = c > 0. Since

R is continuous with respect to dγ, there exists k ≥ 1 sufficiently large such that

R > c/2 on the k – cylinder a containing y0. It follows that for any y ∈ Y , we

have

R(y) = PkρYR(y) =
∑
b∈αk

(ζ0)k(yb)R(yb) > (ζ0)k(ya)
c

2
≥ c

2
inf
a

(ζ0)k =: M.

We show that M > 0. This is equivalent to showing infa(ζ0)k > 0. Suppose for

contradiction that infa(ζ0)k = 0. Then from (3.3.2) we have supa(ζ0)k = 0, so
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that (ζ0)k|a = 0. It follows that

ρY (a) =

∫
a

(ζ0)k dρY ◦ F k = 0,

yielding a contradiction. Therefore M > 0 and R is bounded away from 0 as

required.

We now show that logR is Lipschitz. Note that since R is positive, we have

for x, y ∈ Y that
R(x)−R(y)

R(y)
> −1.

Therefore∣∣ logR(x)− logR(y)
∣∣ =

∣∣∣∣ log

(
R(x)

R(y)

)∣∣∣∣ =

∣∣∣∣ log

(
1 +

R(x)−R(y)

R(y)

)∣∣∣∣
≤
∣∣∣∣R(x)−R(y)

R(y)

∣∣∣∣ ≤ ∣∣∣∣R(x)−R(y)

M

∣∣∣∣ ≤ |R|γM
dγ(x, y),

proving the claim.

Finally, uniqueness follows from the fact that any two distinct ergodic measures

are mutually singular.

Let ζ = dµY /(dµY ◦F ) and for n ≥ 1, let ζn = ζ ζ ◦F · · · ζ ◦F n−1. To conclude

this section, we give some estimates for ζn analogous to Lemma 3.3.4 which will

be of use to us throughout.

Proposition 3.3.9. There exists D > 1 such that for all n ≥ 1, a ∈ αn, and

x, y ∈ a, we have ζn(x) ≤ DµY (a) and |ζn(x)− ζn(y)| ≤ DµY (a) dγ(F
nx, F ny).

Proof. The proof of these estimates is identical to that of Lemma 3.3.4, once we

prove that ζ has bounded distortion. Therefore, we show that there exists C > 0

such that for all a ∈ α and x, y ∈ a, we have∣∣ log ζ(x)− log ζ(y)
∣∣ ≤ C dγ(Fx, Fy).

To do this, first note that

ζ =
dµY

dµY ◦ F
=

(
dρY

dρY ◦ F

)(
dµY
dρY

)(
dρY ◦ F
dµY ◦ F

)
.
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Let g = log(dµY / dρY ). Then

log

(
dρY ◦ F
dµY ◦ F

)
= − log

(
dµY ◦ F
dρY ◦ F

)
= − log

((
dµY
dρY

)
◦ F
)

= − log

(
dµY
dρY

)
◦ F

= −g ◦ F.

Therefore, recalling ζ0 = dρY /(dρY ◦ F ), we have

log ζ = log ζ0 + g − g ◦ F.

Now, from Proposition 3.3.8, we have |g|γ < ∞. Moreover, ζ0 has bounded

distortion. Therefore, for all a ∈ α and x, y ∈ a we have∣∣ log ζ(x)− log ζ(y)
∣∣ ≤ ∣∣ log ζ0(x)− log ζ0(y)

∣∣+
∣∣g(x)− g(y)

∣∣+
∣∣g(Fx)− g(Fy)

∣∣
≤ C1 dγ(Fx, Fy) + |g|γ dγ(x, y) + |g|γ dγ(Fx, Fy)

=
(
C1 + |g|γγ + |g|γ

)
dγ(Fx, Fy),

where we use Proposition 3.3.3 in the final step. This completes the proof.

3.4 Representation as Young tower over induced

Gibbs-Markov map

Let (X, d) be a bounded metric space with Borel probability measure ρ and let

T : X → X be a non-singular transformation. Let Y ⊂ X with ρ(Y ) > 0 and

suppose that there is a Gibbs-Markov map F : Y → Y and integrable return time

τ : Y → Z+ which is constant on each partition element, such that F = T τ . By the

results in the previous section, there exists a unique ergodic absolutely continuous

F – invariant probability measure µY on Y which is equivalent to ρ|Y . Using this,

we describe how to construct a unique ergodic T – invariant probability measure

µ on X which is equivalent to ρ.

We begin by defining the Young tower [101, 102] for T . Let ∆ = {(y, `) ∈
Y × Z | 0 ≤ ` ≤ τ(y)− 1}. The tower map f : ∆→ ∆ for T is defined by

f(y, `) =

(y, `+ 1) if 0 ≤ ` ≤ τ(y)− 2,

(Fy, 0) if ` = τ(y)− 1.
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The projection π : ∆ → X given by π(y, `) = T `y defines a semi-conjugacy from

f to T . That is, π is surjective and satisfies π ◦ f = T ◦ π. The `th level of the

tower is the set ∆` = {(y, `) ∈ ∆}. Naturally, the base of the tower (i.e. the 0th

level) identifies with Y ⊂ X, and the `th level of the tower is a copy of {τ > `}.
Define the probability measures µ∆ and µ on ∆ and X respectively by

µ∆ =
µY × {counting}∫

Y
τ dµ

and µ = π∗µ∆.

Proposition 3.4.1. The measure µ∆ is f – ergodic and invariant. Moreover, µ

is the unique ergodic T – invariant probability measure which is equivalent to ρ.

Proof. We prove the first statement. The second statement follows from the

fact that π is a semi-conjugacy and Proposition 3.3.8. For invariance of µ∆,

let v̂ ∈ L2(∆) and note that∫
∆

v̂ ◦ f dµ∆ = |τ |−1
1

∫
Y

(
v̂(Fy, 0) +

τ(y)−2∑
`=0

v̂(y, `+ 1)

)
dµY

= |τ |−1
1

∫
Y

(
v̂(y, 0) +

τ(y)−1∑
`=1

v̂(y, `)

)
dµY =

∫
∆

v̂ dµ∆,

where we use F – invariance of µY and relabelling in the second equality.

For ergodicity of µ∆, let v̂ ∈ L2(∆) be such that v̂ ◦ f = v̂ µ∆ – almost surely.

Then v̂ ◦ f(·, `) = v̂(·, `) for all 0 ≤ ` ≤ τ − 1 µY – almost surely. In particular, for

almost every y ∈ Y , we have

v̂(y, 0) = v̂(y, 1) = · · · = v̂(y, τ(y)− 1) = v̂(Fy, 0). (3.4.1)

Therefore, by ergodicity of µY , we have that v̂(·, 0) is constant µY – almost surely.

To show that this implies v̂ is constant µ∆ – almost surely, take any y′ in the set of

full measure for which (3.4.1) holds, and note that for 0 ≤ ` ≤ τ(y′)− 1, we have

v̂(y′, `) = v̂(y′, 0) = c for some constant c. It follows that v̂ is constant µ∆ – almost

surely, proving ergodicity.
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Remark 3.4.2. In the case hcf{τ(a) | a ∈ α} = 1, we have from [101, 102,

Theorem 1] that µ is mixing.

Example 3.4.3. Figure 3.2 shows the Young tower construction and correspond-

ing tower map for the intermittent map introduced in Example 2.2.6. As we can

see, the dynamics of the tower map f are governed as follows: Each x ∈ (x0, 1]

moves up the tower until it reaches the top level above x, after which it is bijectively

returned to the base by the induced transformation F .

x0 x3 x x2 x1 Fx 1

Figure 3.2: Young tower and tower map for the intermittent map

To conclude this chapter, we give a pointwise expression of the transfer oper-

ator for f .

Proposition 3.4.4. Let L : L1(∆)→ L1(∆) be defined by

Lv̂(y, `) =


∑

a∈α ζ(ya)v̂(ya, τ(ya)− 1) if ` = 0,

v̂(y, `− 1) if ` ≥ 1.
(3.4.2)

Then L is the transfer operator for f .

Proof. Let us write v(y) = v̂(y, τ(y) − 1), and recall from Proposition 3.3.2 that
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Pv(y) =
∑

a∈α ζ(ya)v̂(ya, τ(ya)− 1). Let ŵ ∈ L∞(∆), and note that

∫
∆

v̂ ŵ ◦ f dµ∆ = |τ |−1
1

∫
Y

(
v(y)ŵ(Fy, 0) +

τ(y)−2∑
`=0

v̂(y, `)ŵ(y, `+ 1)

)
dµY

= |τ |−1
1

∫
Y

(
Pv(y)ŵ(y, 0) +

τ(y)−1∑
`=1

v̂(y, `− 1)ŵ(y, `)

)
dµY

= |τ |−1
1

∫
Y

τ(y)−1∑
`=0

Lv̂(y, `) ŵ(y, `) dµY =

∫
∆

Lv̂ ŵ dµ∆.

The result follows.
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Chapter 4

Primary martingale-coboundary

decomposition

4.1 Outline

Let (X, d) be a bounded metric space and T : X → X be non-uniformly expanding

with partition α, return time τ : Y → Z+, induced map F : Y → Y , and constants

λ > 1, η ∈ (0, 1], and C0, C1 ≥ 1 as in Section 3.2. Let µ and µY denote the

ergodic invariant Borel probability measures on X and Y respectively which were

constructed in Chapter 3. Let G be a compact connected Lie group with Haar

measure ν, and suppose that (π,Rd) is a representation of G for some d ≥ 1. As

in Remark 2.2.7, we fix a G – invariant inner product [·, ·] on Rd and view G as a

closed subgroup of O(d). We study the compact group extension Th : X × G →
X × G defined by Th(x, g) = (Tx, gh(x)), where h ∈ Cη(X;G). The probability

measure m = µ× ν is Th – invariant and is assumed to be ergodic.

Remark 4.1.1. Ergodicity of m is typical in the following sense, as in [35, The-

orem 1.5]. The set of Hölder cocycles h : X → G for which m is not ergodic lies

in a closed subspace of infinite codimension in the space of all Hölder cocycles.

We consider equivariant observables φ : X × G → Rd of the form φ(x, g) =

g · v(x), where v ∈ Cη(X;Rd) with
∫
X×G φ dm = 0. In this chapter, we construct
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our primary martingale-coboundary decomposition for a lifted version of the ob-

servable φ and then apply the results of Section 2.4 and Section 2.8. We extend

the approach of Korepanov, Kosloff, and Melbourne [60], who applied this method

to lifted Hölder observables of non-uniformly expanding maps. As an application,

we recover [39, Theorem 1.10]. Moreover, we obtain optimal moment estimates

which do not seem to be readily available in the literature.

Before stating the main results of this chapter (Theorem 4.1.2, Theorem 4.1.3,

and Theorem 4.1.5), we introduce induced versions of the function v : X → Rd.

Define V : Y → Rd and V ∗ : Y → R by

V (y) =

τ(y)−1∑
`=0

h`(y) · v(T `y) (4.1.1)

and

V ∗(y) = max
0≤k≤τ(y)−1

∣∣∣∣ k∑
`=0

h`(y) · v(T `y)

∣∣∣∣ (4.1.2)

respectively, where h` = hh ◦ T · · ·h ◦ T `−1. It is immediate that |V | ≤ τ |v|∞
and |V ∗| ≤ τ |v|∞. In particular, τ ∈ Lp(Y ) for p > 1 implies V ∈ Lp(Y ;Rd) and

V ∗ ∈ Lp(Y ).

Theorem 4.1.2. Suppose τ ∈ Lp(Y ) for some p > 1. If V ∈ L2(Y ;Rd), then

there exists Σ ∈ Rd,d such that gΣ = Σg for all g ∈ G and

1√
n

n−1∑
k=0

φ ◦ T kh →w N (0,Σ).

For n ≥ 1, define the random elementsWn : X×G→ D([0,∞);Rd) byWn(t) =

n−1/2
∑[nt]−1

k=0 φ ◦ T kh for t ≥ 0.

Theorem 4.1.3. Suppose τ ∈ Lp(Y ) for some p > 1. If V ∗ ∈ L2(Y ), then

Wn →w W in D([0,∞);Rd), where W is a d – dimensional Brownian motion with

mean 0 and covariance matrix Σ, where Σ is as in Theorem 4.1.2.
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Remark 4.1.4. We make the following observations regarding Theorem 4.1.2 and

Theorem 4.1.3.

(i) By [103], we have strong distributional convergence. That is, the associ-

ated weak convergence holds for any probability measure that is absolutely

continuous with respect to m.

(ii) By [70], we obtain strong distributional convergence for the measure µ× δg0
for any g0 ∈ G fixed, where δg0 denotes the Dirac measure at g0. That is,

the above results hold for φ ◦ T kh (·, g0) for g0 ∈ G fixed and any probability

measure absolutely continuous with respect to µ.

(iii) The covariance matrix Σ is typically non-singular in the following sense, as

in [79] (see also [36, Section 5]). The set of Hölder functions v : X → Rd

for which det Σ = 0 lies in a closed subspace of infinite codimension in the

set of all Hölder functions.

Theorem 4.1.5. Suppose τ ∈ Lp(Y ) for some p > 1. There exists a constant

C > 0 independent of v, h, and n such that:

(i) If 1 < p < 2, then∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

φ ◦ T kh
∣∣∣∣
∣∣∣∣∣
p

≤ Cn1/p‖v‖η‖h‖η for all n ≥ 1.

(ii) If p ≥ 2, then∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

φ ◦ T kh
∣∣∣∣
∣∣∣∣∣
2(p−1)

≤ Cn1/2‖v‖η‖h‖η for all n ≥ 1.

Remark 4.1.6. Optimality of these estimates can be seen as in [73, Section 3]

and [77, Remark 3.7].

The structure of the chapter is as follows: In Section 4.2, we represent the

transformation Th : X × G → X × G as an extension of a Young tower over an

51



CHAPTER 4. PRIMARY MARTINGALE-COBOUNDARY
DECOMPOSITION

induced transformation. In Section 4.3, Section 4.4, and Section 4.5, we develop

the necessary theory to derive a martingale-coboundary decomposition for V . This

is constructed in Section 4.6, and by further arguments we obtain our primary

martingale-coboundary decomposition for the lifted version of φ. In Section 4.7

we give the proofs of Theorem 4.1.2 and Theorem 4.1.3, and in Section 4.8 we

prove Theorem 4.1.5 as well as characterising the covariance matrix Σ in terms

of the observable φ. Finally, in Section 4.9 we give some examples for which our

results hold.

From here on, unless otherwise stated, we implicitly consider complex-valued

function spaces and the complexified action of G on Cd, which allows us to utilise

the results from Section 2.6 and Section 2.7. We write φ = g · v as shorthand for

φ(x, g) = g · v(x). To simplify results, by C we denote various constants which

depend continuously on λ > 1, C0, C1 ≥ 1, η ∈ (0, 1], p > 1, and D > 1, where p

is the integrability of τ and D is as in Proposition 3.3.9.

4.2 Compact group extension of Young tower

In this section, we give a tower representation of Th on which we derive our primary

martingale-coboundary decomposition. Define the return time τ : Y ×G→ Z+ by

τ(y, g) = τ(y). Define the induced cocycle H : Y → G by H = hτ = hh ◦T · · ·h ◦
T τ−1 and the induced compact group extension FH = T τh : Y × G → Y × G by

FH(y, g) = (Fy, gH(y)), with ergodic invariant probability measure mY = µY ×ν.

Let ∆×G = {(y, g, `) ∈ Y ×G× Z | 0 ≤ ` ≤ τ(y)− 1}. We define the tower

map fH : ∆×G→ ∆×G for Th by

fH(y, g, `) =

(y, g, `+ 1) if 0 ≤ ` ≤ τ(y)− 2,

(FH(y, g), 0) if ` = τ(y)− 1.

Remark 4.2.1. There are two equivalent ways to view the above construction.

The first is to view it as a tower over the compact group extension FH : Y ×
G → Y × G with height τ . Alternatively, one can view this as the compact

52



4.2. COMPACT GROUP EXTENSION OF YOUNG TOWER

group extension of the tower map f : ∆ → ∆ defined in Section 3.4, with cocycle

Ĥ : ∆→ G given by

Ĥ(y, `) =

Id if 0 ≤ ` ≤ τ(y)− 2,

H(y) if ` = τ(y)− 1.

Proposition 4.2.2. The following hold true:

(i) The projection πH : ∆× G → X × G given by πH(y, g, `) = T `h(y, g) defines

a semi-conjugacy from fH to Th.

(ii) The probability measure m∆ = µ∆ × ν is fH – ergodic and invariant, and

m = µ× ν satisfies m = (πH)∗m∆.

Proof. For (i), we have that πH ◦ fH = Th ◦ πH is immediate from the definitions.

Now, πH(y, g, `) = T `h(y, g) = (T `y, gh`(y)) = (π(y, `), gh`(y)), where π : ∆ → X

is the semi-conjugacy from Section 3.4. Let (x, g) ∈ X × G and (y, `) ∈ ∆ be

such that π(y, `) = x. Then πH(y, gh`(y)−1, `) = (π(y, `), gh`(y)−1h`(y)) = (x, g),

so that πH is surjective. This proves (i).

For (ii), ergodicity and invariance of m∆ follow from a similar argument as in

Proposition 3.4.1. To prove that m = (πH)∗m∆, we let φ ∈ L1(X × G;Rd) and

show that
∫

∆×G φ ◦ πH dm∆ =
∫
X×G φ dm. Recalling that µ = π∗µ∆, we have∫

∆×G
φ ◦ πH(y, g, `) dm∆(y, g, `) =

∫
∆

∫
G

φ
(
π(y, `), gh`(y)

)
dν(g) dµ∆(y, `)

=

∫
∆

∫
G

φ
(
π(y, `), g

)
dν(g) dµ∆(y, `) =

∫
G

∫
∆

φ
(
π(y, `), g

)
dµ∆(y, `) dν(g)

=

∫
G

∫
X

φ(x, g) dµ(x) dν(g) =

∫
X×G

φ(x, g) dm(x, g),

completing the proof.

For φ ∈ L1(X ×G;Rd), we define the lifted observable φ̂ ∈ L1(∆×G;Rd) by

φ̂ = φ ◦ πH . The next proposition says that distributional results for (φ ◦ T kh )k≥0

are equivalent to distributional results for (φ̂ ◦ fkH)k≥0.
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Proposition 4.2.3. Suppose Th : X × G → X × G and fH : ∆ × G → ∆ × G

are as above. Let φ ∈ L1(X × G;Rd) and φ̂ = φ ◦ πH ∈ L1(∆ × G;Rd). Then

(φ ◦ T kh )k≥0 ∼ (φ̂ ◦ fkH)k≥0.

Proof. We show that the finite dimensional distributions of (φ ◦ T kh )k≥0 and (φ̂ ◦
fkH)k≥0 coincide. Since a stochastic process is determined by such distributions,

the result then follows. Fix n ≥ 1 and let A = A0 × · · · × An be a product of

Borel subsets of Rd. Then

m∆

(
(φ̂ ◦ fkH)nk=0 ∈ A

)
= m∆

( n⋂
k=0

{φ̂ ◦ fkH ∈ Ak}
)

= m∆

( n⋂
k=0

{φ ◦ T kh ◦ πH ∈ Ak}
)

= m∆

( n⋂
k=0

π−1
H

(
(φ ◦ T kh )−1(Ak)

))
= m∆

(
π−1
H

( n⋂
k=0

(φ ◦ T kh )−1(Ak)

))
= m

( n⋂
k=0

(φ ◦ T kh )−1(Ak)

)
= m

(
(φ ◦ T kh )nk=0 ∈ A

)
,

completing the proof.

4.3 Twisted transfer operators

For the rest of the thesis, we let f : ∆ → ∆ and fH : ∆ × G → ∆ × G denote

the tower maps for F : Y → Y and FH : Y × G → Y × G respectively. In this

section, we introduce twisted versions of the transfer operators for F and f , and

show how they relate to the transfer operators for FH and fH respectively. This

is done by utilising the results of Section 2.6.

Let P : L1(Y ;Rd)→ L1(Y ;Rd) denote the transfer operator for F with respect

to the measure µY . We define the twisted transfer operator PH : L1(Y ;Rd) →
L1(Y ;Rd) for F by PHV = P(H−1 · V ). We begin by analysing how PH behaves

under iteration.

Proposition 4.3.1. Let V ∈ L1(Y ;Rd) and n ≥ 1. Then PnHV = Pn(H−1
n · V ),

where H0 = Id and Hn = H H ◦ F · · ·H ◦ F n−1.
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Proof. We proceed via induction. The base case is immediate by definition. As-

sume the result holds for n− 1 ≥ 1. Then for W ∈ L∞(Y ;Rd), we have∫
Y

[
PnHV,W

]
dµY =

∫
Y

[
PH(Pn−1

H V ),W
]

dµY

=

∫
Y

[
P
(
H−1 · Pn−1(H−1

n−1 · V )
)
,W
]

dµY =

∫
Y

[
Pn−1(H−1

n−1 · V ), H ·W ◦ F
]

dµY

=

∫
Y

[
H−1
n−1 · V, (H ·W ◦ F ) ◦ F n−1

]
dµY

=

∫
Y

[
H−1
n−1 · V,H ◦ F n−1 ·W ◦ F n

]
dµY =

∫
Y

[
H−1
n · V,W ◦ F n

]
dµY

=

∫
Y

[
Pn(H−1

n · V ),W
]

dµY .

