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Abstract: Investigating characteristics for the secondary breakup of dropping liquid is a fundamental
scientific and practical problem in multiphase flow. For its solving, it is necessary to consider the
features of both the main hydrodynamic and secondary processes during spray granulation and
vibration separation of heterogeneous systems. A significant difficulty in modeling the secondary
breakup process is that in most technological processes, the breakup of droplets and bubbles
occurs through the simultaneous action of several dispersion mechanisms. In this case, the existing
mathematical models based on criterion equations do not allow establishing the change over time of
the process’s main characteristics. Therefore, the present article aims to solve an urgent scientific and
practical problem of studying the nonstationary process of the secondary breakup of liquid droplets
under the condition of the vibrational impact of oscillatory elements. Methods of mathematical
modeling were used to achieve this goal. This modeling allows obtaining analytical expressions to
describe the breakup characteristics. As a result of modeling, the droplet size’s critical value was
evaluated depending on the oscillation frequency. Additionally, the analytical expression for the
critical frequency was obtained. The proposed methodology was derived for a range of droplet
diameters of 1.6–2.6 mm. The critical value of the diameter for unstable droplets was also determined,
and the dependence for breakup time was established. Notably, for the critical diameter in a range of
1.90–2.05 mm, the breakup time was about 0.017 s. The reliability of the proposed methodology was
confirmed experimentally by the dependencies between the Ohnesorge and Reynolds numbers for
different prilling process modes.
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1. Introduction

Scientific research of the processes of vibrational prilling [1,2], granulation [3,4] and separation of
gas-dispersed systems [5,6] is an essential problem that has not been wholly studied is the mechanism
of the breakup of dropping liquid. In this regard, a crucial hydrodynamic criterion that determines
the behavior of droplets in a heterogeneous environment [7] is the Weber number (We) [8]. Its critical
value [9] was experimentally evaluated in the articles [10,11], which aimed to define the single droplet
breakup and simulations of droplet deformations in airflow.

The main areas of use of dispersed systems are as follows: production of granulated fertilizers;
development of compact cooling towers of power plants and monodisperse nozzles; granulation of
nuclear fuel; granulation of vitamin preparations; development of express systems for the diagnosis of
cells and bioactive substances; development of new composite-based granular materials; designing
micro dispensers for medical and biological products; dispensers for rare substances; droplet generators
for studying combustion processes, as well as for heat and mass transfer; drip radio space heat
exchangers and contactless fueling systems. Consequently, the dispersed systems have gained
popularity since they ensure resource conservation, environmental friendliness and quality of new
products obtained in technological processes.

When the critical Weber number is exceeded, the secondary breakup occurs. However,
the proposed values differ significantly [12]. Mainly, D. Pazhi and V. Galustov in 1984 developed the
fundamentals of spraying liquids [13]. As a result, it was experimentally obtained that the Weber
number is in a range of Wecr = 4–20.

Moreover, under conditions close to critical, the mechanisms of droplet breakup significantly
differ. In this case, there are two types of droplet breakup: vibration mode and consequent destruction
of the droplet with the formation of a thin film. Additionally, it was experimentally established that
the mechanism of breaking up the droplet liquid depends on the hydrodynamic characteristics of the
nonstationary flow, which affects the duration of the effect of the gas flow on the droplet.

According to the various conditions of the process, which were previously studied by
S. Ponikarov [14] from the Department of Machines and Apparatus for Chemical Production at
Kazan National Research Technological University, L. Ivlev and Y. Dovgalyuk [15] from the Research
Institute of Chemistry at Saint Petersburgh University, as well as A. Cherdantsev [16] from the Nonlinear
Wave Processes Laboratory at Novosibirsk State University, there are different mechanisms of the
droplet breakup. The first one is blowing up the middle of a droplet with the subsequent breaking up
the toroidal particle. The second one is in the disordered breakup of the droplet into several particles.
The last one is in tearing small droplets from the surface of the droplet blown by the flow.

Thus, the study of the characteristics for the secondary breakup of the dropping liquid is an
urgent scientific and practical problem. Its solution will allow considering the peculiarities of the
operating processes of the prilling [17,18], separation of heterogeneous systems [19,20], pneumatic
classification [21,22], spraying of liquid mixtures [23,24] and other hydromechanical, heat and mass
transfer processes.