Since W is arbitrary, the result follows.

Remark 4.3.2. For n ≥ 1, let αn denote the partition of Y into n – cylinders.

Let ζ = dµY /(dµY ◦ F ) and denote ζn = ζ ζ ◦ F · · · ζ ◦ F n−1. Given y ∈ Y and

a ∈ αn, let ya denote the unique element in a such that F nya = y. Then for

V ∈ L1(Y ;Rd), we have

PnHV (y) =
∑
a∈αn

ζn(ya)Hn(ya)
−1 · V (ya)

by Proposition 4.3.1 and Proposition 3.3.2.

For the main results of this section, we require two preliminary lemmas. Let

us fix the representation π : G → O(d) and choose coordinates so that [x, y] =∑d
k=1 xkyk for x, y ∈ Rd.

Lemma 4.3.3. Let Φ: G → Rd be defined by Φ(g) = π(g)V where V ∈ Rd.

Then for any Ψ ∈ L2(G;Rd), there exists W ∈ Rd such that
∫
G

[Φ,Ψ] dν =∫
G

[Φ, πW ] dν.

Proof. Since π is finite dimensional, we may suppose without loss that π is irre-

ducible. First, note that for W ∈ Rd, we have∫
G

[
Φ(g), π(g)W

]
dν =

∫
G

[
π(g)V, π(g)W

]
dν =

[
V,W

]
=

d∑
j=1

VjWj. (4.3.1)
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Next, by Theorem 2.6.1, we have

Ψ(g) =
∑
ρ∈Σ

1≤i,j≤dρ

uρi,j(g)Zρ
i,j,

where Zρ
i,j ∈ Rdρ . Hence by orthogonality, it follows that∫

G

[
Φ(g),Ψ(g)

]
dν =

∑
ρ∈Σ

1≤i,j≤dρ

∫
G

[
π(g)V, uρi,j(g)Zρ

i,j

]
dν

=
∑

1≤i,j≤d

∫
G

[
π(g)V, uπi,j(g)Zπ

i,j

]
dν.

Denote the coordinates of Zπ
i,j by (Zπ

i,j)k for 1 ≤ k ≤ d. The coordinates of π(g)V

are given by (π(g)V )k =
∑d

`=1 u
π
k,`(g)V`. Hence, continuing the calculation and

using orthogonality once more, we have∫
G

[
Φ(g),Ψ(g)

]
dν =

∑
1≤i,j≤d

d∑
k=1

∫
G

(
π(g)V

)
k
uπi,j(g)(Zπ

i,j)k dν

=
∑

1≤i,j≤d

∑
1≤k,`≤d

∫
G

uπk,`(g)V` u
π
i,j(g)(Zπ

i,j)k dν

= d
∑

1≤i,j≤d

Vj(Z
π
i,j)i.

Comparing with the right-hand side of (4.3.1), we obtain the solution

Wj = d
d∑
i=1

(Zπ
i,j)i, (4.3.2)

completing the proof.

Lemma 4.3.4. Let Φ: Y × G → Rd be defined by Φ(y, g) = π(g)V (y), where

V ∈ L2(Y ;Rd). Then for any Ψ ∈ L2(Y × G;Rd), there exists W ∈ L2(Y ;Rd)

such that

(i)
∫
Y×G[Φ,Ψ] dmY =

∫
Y×G[Φ, πW ] dmY .
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(ii) If Ψ′(y, g) = Ψ(Fy, g), then
∫
Y×G[Φ,Ψ′] dmY =

∫
Y×G[Φ, πW ◦ F ] dmY .

Proof. Suppose without loss of generality that π is irreducible. By Fubini’s theo-

rem and Lemma 4.3.3, we have∫
Y×G

[
Φ,Ψ

]
dmY =

∫
Y

(∫
G

[
Φ,Ψ

]
dν

)
dµY

=

∫
Y

(∫
G

[
π(g)V (y), π(g)W (y)

]
dν

)
dµY

=

∫
Y×G

[
π(g)V (y), π(g)W (y)

]
dmY

for some W : Y → Rd. We next verify that W ∈ L2(Y ;Rd). Note that

Ψ(y, g) =
∑
ρ∈Σ

1≤i,j≤dρ

uρi,j(g)Zρ
i,j(y). (4.3.3)

We see from (4.3.2) that Wj(y) = d
∑d

i=1(Zπ
i,j(y))i for 1 ≤ j ≤ d. Therefore, it

suffices to show that (Zπ
i,j)i ∈ L2(Y ) for 1 ≤ i, j ≤ d. Observe that(
Zπ
i,j(y)

)
i

= d

∫
G

Ψi(y, g)uπi,j(g) dν,

where Ψi denotes the ith component of Ψ. Therefore∣∣(Zπ
i,j(y)

)
i

∣∣ ≤ ∫
G

∣∣dΨi(y, g)uπi,j(g)
∣∣ dν ≤ ∣∣√dΨi(y, ·)

∣∣
2

∣∣√duπi,j∣∣2 =
∣∣√dΨi(y, ·)

∣∣
2
,

so that∫
Y

∣∣(Zπ
i,j(y)

)
i

∣∣2 dµY ≤
∫
Y

∣∣√dΨi(y, ·)
∣∣2
2

dµY = d

∫
Y

(∫
G

|Ψi|2(y, g) dν

)
dµY

= d

∫
Y×G
|Ψi|2(y, g) dmY <∞.

This proves (i).

For (ii), note that

Ψ′(y, g) = Ψ(Fy, g) =
∑
ρ∈Σ

1≤i,j≤dρ

uρi,j(g)Zρ
i,j(Fy).

The result follows from (4.3.2).
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Proposition 4.3.5. Let M : L1(Y ×G;Rd)→ L1(Y ×G;Rd) denote the transfer

operator for FH . Suppose Φ: Y × G → Rd is given by Φ = g · V , where V ∈
L1(Y ;Rd). Then MΦ = g · PHV .

Proof. We first prove the result when V ∈ L2(Y ;Rd). We note that∫
Y×G

[
MΦ,Ψ

]
dmY =

∫
Y×G

[
Φ,Ψ ◦ FH

]
dmY

=

∫
Y×G

[
g · V (y),Ψ

(
Fy, gH(y)

)]
dmY =

∫
Y×G

[
gH(y)−1 · V (y),Ψ(Fy, g)

]
dmY ,

where the final equality follows from invariance of the Haar measure. Let W ∈
L2(Y ;Rd) be as in Lemma 4.3.4. Continuing the calculation above, we have∫

Y×G

[
MΦ,Ψ

]
dmY =

∫
Y×G

[
g ·H(y)−1 · V (y), g ·W (Fy)

]
dmY

=

∫
Y

[
H(y)−1 · V (y),W (Fy)

]
dµY =

∫
Y

[
PHV,W

]
dµY

=

∫
Y×G

[
g · PHV, g ·W

]
dmY =

∫
Y×G

[
g · PHV,Ψ

]
dmY ,

where the first equality follows from Lemma 4.3.4 (ii) and the final equality follows

from Lemma 4.3.4 (i). The result for V ∈ L2(Y ;Rd) follows.

To complete the proof, we use the density of L2(Y ;Rd) in L1(Y ;Rd). Suppose

Φ = g · V where V ∈ L1(Y ;Rd). Let Vn ∈ L2(Y ;Rd) with Vn → V in L1(Y ;Rd)

and set Φn = g · Vn. From the first part of the proof, we have MΦn = g · PHVn
for all n ≥ 1. Now, by Proposition 2.5.3 (viii), we have that M is a bounded

operator on L1(Y ×G;Rd). In addition, for W ∈ L1(Y ;Rd), we have

|PHW |1 =
∣∣P(H−1 ·W )

∣∣
1
≤ |H−1 ·W |1 = |W |1,

so that PH is a bounded operator on L1(Y ;Rd). It follows that

MΦ = lim
n→∞

MΦn = g · lim
n→∞

PHVn = g · PHV,

completing the proof.
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Let L : L1(∆;Rd)→ L1(∆;Rd) denote the transfer operator for f and Ĥ : ∆→
G be defined as in Remark 4.2.1 by

Ĥ(y, `) =

Id if 0 ≤ ` ≤ τ(y)− 2,

H(y) if ` = τ(y)− 1.

The twisted transfer operator LH : L1(∆;Rd) → L1(∆;Rd) for f is defined by

LH v̂ = L(Ĥ−1 · v̂).

Remark 4.3.6. Given y ∈ Y and a ∈ α, let ya denote the unique element in a

such that Fya = y. For v̂ ∈ L1(∆;Rd), it follows from Proposition 3.4.4 that

LH v̂(y, `) =


∑

a∈α ζ(ya)H(ya)
−1 · v̂(ya, τ(ya)− 1) if ` = 0,

v̂(y, `− 1) if ` ≥ 1,

where ζ = dµY /(dµY ◦ F ).

An identical proof to that of Proposition 4.3.5 can be done to conclude the

following:

Proposition 4.3.7. Let L̂ : L1(∆×G;Rd)→ L1(∆×G;Rd) denote the transfer

operator for fH . Suppose φ̂ : ∆×G→ Rd is given by φ̂ = g·v̂, where v̂ ∈ L1(∆;Rd).

Then L̂φ̂ = g · LH v̂.

4.4 Basic properties of V

Throughout this section, we let V : Y → Rd be as in (4.1.1). We begin by in-

troducing the notion of locally Lipschitz functions. Let a ∈ α, γ ∈ (0, 1), and

W : Y → Rd. We adopt a convenient abuse of notation and define

|1aW |γ = sup
x,y∈a
x6=y

∣∣W (x)−W (y)
∣∣

dγ(x, y)
.

We say that W is locally Lipschitz and write W ∈ F loc
γ (Y ;Rd) if ‖1aW‖γ =

|1aW |γ + |1aW |∞ < ∞ for all a ∈ α. The above definition extends to subsets of
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Rd,d, and so it makes sense to speak of locally Lipschitz cocyles. We restrict to

γ ∈ [λ−η, 1), which makes F : Y → Y Gibbs-Markov and enables us to use the

results of Section 3.3. Throughout, we use that d(x, y)η ≤ dγ(x, y) for x, y ∈ Y .

We first verify that the induced cocycle H and induced observable V are locally

Lipschitz.

Lemma 4.4.1. Suppose a ≥ 1 and x, b ≥ 0 with x ≤ a and x ≤ b. Then x ≤ abε

for all ε ∈ (0, 1].

Proof. If b ≤ 1, then x ≤ b ≤ bε ≤ abε. If b > 1, then x ≤ a ≤ abε.

Proposition 4.4.2. Let ε ∈ (0, 1]. The following hold true:

(i) H ∈ F loc
γε (Y ;G) with ‖1aH‖γε ≤ Cτ(a)ε‖h‖η for all a ∈ α

(ii) V ∈ F loc
γε (Y ;Rd) with ‖1aV ‖γε ≤ Cτ(a)1+ε‖v‖η‖h‖η for all a ∈ α.

Proof. We begin by making the following observation: For n ≥ 1 and x, y ∈ X,

we have ∥∥hn(x)− hn(y)
∥∥ ≤ n−1∑

k=0

∥∥h(T kx)− h(T ky)
∥∥. (4.4.1)

Indeed, when n = 1 then the result is trivial. If we assume (4.4.1) holds for

n− 1 ≥ 1, then∥∥hn(x)− hn(y)
∥∥ =

∥∥hn−1(x)h(T n−1x)− hn−1(y)h(T n−1y)
∥∥

≤
∥∥hn−1(x)− hn−1(y)

∥∥∥∥h(T n−1x)
∥∥+

∥∥hn−1(y)
∥∥∥∥h(T n−1x)− h(T n−1y)

∥∥
=
∥∥hn−1(x)− hn−1(y)

∥∥+
∥∥h(T n−1x)− h(T n−1y)

∥∥
≤
( n−2∑

k=0

∥∥h(T kx)− h(T ky)
∥∥)+

∥∥h(T n−1x)− h(T n−1y)
∥∥

=
n−1∑
k=0

∥∥h(T kx)− h(T ky)
∥∥,

yielding (4.4.1) for n.
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We now proceed with the proof of (i). Fix a ∈ α. For x, y ∈ a and 1 ≤ ` ≤ τ(a),

we have ‖h`(x)−h`(y)‖ ≤ ‖h`(x)‖+‖h`(y)‖ = 2. Moreover, from (4.4.1), we have

∥∥h`(x)− h`(y)
∥∥ ≤ `−1∑

k=0

∥∥h(T kx)− h(T ky)
∥∥ ≤ `−1∑

k=0

|h|η d(T kx, T ky)η

≤ `|h|ηCη
0 d(Fx, Fy)η ≤ `|h|ηCη

0 dγ(Fx, Fy)

≤ τ(a)‖h‖ηCη
0γ
−1 dγ(x, y), (4.4.2)

where we use Proposition 3.3.3 in the final inequality. Applying Lemma 4.4.1

gives

‖h`(x)− h`(y)‖ ≤ 2
(
τ(a)‖h‖ηCη

0γ
−1
)ε
dγ(x, y)ε � τ(a)ε‖h‖η dγε(x, y). (4.4.3)

Taking ` = τ(a) gives us |1aH|γε � τ(a)ε‖h‖η. In addition, we have ‖H(y)‖ =

1 ≤ τ(a)ε for all y ∈ a so that |1aH|∞ ≤ τ(a)ε. This completes the proof of (i).

For (ii), note that for a ∈ α and x, y ∈ a, we have

∣∣V (x)− V (y)
∣∣ =

∣∣∣∣ τ(a)−1∑
`=0

h`(x) · v(T `x)−
τ(a)−1∑
`=0

h`(y) · v(T `y)

∣∣∣∣
≤

τ(a)−1∑
`=0

∣∣h`(x) ·
(
v(T `x)− v(T `y)

)∣∣+

τ(a)−1∑
`=0

∣∣(h`(x)− h`(y)
)
· v(T `y)

∣∣
=

τ(a)−1∑
`=0

∣∣v(T `x)− v(T `y)
∣∣+

τ(a)−1∑
`=0

∣∣(h`(x)− h`(y)
)
· v(T `y)

∣∣
≤

τ(a)−1∑
`=0

∣∣v(T `x)− v(T `y)
∣∣+

τ(a)−1∑
`=0

∥∥h`(x)− h`(y)
∥∥|v|∞

Next, we see that

τ(a)−1∑
`=0

∣∣v(T `x)− v(T `y)
∣∣ ≤ τ(a)−1∑

`=0

|v|η d(T `x, T `y)η ≤
τ(a)−1∑
`=0

|v|ηCη
0 d(Fx, Fy)η

≤ τ(a)|v|ηCη
0γ
−ε dγε(x, y),
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where the final inequality follows from the argument in (4.4.2). Moreover, we have

from (4.4.3) that

τ(a)−1∑
`=0

∥∥h`(x)−h`(y)
∥∥|v|∞ � τ(a)−1∑

`=0

τ(a)ε‖h‖η|v|∞ dγε(x, y) = τ(a)1+ε‖h‖η dγε(x, y).

Therefore

|1aV |γε � τ(a)1+ε‖v‖η‖h‖η.

In addition,

∣∣V (y)
∣∣ ≤ τ(a)−1∑

`=0

∣∣h`(y) · v(T `y)
∣∣ =

τ(a)−1∑
`=0

∣∣v(T `y)
∣∣ ≤ τ(a)|v|∞,

and so

|1aV |∞ ≤ τ(a)|v|∞. (4.4.4)

The result follows.

Recall the twisted transfer operator PH : L1(Y ;Rd) → L1(Y ;Rd) defined by

PHW = P(H−1 ·W ). The next proposition shows that PH has a smoothing effect

on V , with regularity depending on the integrability of τ .

Proposition 4.4.3. Suppose the return time τ ∈ Lp(Y ) for p > 1.

(i) If p ≥ 2, then PHV ∈ Fγ(Y ;Rd) with ‖PHV ‖γ ≤ C‖v‖η‖h‖η.

(ii) If 1 < p < 2, then PHV ∈ Fγp−1(Y ;Rd) with ‖PHV ‖γp−1 ≤ C‖v‖η‖h‖η.

Proof. We begin by estimating the sup norm. For y ∈ Y , we have from Re-

mark 4.3.2, Proposition 3.3.9, and (4.4.4) that∣∣PHV (y)
∣∣ ≤∑

a∈α

ζ(ya)
∣∣H(ya)

−1 · V (ya)
∣∣ ≤ D

∑
a∈α

µY (a)|1aV |∞

≤ D
∑
a∈α

µY (a)τ(a)|v|∞ = D|τ |1|v|∞.

Therefore |PHV |∞ � |v|∞.
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To estimate the Lipschitz semi-norm, note that for x, y ∈ Y , we have∣∣PHV (x)− PHV (y)
∣∣

=

∣∣∣∣∑
a∈α

ζ(xa)H(xa)
−1 · V (xa)−

∑
a∈α

ζ(ya)H(ya)
−1 · V (ya)

∣∣∣∣
≤
∑
a∈α

∣∣ζ(xa)− ζ(ya)
∣∣∣∣H(xa)

−1 · V (xa)
∣∣

+
∑
a∈α

ζ(ya)
∣∣(H(xa)

−1 −H(ya)
−1
)
· V (xa)

∣∣
+
∑
a∈α

ζ(ya)
∣∣H(ya)

−1 ·
(
V (xa)− V (ya)

)∣∣ =: I + II + III. (4.4.5)

Proof of (i). We look at I, II, and III in turn. The terms involving ζ are

dealt with using Proposition 3.3.9. For I, we have from (4.4.4) that

I ≤ D|v|∞
∑
a∈α

µY (a)τ(a) dγ(Fxa, Fya)� |v|∞ dγ(x, y).

We now look at II. Note that from orthogonality, we have∥∥H(xa)
−1 −H(ya)

−1
∥∥ =

∥∥H(xa)
T −H(ya)

T
∥∥ =

∥∥(H(xa)−H(ya))
T
∥∥

=
∥∥H(xa)−H(ya)

∥∥. (4.4.6)

Combining this with (4.4.4) gives∣∣(H(xa)
−1 −H(ya)

−1
)
· V (xa)

∣∣ ≤ ∥∥H(xa)
−1 −H(ya)

−1
∥∥|1aV |∞

=
∥∥H(xa)−H(ya)

∥∥τ(a)|v|∞. (4.4.7)

It follows from Proposition 4.4.2 (i) that

II � |v|∞‖h‖η
∑
a∈α

µY (a)τ(a)2 dγ(xa, ya)� |v|∞‖h‖η dγ(x, y),

where the final estimate uses Proposition 3.3.3 and the fact that p ≥ 2. Similarly

for III, we use Proposition 4.4.2 (ii) to deduce that

III =
∑
a∈α

ζ(ya)
∣∣V (xa)− V (ya)

∣∣� ‖v‖η‖h‖η∑
a∈α

µY (a)τ(a)2 dγ(xa, ya)

� ‖v‖η‖h‖η dγ(x, y).
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Combining the above, we conclude that PHV ∈ Fγ(Y ) with ‖PHV ‖γ � ‖v‖η‖h‖η
when p ≥ 2.

Proof of (ii). We again want to estimate the terms in (4.4.5). We deal with

the terms involving ζ by using Proposition 3.3.9. For I, proceeding as in (i) gives

I � |v|∞ dγ(x, y) ≤ |v|∞ dγp−1(x, y).

For II, we have from Proposition 4.4.2 (i) that∥∥H(xa)−H(ya)
∥∥� τ(a)p−1‖h‖η dγp−1(xa, ya).

Combining this with (4.4.7) and Proposition 3.3.3 gives

II � |v|∞‖h‖η
∑
a∈α

µY (a)τ(a)p dγp−1(xa, ya)� |v|∞‖h‖η dγp−1(x, y).

Finally, for III, Proposition 4.4.2 (ii) gives∣∣V (xa)− V (ya)
∣∣� τ(a)p‖v‖η‖h‖η dγp−1(xa, ya),

and combining this with Proposition 3.3.3 yields

III =
∑
a∈α

ζ(ya)
∣∣V (xa)− V (ya)

∣∣� ‖v‖η‖h‖η∑
a∈α

µY (a)τ(a)p dγp−1(xa, ya)

� ‖v‖η‖h‖η dγp−1(x, y).

It follows that |PHV |γp−1 � ‖v‖η‖h‖η when 1 < p < 2.

Remark 4.4.4. From here on, we restrict to γ ∈ [max{λ−η, λ−η(p−1)}, 1). In

particular, PHV ∈ Fγ(Y ;Rd) for all p > 1.

4.5 Spectral properties of PH
In this section, we obtain a spectral decomposition of the twisted transfer operator

PH when acting on Fγ(Y ;Rd) ⊂ L1(Y ;Rd). Once this is done, we give some

consequences which are required throughout. We begin by giving a Lasota-Yorke
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inequality. For this, we need the pointwise expression of PnH given in Remark

4.3.2. For V ∈ L1(Y ;Rd) and y ∈ Y , we recall that this is given by

PnHV (y) =
∑
a∈αn

ζn(ya)Hn(ya)
−1 · V (ya),

where ya is the unique element in a such that F nya = y.

Proposition 4.5.1. It holds true that PH : Fγ(Y ;Rd)→ Fγ(Y ;Rd). Moreover,

(i) |PnHV |1 ≤ |V |1 for all n ≥ 1 and V ∈ Fγ(Y ;Rd).

(ii) ‖PnHV ‖γ ≤ C‖h‖η(γn‖V ‖γ + |V |1) for all n ≥ 1 and V ∈ Fγ(Y ;Rd).

Proof. Fix V ∈ Fγ(Y ;Rd). By Proposition 2.5.3 (viii), we have

|PnHV |1 =
∣∣Pn(H−1

n · V )
∣∣
1
≤ |H−1

n · V |1 = |V |1.

This proves (i).

We now look at (ii). Recall ‖PnHV ‖γ = |PnHV |γ + |PnHV |∞. Note that for

x ∈ Y , we have∣∣PnHV (x)
∣∣ ≤ ∣∣∣∣PnHV (x)−

∫
Y

PnHV (y) dµY (y)

∣∣∣∣+ |PnHV |1

≤
∣∣∣∣ ∫

Y

(
PnHV (x)− PnHV (y)

)
dµY (y)

∣∣∣∣+ |V |1

≤ |PnHV |γ diamγ(Y ) + |V |1 = |PnHV |γ + |V |1, (4.5.1)

so that |PnHV |∞ ≤ |PnHV |γ + |V |1. Therefore, it suffices to prove the estimate for

|PnHV |γ. For x, y ∈ Y , we have∣∣PnHV (x)− PnHV (y)
∣∣ ≤∑

a∈αn

∣∣ζn(xa)− ζn(ya)
∣∣∣∣Hn(xa)

−1 · V (xa)
∣∣

+
∑
a∈αn

ζn(ya)
∣∣(Hn(xa)

−1 −Hn(ya)
−1
)
· V (xa)

∣∣
+
∑
a∈αn

ζn(ya)
∣∣Hn(ya)

−1 ·
(
V (xa)− V (ya)

)∣∣ =: I + II + III.
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All the terms involving ζn are dealt with using Proposition 3.3.9. Repeating the

argument of (4.5.1) for V and xa ∈ a, we have |V (xa)| ≤ γn|V |γ + |V |1, where we

use that diamγ(a) = γn for a ∈ αn. Therefore

|1aV |∞ ≤ γn|V |γ + |V |1. (4.5.2)

It follows that

I ≤ D
∑
a∈αn

µY (a)
(
γn|V |γ + |V |1

)
dγ(F

nxa, F
nya) = D

(
γn|V |γ + |V |1

)
dγ(x, y).

We next study II. Note that since Hn : Y → G, we have from (4.4.6) that∣∣(Hn(xa)
−1 −Hn(ya)

−1
)
· V (xa)

∣∣ ≤ ∥∥Hn(xa)−Hn(ya)
∥∥1aV |∞. (4.5.3)

Moreover, we have

∥∥Hn(xa)−Hn(ya)
∥∥ ≤ n−1∑

k=0

∥∥H(F kxa)−H(F kya)
∥∥.

Indeed, the proof of (4.4.1) goes through identically. Therefore

∥∥Hn(xa)−Hn(ya)
∥∥ ≤ n−1∑

k=0

∥∥H(F kxa)−H(F kya)
∥∥

≤
n−1∑
k=0

|1Fk(a)H|γ dγ(F kxa, F
kya) =

n−1∑
k=0

|1Fk(a)H|γγk−n dγ(F nxa, F
nya)

=
n−1∑
k=0

|1Fk(a)H|γγk−n dγ(x, y),

where we use Proposition 3.3.3 in the first equality. Combining this with (4.5.2)

and (4.5.3), we have

II ≤ D
(
γn|V |γ + |V |1

) ∑
a∈αn

µY (a)
n−1∑
k=0

|1Fk(a)H|γγk−n dγ(x, y). (4.5.4)
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Now,

∑
a∈αn

µY (a)
n−1∑
k=0

|1Fk(a)H|γγk−n =
n−1∑
k=0

∑
b∈αn−k

∑
a∈αn

Fk(a)=b

µY (a)|1Fk(a)H|γγk−n

=
n−1∑
k=0

γk−n
∑

b∈αn−k

|1bH|γ
∑
a∈αn

Fk(a)=b

µY (a) =
n−1∑
k=0

γk−n
∑

b∈αn−k

|1bH|γµY (b)

≤
n−1∑
k=0

γk−n
∑
a∈α

|1aH|γµY (a) ≤ 1

1− γ
∑
a∈α

|1aH|γµY (a)

�
∑
a∈α

τ(a)‖h‖ηµY (a)� ‖h‖η,

where we use Proposition 4.4.2 (i) and integrability of τ in the final line. Com-

bining this with (4.5.4) gives us

II � ‖h‖η
(
γn|V |γ + |V |1

)
dγ(x, y).

For III, we have

III =
∑
a∈αn

ζn(ya)
∣∣V (xa)− V (ya)

∣∣ ≤ D
∑
a∈αn

µY (a)|V |γ dγ(xa, ya)

= D
∑
a∈αn

µY (a)|V |γγn dγ(F nxa, F
nya) = Dγn|V |γ dγ(x, y),

where we use Proposition 3.3.3 in the second equality. Therefore |PnHV |γ �
‖h‖η(γn‖V ‖γ + |V |1), proving (ii).

Corollary 4.5.2. Let B(Fγ(Y ;Rd)) denote the space of bounded linear operators

on Fγ(Y ;Rd). There exists r ∈ (γ, 1) such that

π =
1

2πi

∫
∂Br(0)

(zI − PH)−1 dz ∈ B
(
Fγ(Y ;Rd)

)
defines a projection, so that Fγ(Y ;Rd) = E0 ⊕ E1 where

(i) E0 = Imπ and E1 = kerπ are closed and PH – invariant.
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(ii) dimE1 <∞ and all eigenvalues of PH |E1 lie on the unit circle.

(iii) r(PH |E0) < r.

Proof. We begin by verifying the hypotheses of Proposition 2.7.4 in turn. Clearly

| · |1 ≤ ‖·‖γ. Proposition 4.5.1 proves the second hypothesis. Finally, the unit ball

of Fγ(Y ;Rd) is compact in L1(Y ;Rd) by Proposition 3.3.7. Therefore ress(PH) ≤
γ. We next show that r(PH) ≤ 1. For V ∈ Fγ(Y ;Rd) and n ≥ 1, we have from

Proposition 4.5.1 (ii) that

‖PnHV ‖γ � γn‖V ‖γ + |V |1 � ‖V ‖γ.

Letting ‖ · ‖ denote the operator norm, we have the existence of c > 0 such that

‖PnH‖ ≤ c for all n ≥ 1. (4.5.5)

Therefore,

r(PH) = lim
n→∞

‖PnH‖1/n ≤ lim
n→∞

c1/n = 1.

Let us choose r ∈ (γ, 1) sufficiently large so that σ(PH)∩ {z ∈ C : r ≤ |z| ≤ 1} ⊂
{z ∈ C : |z| = 1}. The result then follows from Theorem 2.7.1.

The next lemma shows that on restriction to E0, the operators PkH decay

exponentially.

Lemma 4.5.3. There exists C > 0 such that ‖PH |nE0
‖ ≤ Crn for all n ≥ 1.

Proof. We first note by Corollary 4.5.2 (iii) that r(PH |E0) < r. Now, r(PH |E0) =

limn→∞ ‖PH |nE0
‖1/n, so there exists N ≥ 1 such that ‖PH |nE0

‖ ≤ rn for all n ≥ N .

Let C ′ > 0 be large enough such that for all 1 ≤ n ≤ N − 1, we have ‖PH |nE0
‖ ≤

C ′rn. The result follows.

We next examine how PH behaves on E1. Since dimE1 < ∞, we can write

E1 as the direct sum of its generalised eigenspaces. The next proposition removes

the possibility of generalised eigenfunctions existing.

Lemma 4.5.4. The generalised eigenspaces of PH |E1 are ordinary eigenspaces.
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Proof. First note that PH acts on E1 as a matrix since E1 is finite dimensional. Let

ω ∈ [0, 2π) be such that eiω is an eigenvalue for PH , with corresponding generalised

eigenspace Gω and Jordan block Jω. We show that Jω is of degree 1. Suppose

for contradiction that Jω is of degree j > 1. We consider the restriction of PH to

Gω, which is represented by Jω. Iterating this Jordan block, we have

Jn
ω =



(eiω)n
(
n
1

)
(eiω)n−1 . . .

(
n
j−2

)
(eiω)n−j+2

(
n
j−1

)
(eiω)n−j+1

(eiω)n . . .
(
n
j−3

)
(eiω)n−j+3

(
n
j−2

)
(eiω)n−j+2

. . .
...

...

(eiω)n
(
n
1

)
(eiω)n−1

(eiω)n


.

To work out the operator norm of PH |Gω , note that since all norms on finite

dimensional spaces are equivalent, we may work without loss of generality with

the `1 – norm. Consider the vector e = (e1, . . . ej)
T ∈ Rd defined by

ei =

1 if i = 2,

0 otherwise.

Then |e|`1 = 1, and so we have ‖Jn
ω‖ ≥ |Jn

ωe|`1 = n + 1. On the other hand, we

have ‖Jn
ω‖ = ‖PH |nGω‖ ≤ ‖P

n
H‖ ≤ c for all n ≥ 1 from (4.5.5). Taking n sufficiently

large yields a contradiction. It follows that all Jordan blocks corresponding to

eigenvalues on the unit circle are of degree 1, completing the proof.

Remark 4.5.5. Let Fγ,0(Y ;Rd) = {V ∈ Fγ(Y ;Rd) |
∫
Y×G g · V dmY = 0} This

is a closed subspace of Fγ(Y ;Rd) and hence a Banach space when equipped with

‖ · ‖γ. Let M denote the transfer operator for FH . Note that if V ∈ Fγ,0(Y ;Rd),

we have from Proposition 4.3.5 and Proposition 2.5.3 (ii) that∫
Y×G

g · PHV dmY =

∫
Y×G
M(g · V ) dmY =

∫
Y×G

g · V dmY = 0. (4.5.6)

In particular, PH : Fγ,0(Y ;Rd) → Fγ,0(Y ;Rd). In addition, the previous argu-

ments in this section go through and we get a similar decomposition to that of

Corollary 4.5.2.
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To conclude this section, we show that 1 is not an eigenvalue for PH when

viewed as an operator on Fγ,0(Y ;Rd). To do this, we consider the L2(Y ;Rd) –

adjoint of PH , denoted UH : L2(Y ;Rd) → L2(Y ;Rd). We call this the twisted

Koopman operator for F , and it is defined by UHV = H ·V ◦F for V ∈ L2(Y ;Rd).

It satisfies∫
Y

[
UHV,W

]
dµY =

∫
Y

[
V,PHW

]
dµY for all W ∈ L2(Y ;Rd).

We make the standard observation that PH UH(V ) = P(H−1 · (H · V ◦ F )) =

P(UV ) = V .

Lemma 4.5.6. The twisted transfer operator PH : Fγ,0(Y ;Rd)→ Fγ,0(Y ;Rd) has

no eigenvalue at 1.

Proof. Suppose PHV = V for some V ∈ Fγ,0(Y ;Rd). Then∫
Y

|UHV − V |2 dµY =

∫
Y

[
UHV − V,UHV − V

]
dµY

=

∫
Y

[
UHV,UHV

]
dµY −

∫
Y

[
UHV, V

]
dµY −

∫
Y

[
V,UHV

]
dµY +

∫
Y

[
V, V

]
dµY

=

∫
Y

[
V, V

]
dµY −

∫
Y

[
V,PHV

]
dµY −

∫
Y

[
PHV, V

]
dµY +

∫
Y

[
V, V

]
dµY

=

∫
Y

[
V, V

]
dµY −

∫
Y

[
V, V

]
dµY −

∫
Y

[
V, V

]
dµY +

∫
Y

[
V, V

]
dµY

= 0. (4.5.7)

It follows that UHV = V . Define Ψ: Y ×G→ Rd by Ψ = g · V . Then

Ψ ◦ FH = gH · V ◦ F = g · (H · V ◦ F ) = g · UHV = g · V = Ψ.

By ergodicity of mY , it follows that Ψ is constant mY – almost surely. Since

V ∈ Fγ,0(Y ;Rd), we have
∫
Y×G Ψ dmY = 0 so that Ψ = 0 mY – almost surely.

Therefore V = 0 µY – almost surely.
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4.6 Construction of the primary decomposition

Let φ = g · v where v ∈ Cη(X;Rd), and suppose that
∫
X×G φ dm = 0. Define the

lifted observable φ̂ = φ ◦ πH : ∆×G→ Rd, where πH is the semi-conjugacy as in

Section 4.2. Note that for (y, g, `) ∈ ∆×G, we have

φ̂(y, g, `) = φ
(
T `h(y, g)

)
= φ

(
T `y, gh`(y)

)
= gh`(y) · v(T `y) = g ·

(
h`(y) · v(T `y)

)
.

(4.6.1)

In this section we construct our primary martingale-coboundary decomposition

for φ̂. We begin by deriving such a decomposition for V , where V is as in (4.1.1),

as well as giving information about the regularity of the components.

Proposition 4.6.1. Suppose τ ∈ Lp(Y ) with p > 1. There exist J,M : Y → Rd

with

V = M + UHJ − J and M ∈ kerPH . (4.6.2)

Moreover, J ∈ Fγ(Y ;Rd) with ‖J‖γ ≤ C‖v‖η‖h‖η and M ∈ Lp(Y ) with |M |p ≤
C‖v‖η‖h‖η.

Proof. In view of Remark 4.5.5, we consider PH : Fγ,0(Y ;Rd)→ Fγ,0(Y ;Rd). Let

Fγ,0(Y ;Rd) = E0 ⊕ E1 be the spectral decomposition from Corollary 4.5.2. By

Corollary 4.5.2 (ii), Lemma 4.5.4, and Lemma 4.5.6, the spectrum of PH |E1 con-

sists of finitely many eigenvalues eiωk for 1 ≤ k ≤ j, where each ωk ∈ (0, 2π). Now,

recall from Proposition 4.4.3 that PHV ∈ Fγ(Y ;Rd). Moreover, as in (4.5.6), we

have ∫
Y×G

g · PHV dmY =

∫
Y×G

g · V dmY =

∫
Y×G

τ(y)−1∑
`=0

gh`(y) · v(T `y) dmY

=

∫
Y×G

τ(y)−1∑
`=0

φ(y, g, `) dmY = |τ |1
∫

∆×G
φ̂ dm∆ = 0,

so that PHV ∈ Fγ,0(Y ;Rd). Therefore, we have the decomposition

PHV = W0 +

j∑
k=1

Wk,

71



CHAPTER 4. PRIMARY MARTINGALE-COBOUNDARY
DECOMPOSITION

where W0 ∈ E0 and PHWk = eiωkWk for 1 ≤ k ≤ j. Moreover, we have from

Proposition 4.4.3 that

‖W0‖γ =
∥∥π(PHV )

∥∥
γ
≤ ‖π‖‖PHV ‖γ � ‖v‖η‖h‖η,

where π is the spectral projection defined in Corollary 4.5.2. Similarly, ‖Wk‖γ �
‖v‖η‖h‖η for 1 ≤ k ≤ j. By Lemma 4.5.3, we have ‖PnHW0‖γ � rn‖W0‖γ. Define

J0 : Y → Rd by

J0 =
∞∑
n=0

PnHW0.

Note that

‖J0‖γ ≤
∞∑
n=0

‖PnHW0‖γ �
∞∑
n=0

rn‖v‖η‖h‖η � ‖v‖η‖h‖η, (4.6.3)

so that J0 is well-defined. Now define J,M : Y → Rd by

J = J0 +

j∑
k=1

e−iωkWk

e−iωk − 1

and

M = V + J − UHJ.

Noting that PH(UHJ) = J , we have

PHM = PHV + PHJ − J

= PHV + PHJ0 − J0 +

j∑
k=1

(
Wk

e−iωk − 1
− e−iωkWk

e−iωk − 1

)

= PHV −W0 −
j∑

k=1

Wk = 0, (4.6.4)

so that M ∈ kerPH .

We now look at the regularity of J and M . First note that since eiωk 6= 1 for

all 1 ≤ k ≤ j, we have∥∥∥∥ e−iωkWk

e−iωk − 1

∥∥∥∥
γ

=

∥∥∥∥ Wk

1− eiωk

∥∥∥∥� ‖Wk‖γ � ‖v‖η‖h‖η.
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Combining this with (4.6.3), it follows that ‖J‖γ � ‖v‖η‖h‖η. For M , first note

that |UHJ |p ≤ |UHJ |∞ = |J |∞, where the final equality follows from Proposi-

tion 2.5.3 (viii). Therefore

|M |p ≤ |V |p + |J |p + |UHJ |p ≤ |τ |p|v|∞ + 2|J |∞ � ‖v‖η‖h‖η, (4.6.5)

as claimed.

Define the induced observable Φ: Y ×G→ Rd by

Φ(y, g) =

τ(y)−1∑
k=0

φ̂(y, g, k),

and note that

Φ(y, g) =

τ(y)−1∑
k=0

ghk(y) · v(T ky) = g · V (y).

Using (4.6.2), we get a similar decomposition for Φ on Y×G. Define χ,Ψ: Y×G→
Rd by χ = g · J and Ψ = g ·M . Note that

χ
(
FH(y, g)

)
= χ

(
Fy, gH(y)

)
= g ·

(
H(y) · J(Fy)

)
= g · UHJ(y),

so that

Φ = g · V = g ·M + g · UHJ − g · J = Ψ + χ ◦ FH − χ. (4.6.6)

We lift this to the tower extension ∆ × G by following the approach in [60].

Define χ̂, ψ̂ : ∆×G→ Rd by

χ̂(y, g, `) = χ(y, g) +
`−1∑
k=0

φ̂(y, g, k) (4.6.7)

and

ψ̂(y, g, `) =

0 if ` ≤ τ(y)− 2,

Ψ(y, g) if ` = τ(y)− 1.
(4.6.8)

The next proposition shows explicitly how the regularity of χ̂ and ψ̂ is dictated

by the integrability of the return time τ .
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Proposition 4.6.2. Suppose τ ∈ Lp(Y ).

(i) If p > 1, then ψ̂ ∈ Lp(∆×G;Rd) with |ψ̂|p ≤ C‖v‖η‖h‖η.

(ii) If 1 < p < 2 and V ∈ L2(Y ;Rd), then ψ̂ ∈ L2(∆ × G;Rd) with |ψ̂|2 ≤
C(|V |2 + ‖v‖η‖h‖η).

(iii) If p ≥ 2, then χ̂ ∈ Lp−1(∆×G;Rd) with |χ̂|p−1 ≤ C‖v‖η‖h‖η.

Proof. For (i), we have∫
∆×G
|ψ̂|p dm∆ = |τ |−1

1

∫
Y×G

τ(y)−1∑
`=0

∣∣ψ̂(y, g, `)
∣∣p dmY

= |τ |−1
1

∫
Y×G

∣∣Ψ(y, g)
∣∣p dmY = |τ |−1

1

∫
Y

∣∣M(y)
∣∣p dµY ≤ |M |pp

� ‖v‖pη‖h‖pη, (4.6.9)

where the final estimate uses Proposition 4.6.1. Therefore |ψ̂|p � ‖v‖η‖h‖η as

claimed.

For (ii), note that since V ∈ L2(Y ;Rd), we have from Proposition 4.6.1 that

|M |2 ≤ |V |2 + |UHJ |2 + |J |2 ≤ |V |2 + 2|J |∞ � |V |2 + ‖v‖η‖h‖η. The result now

follows from (4.6.9) with p = 2.

We now look at (iii). Let (y, g, `) ∈ ∆ × G. We have using Proposition 4.6.1

that∣∣χ̂(y, g, `)
∣∣ ≤ ∣∣χ(y, g)

∣∣+
`−1∑
k=0

∣∣φ̂(y, g, k)
∣∣ ≤ |J |∞ + `|v|∞ � (1 + `)‖v‖η‖h‖η

≤ τ(y)‖v‖η‖h‖η. (4.6.10)

Therefore ∫
∆×G

∣∣χ̂(y, g, `)
∣∣p−1

dm∆ �
∫

∆×G
τ(y)p−1‖v‖p−1

η ‖h‖p−1
η dm∆

= |τ |−1
1

∫
Y×G

τ(y)−1∑
`=0

τ(y)p−1‖v‖p−1
η ‖h‖p−1

η dmY

= |τ |−1
1

∫
Y

τ(y)p‖v‖p−1
η ‖h‖p−1

η dµY � ‖v‖p−1
η ‖h‖p−1

η , (4.6.11)
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from which the result follows.

The next proposition shows that φ̂ admits a martingale-coboundary decom-

position. Recall that L̂ : L1(∆ × G;Rd) → L1(∆ × G;Rd) denotes the transfer

operator for fH .

Proposition 4.6.3 (Primary martingale-coboundary decomposition). Let

φ̂, χ̂, and ψ̂ be as in (4.6.1),(4.6.7), and (4.6.8) respectively. Then

φ̂ = ψ̂ + χ̂ ◦ fH − χ̂ and ψ̂ ∈ ker L̂.

Proof. Fix (y, g, `) ∈ ∆×G. We first suppose that ` ≤ τ(y)−2. Then ψ̂(y, g, `) =

0. In particular, we have

χ̂ ◦ fH(y, g, `)− χ̂(y, g, `) = χ̂(y, g, `+ 1)− χ̂(y, g, `)

= φ̂(y, g, `) = φ̂(y, g, `)− ψ̂(y, g, `).