In major technological processes, the breakup of droplets and bubbles occurs with the simultaneous
action of several dispersing mechanisms. However, there are significant difficulties in creating
mathematical models of breakup liquid droplets and finding accurate analytical solutions. Two types of
instability of the typical wave nature occurring in different particle surface parts have been established.

The first mechanism, the Kelvin–Helmholtz instability, occurs in the presence of a shift between
the layers of a continuous environment or when two contact media have a significant difference in
their velocities [25]. In this case, the boundary layer is failed, when the Weber number is relatively
small. When the Weber number exceeds its critical value, microparticles are separated due to wave
perturbations on the droplet’s side surface.

The Rayleigh instability [26] is the second mechanism related to the spontaneous increase in
pressure, density and velocity pulsations in the inhomogeneous environment in a gravitational field
or moves with acceleration [27]. For example, on the frontal surface of a falling droplet, oscillations
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occur under the free-fall acceleration. The side surface layer oscillates as a result of the maximum flow
velocity. Simultaneously, the particle breakup mechanism under turbulent pulsations’ influence has a
different character and acts on the particle surface [28].

Thus, droplets’ breakup is quite complicated and determined by the ratio of inertia forces, surface
tension, viscosity and other factors.

2. Literature Review

In the article [9], it is noted that a complete model for the aerodynamic breakup of liquid droplets
has not been developed. All existing ideas about the laws of breakup and the determining parameters
are mainly obtained from the experiment. The most studied is droplet breakup in shock waves. Notably,
the main process parameters are the dimensionless criteria of Weber (We), Laplace (La) or Ohnesorge
(Oh), Bond (Bo) and Strouchal (Sh). Notably, the Weber number has the most significant influence on
the breakup mode [29]. Moreover, according to the Weber number, there are different classifications of
breakup modes, distinguishing six [30] or five [9] main mechanisms. Furthermore, according to the
previous experience, the most consistent with the up-to-date concepts, the classification of droplet
breakup modes for low-viscosity liquids should be considered.

In 1988, M. Clark conceptually studied the droplet breakup model in a turbulent flow [31]. In 1998,
W. Ye, W. Zhang and G. Chen [32] investigated the effect of Rayleigh–Plateau instability for a wide
range of wavelengths numerically. In 1999, L. Ivlev and Y. Dovgalyuk [15] studied blowing up the
middle of a droplet to save its toroidal shape with the subsequent disintegration. They developed the
methodology to research the disordered destruction of the droplet. In 2020, G. Chiandussi, G. Bugeda
and E. Onate [33] proposed variable shape definition with C0, C1 and C2 continuity functions in shape
optimization problems. In 2019, A. Cherdantsev, in his D.Sc. thesis, “The wave structure of a liquid
film and the processes of dispersed phase exchange in a dispersed-annular gas–liquid flow” [16]
investigated the process of tearing small particles from the surface of a droplet.

Since the Khyentse–Kolmogorov’s equation cannot be applied to describe the breakup of liquid
due to the velocity gradient, which excludes the hypothesis of isotropic turbulence. Consequent
research of V. Sklabinskyi and B. Kholin solved this problem [34] by considering the velocity gradient.

The breakup’s nature is significantly different for different characteristic velocities of the continuous
and dispersed phases’ relative motion. In 1984, S. Ponikarov, in his D.Sc. thesis, “Droplet breakup
in centrifugal equipment of chemical plants” [14] conducted a comparative analysis of theoretical
and experimental studies of the droplet breakup process. It was established that there are several
fundamental mechanisms of the breakup, which correspond to different ranges of the Weber number.

The viscous friction can crush liquid droplets and bubbles entering the shear flow of a continuous
environment. Thus, G. Kelbaliev and Z. Ibragimov, in their research work [35], studied the droplet
breakup process in the Quetta stream. They found that a droplet breakup in a turbulent gas flow
occurs differently if the environment’s density is insignificant compared to the droplet density. In this
case, inertial effects play an essential role in the mechanism of the droplet breakup. Experimental
confirmation of a critical Weber number was presented in the research work [36].

It has also been established that there are at least two mechanisms of the breakup [37]. At a
specific ratio of the length of the drop to its diameter, the breakup occurs with the formation of two new
particles of approximately equal size. Suppose this ratio is not met, the droplet thin in several places at
once. Another mechanism of the breakup is that the smaller droplet is moved away from a larger one.
This mechanism is observed when the vortex velocity becomes critical, making the unstable droplets.

Additionally, the developed mathematical model describes gas-dynamic processes during mixture
formation and evaporation of liquid droplets in the nonstationary supersonic flow. This technique
allows for designing air-jet engines, power plants, high-performance ejectors, heaters and various
technological devices. Additionally, droplet breakup’s experimental technique in a stream with a shock
wave was presented in [38].
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Moreover, the research [39] is devoted to identifying zones of jet self-oscillations as the Hartmann
effect and determining the corresponding oscillation frequency at which the process of a fluid jet
breakup occurs.

In 2019, Z. Wu, B. Lv and T. Cao improved the Taylor analogy breakup (TAB) and Clark models
for droplet deformations [40]. However, these models still operate by linear differential equations,
in which inertia, stiffness and damping coefficients are expressed through the similarity criteria.
Such approaches, mainly, do not allow substantiating a critical value of the Weber number.

Preliminary analysis of the research works on the process of the breakup of liquid droplets in
a wide range of changes in Reynolds, Weber and Laplace numbers [41] indicates the existence of
different types of the gas-dynamic breakup differing in intensity and trajectories of detached parts of
droplets [42].

Finally, in 2001, B. Gelfand et al. experimentally determined that the Weber number’s values
less than its critical value do not lead to droplets’ breakup [43]. This hypothesis requires a theoretical
justification, which is realized below. Moreover, there is still no reliable mathematical model of the
breakup process that analytically determines the Weber number’s critical value.

The presence of many up-to-date studies also emphasizes the urgency of the considered problem.
Particularly, D. Kim and P. Moin [44] developed the subgrid-scale capillary breakup model for liquid
jet atomization. X. Li et al. [45] studied the breakup dynamics of the low-density gas–liquid interface
during the Taylor bubble formation. A. Salari et al. [46] investigated the breakup of bubbles and droplets
in microfluidics. N. Speirs et al. [47] studied jet breakup in normal liquids. C. Tirell, M.-C. Renoult
and C. Dumouchel [48] proposed the methodology for measuring extensional properties during a
jet breakup. A. Dziedzic et al. [49] studied the substrate effects on the breakup of liquid filaments.
J. Zhang et al. [50] investigated the process of an in-fiber breakup. Finally, J.-P. Guo et al. [51] proposed
the instability breakup model of fuel jets.

The critical overview of the above studies allows stating the following research gaps.
First, since generally, the critical Weber number varies significantly in a range of 4–20 for the
secondary breakup of droplets, its range should be narrowed for the particular range of droplet
diameters. Second, the proposed methodologies generally operate with similarity criteria and empiric
constants. As a result, the droplet breakup time and the Weber number’s critical values were not still
substantiated analytically.

3. Research Methodology

3.1. A Mathematical Model

At the foundation of the breakup of liquid droplets is a mechanism according to which the
deformation of a droplet takes the form of an elongated ellipsoid with the subsequent transformation of
its shape and disintegrating into two approximately equal particles. Therefore, the process of breakup
of a droplet into two equal parts of the spherical shape is considered below.

In the initial stage, this process can be described as a deviation from the equilibrium state. The last
one is determined by the action of inertia forces m1aC1, gravity G, Archimedes force FA and surface
tension force Fσ (Figure 1).

For the description of the proposed mathematical model, the following changes were considered
in the geometry of a droplet and the description of the forces’ impact on it. At the initial time (t = 0),
the drop is spherical. Before its crushing, forces of inertia, gravity and Archimedes act. Further, at the
initial stage of secondary crushing, the surface tension force is changed due to the change in the
angle of inclination of the tangent to the forming secondary droplet. This angle changes as the drop
are breaking.

Consequently, the surface tension force makes a time-varying contribution to the overall force action.
In this case, the total mass of the main drop and the satellite remains unchanged. Finally, the secondary
breakup time is determined from the separation of a single droplet into a couple of droplets.
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Figure 1. The design scheme of the secondary breakup at the initial stage.