Now suppose that ` = τ(y)− 1. Then

χ̂ ◦ fH(y, g, `)− χ̂(y, g, `) = χ̂
(
FH(y, g), 0

)
− χ̂(y, g, `)

= χ
(
FH(y, g)

)
− χ(y, g)−

`−1∑
k=0

φ̂(y, g, k)

= Φ(y, g)−Ψ(y, g)−
`−1∑
k=0

φ̂(y, g, k)

= φ̂(y, g, `)− ψ̂(y, g, `),

where the third equality uses (4.6.6). This proves the first statement.

We next show that ψ̂ ∈ ker L̂. Write ψ̂ = g · m̂, where

m̂(y, `) =

0 if ` ≤ τ(y)− 2,

M(y) if ` = τ(y)− 1.
(4.6.12)

For ` ≥ 1, we have from Proposition 4.3.7 and Remark 4.3.6 that

L̂ψ̂(y, g, `) = g · LHm̂(y, `) = g · m̂(y, `− 1) = 0.
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Similarly, for ` = 0, we have

L̂ψ̂(y, g, 0) = g · LHm̂(y, 0) = g ·
∑
a∈α

ζ(ya)H(ya)
−1 ·M(ya) = g · PHM(y) = 0,

where the final equality follows from (4.6.2).

To conclude this section, we show that max0≤k≤n |χ̂◦fkH | converges to 0 almost

surely when suitably normalised, with exponent depending on the integrability of

τ . Recall V ∗ : Y → R defined as in (4.1.2) by

V ∗(y) = max
0≤k≤τ(y)−1

∣∣∣∣ k∑
`=0

h`(y) · v(T `y)

∣∣∣∣.
Proposition 4.6.4. Suppose τ ∈ Lp(Y ) with p > 1 and let χ̂ be as in (4.6.7).

Then

max
0≤k≤n

|χ̂ ◦ fkH | = o(n1/p) a.s.

Moreover, if 1 < p < 2 and V ∗ ∈ L2(Y ), then

max
0≤k≤n

|χ̂ ◦ fkH | = o(n1/2) a.s.

Proof. Fix (y, g, `) ∈ ∆ × G and suppose first that p > 1. Recall that we define

H0 = Id and Hj = H H ◦ F · · ·H ◦ F j−1. For any n ≥ 0 and 0 ≤ k′ ≤ n

there exist j ∈ {0, . . . , k′} and `′ ∈ {0, . . . , τ(F jy) − 1} such that fk
′

H (y, g, `) =

(F jy, gHj(y), `′). Therefore, we have from (4.6.10) that∣∣χ̂(fk′H (y, g, `)
)∣∣ =

∣∣χ̂(F jy, gHj(y), `′
)∣∣� ‖v‖η‖h‖ητ(F jy)

≤ ‖v‖η‖h‖η max
0≤k≤n

τ(F ky).

Since τ ∈ Lp(Y ), it follows from Corollary 2.2.3 that

max
0≤k′≤n

∣∣χ̂ ◦ fk′H (y, g, `)
∣∣� ‖v‖η‖h‖η max

0≤k≤n
τ(F ky) = o(n1/p) a.s. (4.6.13)

Suppose now that 1 < p < 2 and V ∗ ∈ L2(Y ). Note that

∣∣χ̂(y, g, `)
∣∣ ≤ ∣∣χ(y, g)

∣∣+

∣∣∣∣ `−1∑
k=0

φ̂(y, g, k)

∣∣∣∣. (4.6.14)
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Now, ∣∣∣∣ `−1∑
k=0

φ̂(y, g, k)

∣∣∣∣ =

∣∣∣∣ `−1∑
k=0

φ
(
T ky, ghk(y)

)∣∣∣∣ =

∣∣∣∣ `−1∑
k=0

ghk(y) · v(T ky)

∣∣∣∣
=

∣∣∣∣ `−1∑
k=0

hk(y) · v(T ky)

∣∣∣∣ ≤ V ∗(y).

Therefore, continuing (4.6.14), we have∣∣χ̂(y, g, `)
∣∣ ≤ |J |∞ + V ∗(y)� ‖v‖η‖h‖η + V ∗(y).

For any n ≥ 0 and 0 ≤ k′ ≤ n, there exist j ∈ {0, . . . , k′} and `′ ∈ {0, . . . , τ(F jy)−
1} such that fk

′
H (y, g, `) = (F jy, gHj(y), `′). Therefore∣∣χ̂(fk′H (y, g, `)

)∣∣� ‖v‖η‖h‖η + V ∗(F jy) ≤ ‖v‖η‖h‖η + max
0≤k≤n

V ∗(F ky).

Since V ∗ ∈ L2(Y ), we have from Corollary 2.2.3 that

max
0≤k′≤n

|χ̂ ◦ fk′H | � ‖v‖η‖h‖η + max
0≤k≤n

V ∗ ◦ F k = o(n1/2) a.s. (4.6.15)

as claimed.

4.7 Proofs of Theorem 4.1.1 and Theorem 4.1.2

We now proceed with the proofs of Theorem 4.1.2 and Theorem 4.1.3. From

Proposition 4.2.3, it suffices to prove the results for the lifted observable φ̂. For the

remainder of the chapter, we let χ̂ and ψ̂ be as in (4.6.7) and (4.6.8) respectively.

Proof of Theorem 4.1.2. Note that since p > 1 and V ∈ L2(Y ;Rd), we have

ψ̂ ∈ L2(∆×G;Rd) by Proposition 4.6.2. Moreover, ψ̂ ∈ ker L̂ by Proposition 4.6.3.

Defining

Σ =

∫
∆×G

ψ̂ψ̂T dm∆ ∈ Rd,d, (4.7.1)

it follows from Theorem 2.8.6 that n−1/2
∑n−1

k=0 ψ̂ ◦ fkH →w N (0,Σ).
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Write Snφ̂ =
∑n−1

k=0 φ̂◦fkH and Snψ̂ =
∑n−1

k=0 ψ̂◦fkH . We show that |n−1/2(Snφ̂−
Snψ̂)| → 0 in probability. The result then follows from Theorem 2.3.9. Note that

for any p > 1, we have by (4.6.11) that E[|χ̂|p−1] < ∞. Now, for any ε > 0, we

have by Markov’s inequality that

m∆

(∣∣n−1/2(Snφ̂− Snψ̂)
∣∣ > ε

)
≤ ε−(p−1)n−(p−1)/2E

[
|χ̂ ◦ fnH − χ|p−1

]
≤ 2ε−(p−1)n−(p−1)/2E

[
|χ̂|p−1

]
→ 0,

where we use fH – invariance of m∆ in the second inequality. Therefore, it holds

true that n−1/2(Snφ̂− Snψ̂)→ 0 in probability, and the result follows.

It remains to verify that Σ commutes with the action of G on Rd. Since

ψ̂ = g ·m̂, where m̂ is defined as in (4.6.12), we have for all a ∈ G that ψ̂(y, ag, `) =

ag · m̂(y, `) = a · (g · m̂(y, `)) = a · ψ̂(y, g, `). It follows from invariance of the Haar

measure that∫
∆×G

ψ̂ψ̂T dm∆ = a

(∫
∆×G

ψ̂ψ̂T dm∆

)
aT = a

(∫
∆×G

ψ̂ψ̂T dm∆

)
a−1, (4.7.2)

so that Σ = aΣa−1 for all a ∈ G. This completes the proof.

Proof of Theorem 4.1.3. For n ≥ 1, define the random elements M̂n, Ŵn : ∆×G→
D([0,∞);Rd) by M̂n(t) = n−1/2

∑[nt]−1
k=0 φ̂ ◦ fkH and Ŵn(t) = n−1/2

∑[nt]−1
k=0 ψ̂ ◦ fkH

for t ≥ 0. Let Σ be as in as in (4.7.1) and let W be the Brownian motion with

mean 0 and covariance matrix Σ.

We first show that M̂n →w W in D([0,∞);Rd). Since V ∗ ∈ L2(Y ), we have

V ∈ L2(Y ;Rd). Therefore ψ̂ ∈ L2(∆×G;Rd) with L̂ψ̂ = 0, as argued in the proof

of Theorem 4.1.2. Let Û : L1(∆×G;Rd)→ L1(∆×G;Rd) denote the Koopman

operator for fH . Since m∆ is fH – invariant, we have from Proposition 2.5.3 (vii)

that

Σ =

∫
∆×G
Û L̂(ψ̂ψ̂T )dm∆.

Therefore, for t ≥ 0 we have by Birkhoff’s ergodic theorem that

1

n

[nt]−1∑
k=0

Û L̂(ψ̂ψ̂T ) ◦ fkH = t · [nt]

nt
· 1

[nt]

[nt]−1∑
k=0

Û L̂(ψ̂ψ̂T ) ◦ fkH → tΣ a.s.
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It follows from Theorem 2.8.7 that M̂n →w W in D([0,∞);Rd).

We next show that this implies convergence of Ŵn. Observe that for any

T > 0, we have from [92] that M̂n →w W in D([0, T ];Rd). Moreover, note that

sup
t∈[0,T ]

∣∣Ŵn(t)− M̂n(t)
∣∣ =

1√
n

sup
t∈[0,T ]

∣∣∣∣ [nt]−1∑
k=0

χ̂ ◦ fk+1
H − χ̂ ◦ fkH

∣∣∣∣
=

1√
n

sup
t∈[0,T ]

|χ̂ ◦ f [nt]
H − χ̂| ≤ 2√

n
max

0≤k≤[nT ]
|χ̂ ◦ fkH |

=
2
√

[nT ]√
n

1√
[nT ]

max
0≤k≤[nT ]

|χ̂ ◦ fkH | → 0 a.s.

by Proposition 4.6.4. Therefore, setting s to be the Skorokhod metric defined on

D([0, T ];Rd), we have s(Ŵn, M̂n)→ 0 almost surely. It follows from Theorem 2.3.9

that Ŵn →w W in D([0, T ];Rd). Since T > 0 is arbitrary, we have from [92] that

Ŵn →w W in D([0,∞);Rd), as required.

4.8 Moment estimates and covariance matrix

In this section we obtain a uniform estimate on |max1≤k≤n |χ̂ ◦ fkH − χ̂||p. As an

application, we prove Theorem 4.1.5 and give a characterisation of the covariance

matrix Σ =
∫

∆×G ψ̂ψ̂
T dm∆ in terms of the underlying observable φ. We follow

[60, Section 2]. We begin with a lemma.

Lemma 4.8.1. Suppose τ ∈ Lp(Y ) where p > 1. Then∣∣ max
1≤k≤n

|χ̂ ◦ fkH − χ̂|
∣∣
p
≤ C‖v‖η‖h‖η

(
n1/p|1{τ≥n}τ |p + a+ n1/p|1{τ≥a}τ |p

)
for all a ≥ 0 and n ≥ 1.

Proof. The proof follows [60, Proposition 2.7]. For n ≥ 0, let An = {(y, g, `) ∈
∆×G | 0 ≤ ` < τ(y)− n}. We have∣∣ max

1≤k≤n
|χ̂ ◦ fkH − χ̂|

∣∣
p
≤
∣∣1An max

1≤k≤n
|χ̂ ◦ fkH − χ̂|

∣∣
p

+
∣∣1∆×G\An max

1≤k≤n
|χ̂ ◦ fkH − χ̂|

∣∣
p
.

(4.8.1)
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We look at the terms on the right hand side in turn. For c ≥ 0, define

tc = |1{τ≥c}τ |p. Then

∑
k≥n

kp−1µY (τ > k) ≤
∑
k≥n

∑
j≥k

kp−1µY (τ = j) =
∑
j≥n

µY (τ = j)

j∑
k=n

kp−1

≤
∑
j≥n

jpµY (τ = j) = tpn. (4.8.2)

For n ≥ 0, we denote the nth level of the tower by ∆n = {(y, g, `) ∈ ∆×G | ` = n}.
Then

m∆(∆n) = m∆

({
(y, g, `) ∈ Y ×G× Z | 0 ≤ ` ≤ τ(y)− 1, ` = n

})
= |τ |−1

1 µY (τ > n).

For k ≥ 0, let

Akn =
{

(y, g, `) ∈ An | ` = k
}

=
{

(y, g, k) ∈ Y ×G× Z | 0 ≤ k < τ(y)− n
}
.

Note that fnH(y, g, `) ∈ ∆n+k if and only if ` = k and k < τ(y) − n, so that

Akn = f−nH (∆n+k). Therefore, we have

m∆(An) = m∆

(⋃
k≥0

Akn

)
= m∆

(⋃
k≥0

f−nH (∆n+k)

)
= m∆

( ⋃
k≥n

f−nH (∆k)

)
= m∆

(
f−nH

( ⋃
k≥n

∆k

))
= m∆

( ⋃
k≥n

∆k

)
= |τ |−1

1

∑
k≥n

µY (τ > k).

It follows from (4.8.2) that

np−1m∆(An) = np−1|τ |−1
1

∑
k≥n

µY (τ > k) ≤
∑
k≥n

kp−1µY (τ > k) ≤ tpn.

Now, if (y, g, `) ∈ An, then for 1 ≤ k ≤ n we have

∣∣(χ̂ ◦ fkH − χ̂)(y, g, `)
∣∣ =

∣∣χ̂(y, g, `+ k)− χ̂(y, g, `)
∣∣ ≤ `+k−1∑

j=`

∣∣φ̂(y, g, j)
∣∣

≤ k|v|∞ ≤ n|v|∞.
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Therefore∣∣1An max
1≤k≤n

|χ̂ ◦ fkH − χ̂|
∣∣
p
≤ n|v|∞m∆(An)1/p = n1/p|v|∞

[
np−1m∆(An)

]1/p
≤ n1/p|v|∞tn � n1/p‖v‖η‖h‖ηtn.

We now look at the second term on the right hand side in (4.8.1). Recall from

(4.6.13) that

max
0≤k≤n

∣∣χ̂ ◦ fkH(y, g, `)
∣∣� ‖v‖η‖h‖η max

0≤k≤n
τ(F ky).

Let τa = 1{τ≥a}τ . Then τ p ≤ ap + τ pa . It follows that

‖v‖−pη ‖h‖−pη max
1≤k≤n

∣∣χ̂(fkH(y, g, `)
)
− χ̂(y, g, `)

∣∣p
≤ 2p‖v‖−pη ‖h‖−pη max

0≤k≤n

∣∣χ̂(fkH(y, g, `)
)∣∣p

� max
0≤k≤n

τ p(F ky) ≤ ap +
n∑
k=0

τ pa (F ky).

Suppose that γ̂ : ∆ × G → R has the form γ̂(y, g, `) = U(y) where U : Y → R.

Then since ∆×G\An = {(y, g, `) ∈ Y ×G×Z | max{0, τ(y)−n} ≤ ` ≤ τ(y)−1},
we have∫

∆×G\An
|γ̂|dm∆

= |τ |−1
1

∫
Y

( τ(y)−1∑
`=τ(y)−n

1{τ>n}(y)
∣∣U(y)

∣∣+

τ(y)−1∑
`=0

1{τ≤n}(y)
∣∣U(y)

∣∣) dµY

= |τ |−1
1

∫
Y

min{τ, n}|U | dµY ≤
∫
Y

min{τ, n}|U | dµY .

Now, recall that P is the transfer operator for F . We have using Proposition 3.3.2

and Proposition 3.3.9 that∣∣Pkτ(y)
∣∣ ≤∑

a∈αk

∣∣ζk(ya)τ(ya)
∣∣ ≤ D

∑
a∈αk

µY (a)τ(ya) = D|τ |1 <∞
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for all k ≥ 1, since τ is integrable. Therefore |Pkτ |∞ <∞. Combining the above,

we have

‖v‖−pη ‖h‖−pη
∫

∆×G\An
max

1≤k≤n
|χ̂ ◦ fkH − χ̂|pdm∆

� ap +
n∑
k=0

∫
∆×G\An

τ pa (F ky)dm∆

≤ ap +
n∑
k=0

∫
Y

min{τ, n}τ pa ◦ F k dµY ≤ ap +

∫
Y

nτ pa dµY +
n∑
k=1

∫
Y

ττ pa ◦ F kdiµY

= ap + n|τ pa |1 +
n∑
k=1

|Pkτ · τ pa |1 � ap + n|τ pa |1 = ap + ntpa.

Hence ∣∣1∆×G\An max
1≤k≤n

|χ̂ ◦ fkH − χ̂|
∣∣
p
� ‖v‖η‖h‖η(ap + ntpa)

1/p

≤ ‖v‖η‖h‖η(a+ n1/pta),

where the final inequality holds since a, ta ≥ 0 and p > 1.

Proposition 4.8.2. Suppose τ ∈ Lp(Y ) where p > 1. Then∣∣ max
1≤k≤n

|χ̂ ◦ fkH − χ̂|
∣∣
p
≤ Cn1/p‖v‖η‖h‖η for all n ≥ 1. (4.8.3)

Moreover, ∣∣ max
1≤k≤n

|χ̂ ◦ fkH − χ̂|
∣∣
p

= o(n1/p). (4.8.4)

Proof. For the first statement, taking a = 0 in Lemma 4.8.1 gives us∣∣ max
1≤k≤n

|χ̂ ◦ fkH − χ̂|
∣∣
p
� ‖v‖η‖h‖η

(
n1/p|1{τ≥n}τ |p + n1/p|τ |p

)
� ‖v‖η‖h‖ηn1/p.

We now prove the second statement. For c ≥ 0, write tc = |1{τ≥c}τ |p. Let

q > p and note that tn ≤ tn1/q . Taking a = n1/q in Lemma 4.8.1, we get∣∣ max
1≤k≤n

|χ̂ ◦ fkH − χ̂|
∣∣
p
� ‖v‖η‖h‖η(n1/ptn + n1/q + n1/ptn1/q)

� ‖v‖η‖h‖η(n1/q + n1/ptn1/q)

= ‖v‖η‖h‖η
(
n1/q + n1/p|1{τ≥n1/q}τ |p

)
.
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It follows that

1

n1/p

∣∣ max
1≤k≤n

|χ̂ ◦ fkH − χ̂|
∣∣
p
� ‖v‖η‖h‖η

(
n1/q

n1/p
+ |1{τ≥n1/q}τ |p

)
→ 0,

where the convergence of the first term on the right hand side follows since q > p,

and the convergence of the second term on the right hand side follows from the

dominated convergence theorem.

We next give moment estimates for
∑n−1

k=0 ψ̂ ◦ fkH and prove Theorem 4.1.5.

Corollary 4.8.3. Suppose τ ∈ Lp(Y ).

(i) If 1 < p < 2, then∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

ψ̂ ◦ fkH
∣∣∣∣
∣∣∣∣∣
p

≤ Cn1/p‖v‖η‖h‖η for all n ≥ 1.

(ii) If p ≥ 2, then∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

ψ̂ ◦ fkH
∣∣∣∣
∣∣∣∣∣
p

≤ Cn1/2‖v‖η‖h‖η for all n ≥ 1.

Proof. First note that from Proposition 4.6.3, Proposition 2.8.3, and Proposi-

tion 2.4.5 (ii), we have that (
∑j

k=1 ψ̂ ◦ f
n−k
H )nj=1 is a martingale. Therefore, for

p > 1 we have∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j∑
k=1

ψ̂ ◦ fn−kH

∣∣∣∣
∣∣∣∣∣
p

�
∣∣∣∣ n∑
k=1

ψ̂ ◦ fn−kH

∣∣∣∣
p

�
∣∣∣∣( n∑

k=1

|ψ̂ ◦ fn−kH |2
)1/2∣∣∣∣

p

, (4.8.5)

where we use Theorem 2.4.7 in the first inequality and Theorem 2.4.8 in the second

inequality. We analyse (4.8.5) in the cases 1 < p < 2 and p ≥ 2 separately.

Suppose first that 1 < p < 2. Note that for a1, . . . an ≥ 0, we have that

(
∑n

k=1 a
2
k)
p/2 ≤

∑n
k=1 a

p
k. Therefore∣∣∣∣( n∑

k=1

|ψ̂ ◦ fn−kH |2
)1/2∣∣∣∣

p

=

(∫
∆×G

( n∑
k=1

|ψ̂ ◦ fn−kH |2
)p/2

dm∆

)1/p

≤
(∫

∆×G

n∑
k=1

|ψ̂ ◦ fn−kH |p dm∆

)1/p

= n1/p|ψ̂|p � n1/p‖v‖η‖h‖η, (4.8.6)
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where we use Proposition 4.6.2 (i) in the final estimate. Therefore, noting that

j−1∑
k=0

ψ̂ ◦ fkH =
n∑
k=1

ψ̂ ◦ fn−kH −
n−j∑
k=1

ψ̂ ◦ fn−kH , (4.8.7)

we obtain∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

ψ̂ ◦ fkH
∣∣∣∣
∣∣∣∣∣
p

≤

∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ n∑
k=1

ψ̂ ◦ fn−kH

∣∣∣∣
∣∣∣∣∣
p

+

∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ n−j∑
k=1

ψ̂ ◦ fn−kH

∣∣∣∣
∣∣∣∣∣
p

� n1/p‖v‖η‖h‖η,

proving (i).

Suppose now that p ≥ 2. We have∣∣∣∣( n∑
k=1

|ψ̂ ◦ fn−kH |2
)1/2∣∣∣∣

p

=

∣∣∣∣ n∑
k=1

|ψ̂ ◦ fn−kH |2
∣∣∣∣1/2
p/2

≤
( n∑

k=1

∣∣|ψ̂ ◦ fn−kH |2
∣∣
p/2

)1/2

= n1/2
∣∣|ψ̂|2∣∣1/2

p/2
= n1/2|ψ̂|p � n1/2‖v‖η‖h‖η.