Under these forces’ actions, the mass centers of a couple of mass m1 (kg) reached acceleration
aC1 (m/s2). In this case, the fundamental equation describing the motion of a single droplet has the
following form:

m1aC1 = G− FA + Fσ cos ∆α, (1)

where m1 = ρp(V/
− Vs) is the mass of a droplet, kg; aC1 = 0.5d2∆z/dt2 is the acceleration of the mass

center (m/s2), determined as the second derivative from the relative distance of the droplet parts ∆z (m)
with respect to time t (s); ∆α is wetting angle (rad).

The following dependencies determine the acting forces mentioned above:

G = mpg = ρpgV; FA = ρmgV; Fσ = σL, (2)

where g–gravitational acceleration (m/s2); mp—mass (kg) of a droplet with volume V (m3); ρp, ρm—the
densities of the dropping liquid and the environment, respectively (kg/m3); σ—surface tension
coefficient (N/m); L—the perimeter of the wetted contour (m).

Droplet volume V = 2(V/
− Vs) is defined as the double difference of its spherical part (V/) and

segment (Vs):

V/ =
4
3
πr3; Vs = πh2

(
r−

h
3

)
, (3)

where r = (R − ∆r)—the current radius of droplets (m), which is defined as the difference between its
initial value R and the magnitude of the change in radius ∆r due to its breakup; h = (r − 0.5∆z)—the
height of the spherical segment, which is associated with the relative displacement ∆z of the parts.

The dependence between the change in radius ∆r of a droplet and its displacement ∆z can be
determined from the conservation law for mass:

ρV = ρV0, (4)

where V0 = 4πR3/3–initial volume (m3).
Considering Equation (3) after identical transformations allows writing cubic equation concerning

dimensionless ratio ∆z/R:

1
12

(∆z
R

)3
−

(
1−

∆r
R

)2 ∆z
R

+ 4
∆r
R

[
1−

∆r
R

+
1
3

(∆r
R

)2]
= 0. (5)
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At the initial stage of the drop breakup, when the relative displacement is insignificant in
comparison to the initial radius (∆z << R), the above equation is reduced to a linear one, and the
dependence between the parameters ∆z and ∆r takes the following form:

∆z = 4∆r
1− ∆r

R + 1
3

(
∆r
R

)2(
1− ∆r

R

)2 = 0. (6)

From the condition of the breakup process completion, it can be established that the reduction
of the radius ∆r does not exceed its maximum value ∆rmax = (1 − 21/3) ≈ 0.2. In this case, the last
expression can be reduced to a simplified one in a linearized form as ∆z ≈ 0.25∆r (Figure 2).
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The wetting angle ∆α included in the droplet motion’s fundamental equation is determined by
the following trigonometric expression:

∆α = arcsin
∆z/2

r
≈

∆z
2R′

(7)

It is simplified, which occurs at the initial stage of the droplet breakup (considering the relatively
small values of parameters ∆z and ∆r) and applying the first limit.

Additionally, in the first approximation, the perimeter of the wetting contour can be determined
by the following dependence:

L = 2π

√
r2 −

(∆z
2

)2
≈ 2πR

(
1−

∆z
4R

)
. (8)

Substitution of expression (2) to Equation (1) considering Formulas (7) and (8) allows rewriting
the equation of motion in the following form:

∆
..
z

2
=

(
1−

ρm

ρp

)
g−

3σ
ρpR2

(
1−

∆z
4R

)
. (9)

Notably, in stationary mode (d2∆z/dt2 = 0; ∆z = ∆z0 = const), the droplet breakup occurs under
the following condition:

∆z0 = 4R

1− ρpR2

3σ

(
1−

ρm

ρp

)
g

. (10)
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In this regard, limit value dcr = 2R of the unstable droplets’ diameter is determined from the
condition of zero displacement ∆z0. Thus, in the case of relatively heavy drops (ρp >> ρm), it can be
obtained as follows:

dcr =

√
12σ
ρpg

. (11)

3.2. A particular Solution of the Model

Applying the method of variations allows considering the nonstationary relative motion of a
droplet near its equilibrium position. In this case, the displacement of the droplet ∆z = (∆z0 + δz) is
defined as a sum of the stationary component ∆z0 and variation δz relative to the equilibrium state,
and the differential equation of motion in variations takes the following form:

δ
..
z =

3σ
2ρpR3 δz. (12)

A general solution has the following form:

δz(t) = C1shλt + C2chλt, (13)

where the following oscillatory parameter is introduced (s−1):

λ =

√
3σ

2ρpR3 =

√
2πσ
mp

. (14)

Integration constants C1, C2 are determined from the initial conditions. Particularly, for zero
initial deviation δz(0) = 0 and velocity (dδz/dt)|t = 0 = v0 it can be obtained C1 = v0/λ and C2 = 0.
Thus, solution (13) takes the following form:

δz(t) =
v0

λ
shλt. (15)

4. Results

4.1. A Critical Value of the Weber Number

The resulting dependence allows evaluating the time Ts(s) of droplet breakup. According to the
condition:

δz(Ts) =
R
3√2

=
v0

λ
shλTs, (16)

the following time can be obtained:

Ts =
1
λ

ln

 2.44
√

We
+

√
1 +

5.94
We

 (17)

where We = ρpv0
2R/σ is the Weber number as the ratio of the specific inertia and the surface tension forces.

It should be noted that the critical value of the Weber number Wecr = 3π/41/3
≈ 5.94 obtained from

this formula allows considering individual cases of solving the Equation (17). Notably, in the case of
significant velocities (We >> Wecr), the breakup time does not depend on the Weber number due to the
relative smallness of the surface tension forces compared with the inertia forces. In this case, the last
formula is approximately equal to the following one:

Ts1 ≈
0.8R
v0

. (18)
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Introduction of the Ohnesorge and Laplace numbers [52]:

Oh =

√
We

Re
=

1
√

La
(19)

allows obtaining the critical values of the Ohnesorge and Laplace numbers:

Ohcr =
1
√

Lacr
=

√
Wecr

Re
=

2.44
Re

. (20)

The theoretical line of this dependence is graphically presented in Figure 3.
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On the other hand, for relatively slow droplets (We << Wecr), the following approximation can
be written:

Ts2 ≈
1
λ

ln
1.6λR

v0
=

1
2λ

(3.18− lnWe). (21)

4.2. Characteristics of the Secondary Breakup

In the case of deceleration of a droplet (d2∆z/dt2 < 0), the vibration frequency, at which the
resonance of the droplet liquid occurs with its subsequent breakup, is equal to the following one (Hz):

f =
√
λ

2π
=

√
σ

2πmp
. (22)

This dependence allows obtaining the expression for the critical diameter of droplets under the
external vibrational impact:

dcr = 3

√
3σ

π2ρp f 2 . (23)

Thus, an increase in vibration frequency leads to a decrease in the size of droplets.

4.3. Consideration of the Oscillating Wall

It should be noted that the above-mentioned equation of motion for the liquid droplets does not
consider the vibration force Fv (N), which is determined by the dependence previously obtained by
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L. Blekhman et al. in the research about the volumetric effects in a fluid subjected to high-frequency
vibrations [53]:

Fv =
πρmv2

0R4

32(z0 + ∆z)2 , (24)

where v0—amplitude of vibration velocity (m/s); z0—the distance from a droplet to the source of
vibrations (m).

Notably, the vibrating force acts on the particles phase in a continuous medium near an
impenetrable wall in the normal direction. The effect of vibrational weighing is caused by the
pressure averaged over the oscillation period [54] due to convective inertia forces.

The introduction of this force allows representing the differential Equation (9) in the more
generalized form:

∆
..
z

2
=

αR

z2
0

(
1 + ∆z

z0

)2 +

(
1−

ρm

ρp

)
g−

3σ
ρpR2

(
1−

∆z
4R

)
, (25)

where α = 3v0
2(ρm/ρp)/32 is an additional parameter (m2/s2).