Again it follows from (4.8.7) that∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

ψ̂ ◦ fkH
∣∣∣∣
∣∣∣∣∣
p

� n1/2‖v‖η‖h‖η,

proving (ii).

Proof of Theorem 4.1.5. First note that from Proposition 4.2.3, we have for q > 1

that ∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

φ ◦ T kh
∣∣∣∣
∣∣∣∣∣
q

=

∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

φ̂ ◦ fkH
∣∣∣∣
∣∣∣∣∣
q

.

This allows us to appeal to the martingale-coboundary decomposition in Propo-

sition 4.6.3. Note that
∑j−1

k=0 φ̂ ◦ fkH = (
∑j−1

k=0 ψ̂ ◦ fkH) + χ̂ ◦ f jH − χ̂. For p > 1, it

follows from Corollary 4.8.3 and (4.8.3) that∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

φ̂ ◦ fkH
∣∣∣∣
∣∣∣∣∣
p

≤

∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

ψ̂ ◦ fkH
∣∣∣∣
∣∣∣∣∣
p

+
∣∣ max

1≤j≤n
|χ̂ ◦ f jH − χ̂|

∣∣
p

� n1/p‖v‖η‖h‖η,
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proving (i).

Suppose now that p ≥ 2. For 0 ≤ k ≤ n, let Bk = f
−(n−k)
H (B), where B is the

underlying σ – algebra on ∆×G. We aim to apply Theorem 2.4.9 to Xk = φ̂◦fn−kH .

First note that by an identical calculation to (2.8.1), Xk is Bk – measurable for all

0 ≤ k ≤ n. From Proposition 4.6.3, Proposition 2.8.3, and Proposition 2.4.5 (ii),

we have that (
∑j

k=0 ψ̂ ◦ f
n−k
H )nj=0 is a martingale with respect to (Bj)nj=0. For

0 ≤ ` ≤ m ≤ n, it follows that

m∑
k=`

E
[
ψ̂ ◦ fn−kH

∣∣B`] = E
[ m∑
k=`

ψ̂ ◦ fn−kH

∣∣∣∣B`]

= E
[ m∑
k=0

ψ̂ ◦ fn−kH −
`−1∑
k=0

ψ̂ ◦ fn−kH

∣∣∣∣B`]

=
∑̀
k=0

ψ̂ ◦ fn−kH −
`−1∑
k=0

ψ̂ ◦ fn−kH = ψ̂ ◦ fn−`H .

Therefore, we have

m∑
k=`

E
[
Xk

∣∣B`] =
m∑
k=`

E
[
ψ̂ ◦ fn−kH + χ̂ ◦ fn−(k−1)

H − χ̂ ◦ fn−kH

∣∣B`]
= ψ̂ ◦ fn−`H + E

[
χ̂ ◦ fn−(`−1)

H

∣∣B`]− χ̂ ◦ fn−mH .

Now, by Proposition 2.4.2 (v) and invariance of fH , we have that∣∣E[χ̂ ◦ fn−(`−1)
H

∣∣B`]∣∣p−1
≤ |χ̂|p−1.

By Proposition 4.6.2 (i) and (iii), it follows that

max
0≤`≤m≤n

∣∣∣∣ m∑
k=`

E
[
Xk

∣∣B`]∣∣∣∣
p−1

� ‖v‖η‖h‖η.

Therefore

max
0≤`≤m≤n

∣∣∣∣X`

m∑
k=`

E
[
Xk

∣∣B`]∣∣∣∣
p−1

≤ |φ̂|∞ max
0≤`≤m≤n

∣∣∣∣ m∑
k=`

E
[
Xk

∣∣B`]∣∣∣∣
p−1

� ‖v‖2
η‖h‖2

η.
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Applying Theorem 2.4.9 gives∣∣∣∣∣ max
0≤j≤n

∣∣∣∣ j∑
k=0

Xk

∣∣∣∣
∣∣∣∣∣
2(p−1)

�
( n∑

`=0

max
0≤`≤m≤n

∣∣∣∣X`

m∑
k=`

E
[
Xk

∣∣B`]∣∣∣∣
p−1

)1/2

� n1/2‖v‖η‖h‖η.

To complete the proof, we note that
∑j−1

k=0 φ̂◦fkH =
∑n

k=0Xk−
∑n−j

k=0 Xk to obtain∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

φ̂ ◦ fkH
∣∣∣∣
∣∣∣∣∣
2(p−1)

≤

∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ n∑
k=0

Xk

∣∣∣∣
∣∣∣∣∣
2(p−1)

+

∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ n−j∑
k=0

Xk

∣∣∣∣
∣∣∣∣∣
2(p−1)

� n1/2‖v‖η‖h‖η,

as required.

Under the assumption V ∈ L2(Y ;Rd), we can strengthen the estimate in

Corollary 4.8.3 (i).

Corollary 4.8.4. Suppose τ ∈ Lp(Y ) where 1 < p < 2 and V ∈ L2(Y ;Rd). Then∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

ψ̂ ◦ fkH
∣∣∣∣
∣∣∣∣∣
2

≤ Cn1/2
(
|V |2 + ‖v‖η‖h‖η

)
for all n ≥ 1.

Proof. We have from (4.8.5) that∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j∑
k=1

ψ̂ ◦ fn−kH

∣∣∣∣
∣∣∣∣∣
2

�
∣∣∣∣( n∑

k=1

|ψ̂ ◦ fn−kH |2
)1/2∣∣∣∣

2

=

∣∣∣∣ n∑
k=1

|ψ̂ ◦ fn−kH |2
∣∣∣∣1/2
1

≤
( n∑

k=1

∣∣|ψ̂ ◦ fn−kH |2
∣∣
1

)1/2

= n1/2|ψ̂|2 � n1/2
(
|V |2 + ‖v‖η‖h‖η

)
,

where we use Proposition 4.6.2 (ii) in the final estimate. Combining this with

(4.8.7) gives∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

ψ̂ ◦ fkH
∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ n∑
k=1

ψ̂ ◦ fn−kH

∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ n−j∑
k=1

ψ̂ ◦ fn−kH

∣∣∣∣
∣∣∣∣∣
2

� n1/2
(
|V |2 + ‖v‖η‖h‖η

)
,

completing the proof.
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To conclude the section, we show that for τ sufficiently regular, the covariance

matrix Σ =
∫

∆×G ψ̂ψ̂
T dm∆ can be characterised in terms of the observable φ.

Corollary 4.8.5. Suppose τ ∈ Lp(Y ) with p ≥ 2. Then

lim
n→∞

1

n

∫
X×G

( n−1∑
k=0

φ ◦ T kh
)( n−1∑

k=0

φ ◦ T kh
)T

dm =

∫
∆×G

ψ̂ψ̂T dm∆.

Proof. Write Snφ̂ =
∑n−1

k=0 φ̂◦fkH and Snψ̂ =
∑n−1

k=0 ψ̂◦fkH . From Proposition 4.2.3,

we have∫
X×G

( n−1∑
k=0

φ ◦ T kh
)( n−1∑

k=0

φ ◦ T kh
)T

dm =

∫
∆×G

(Snφ̂)(Snφ̂)T dm∆.

Moreover, we have from Proposition 4.6.3 and Proposition 2.8.3 that (ψ̂◦fn−kH )nk=1

is a martingale difference sequence, so that∫
∆×G

(Snψ̂)(Snψ̂)T dm∆ = n

∫
∆×G

ψ̂ψ̂T dm∆

by Proposition 2.4.6. From Theorem 4.1.5 (ii) and Corollary 4.8.3 (ii), we have

|Snφ̂|2 ≤ |Snφ̂|2(p−1) � n1/2‖v‖η‖h‖η and |Snψ̂|2 ≤ |Snψ̂|p � n1/2‖v‖η‖h‖η.
Therefore

1

n

∥∥∥∥∫
∆×G

(Snφ̂)(Snφ̂)T dm∆ −
∫

∆×G
(Snψ̂)(Snψ̂)T dm∆

∥∥∥∥
≤ 1

n

∣∣(Snφ̂)(Snφ̂)T − (Snψ̂)(Snψ̂)T
∣∣
1

≤ 1

n

(∣∣Snφ̂((Snφ̂)T − (Snψ̂)T
)∣∣

1
+
∣∣(Snψ̂ − Snφ̂)(Snψ̂)T

∣∣
1

)
≤ 1

n

(
|Snφ̂|2

∣∣(Snφ̂)T − (Snψ̂)T
∣∣
2

+ |Snψ̂ − Snφ̂|2
∣∣(Snψ̂)T

∣∣
2

)
=

1

n

(
|Snφ̂|2 + |Snψ̂|2

)
|Snφ̂− Snψ̂|2 =

1

n

(
|Snφ̂|2 + |Snψ̂|2

)
|χ̂ ◦ fnH − χ̂|2

� ‖v‖η‖h‖η√
n
|χ̂ ◦ fnH − χ̂|2 → 0, (4.8.8)

where the final convergence uses that p ≥ 2 with (4.8.4).
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Remark 4.8.6. In the case that Th : X ×G→ X ×G is mixing sufficiently fast

(for example, polynomially of order n−b for b > 1), one has the characterisation

Σ =

∫
X×G

φφT dm+
∞∑
k=1

∫
X×G

φ ◦ T kh φT dm+
∞∑
k=1

∫
X×G

φ (φ ◦ T kh )T dm.

See for example [36, Section 3.2].

Remark 4.8.7. Let φ̂ : ∆ × G → Rd be such that
∫

∆×G φ̂ dm∆ = 0. Suppose

further that

(i) φ̂ ∈ L∞(∆×G;Rd).

(ii)
∑τ(y)−1

`=0 φ̂(y, g, `) = g · V (y) for some V : Y → Rd.

(iii) There exists γ ∈ [λ−η, 1) such that PHV ∈ Fγ(Y ;Rd).

For such observables, we can see that all the results in this chapter go through

with ‖v‖η‖h‖η replaced by |φ̂|∞ + ‖PHV ‖γ. Since Rd,d ∼= Rd2, the results also go

through for matrix-valued observables satisfying the above.

4.9 Examples

We now give some examples of where our results apply. In the literature, it is

common to find estimates of the return time tail µY (τ > n). We begin by showing

how these estimates relate to the integrability of τ .

Lemma 4.9.1. Suppose τ : Y → Z+ is a return time and p > 1.

(i) If there exists b > 0 such that µY (τ > n) = O(n−b), then τ ∈ Lp(Y ) if and

only if b > p.

(ii) If there exist b > 0 and 0 < c ≤ 1 such that µY (τ > n) = O(e−bn
c
), then

τ ∈ Lp(Y ).
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Proof. We have∫
Y

|τ |p dµY =

∫ ∞
0

µY (τ p > x) dx =
∞∑
n=0

∫ n+1

n

µY (τ p > x) dx

≤
∞∑
n=0

∫ n+1

n

µY (τ p > n) dx =
∞∑
n=0

µY (τ > n1/p).

The results follow.

Note that if τ ∈ Lp(Y ) for p > 1, then we immediately have V ∈ Lp(Y ;Rd)

and V ∗ ∈ Lp(Y ). We apply Lemma 4.9.1 to the examples in Section 3.2.

(i) Uniformly expanding maps are non-uniformly expanding with τ = 1 ∈ Lp(Y )

for all 1 < p ≤ ∞, and so our results apply.

(ii) The intermittent maps with parameter γ ∈ (0, 1) as in Example 2.2.6 satisfy

µY (τ > n) = O(n−1/γ) [102]. It follows from Lemma 4.9.1 (i) that τ ∈ L2(Y )

if and only if γ ∈ [0, 1/2), and our results immediately apply in this case.

When γ ∈ [1/2, 1), we have τ ∈ Lp(Y ) for 1 < p < 2. In [39, Theorem 4.1],

it is shown under some mild conditions on v and h at the neutral fixed point

0 that V ∗ ∈ L2(Y ), and so our results apply.

(iii) The unimodal maps (along Collet-Eckmann parameters) in Example 3.2.3

satisfy µY (τ > n) = O(e−dn) for some d > 0 [101]. Therefore τ ∈ Lp(Y ) for

all p > 1 by Lemma 4.9.1 (ii), and our results apply.

(iv) The Viana maps considered in Example 3.2.4 satisfy µY (τ > n) = O(e−bn
1/2

)

for some b > 0 [41]. Therefore τ ∈ Lp(Y ) for all p > 1 by Lemma 4.9.1 (ii),

and our results apply.
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Chapter 5

Secondary

martingale-coboundary

decomposition

5.1 Outline

We continue with the setup of Chapter 4. Moreover, we suppose throughout

that p ≥ 2. In this chapter, we construct a secondary martingale-coboundary

decomposition as in [60]. This decomposes the square of the martingale in our

primary martingale-coboundary decomposition, which allows us to control sums

of squares as is often required in more sophisticated limit laws. As an application,

we prove the following almost sure invariance principle for the one-dimensional

projections of our underlying observable. This is done by appealing to the results

of Cuny and Merlevède [22] which were stated in Section 2.8.

Theorem 5.1.1. Suppose τ ∈ Lp(Y ) for some p ≥ 2. Define Σ ∈ Rd,d by

Σ = lim
n→∞

∫
X×G

( n−1∑
k=0

φ ◦ T kh
)( n−1∑

k=0

φ ◦ T kh
)T

dm

and let c ∈ Rd with cTΣc > 0. Then there exists a probability space supporting a
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sequence of random variables (Sn)n≥1 with the same joint distributions as (
∑n−1

k=0(c·
φ) ◦ T kh )n≥1 and a sequence of independent and identically distributed random

variables (Zn)n≥1 with distribution N (0, cTΣc), such that almost surely,

sup
1≤k≤n

∣∣∣∣Sk − k∑
j=1

Zj

∣∣∣∣ =


o
(
(n log log n)1/2

)
if p = 2,

o(n1/p(log n)1/2) if p ∈ (2, 4),

O(n1/4(log n)1/2(log log n)1/4) if p ≥ 4.

Remark 5.1.2. The rates in the almost sure invariance principle have additional

powerful implications (see [6] and references therein). We note that:

(i) For p > 2, Theorem 5.1.1 recovers Theorem 4.1.2 and Theorem 4.1.3. This

is done by a Cramér-Wold argument, see for example [36, Corollary 2.7 and

Corollary 2.8].

(ii) When p = 2, the given rate is not sufficient for deducing these results. How-

ever, this rate does imply the law of the iterated logarithm and functional law

of the iterated logarithm. For completeness, these are given in Section 5.3.

(iii) The given rate when p = 2 can also be obtained for 1 < p < 2 when we

assume V as defined in (4.1.1) lies in L2(Y ;Rd). This is easily seen from

the proof.

Remark 5.1.3. In our proof, we utilise results of Cuny and Merlevède [22], who

use a Skorokhod embedding of reverse martingales in Brownian motion [89] to ob-

tain the almost sure invariance principle for sequences of reverse martingale differ-

ences. The best rate achievable via this approach is O(n1/4(log n)1/2(log log n)1/4)

[55]. We obtain this rate when p ≥ 4, which improves on the rate O(n1/4+δ) for

any δ > 0 given in [36] in the case of a uniformly expanding base.

The structure of the chapter is as follows: In Section 5.2, we define a certain

matrix-valued observable in terms of the martingale from the primary martingale-

coboundary decomposition, and then verify the conditions of Remark 4.8.7 to give

us our secondary martingale-coboundary decomposition. In Section 5.3, we use
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this to prove Theorem 5.1.1 as well as proving the law of the iterated logarithm

and functional law of the iterated logarithm. We remark that the results in this

chapter apply to the examples considered in Section 4.9.

5.2 Construction of the secondary decomposi-

tion

In this section we suppose that τ ∈ Lp(Y ) with p > 2. In particular, we may

choose γ ∈ [λ−η, 1) as in Remark 4.4.4. Recall our observable φ : X × G → Rd

given by φ = g · v where v ∈ Cη(X;Rd) and
∫
X×G φ dm = 0. In the notation of

Chapter 4, we have the decompositions

φ̂ = ψ̂ + χ̂ ◦ fH − χ̂ where ψ̂ ∈ ker L̂,

Φ = Ψ + χ ◦ FH − χ, and

V = M + UHJ − J where M ∈ kerPH

from Section 4.6. We can extend the transfer operator L̂ for fH to an operator on

L1(∆×G;Rd,d) by acting component-wise. Similarly, we let Û : L1(∆×G;Rd,d)→
L1(∆ × G;Rd,d) denote the Koopman operator for fH . Since ψ̂ψ̂T ∈ L1(∆ ×
G;Rd,d), we can define φ̃ : ∆×G→ Rd,d by

φ̃ = Û L̂(ψ̂ψ̂T )−
∫

∆×G
ψ̂ψ̂T dm∆. (5.2.1)

Note by Proposition 2.5.3 (vii) that∫
∆×G

φ̃ dm∆ =

∫
∆×G
Û L̂(ψ̂ψ̂T ) dm∆ −

∫
∆×G

ψ̂ψ̂T dm∆ = 0.

We aim to apply Remark 4.8.7 to φ̃. Our first step in this direction is to show

that M is locally Lipschitz.

Proposition 5.2.1. If ε ∈ (0, 1], then M ∈ F loc
γε (Y ;Rd) with ‖1aM‖γε ≤

Cτ(a)1+ε‖v‖η‖h‖η for all a ∈ α.
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5.2. CONSTRUCTION OF THE SECONDARY DECOMPOSITION

Proof. Let a ∈ α and note that 1aM = 1a(V + J − UHJ). Since γε ∈ [γ, 1), it

follows from Proposition 4.6.1 that ‖J‖γε � ‖v‖η‖h‖η. Moreover, from Propo-

sition 4.4.2 (ii), we have ‖1aV ‖γε � τ(a)1+ε‖v‖η‖h‖η. We show ‖1a UHJ‖γε �
τ(a)ε‖v‖η‖h‖η, from which the result follows. Note that ‖1aH‖γε � τ(a)ε‖h‖η
from Proposition 4.4.2 (i). For x, y ∈ a, we have∣∣UHJ(x)− UHJ(y)

∣∣ =
∣∣H(x) · J(Fx)−H(y) · J(Fy)

∣∣
≤
∥∥H(x)−H(y)

∥∥∣∣J(Fx)
∣∣+
∥∥H(x)

∥∥∣∣J(Fx)− J(Fy)
∣∣

� τ(a)ε‖h‖η|J |∞ dγε(x, y) + |J |γε dγε(Fx, Fy)

� τ(a)ε‖v‖η‖h‖η dγε(x, y),

so that |1a UHJ |γε � τ(a)ε‖v‖η‖h‖η. To estimate the sup norm, note that

|1a UHJ |∞ ≤ |J |∞ � ‖v‖η‖h‖η.

Therefore ‖1a UHJ‖γε � τ(a)ε‖v‖η‖h‖η, completing the proof.

Define the induced observable Φ̃ : Y ×G→ Rd,d by

Φ̃(y, g) =

τ(y)−1∑
`=0

φ̃(y, g, `). (5.2.2)

Remark 4.8.7 (ii) requires us to show that Φ̃ is equivariant. In the next proposition,

we define a suitable action on Rd,d, as well as showing it is invariant with respect

to the Frobenius inner product. Recall this is given by 〈A,B〉 = tr(ATB) for

A,B ∈ Rd,d, where tr(·) denotes the trace.

Proposition 5.2.2. Define ? : G × Rd,d → Rd,d by g ? A = gAgT . This is a

continuous linear action of G on Rd,d. Moreover, for all g ∈ G and A,B ∈ Rd,d,

we have 〈g ? A, g ? B〉 = 〈A,B〉.

Proof. That ? defines a continuous linear action follows from the definition. For

the second statement, we have from properties of the trace and orthogonality that

〈g ? A, g ? B〉 = 〈gAgT , gBgT 〉 = tr(gATgTgBgT ) = tr(gATBgT )

= tr(gTgATB) = tr(ATB) = 〈A,B〉,

as claimed.
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Let us denote by LH : L1(∆;Rd,d)→ L1(∆;Rd,d) the twisted transfer operator

for f with respect to ?, defined for ṽ ∈ L1(∆;Rd,d) by LH(ṽ) = L(Ĥ−1 ? ṽ), where

Ĥ : ∆→ G is as in Remark 4.2.1 and L : L1(∆;Rd,d)→ L1(∆;Rd,d) is the transfer

operator for f . We can immediately apply Proposition 4.3.7 to conclude:

Proposition 5.2.3. Suppose φ̃ : ∆ × G → Rd,d is given by φ̃ = g ? ṽ, where

ṽ ∈ L1(∆;Rd,d). Then L̂φ̃ = g ? LH ṽ.

We set out some notation for the rest of the section. We fix ‖ · ‖ to be

the Frobenius norm on Rd,d. That is, ‖A‖ = (tr(ATA))1/2 for A ∈ Rd,d. Let

U ,P : L1(Y ;Rd,d) → L1(Y ;Rd,d) denote the Koopman and transfer operators for

F . We denote by UH ,PH : L1(Y ;Rd,d) → L1(Y ;Rd,d) the twisted Koopman and

twisted transfer operators for F with respect to ?. These are defined for Ṽ ∈
L1(Y ;Rd,d) by UH(Ṽ ) = H ? U Ṽ and PH(Ṽ ) = P(H−1 ? Ṽ ). The next two

propositions verify the points of Remark 4.8.7. We first give a lemma.