In variations δz relative to the stationary position z0, the last equation takes the following form:

δ
..
z +

4αR
z3

0

−
3σ

2ρpR2

δz = 0. (26)

Thus, the droplet breakup condition under the vibrational impact (Fv > Fσ) at the stability mode
limit corresponds to a zero value of the coefficient before variation δz. This fact allows determining the
critical size of droplets under the impact of the vibrational force:

dcr =
4

√√
64σz3

0

ρmv2
0

. (27)

This expression indicates that even highly dispersed particles can be involved in the secondary
breakup process when the particles approach the oscillating wall.

4.4. Consideration of the Resistance Force

For considering the impact of the resistance force Fr (N) on the secondary breakup, the right part
of the fundamental Equation (9) should be supplemented by the appropriate component. Notably,
in the case of conditionally linear dependence of the resistance force on the droplet velocity [55]:

Fr = 6πµm(R− ∆r)∆
.
z, (28)

the equation of motion in variations takes the following form:

δ
..
z +

9πνm

R2 δ
.
z =

3σ
2ρpR3 δz. (29)

where µm—dynamic viscosity of the environment (Pa·s); νm = µm/ρm—kinematic viscosity of the
environment (m2/s).

The last differential equation has a general solution:

δz(t) = C1ep1t + C2ep2t, (30)

where p1,2 = −n ±
√
λ2 + n2 are the characteristic equation’s roots containing the damping factor

n = 4.5πνm/R2 (s−1).
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For the above initial conditions, the integration constants are determined as follows:

C1,2 = ±
v0

2
√
λ2 + n2

. (31)

Finally, solution (30) takes the following form:

δz(t) =
v0

√
λ2 + n2

e−ntsh
(√
λ2 + n2t

)
. (32)

Notably, the previously obtained solution (15) is a particular case (for n = 0) of a more general
solution (30).

Considering the resistance force, the time Ts of droplet breakup reduced to finding the positive
root of the transcendental equation:

e−nTssh
(√
λ2 + n2Ts

)
=

√
λ2 + n2Ts1, (33)

which is for the case of n << λ with sufficient for practical needs accuracy can be simplified to the
following cubic equation:

1
2

n2T3
s + Ts = Ts1. (34)

Its positive root can also be determined using the methods for parameter identification of
hydromechanical processes [56], particularly by the following iteration procedure:

T<i>
s =

Ts1

1 + 0.5
(
nT<i−1>

s

)2 , (35)

where Ts1—the breakup time determined by the formula (18); i—a number of the current iteration. It is
convenient to choose the initial value of the breakup time at the initial iteration as Ts

<0> = Ts1.

4.5. Validation of the Proposed Model

4.5.1. Experimental Research Data

Investigation of hydrodynamic parameters for the secondary droplet breakup was carried out
on the modernized vibrational priller of the Department of Chemical Engineering at Sumy State
University for the following parameters: the wall thickness—1 mm; hole diameter—1 mm; modeling
liquid–water at temperature 20 ◦C; dispersion medium–air at temperature 25 ◦C. The design scheme of
the experimental stand is given in Figure 4.
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The stand functions as follows: Due to the created vacuum by pump 10, the liquid from the 
bottom of the buffer tank 9 is transferred into the pipeline. After, it is fed into pipe 3 of the upper part 
of the vibrating priller. Fluid flow is monitored by an electromagnetic flowmeter 12 and regulated by 

Figure 4. The design scheme of the experimental stand for studying the secondary breakup:
1—changeable perforated bottom (basket); 2—housing; 3—branch pipe; 4—collector; 5—filtering
element; 6—magnetostructural actuator 100—LL; 7—stock; 8—resonator disk; 9—buffer tank;
10—pump; 11—valve; 12—electromagnetic flowmeter Optiflux 2300; 13—PC; 14—low-frequency
amplifier; 15—stroboscope; 16—high-speed camera X-E2S; 17—scaled screen; 18—liquid level
meter PEP-11.

The stand functions as follows: Due to the created vacuum by pump 10, the liquid from the
bottom of the buffer tank 9 is transferred into the pipeline. After, it is fed into pipe 3 of the upper part
of the vibrating priller. Fluid flow is monitored by an electromagnetic flowmeter 12 and regulated
by a valve 11. Through pipe 3, the liquid is fed into the annular collector 4. After this, the operating
fluid passes through the filter element 5 as a perforated cylinder. As it passes through it, air bubbles
are released from the liquid volume. The filter grid is fixed on the perforated cylinder to prevent the
clogging of holes in a basket 1. The liquid then flows to the perforated bottom 1, gradually filling
its volume. The filling level is monitored by a liquid level meter 20. Under pressure created by the
hydrostatic liquid level, the liquid flows out of holes in the perforated bottom 1.