Lemma 5.2.4. For (y, g, `) ∈ ∆×G, we have

Û L̂(ψ̂ψ̂T )(y, g, `) =

0 if ` ≤ τ(y)− 2,

g ? UHPH(MMT )(y) if ` = τ(y)− 1.

Proof. First note from (4.6.8) that ψ̂(y, g, `) = g · m̂(y, `), where

m̂(y, `) =

0 if ` ≤ τ(y)− 2,

M(y) if ` = τ(y)− 1.

Therefore ψ̂ψ̂T = (g ·m̂)(g ·m̂)T = g(m̂m̂T )gT = g?(m̂m̂T ). Suppose ` ≤ τ(y)−2.

We have from Proposition 5.2.3 that

Û L̂(ψ̂ψ̂T )(y, g, `) = L̂(ψ̂ψ̂T )(y, g, `+ 1) = g ? LH(m̂m̂T )(y, `+ 1).

Moreover, from Remark 4.3.6 we have

LH(m̂m̂T )(y, `+ 1) = m̂m̂T (y, `) = 0,
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which proves the claim when ` ≤ τ(y) − 2. Suppose now that ` = τ(y) − 1. We

have from Proposition 5.2.3 that

Û L̂(ψ̂ψ̂T )(y, g, `) = L̂(ψ̂ψ̂T )(FH(y, g), 0) = L̂(ψ̂ψ̂T )(Fy, gH(y), 0)

= gH(y) ? LH(m̂m̂T )(Fy, 0). (5.2.3)

Now, writing (Fy)a for the unique element in a ∈ α such that F (Fy)a = Fy, we

have from Remark 4.3.6 and Remark 4.3.2 that

LH(m̂m̂T )(Fy, 0) =
∑
a∈α

ζ
(
(Fy)a

)
H
(
(Fy)a

)−1
? m̂m̂T

(
(Fy)a, τ(a)− 1

)
=
∑
a∈α

ζ
(
(Fy)a

)
H
(
(Fy)a

)−1
? MMT

(
(Fy)a

)
= PH(MMT )(Fy),

so that continuing from (5.2.3), we have

Û L̂(ψ̂ψ̂T )(y, g, `) = gH(y) ? PH(MMT )(Fy) = g ? H(y) ? PH(MMT )(Fy)

= g ? UHPH(MMT )(y),

completing the proof.

Proposition 5.2.5. The observable φ̃ defined in (5.2.1) satisfies φ̃ ∈ L∞(Y ;Rd,d)

with |φ̃|∞ ≤ C‖v‖2
η‖h‖2

η.

Proof. For y ∈ Y and g ∈ G, we have from Proposition 5.2.2 that∥∥g ? UHPH(MMT )(y)
∥∥ =

∥∥gH(y) ? UPH(MMT )(y)
∥∥ =

∥∥UPH(MMT )(y)
∥∥.

Moreover, note that∥∥∥∥∫
∆×G

ψ̂ψ̂T dm∆

∥∥∥∥ ≤ ∫
∆×G
‖ψ̂ψ̂T‖ dm∆ ≤ |ψ̂|22. (5.2.4)

Therefore, from Lemma 5.2.4 we have

|φ̃|∞ ≤
∣∣Û L̂(ψ̂ψ̂T )

∣∣
∞ +

∣∣∣∣ ∫
∆×G

ψ̂ψ̂T dm∆

∣∣∣∣
∞
≤
∣∣PH(MMT )

∣∣
∞ + |ψ̂|22.
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From Proposition 4.6.1 and (4.4.4), we note that

|1aM |∞ ≤ |1aV |∞ + |1a UHJ |∞ + |1aJ |∞ ≤ |1aV |∞ + 2|J |∞
� τ(a)‖v‖η‖h‖η. (5.2.5)

Therefore

|1aMMT |∞ � τ(a)2‖v‖2
η‖h‖2

η. (5.2.6)

For y ∈ Y , it follows from Remark 4.3.2, Proposition 3.3.9, and Proposition 5.2.2

that∥∥PH(MMT )(y)
∥∥ ≤ D

∑
a∈α

µY (a)
∥∥H(ya) ? MMT (ya)

∥∥ = D
∑
a∈α

µY (a)
∥∥MMT (ya)

∥∥
�
∑
a∈α

µY (a)τ(a)2‖v‖2
η‖h‖2

η � ‖v‖2
η‖h‖2

η, (5.2.7)

and so |PH(MMT )|∞ � ‖v‖2
η‖h‖2

η. Finally, Proposition 4.6.2 (i) gives |ψ̂|22 �
‖v‖2

η‖h‖2
η, and the result follows.

Proposition 5.2.6. Let τ ∈ Lp(Y ) with p > 2 and Φ̃ be as in (5.2.2). Then

Φ̃ = g ? Ṽ , where Ṽ : Y → Rd,d satisfies the following:

(i) If p ≥ 3, then PH Ṽ ∈ Fγ(Y ;Rd,d) with ‖PH Ṽ ‖γ ≤ C‖v‖2
η‖h‖2

η.

(ii) If 2 < p < 3, then PH Ṽ ∈ Fγp−2(Y ;Rd,d) with ‖PH Ṽ ‖γp−2 ≤ C‖v‖2
η‖h‖2

η.

Proof. First note that for (y, g) ∈ Y ×G, we have from Lemma 5.2.4 that

Φ̃(y, g) =

τ(y)−1∑
`=0

φ̃(y, g, `) =

τ(y)−1∑
`=0

(
Û L̂(ψ̂ψ̂T )(y, g, `)−

∫
∆×G

ψ̂ψ̂T dm∆

)
= g ? UHPH(MMT )(y)− τ(y)

∫
∆×G

ψ̂ψ̂T dm∆.

Now, from (4.7.2) we have∫
∆×G

ψ̂ψ̂T dm∆ = g

(∫
∆×G

ψ̂ψ̂T dm∆

)
gT = g ?

(∫
∆×G

ψ̂ψ̂T dm∆

)
.
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It follows from linearity of ? that

Φ̃(y, g) = g ? UHPH(MMT )(y)− τ(y)

∫
∆×G

ψ̂ψ̂T dm∆

= g ? UHPH(MMT )(y)− g ?
(
τ(y)

∫
∆×G

ψ̂ψ̂T dm∆

)
= g ?

(
UHPH(MMT )(y)− τ(y)

∫
∆×G

ψ̂ψ̂T dm∆

)
= g ? Ṽ (y),

where we define Ṽ : Y → Rd,d by

Ṽ (y) = UHPH(MMT )(y)− τ(y)

∫
∆×G

ψ̂ψ̂T dm∆.

We now prove (i) and (ii) in turn.

Proof of (i). Note that

PH Ṽ = PH(MMT )− PH
(
τ

∫
∆×G

ψ̂ψ̂T dm∆

)
.

We first estimate |PH Ṽ |∞. From (5.2.4) and Proposition 4.6.2 (i), we have∥∥∥∥τ ∫
∆×G

ψ̂ψ̂T dm∆

∥∥∥∥� τ‖v‖2
η‖h‖2

η. (5.2.8)

For y ∈ Y , arguing as in (5.2.7) gives∥∥∥∥PH(τ ∫
∆×G

ψ̂ψ̂T dm∆

)
(y)

∥∥∥∥ ≤ D
∑
a∈α

µY (a)

∥∥∥∥H(ya) ? τ(a)

∫
∆×G

ψ̂ψ̂T dm∆

∥∥∥∥
= D

∑
a∈α

µY (a)

∥∥∥∥τ(a)

∫
∆×G

ψ̂ψ̂T dm∆

∥∥∥∥�∑
a∈α

µY (a)τ(a)‖v‖2
η‖h‖2

η � ‖v‖2
η‖h‖2

η,

and so ∣∣∣∣PH(τ ∫
∆×G

ψ̂ψ̂T dm∆

)∣∣∣∣
∞
� ‖v‖2

η‖h‖2
η.

It follows from (5.2.7) that

|PH Ṽ |∞ ≤
∣∣PH(MMT )

∣∣
∞ +

∣∣∣∣PH(τ ∫
∆×G

ψ̂ψ̂T dm∆

)∣∣∣∣
∞
� ‖v‖2

η‖h‖2
η.
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We next analyse the Lipschitz semi-norm of PH Ṽ . Note that |PH Ṽ |γ ≤
|PH(MMT )|γ + |PH(τ

∫
∆×G ψ̂ψ̂

T dm∆)|γ. We first estimate |PH(MMT )|γ. Let

x, y ∈ Y . Note by Remark 4.3.2 that∥∥PH(MMT )(x)− PH(MMT )(y)
∥∥

≤
∑
a∈α

∣∣ζ(xa)− ζ(ya)
∣∣∥∥H(xa)

−1 ? MMT (xa)
∥∥

+
∑
a∈α

ζ(ya)
∥∥(H(xa)

−1 −H(ya)
−1
)
? MMT (xa)

∥∥
+
∑
a∈α

ζ(ya)
∥∥H(ya)

−1 ?
(
MMT (xa)−MMT (ya)

)∥∥ =: I + II + III. (5.2.9)

All the terms involving ζ are dealt with using Proposition 3.3.9. For I, note that

from Proposition 5.2.2 and (5.2.6), we have∥∥H(xa)
−1 ? MMT (xa)

∥∥ =
∥∥MMT (xa)

∥∥� τ(a)2‖v‖2
η‖h‖2

η.

Therefore

I �
∑
a∈α

µY (a)τ(a)2‖v‖2
η‖h‖2

η dγ(x, y)� ‖v‖2
η‖h‖2

η dγ(x, y).

For II, first note that∥∥(H(xa)
−1 −H(ya)

−1)T
∥∥ =

∥∥(H(xa)
T −H(ya)

T )T
∥∥ =

∥∥H(xa)−H(ya)
∥∥ ≤ 2.

In addition, note from (4.4.6) that∥∥H(xa)
−1 −H(ya)

−1
∥∥ =

∥∥H(xa)−H(ya)
∥∥.

Therefore, by sub-multiplicativity of the Frobenius norm, we have that∥∥(H(xa)
−1 −H(ya)

−1
)
? MMT (xa)

∥∥
≤
∥∥H(xa)

−1 −H(ya)
−1
∥∥∥∥MMT (xa)

∥∥∥∥(H(xa)
−1 −H(ya)

−1)T
∥∥

≤ 2
∥∥H(xa)−H(ya)

∥∥∥∥MMT (xa)
∥∥

�
∥∥H(xa)−H(ya)

∥∥τ(a)2‖v‖2
η‖h‖2

η, (5.2.10)
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where the final estimate uses (5.2.6). Moreover, from Proposition 4.4.2 (i), we

have ∥∥H(xa)−H(ya)
∥∥� τ(a)‖h‖η dγ(xa, ya).

Therefore

II �
∑
a∈α

µY (a)τ(a)3‖v‖2
η‖h‖2

η dγ(xa, ya)

≤
∑
a∈α

µY (a)τ(a)3‖v‖2
η‖h‖2

η dγ(x, y)� ‖v‖2
η‖h‖2

η dγ(x, y),

where the second inequality uses Proposition 3.3.3 and the final inequality uses

that p ≥ 3. For III, we have from Proposition 5.2.1 and (5.2.5) that∥∥MMT (xa)−MMT (ya)
∥∥

≤
∥∥M(xa)

(
MT (xa)−MT (ya)

)∥∥+
∥∥(M(xa)−M(ya)

)
MT (ya)

∥∥
≤
(∣∣M(xa)

∣∣+
∣∣M(ya)

∣∣)∣∣M(xa)−M(ya)
∣∣

� τ(a)3‖v‖2
η‖h‖2

η dγ(xa, ya)

≤ τ(a)3‖v‖2
η‖h‖2

η dγ(x, y),

where the final inequality uses Proposition 3.3.3. Combining this with Proposi-

tion 5.2.2 gives

III �
∑
a∈α

µY (a)
∥∥MMT (xa)−MMT (ya)

∥∥
�
∑
a∈α

µY (a)τ(a)3‖v‖2
η‖h‖2

η dγ(x, y)

� ‖v‖2
η‖h‖2

η dγ(x, y).

Therefore |PH(MMT )|γ � ‖v‖2
η‖h‖2

η. To complete the proof of (i), we analyse

|PH(τ
∫

∆×G ψ̂ψ̂
T dm∆)|γ. Since the arguments are similar to the above, we omit
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some details. For x, y ∈ Y , we have that∥∥∥∥PH(τ ∫
∆×G

ψ̂ψ̂T dm∆

)
(x)− PH

(
τ

∫
∆×G

ψ̂ψ̂T dm∆

)
(y)

∥∥∥∥
≤
∑
a∈α

∣∣ζ(xa)− ζ(ya)
∣∣∥∥∥∥τ(a)

∫
∆×G

ψ̂ψ̂T dm∆

∥∥∥∥
+
∑
a∈α

ζ(ya)
∥∥H(xa)−H(ya)

∥∥∥∥∥∥τ(a)

∫
∆×G

ψ̂ψ̂T dm∆

∥∥∥∥
+
∑
a∈α

ζ(ya)

∥∥∥∥τ(a)

∫
∆×G

ψ̂ψ̂T dm∆ − τ(a)

∫
∆×G

ψ̂ψ̂T dm∆

∥∥∥∥ =: I + II + III.

(5.2.11)

As before, we use Proposition 3.3.9 to deal with the terms involving ζ. Now,

I � ‖v‖2
η‖h‖2

η dγ(x, y) by (5.2.8). Similarly, II � ‖v‖2
η‖h‖2

η dγ(x, y), where we

use Proposition 4.4.2 (i), (5.2.8), and p ≥ 2. Finally, III = 0 is immediate.

Therefore |PH(τ
∫

∆×G ψ̂ψ̂
T dm∆)|γ � ‖v‖2

η‖h‖2
η as claimed.

Proof of (ii). The estimate for the sup norm remains unchanged. As be-

fore, |PH Ṽ |γp−2 ≤ |PH(MMT )|γp−2 + |PH(τ
∫

∆×G ψ̂ψ̂
T dm∆)|γp−2 . We begin by

analysing (5.2.9). We deal with the terms involving ζ by using Proposition 3.3.9.

Proceeding as in (i) for I gives

I � ‖v‖2
η‖h‖2

η dγ(x, y) ≤ ‖v‖2
η‖h‖2

η dγp−2(x, y).

We now analyse II. From Proposition 4.4.2 (i), we have∥∥H(xa)−H(ya)
∥∥� τ(a)p−2‖h‖η dγp−2(xa, ya).

Combining this with (5.2.10) gives

II �
∑
a∈α

µY (a)τ(a)p‖v‖2
η‖h‖2

η dγp−2(xa, ya)

≤
∑
a∈α

µY (a)τ(a)p‖v‖2
η‖h‖2

η dγp−2(x, y)

� ‖v‖2
η‖h‖2

η dγp−2(x, y).
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For III, note that∥∥MMT (xa)−MMT (ya)
∥∥ ≤ (∣∣M(xa)

∣∣+
∣∣M(ya)

∣∣)∣∣M(xa)−M(ya)
∣∣

� τ(a)p‖v‖2
η‖h‖2

η dγp−2(xa, ya)

≤ τ(a)p‖v‖2
η‖h‖2

η dγp−2(x, y),

where the second estimate uses Proposition 5.2.1 and (5.2.5). Therefore

III �
∑
a∈α

µY (a)
∥∥MMT (xa)−MMT (ya)

∥∥
�
∑
a∈α

µY (a)τ(a)p‖v‖2
η‖h‖2

η dγp−2(x, y)

� ‖v‖2
η‖h‖2

η dγp−2(x, y).

Combining the above gives us |PH(MMT )|γp−2 � ‖v‖2
η‖h‖2

η. To conclude the

proof, we note that |PH(τ
∫

∆×G ψ̂ψ̂
T dm∆)|γp−2 � ‖v‖2

η‖h‖2
η by an identical argu-

ment to that in (i).

From Remark 4.8.7, Proposition 5.2.5, and Proposition 5.2.6, we can write

φ̃ = ψ̃ + χ̃ ◦ fH − χ̃ where ψ̃ ∈ ker L̂ (5.2.12)

for some ψ̃, χ̃ : ∆×G→ Rd,d, with the main results of Chapter 4 going through.

We refer to (5.2.12) as a secondary martingale-coboundary decomposition. To

conclude the section, we state the results which we explicitly require. The first

result is analogous to Proposition 4.6.2 (i).

Proposition 5.2.7. Let ψ̃ be as in the secondary martingale-coboundary decom-

position (5.2.12). Then ψ̃ ∈ Lp(∆×G;Rd,d) with |ψ̃|p ≤ C‖v‖2
η‖h‖2

η.

The next result is analogous to Proposition 4.6.4.

Proposition 5.2.8. Let χ̃ be as in the secondary martingale-coboundary decom-

position (5.2.12). Then max0≤k≤n ‖χ̃ ◦ fkH‖ = o(n1/p) almost surely.

The next result is analogous to Theorem 4.1.5 (ii).
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Proposition 5.2.9. Let φ̃ be as in (5.2.1). Then∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

φ̃ ◦ fkH
∣∣∣∣
∣∣∣∣∣
2(p−1)

≤ Cn1/2‖v‖2
η‖h‖2

η for all n ≥ 1.

5.3 Almost sure invariance principle and conse-

quences

We begin this section by showing that Theorem 5.1.1 holds for the one-dimensional

projections of the observable ψ̂ : ∆ × G → Rd,d from the primary martingale-

coboundary decomposition. For this, we require the classical law of the iterated

logarithm [54, 57], which states that if (Zn)n≥1 is a sequence of independent and

identically distributed random variables with mean 0 and variance σ2 > 0, then

lim sup
n→∞

∑n
k=1 Zk√

2n log log n
= σ2 a.s. (5.3.1)

Lemma 5.3.1. Suppose τ ∈ Lp(Y ) for some p ≥ 2. Define Σ ∈ Rd,d by

Σ = lim
n→∞

∫
X×G

( n−1∑
k=0

φ ◦ T kh
)( n−1∑

k=0

φ ◦ T kh
)T

dm

and let c ∈ Rd with cTΣc > 0. Then there exists a probability space supporting a

sequence of random variables (S ′n)n≥1 with the same joint distributions as (
∑n−1

k=0(c·
ψ̂) ◦ fkH)n≥1 and a sequence of independent and identically distributed random

variables (Zn)n≥1 with distribution N (0, cTΣc), such that almost surely,

sup
1≤k≤n

∣∣∣∣S ′k − k∑
j=1

Zj

∣∣∣∣ =


o
(
(n log log n)1/2

)
if p = 2,

o(n1/p(log n)1/2) if p ∈ (2, 4),

O(n1/4(log n)1/2(log log n)1/4) if p ≥ 4.

Proof. First note by Corollary 4.8.5 that Σ =
∫

∆×G ψ̂ψ̂
T dm∆. Observe that since

ψ̂ ∈ Lp(∆×G;Rd), we have c · ψ̂ ∈ Lp(∆×G;R). Now,

(c · ψ̂)2 = (c · ψ̂)(c · ψ̂) = (c · ψ̂)(ψ̂ · c) = cT ψ̂ψ̂T c. (5.3.2)
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Therefore ∫
∆×G

(c · ψ̂)2 dm∆ = cTΣc.

Note that since ψ̂ ∈ ker L̂, we have c · ψ̂ ∈ ker L̂. The almost sure invariance prin-

ciple (ASIP) with the desired rate when p = 2 is immediate from Theorem 2.8.9.

Let B denote the underlying σ – algebra on ∆×G and Bk = f−kH (B). For p > 2,

we require almost sure estimates for

An =
n−1∑
k=0

(
E
[
(c · ψ̂)2 ◦ fkH

∣∣Bk+1

]
− cTΣc

)
.

Note that for n ≥ 1 and 0 ≤ k ≤ n, we have

E
[
(c · ψ̂)2 ◦ fkH

∣∣Bk+1

]
= E

[
(c · ψ̂)2

∣∣B1

]
◦ fkH

= Û L̂
(
(c · ψ̂)2

)
◦ fkH

=
(
cT Û L̂(ψ̂ψ̂T )c

)
◦ fkH ,

where we use Proposition 2.4.2 (vi), Proposition 2.5.3 (vii), and (5.3.2) in the

first, second, and third equalities respectively. Therefore, using the secondary

martingale-coboundary decomposition (5.2.12), we have

An =
n−1∑
k=0

((
cT Û L̂(ψ̂ψ̂T )c

)
◦ fkH − cTΣc

)
=

n−1∑
k=0

(cT φ̃c) ◦ fkH

=
n−1∑
k=0

(
cT (ψ̃ + χ̃ ◦ fH − χ̃)c

)
◦ fkH

= cT (χ̃ ◦ fnH − χ̃)c+
n−1∑
k=0

(cT ψ̃c) ◦ fkH .

Now, we have from Proposition 5.2.8 that almost surely, ‖χ̃◦fnH− χ̃‖ = o(n1/p) ⊂
o((n log log n)1/2). It follows that

cT (χ̃ ◦ fnH − χ̃)c = o
(
(n log log n)1/2

)
a.s. (5.3.3)

Next, note from Proposition 5.2.7 we have ψ̃ ∈ L2(∆ × G;Rd,d), so that cT ψ̃c ∈
L2(∆ × G;R). Moreover, since ψ̃ ∈ ker L̂, we have cT ψ̃c ∈ ker L̂. Apply-

ing Theorem 2.8.9 gives us an ASIP for (
∑n−1

k=0(cT ψ̃c) ◦ fkH)n≥1 with error rate
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o((n log log n)1/2). Therefore, on a possibly enlarged probability space, it follows

from the classical law of the iterated logarithm (5.3.1) that almost surely,

n−1∑
k=0

(cT ψ̃c) ◦ fkH =

( n−1∑
k=0

(cT ψ̃c) ◦ fkH −
n∑
k=1

Zk

)
+

n∑
k=1

Zk

= O
(
(n log log n)1/2

)
. (5.3.4)

If necessary, by a coupling argument [24], we can redefine χ̃ and ψ̃ on a further

enlarged probability space such that (5.3.3) and (5.3.4) hold. In particular, we

have that

An = O
(
(n log log n)1/2

)
a.s.

For p ≥ 4, the ASIP with the desired rate now follows from Theorem 2.8.11.

Suppose p ∈ (2, 4). We have that

An
n2/p

� (n log log n)1/2

n2/p
= n1/2−2/p(log log n)1/2 → 0 a.s.

since 1
2
− 2

p
< 0. Therefore An = o(n2/p) almost surely, and the result now follows

from Theorem 2.8.10.

Proof of Theorem 5.1.1. Note that from Proposition 4.6.4, we have

max
1≤k≤n

∣∣∣∣ k−1∑
j=0

(
(c · φ̂) ◦ f jH − (c · ψ̂) ◦ f jH

)∣∣∣∣ = max
1≤k≤n

∣∣c · (χ̂ ◦ fkH − χ̂)
∣∣ = o(n1/p) a.s.

In view of Lemma 5.3.1, we can enlarge the probability space as in [84, p. 23]

(see also [7, Lemma A.1]) to support sequences of random variables (Sn)n≥1 and

(S ′n)n≥1 with the same joint distributions as (
∑n−1

k=0(c · φ̂) ◦ fkH)n≥1 and (
∑n−1

k=0(c ·
ψ̂) ◦ fkH)n≥1 respectively, such that (S ′n)n≥1 satisfies the desired estimates and

max
1≤k≤n

|Sk − S ′k| = o(n1/p) a.s.

Now, note that

n1/p =


o
(
(n log log n)1/2

)
if p = 2,

o(n1/p(log n)1/2) if p ∈ (2, 4),

O(n1/4(log n)1/2(log log n)1/4) if p ≥ 4.
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Therefore, since

max
1≤k≤n

∣∣∣∣Sk − k∑
j=1

Zk

∣∣∣∣ ≤ max
1≤k≤n

|Sk − S ′k|+ max
1≤k≤n

∣∣∣∣S ′k − k∑
j=1

Zk

∣∣∣∣,
we have that (Sn)n≥1 satisfies the desired estimates. Finally, noting that πH is

a semi-conjugacy, it follows from Proposition 4.2.3 that the joint distributions of

(
∑n−1

k=0(c·φ)◦T kh )n≥1 coincide with those of (Sn)n≥1. This completes the proof.

To conclude the chapter, we give some corollaries of Theorem 5.1.1. We start

with the law of the iterated logarithm.

Corollary 5.3.2. In the setting of Theorem 5.1.1, we have

lim sup
n→∞

Sn√
2n log log n

= cTΣc a.s.

Proof. Since τ ∈ Lp(Y ) ⊂ L2(Y ) for p ≥ 2, it suffices to prove the result for

p = 2. Note that if (xn) ⊂ R is such that lim supn→∞ xn < ∞ and (yn) ⊂ R is

convergent, then

lim sup
n→∞

(xn + yn) = lim sup
n→∞

xn + lim
n→∞

yn.

Therefore, we have from the classical law of the iterated logarithm (5.3.1) and

Theorem 5.1.1 that almost surely,

lim sup
n→∞

Sn√
2n log log n

= lim sup
n→∞

∑n
k=1 Zk√

2n log log n
+ lim

n→∞

Sn −
∑n

k=1 Zk√
2n log log n

= cTΣc,

completing the proof.

We next move on to the functional law of the iterated logarithm. Let C[0, 1]

denote the Banach space of real-valued continuous functions with supremum norm.

Recall that a function f : [0, 1] → R is absolutely continuous if, with respect to
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the Lebesgue measure, the derivative f ′ exists almost everywhere, is integrable,

and satisfies

f(x) = f(0) +

∫ x

0

f ′(t) dt

for all x ∈ [0, 1].

Corollary 5.3.3. Let K be the set of all real-valued absolutely continuous func-

tions f : [0, 1] → R such that f(0) = 0 and
∫ 1

0
|f ′(t)|2 dt ≤ 1. Let c ∈ Rd and

(Sn)n≥1 be as in Theorem 5.1.1. For n ≥ 3 and t ∈ [0, 1], define the random

elements fn ∈ C[0, 1] by

fn(t) =

(
1− nt+ [nt]

)
S[nt] +

(
nt− [nt]

)
S[nt]+1√

2n log log n
.

Then almost surely, (fn)n≥3 is relatively compact in C[0, 1] and its set of limit

points is precisely K.

Proof. We argue as in [84, Theorem C]. Note that uniformly in t, we have

fn(t) =
S[nt]√

2n log log n
+O

(
1√

2n log log n

)
.

Let us write

Bn(t) =

∑[nt]
k=1 Zk√

2n log log n
.

It follows from Theorem 5.1.1 that almost surely, |fn(t) − Bn(t)| → 0 uniformly

in t. That is, almost surely,

|fn −Bn|∞ → 0. (5.3.5)

Now, [93, Theorem 1] says that the result holds for the sequence (Bn)n≥3. From

(5.3.5), it is immediate that the limit points of (Bn)n≥3 and (fn)n≥3 coincide, so

that the set of limit points of (fn)n≥3 is precisely K. Similarly, relative compact-

ness of (fn)n≥3 follows from that of (Bn)n≥3.

Remark 5.3.4. As with the central limit theorem and weak invariance principle,

we have Corollary 5.3.2 follows from Corollary 5.3.3 (see for example [93, Section
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3]). From Theorem 5.1.1, one can also deduce upper and lower class refinements

of the law of the iterated logarithm. See [84, Chapter 1] for statements of these

and further consequences.
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Chapter 6

Generalisation to sequences of

compact group extensions

6.1 Outline

Let (X, d) be a bounded metric space and T : X → X be non-uniformly expanding

as in Section 3.2. Let µ denote the ergodic invariant Borel probability measure

on X constructed in Section 3.4. We suppose throughout this chapter that the

return time τ has integrability p > 2. Let G be a compact connected Lie group

with Haar measure ν, and suppose that (π,Rd) is a representation of G for some

d ≥ 1. As in Remark 2.2.7, we fix a G – invariant inner product [·, ·] on Rd and

view G as a closed subgroup of O(d). We consider the sequence of compact group

extensions Th(n) : X × G → X × G defined by Th(n)(x, g) = (Tx, gh(n)(x)), where

h(n) : X → G are η – Hölder and satisfy supn≥1 ‖h(n)‖η < ∞. For all n ≥ 1 the

probability measure m = µ × ν is Th(n) – invariant and assumed to be ergodic as

in Remark 4.1.1. We make the following additional assumptions on the cocycles:

Assumption 6.1.1. There exist h(∞) ∈ Cη(X;G) and C > 0 such that

|h(n) − h(∞)|∞ ≤
C

n
for all n ≥ 1. (6.1.1)

Moreover, the induced compact group extension FH(∞) is assumed to be mixing.
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Remark 6.1.2. Mixing is typical in the following sense, as in [35, Theorem 1.5

and Remark 1.6]. The set of Hölder cocycles h(∞) : X → G for which FH(∞) is not

mixing lies in a closed subspace of infinite codimension in the space of all Hölder

cocycles.

We consider the sequence of equivariant observables φn : X × G → Rd of the

form φn = g · vn, where
∫
X×G φn dm = 0 for all n ≥ 1 and vn : X → Rd satisfies

supn≥1 ‖vn‖η < ∞. In this chapter, we show how the martingale-coboundary

decompositions in Chapter 4 and Chapter 5 apply to Birkhoff sums of the form∑n−1
k=0 φn ◦ T kh(n) . To state our main results, we make some definitions. For n ≥ 1,

define

Σn = lim
k→∞

1

k

∫
X×G

( k−1∑
j=0

φn ◦ T jh(n)
)( k−1∑

j=0

φn ◦ T jh(n)
)T

dm =

∫
∆×G

ψ̂nψ̂
T
n dm∆.

(6.1.2)

We also define the random elements Wn : X × G → D([0,∞);Rd) by Wn(t) =

n−1/2
∑[nt]−1

k=0 φn ◦ T kh(n) for t ≥ 0.

Theorem 6.1.3. Suppose limn→∞Σn = Σ for some Σ ∈ Rd,d. Then gΣ = Σg for

all g ∈ G and

(i) n−1/2
∑n−1

k=0 φn ◦ T kh(n) →w N (0,Σ).

(ii) Wn →w W in D([0,∞);Rd), where W is a Brownian motion with mean 0

and covariance matrix Σ.

LetW ⊂ D([0,∞);Rd)) denote the set of weak subsequential limits of (Wn)n≥1

and S ⊂ Rd,d be the set of limit points of (Σn)n≥1.

Theorem 6.1.4. The following hold true:

(i) (Wn)n≥1 is tight.

(ii) W ∈ W if and only if W is a Brownian motion with mean 0 and covariance

matrix Σ ∈ S.
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The next result says that any weakly convergent subsequence of (Wn)n≥1 has

corresponding convergence of moments.

Theorem 6.1.5. Let W ∈ W and let (Wnk)k≥1 be such that Wnk →w W . Then

lim
k→∞

n
−q/2
k

∫
X×G

∣∣∣∣ nk−1∑
j=0

φnk ◦ T
j

h(nk)

∣∣∣∣q dm = E
[∣∣W (1)

∣∣q] for all 0 < q < 2(p− 1),

where E denotes the expectation with respect to the underlying probability space

on which W is defined.

The structure of the chapter is as follows: In Section 6.2, we verify uniformity

of the constants which arise as a result of the primary and secondary martingale-

coboundary decompositions from Chapter 4 and Chapter 5 respectively. For this,

it suffices to verify uniformity on the inducing set Y , for then orthogonality allows

us to deduce uniformity on Y × G, and then by lifting we obtain uniformity on

∆ × G. In Section 6.3, we prove the main results above. Finally, in Section 6.4,

we give a homogenisation result of discrete fast-slow dynamical systems with ad-

ditive noise, where the fast dynamics are generated by a family of compact group

extensions with non-uniformly expanding base.

6.2 Uniformity for the primary and secondary

decompositions

Since p > 2, we choose γ ∈ [λ−η, 1) as in Remark 4.4.4. For each n ≥ 1, we

define the induced cocycles H(n) : Y → G by H(n) = h
(n)
τ and induced functions

Vn : Y → Rd by

Vn(y) =

τ(y)−1∑
`=0

h
(n)
` (y) · vn(T `y), (6.2.1)

where h
(n)
` = h(n) h(n) ◦T · · ·h(n) ◦T `−1. To simplify the results in this section, we

let C > 0 denote various constants which are independent of n ≥ 1.
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Proposition 6.2.1. Let ε ∈ (0, 1]. The following hold true:

(i) ‖1aH(n)‖γε ≤ Cτ(a)ε‖h(n)‖η for all a ∈ α and n ≥ 1.

(ii) ‖1aVn‖γε ≤ Cτ(a)1+ε‖vn‖η‖h(n)‖η for all a ∈ α and n ≥ 1.

Proof. This follows directly from Proposition 4.4.2, since the given constants de-

pend only on the properties of the underlying dynamical system T .

The next statement is immediate from Proposition 4.4.3 and Proposition 6.2.1.

Proposition 6.2.2. The twisted transfer operators PH(n) : L1(Y ;Rd)→ L1(Y ;Rd)

as defined in Section 4.3 satisfy ‖PH(n)Vn‖γ ≤ C‖vn‖η‖h(n)‖η for all n ≥ 1.

In view of Section 4.5, we require some control on the spectra of PH(n) when

viewed as operators on the space Fγ,0(Y ;Rd) = {V ∈ Fγ(Y ;Rd) |
∫
Y×G g·V dmY =

0}. We first remove the possibility of eigenvalues lying on the unit circle for PH(∞) .

Lemma 6.2.3. The twisted transfer operator PH(∞) : Fγ,0(Y ;Rd) → Fγ,0(Y ;Rd)

has no eigenvalues on the unit circle.

Proof. Suppose that PH(∞)V = eiωV for some ω ∈ [0, 2π) and V ∈ Fγ,0(Y ;Rd).

Let UH(∞) : L2(Y ;Rd) → L2(Y ;Rd) denote the twisted Koopman operator for F

with respect to the cocycle H(∞). By arguing as in (4.5.7), we have UH(∞)V =

e−iωV . Define Ψ: Y ×G→ Rd by Ψ = g · V . Then

Ψ ◦ FH(∞) = gH(∞) · V ◦ F = g · (H(∞) · V ◦ F ) = g · UH(∞)V = g · e−iωV

= e−iωΨ.

Since mY is mixing, it is weak mixing, so that Ψ is constant mY – almost surely.

Since V ∈ Fγ,0(Y ;Rd), we have
∫
Y×G Ψ dmY = 0 so that Ψ = 0 mY – almost

surely. Therefore V = 0 µY – almost surely.

We look to appeal to the results of [51]. The next proposition verifies that the

sequence of twisted transfer operators PH(n) satisfies the hypotheses [51, (2)–(5)].
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We first define some notation. For any bounded linear operator Q : Fγ,0(Y ;Rd)→
Fγ,0(Y ;Rd), let

|||Q||| = sup
{
|QV |1 : V ∈ Fγ,0(Y ;Rd), ‖V ‖γ ≤ 1

}
.

Proposition 6.2.4. The following hold true:

(i) |Pk
H(n)V |1 ≤ |V |1 for all k, n ≥ 1, and V ∈ Fγ,0(Y ;Rd).

(ii) ‖Pk
H(n)V ‖γ ≤ C(γk‖V ‖γ + |V |1) for all k, n ≥ 1, and V ∈ Fγ,0(Y ;Rd).

(iii) For n ≥ 1, if z ∈ σ(Pk
H(n)) with |z| > γ, then z is not in the residual

spectrum1 of PH(n).

(iv) |||PH(n) − PH(∞) ||| ≤ C
n

for all n ≥ 1.

Proof. We have that (i) follows directly from Proposition 4.5.1 (i). For (ii), we

combine Proposition 4.5.1 (ii) with the fact that supn≥1 ‖h(n)‖η < ∞. For (iii),

note that by the proof of Corollary 4.5.2, we have ress(PH(n)) < γ for all n ≥ 1.

Therefore if z ∈ σ(PH(n)) with |z| > γ, then z is an isolated eigenvalue of finite

multiplicity. In particular, z does not lie in the residual spectrum of PH(n) . It

remains to verify (iv). Let V ∈ Fγ,0(Y ;Rd) with ‖V ‖γ ≤ 1. Let y ∈ Y and

ya ∈ a be the unique element of a ∈ α for which Fya = y. Note that by a similar

calculation to (4.4.6), we have∣∣(H(n)(ya)
−1 −H(∞)(ya)

−1
)
· V (ya)

∣∣ ≤ ∥∥H(n)(ya)−H(∞)(ya)
∥∥|V |∞.

Moreover, by repeating the argument of the proof of (4.4.1), we have

∥∥h(n)
τ(a)(ya)− h

(∞)
τ(a)(ya)

∥∥ ≤ τ(a)−1∑
k=0

∥∥h(n)(T kya)− h(∞)(T kya)
∥∥.

1For our purposes, we only require that the set of eigenvalues is disjoint from the residual

spectrum.
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In particular, ∥∥H(n)(ya)−H(∞)(ya)
∥∥ =

∥∥h(n)
τ(a)(ya)− h

(∞)
τ(a)(ya)

∥∥
≤

τ(a)−1∑
k=0

∥∥h(n)(T kya)− h(∞)(T kya)
∥∥

≤ τ(a)|h(n) − h(∞)|∞ �
τ(a)

n
,

where the final inequality follows from (6.1.1). It follows from Remark 4.3.2 and

Proposition 3.3.9 that∣∣(PH(n) − PH(∞))(V )(y)
∣∣ ≤∑

a∈α

ζn(ya)
∣∣(H(n)(ya)

−1 −H(∞)(ya)
−1
)
· V (ya)

∣∣
�
∑
a∈α

µY (a)τ(a)|h(n) − h(∞)|∞|V |∞ �
|τ |1
n
.

Therefore |(PH(n) − PH(∞))(V )|1 � 1/n, so that |||PH(n) − PH(∞)||| � 1/n as re-

quired.

We now show how the results in [51] imply uniform exponential contraction of

the operators PH(n) for n sufficiently large.

Proposition 6.2.5. There exists R ∈ (γ, 1) and N ≥ 1 such that for all n ≥ N ,

we have ‖Pk
H(n)‖ ≤ CRk for all k ≥ 1.

Proof. We first note that since ress(PH(∞)) < γ and PH(∞) has no eigenvalues on

the unit circle, there exists R ∈ (γ, 1) such that σ(PH(∞)) ⊂ BR(0). From [51,

Theorem 1], there exists N ≥ 1 sufficiently large such that σ(PH(n)) ⊂ BR(0) for

all n ≥ N . Applying [51, Corollary 2 (ii)] completes the proof.

Recall UH(n) : L1(Y ;Rd) → L1(Y ;Rd) denotes the twisted Koopman operator

of F with respect to the cocycle H(n). Note that if Vn : Y → Rd is defined as in

(6.2.1), we have from Proposition 4.6.1 that there exist Jn ∈ Fγ(Y ;Rd) and Mn ∈
Lp(Y ;Rd) such that Vn = Mn + UH(n)Jn − Jn with Mn ∈ kerPH(n) . In addition,

Proposition 4.6.1 also gives the existence of constants C(n) > 0 depending on n
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such that ‖Jn‖γ ≤ C(n)‖vn‖η‖h(n)‖η and |Mn|p ≤ C(n)‖vn‖η‖h(n)‖η. We now use

Proposition 6.2.5 to deduce uniformity.

Proposition 6.2.6. The following hold true:

(i) ‖Jn‖γ ≤ C‖vn‖η‖h(n)‖η for all n ≥ 1.

(ii) |Mn|p ≤ C‖vn‖η‖h(n)‖η for all n ≥ 1.

Proof. Let N ≥ 1 be as in Proposition 6.2.5. By Proposition 4.6.1, there ex-

ists C ′ > 0 sufficiently large such that ‖Jn‖γ ≤ C ′‖vn‖η‖h(n)‖η and |Mn|p ≤
C ′‖vn‖η‖h(n)‖η for 1 ≤ n ≤ N − 1. Therefore, it suffices to prove uniformity

for n ≥ N . For such n, we have from the proof of Proposition 6.2.5 that

σ(PH(n)) ⊂ BR(0). Therefore, it follows from the proof of Proposition 4.6.1 that

Jn =
∞∑
k=1

PkH(n)Vn ∈ Fγ(Y ;Rd).

From Proposition 6.2.5, we have

‖Jn‖γ ≤
∞∑
k=1

‖PkH(n)Vn‖γ �
∞∑
k=0

Rk‖vn‖η‖h(n)‖η � ‖vn‖η‖h(n)‖η,

proving (i). For (ii), we note that |Mn|p � ‖vn‖η‖h(n)‖η by an identical calculation

to (4.6.5), where we use the uniform estimate for ‖Jn‖γ proven above.

From the previous proposition, uniform versions of the results in Chapter 4 go

through. In particular, letting πH(n) denote the semi-conjugacies as in Section 4.2

and φ̂n = φn ◦ πH(n) denote the lifted versions of the equivariant observables φn,

we have a sequence of martingale-coboundary decompositions

φ̂n = ψ̂n + χ̂n ◦ fH(n) − χ̂n with ψ̂n ∈ ker L̂n, (6.2.2)

where fH(n) denotes the tower map for Th(n) and L̂n denotes the transfer operator

for fH(n) . We next state the uniform results we explicitly require. The first result

is a uniform version of Proposition 4.6.2 (i).
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Proposition 6.2.7. It holds true that |ψ̂n|p ≤ C‖vn‖η‖h(n)‖η for all n ≥ 1.

The next result is a uniform version of (4.8.4).

Proposition 6.2.8. It holds true that |max1≤k≤n |χ̂n ◦ fkH(n) − χ̂n||p = o(n1/p).

We next state uniform versions of Corollary 4.8.3 (ii) and Theorem 4.1.5 (ii).

Proposition 6.2.9. It holds true that∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

ψ̂n ◦ fkH(n)

∣∣∣∣
∣∣∣∣∣
p

≤ Cn1/2‖vn‖η‖h(n)‖η for all n ≥ 1

and ∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

φn ◦ T kh(n)
∣∣∣∣
∣∣∣∣∣
2(p−1)

≤ Cn1/2‖vn‖η‖h(n)‖η for all n ≥ 1. (6.2.3)

By looking at the proof of Corollary 4.8.5, the following result is immediate

from the previous two propositions.

Corollary 6.2.10. We have the convergence

Σn = lim
k→∞

1

k

∫
X×G

( k−1∑
j=0

φn ◦ T jh(n)
)( k−1∑

j=0

φn ◦ T jh(n)
)T

dm =

∫
∆×G

ψ̂nψ̂
T
n dm∆

uniformly in n.

We now switch focus to the secondary martingale-coboundary decomposition.

Define the sequence of observables φ̃n : ∆×G→ Rd,d by

φ̃n = ÛnL̂n(ψ̂nψ̂
T
n )−

∫
∆×G

ψ̂nψ̂
T
n dm∆, (6.2.4)

where Ûn, L̂n : L1(∆×G;Rd,d)→ L1(∆×G;Rd,d) denote the Koopman and trans-

fer operators for fH(n) respectively. By the results in Section 5.2, we have the

secondary martingale-coboundary decomposition for φ̃n given by

φ̃n = ψ̃n + χ̃n ◦ fH(n) − χ̃n with φ̃n ∈ ker L̂n.
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Note that by Remark 4.8.7 and Section 5.2, in order to conclude uniformity of

the constants which arise as a result of the secondary martingale-coboundary

decomposition, it suffices to verify uniform versions of Proposition 5.2.1, Propo-

sition 5.2.5, and Proposition 5.2.6. By observing the proofs of these results, one

can see that this follows directly from the preceding results in this section. We

require the following uniform version of Proposition 5.2.9.

Proposition 6.2.11. Let φ̃n be as in (6.2.4). Then∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

φ̃n ◦ fkH(n)

∣∣∣∣
∣∣∣∣∣
2(p−1)

≤ Cn1/2‖vn‖2
η‖h(n)‖2

η for all n ≥ 1.

6.3 Proofs of the main results

Lemma 6.3.1. The sequence (|ψ̂n|2)n≥1 is uniformly integrable.

Proof. Let n ≥ 1 and recall from (4.6.8) that

ψ̂n(y, g, `) =

0 if ` ≤ τ(y)− 2,

g ·Mn(y) if ` = τ(y)− 1,

where Mn is as in Proposition 4.6.1. We begin by showing that (|Mn|2)n≥1 is

uniformly integrable. For this, note by Proposition 6.2.6 (ii) that∫
Y

(
|Mn|2

)p/2
dµY =

∫
Y

|Mn|p dµY � ‖vn‖pη‖h(n)‖pη

≤
(

sup
j≥1
‖vj‖η

)p(
sup
j≥1
‖h(j)‖η

)p
<∞.

Therefore (|Mn|2)n≥1 is Lp/2(Y ) – bounded. Since p > 2, uniform integrability

follows from Proposition 2.3.11.

We next show that this implies uniform integrability of (|ψ̂n|2)n≥1. Indeed, fix

ε > 0 and let K > 0 be such that∫
Y

|Mn|21{|Mn|2≥K} dµY ≤ ε for all n ≥ 1.
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We have∫
∆×G
|ψ̂n|21{|ψ̂n|2≥K} dm∆ = |τ |−1

1

∫
Y

|Mn|21{|Mn|2≥K} dµY

≤
∫
Y

|Mn|21{|Mn|2≥K} dµY ≤ ε for all n ≥ 1.

This completes the proof.

Proof of Theorem 6.1.3. We first note that it suffices to prove (ii), for then (i)

follows immediately from the same argument as in Remark 2.3.7. For n ≥
1, define the random elements Ŵn, M̂n : ∆ × G → D([0,∞);Rd) by Ŵn(t) =

n−1/2
∑[nt]−1

k=0 φ̂n ◦ fkH(n) and M̂n(t) = n−1/2
∑[nt]−1

k=0 ψ̂n ◦ fkH(n) for t ≥ 0. Note that

since each Σn commutes with the action of G on Rd, it follows that Σ commutes

with the action of G on Rd. Since πH(n) is a semi-conjugacy for all n ≥ 1, it follows

from Proposition 4.2.3 that (φn ◦ T kh(n))k≥0 ∼ (φ̂n ◦ fkH(n))k≥0 for all n ≥ 1, and so

it suffices to show that Ŵn →w W in D([0,∞);Rd).

We begin by showing that M̂n →w W in D([0,∞);Rd). First note that each

ψ̂n lies in L2(∆×G;Rd) by Proposition 6.2.7. Moreover, ψ̂n ∈ ker L̂n by (6.2.2).

By Lemma 6.3.1, the family (ψ̂n|2)n≥1 is uniformly integrable. Next, for each

t ≥ 0, we have from (6.2.4) that

1

n

[nt]−1∑
k=0

ÛnL̂n(ψ̂nψ̂
T
n ) ◦ fkH(n) − tΣ =

1

n

[nt]−1∑
k=0

(φ̃n ◦ fkH(n) + Σn)− tΣ

=
1

n

[nt]−1∑
k=0

φ̃n ◦ fkH(n) +

(
[nt]

n
Σn − tΣ

)
. (6.3.1)

Now, we have from Proposition 6.2.11 that

1

n

∣∣∣∣ n−1∑
k=0

φ̃n ◦ fkH(n)

∣∣∣∣
2(p−1)

≤ 1

n

∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
k=0

φ̃n ◦ fkH(n)

∣∣∣∣
∣∣∣∣∣
2(p−1)

� n−1/2‖vn‖2
η‖h(n)‖2

η → 0.
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Therefore n−1
∑n−1

k=0 φ̃n ◦ fkH(n) → 0 in probability. Continuing (6.3.1), we have

1

n

[nt]−1∑
k=0

φ̃n ◦ fkH(n) +

(
[nt]

n
Σn − tΣ

)
=

[nt]

n

1

[nt]

[nt]−1∑
k=0

φ̃n ◦ fkH(n) +

(
[nt]

nt
tΣn − tΣ

)
→ 0 in probability.

Therefore, it follows from Theorem 2.8.7 that M̂n →w W in D([0,∞);Rd).

We next show that this implies convergence of Ŵn. Observe that for any

T > 0, we have from [92] that M̂n →w W in D([0, T ];Rd). Moreover, note that

sup
t∈[0,T ]

∣∣Ŵn(t)− M̂n(t)
∣∣ =

1√
n

sup
t∈[0,T ]

∣∣∣∣ [nt]−1∑
k=0

χ̂n ◦ fk+1
H(n) − χ̂n ◦ fkH(n)

∣∣∣∣
=

1√
n

sup
t∈[0,T ]

|χ̂n ◦ f [nt]

H(n) − χ̂n| ≤
1

n1/p
max

1≤k≤[nT ]
|χ̂n ◦ fkH(n) − χ̂n|.

It follows from Proposition 6.2.8 that supt∈[0,T ] |Ŵn(t) − M̂n(t)| → 0 in proba-

bility. Setting s to be the Skorokhod metric defined on D([0, T ];Rd), we have

s(Ŵn, M̂n) → 0 in probability. Therefore, we have from Theorem 2.3.9 that

Ŵn →w W in D([0, T ];Rd). Since T > 0 is arbitrary, we have from [92] that

Ŵn →w W in D([0,∞);Rd), as required.

Proof of Theorem 6.1.4. Given a matrix Σ ∈ Rd,d, let WΣ denote the Brownian

motion with mean 0 and covariance Σ. To prove (i), we show that any subsequence

has a further subsequence which is weakly convergent. The result then follows

from Theorem 2.3.14. Let (Wnk) be a subsequence. Note that from (5.2.4) and

Proposition 6.2.7, we have (Σnk) is bounded. Therefore, we can pass to a further

subsequence (Wnk`
) along which Σnk`

→ Σ for some Σ ∈ S. By Theorem 6.1.3 (ii),

we have Wnk`
→w WΣ, and tightness follows.

For (ii), let W ∈ W and suppose (Wnk) is a subsequence of (Wn) such that

Wnk →w W . From the argument in (i), we can pass to a further subsequence

(Wnk`
) along which Wnk`

→w WΣ for some Σ ∈ S. By weak convergence of

Wnk to W , it follows that W ∼ WΣ and any weak limit is of the required form.

Suppose now that Σ ∈ S. Then there exists a subsequence (Σnk) of (Σn) such
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that limk→∞Σnk = Σ. It follows from Theorem 6.1.3 (ii) that Wnk →w WΣ, so

that WΣ ∈ W .

Proof of Theorem 6.1.5. Note that by (6.2.3), we have

n
−(p−1)
k

∫
X×G

∣∣∣∣ nk−1∑
j=0

φnk ◦ T
j

h(nk)

∣∣∣∣2(p−1)

dm

� n
−(p−1)
k n

2(p−1)/2
k ‖vnk‖2(p−1)

η ‖h(nk)‖2(p−1)
η

�
(

sup
j≥0
‖vj‖η

)2(p−1)(
sup
j≥0
‖h(j)‖η

)2(p−1)
<∞.

In particular, if 0 < q < 2(p− 1), then (|Wnk(1)|q)k≥1 is L2(p−1)/q – bounded, and

hence uniformly integrable by Proposition 2.3.11. The result now follows from

Proposition 2.3.12.

6.4 Application to homogenisation

There is considerable interest in understanding how stochastic behaviour emerges

from deterministic systems. One method is via homogenisation, in which de-

terministic systems with multiple timescales converge to a stochastic differential

equation. In particular, there has been much interest in the homogenisation of

fast-slow dynamical systems [18, 38, 52, 53, 75]. To conclude the thesis, we give

such an application of our results. We first formulate the setup.

As in Section 6.1, we let T : X → X be non-uniformly expanding and G be a

compact connected Lie group with fixed representation into O(d). Consider the

family of compact group extensions with base T , given by Th(ε) : X ×G→ X ×G
for ε ∈ [0, ε0), where ε0 > 0. The cocycles h(ε) : X → G are η – Hölder and satisfy

supε∈[0,ε0) ‖h(ε)‖η < ∞. For all ε ∈ [0, ε0) the probability measure m = µ × ν is

Th(ε) – invariant and is assumed to be ergodic as in Remark 4.1.1. We consider the

family of equivariant Hölder observables φε : X × G → Rd defined by φε = g · vε,
where vε : X → Rd satisfies

sup
ε∈[0,ε0)

‖vε‖η <∞ and lim
ε→0
|vε − v0|∞ = 0. (6.4.1)
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We make the following additional assumptions on the cocycles:

Assumption 6.4.1. There exists C > 0 such that

|h(ε) − h(0)|∞ ≤ Cε for all ε ∈ [0, ε0). (6.4.2)

Moreover, the induced compact group extension FH(0) is assumed to be mixing as

in Remark 6.1.2.

Remark 6.4.2. With this assumption, the results from the previous two sections

go through for the family of compact group extensions Th(ε) and equivariant ob-

servables φε.

We study discrete fast-slow dynamical systems of the form

zε(n+ 1) = zε(n) + ε2aε
(
zε(n), uε(n)

)
+ εφε

(
uε(n)

)
, zε(0) = ξε. (6.4.3)

The slow dynamics zε(n) ∈ Rd have initial condition ξε, and given uε(0) ∈ X ×G,

the fast dynamics uε(n+ 1) = Th(ε)(uε(n)) are generated by the family of compact

group extensions defined above. Here aε : Rd × X × G → Rd is defined and

continuous for ε ∈ [0, ε0), and the only source of randomness in the dynamics is

the initial condition uε(0). We make the following regularity assumptions:

Assumption 6.4.3. The function aε and initial condition ξε in (6.4.3) satisfy the

following:

(i) limε→0 ξε = ξ0.

(ii) There is a constant L ≥ 1 such that

|aε|∞ ≤ L and Lip(aε) = sup
z 6=z′

sup
(x,g)

∣∣aε(z, x, g)− aε(z′, x, g)
∣∣

|z − z′|
≤ L

for all ε ∈ [0, ε0).

(iii) limε→0 |aε − a0|∞ = 0.
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(iv) a0(z, x, g) = g · a′0(z, x) for some a′0 : Rd ×X → Rd which satisfies

‖a′0(z, ·)‖η <∞ (6.4.4)

for all z ∈ Rd.

We set out some notation for the next theorem. For z ∈ Rd, let us define

αz : X ×G→ Rd by

αz(x, g) = a0(z, x, g).

Let P : Rd → Rd be defined by

P (z) =

∫
X×G

αz(x, g) dm.

Let

Σ0 = lim
n→∞

1

n

∫
X×G

( n−1∑
k=0

φ0 ◦ T kh(0)
)( n−1∑

k=0

φ0 ◦ T kh(0)
)T

dm

and let W denote the Brownian motion with mean 0 and covariance matrix Σ0.

Define ẑε ∈ D([0,∞);Rd) by ẑε(t) = zε([tε
−2]) for t ≥ 0.

Theorem 6.4.4. P is Lipschitz and ẑε →w Z in D([0,∞);Rd) as ε → 0, where

Z is the solution to the integral equation2

Zt = ξ0 +

∫ t

0

P (Zs) ds+Wt, t ≥ 0.

Proof. By [60, Theorem 6.3 and Remark 6.4] (where xε, yε, and X in the cited

paper corresponds to our zε, uε and Z), it suffices to show:

(i) For all z ∈ Rd,

lim
ε→0

∫
X×G

∣∣∣∣ε1/2 [ε−1/2]−1∑
k=0

αz ◦ T kh(ε) −
∫
X×G

αz dm

∣∣∣∣ dm = 0.

2Equivalently, one can write this as the stochastic differential equation dZ = P (Z) dt+ dW

with initial condition Z(0) = ξ0.
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(ii) The family of random elements Wε : X×G→ D([0,∞);Rd) defined for t ≥ 0

by

Wε(t) = ε

[tε−2]−1∑
k=0

φε ◦ T kh(ε)

satisfies Wε →w W in D([0,∞);Rd) as ε→ 0.

We first prove (i). Fix z ∈ Rd and define βz : X × G → Rd by βz(x, g) =

αz(x, g) −
∫
X×G αz dm. Note that

∫
X×G βz dm = 0. Moreover, by invariance of

the Haar measure, we have∫
X×G

αz(x, h) dm(x, h) =

∫
X×G

αz(x, gh) dm(x, h) =

∫
X×G

a0(z, x, gh) dm(x, h)

=

∫
X×G

gh · a′0(z, x) dm(x, h) = g ·
(∫

X×G
h · a′0(z, x) dm(x, h)

)
= g ·

(∫
X×G

a0(z, x, h) dm(x, h)

)
= g ·

(∫
X×G

αz(x, h) dm(x, h)

)
.

Therefore

βz(x, g) = g · a′0(z, x)− g ·
(∫

X×G
αz dm

)
= g · β′z(x),

where β′z : X → Rd is defined by

β′z(x) = a′0(z, x)−
∫
X×G

αz dm.

Now, by (6.4.4), we have ‖β′z‖η <∞. It follows from (6.2.3) that

∫
X×G

∣∣∣∣ [ε−1/2]−1∑
k=0

ε1/2βz ◦ T kh(ε)
∣∣∣∣ dm� ε1/2

(
[ε−1/2]

)1/2‖vε‖η‖h(ε)‖η

≤ ε1/4 sup
ε∈[0,ε0)

‖vε‖η sup
ε∈[0,ε0)

‖h(ε)‖η → 0 as ε→ 0.
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Therefore∫
X×G

∣∣∣∣ε1/2 [ε−1/2]−1∑
k=0

αz ◦ T kh(ε) −
∫
X×G

αz dm

∣∣∣∣ dm
≤
∫
X×G

∣∣∣∣ [ε−1/2]−1∑
k=0

ε1/2βz ◦ T kh(ε)
∣∣∣∣ dm+

∫
X×G

∣∣ε1/2[ε−1/2]αz − αz
∣∣ dm

→ 0 as ε→ 0,

proving (i).

We now prove (ii). For ε ∈ [0, ε0), let us define the family of covariance matrices

Σε = lim
n→∞

1

n

∫
X×G

(Snφε)(Snφε)
T dm,

where

Snφε =
n−1∑
k=0

φε ◦ T kh(ε) .

By Theorem 6.1.3 (ii), it suffices to show that that limε→0 Σε = Σ0. Write

Iε,n =

∫
X×G

(Snφε)(Snφε)
T dm,

and let δ > 0. By Corollary 6.2.10, there exists N ≥ 1 such that ‖N−1Iε,N−Σε‖ <
δ for all ε ∈ [0, ε0). Note that

‖Iε,N − I0,N‖ ≤
∣∣(SNφε)(SNφε)T − (SNφ0)(SNφ0)T

∣∣
1

≤
(
|SNφε|2 + |SNφ0|2

)
|SNφε − SNφ0|2 ≤ N

(
|vε|∞ + |v0|∞

)
|SNφε − SNφ0|2.

We show that this converges to 0 as ε → 0. Note first that N(|vε|∞ + |v0|∞) ≤
2N supε∈[0,ε0) ‖vε‖η <∞ by (6.4.1). Next note that

|SNφε − SNφ0| ≤
N−1∑
k=0

|φε − φ0| ◦ T kh(ε) +
N−1∑
k=0

|φ0 ◦ T kh(ε) − φ0 ◦ T kh(0) | =: I + II.

We have

I ≤ N |vε − v0|∞ → 0 as ε→ 0
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by (6.4.1). For II, first observe that for ε ∈ [0, ε0), (x, g) ∈ X ×G, and 0 ≤ k ≤
N − 1, we have

φ0

(
T kh(ε)(x, g)

)
= φ0

(
T kx, gh

(ε)
k (x)

)
= gh

(ε)
k (x) · v0(T kx),

where h
(ε)
k = h(ε) h(ε) ◦ T · · ·h(ε) ◦ T k−1. Therefore

N−1∑
k=0

∣∣φ0 ◦ T kh(ε)(x, g)− φ0 ◦ T kh(0)(x, g)
∣∣ ≤ N−1∑

k=0

|v0|∞
∥∥h(ε)

k (x)− h(0)
k (x)

∥∥.
Moreover, by an identical argument to the proof of (4.4.1), we have

∥∥h(ε)
k (x)− h(0)

k (x)
∥∥ ≤ k−1∑

j=0

∥∥h(ε)(T jx)− h(0)(T jx)
∥∥ ≤ k|h(ε) − h(0)|∞ � kε

by (6.4.2). It follows that

II �
N−1∑
k=0

|v0|∞kε =
ε(N − 1)N

2
|v0|∞ → 0 as ε→ 0.

Therefore |SNφε − SNφ0| → 0 as ε→ 0. In addition,

|SNφε − SNφ0| ≤ |SNφε|+ |SNφ0| ≤ N |vε|∞ +N |v0|∞ ≤ 2N sup
ε∈[0,ε)

‖vε‖η <∞

by (6.4.1), and hence |SNφε−SNφ0|2 → 0 as ε→ 0 by the dominated convergence

theorem. We conclude that limε→0 Iε,N = I0,N . Since

‖Σε − Σ0‖ ≤ ‖N−1Iε,N − Σε‖+N−1‖Iε,N − I0,N‖+ ‖N−1I0,N − Σ0‖

< 2δ +N−1‖Iε,N − I0,N‖,

it follows that limε→0 Σε = Σ0, as required.
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under dependence. Ann. Probab., 42(2):794–817, 2014.

[7] I. Berkes and W. Philipp. Approximation theorems for independent and

weakly dependent random vectors. Ann. Probab., 7(1):29–54, 1979.
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[96] M. Tyran-Kamińska. An invariance principle for maps with polynomial

decay of correlations. Comm. Math. Phys., 260(1):1–15, 2005.

[97] M. Viana. Multidimensional nonhyperbolic attractors. Publ. Math. Inst.

Hautes Études Sci., 85:63–96, 1997.

[98] P. Walters. An Introduction to Ergodic Theory. Graduate Texts in Mathe-

matics. Springer, 2000.

[99] N. Wiener. Differential-space. J. Math. Phys., 2(1-4):131–174, 1923.

[100] D. Williams. Probability with Martingales. Cambridge Mathematical Text-

books. Cambridge University Press, 1991.

[101] L.-S. Young. Statistical properties of dynamical systems with some hyper-

bolicity. Ann. of Math., 147(3):585–650, 1998.

[102] L.-S. Young. Recurrence times and rates of mixing. Israel J. Math.,

110(1):153–188, 1999.

[103] R. Zweimüller. Mixing limit theorems for ergodic transformations. J. The-

oret. Probab., 20(4):1059–1071, 2007.

134


	List of Figures
	Acknowledgements
	Declarations
	Abstract
	Introduction
	Preliminaries
	Notation
	Ergodicity and basic constructions
	Convergence of probability measures
	Martingale theory
	The Koopman and transfer operators
	Peter-Weyl theorem
	Separation of spectrum
	Martingale-coboundary decomposition

	Non-uniformly expanding dynamical systems
	Outline
	Definition and examples
	Existence of ergodic absolutely continuous invariant probability measures for Gibbs-Markov maps
	Representation as Young tower over induced Gibbs-Markov map

	Primary martingale-coboundary decomposition
	Outline
	Compact group extension of Young tower
	Twisted transfer operators
	Basic properties of V
	Spectral properties of PH
	Construction of the primary decomposition
	Proofs of Theorem 4.1.1 and Theorem 4.1.2
	Moment estimates and covariance matrix
	Examples

	Secondary martingale-coboundary decomposition
	Outline
	Construction of the secondary decomposition
	Almost sure invariance principle and consequences

	Generalisation to sequences of compact group extensions
	Outline
	Uniformity for the primary and secondary decompositions
	Proofs of the main results
	Application to homogenisation

	Bibliography
	Insert from: "WRAP_Coversheet_Theses_PhD.pdf"
	http://wrap.warwick.ac.uk/149210