Using a particular program, PC 13 generates a vibrational signal. Using the low-frequency
amplifier 14, the magnetic actuator 6 through the rod 7 brings the resonator 8 into oscillating motion
with a given frequency (Hz) and amplitude (V). The resonator disk is placed above the central part of the
perforated bottom. The disk and the bottom’s liquid gap provide a hydrodynamic connection between
all the studied hydromechanical system elements. When imposing the vibrations, the resonator disk
performs reciprocating motion. Oscillatory waves propagate as elastic deformations in the liquid
and are transferred to the perforated bottom. As a result, regular perturbations are superimposed on
the fluid flowing from the holes. This effect causes the breakup of a liquid jet into droplets in places
of narrowing.

The obtained images (Figure 5a) can be processed using both the “Matlab” [57] and the “Digimizer”
software, particularly by the algorithm for the detection of circular elements [58]. This approach allows
determining droplets’ size and distances between them (Figure 5b).
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Figure 5. Visualizations of the secondary breakup (mm) [1]: (a) example of a photo; (b) processed image.

It should be noted that the camera was positioned perpendicular to the screen at a distance of
500 mm. This is the minimum focal length from the subject to the focal plane during photography.
The photographs of the obtained drops were processed using the program Digimizer that automatically
detects an object by measuring the geometrical characteristics. A marking grid is required to set
the measurement scale (pixels/mm) for the program when processing photos. Measurement results
were obtained using built-in algorithms to detect objects, particularly for finding round shapes and
sizing them.

The experimental results for different liquid levels are summarized in Table 1 and graphically
presented in Figure 6.

Table 1. The experimental results data for the secondary breakup of droplets.

Liquid Level (m) Flow Rate (m/s) Amplitude (V) Frequency (Hz) Droplet Diameter (mm)

0.28 1.94

4.4
240 1.60–1.80

500–520 1.80

10.6

245–260 2.25

370–380 2.00

500–520 1.80

0.38 2.44

4.4 460–560 2.20

10.6

235–240 2.60

250–260 1.85–2.35

380–390 2.35

440–480 2.30

570–590 2.00

0.49 3.11

4.4

400–430 2.30

460–500 2.25

520 2.10

10.6
260 1.90–2.05

540–575 1.80
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The data in Table 1 presents the mean values. Notably, the standard deviation does not exceed the
value of 0.02 mm.

4.5.2. An Example of Numerical Calculation

Based on the proposed methodology, an example of numerical calculation can be realized.
Particularly, as initial data, the following parameters were chosen: the modeling liquid was water
at a temperature of 20 ◦C; density of particles ρp = 1 × 103 kg/m3; surface tension coefficient
σ = 7.3 × 10−2 N/m; kinematic viscosity of the medium νm = 1.5 × 10−6 m2/s; gravitational acceleration
g = 9.81 m/s2. The oscillation frequency of the actuator f = 260 Hz, at which the secondary breakup
occurs with the formation of satellites of approximately the same size compared to the diameter of the
main droplet; the critical value of the Weber number Wecr = 5.94; the experimentally obtained range of
droplet diameters is in a range of 1.90–2.05 mm (Table 1).

The values of critical diameters determined by Formulas (11) and (26) exceed the holes’ diameter,
consequently were not considered. Thus, for this experimental case, the expression (22) allows
evaluating a breakup droplet diameter of 1.98 mm. This value falls within the range of observed values
of droplet diameters with a relative error of about 4%.

Numerical calculations allow estimating the following parameters: oscillatory parameter
λ = 3.5 × 103 s−1; damping factor n = 1.0 × 104 s−1; time of the secondary breakup Ts = 0.017 s.

5. Discussion

Due to the analytical and experimental results described above, the following detailed discussion
should emphasize a range of applicability of the proposed mathematical model and substantiate
its advantages compared to the well-known models. Remarkably, the Rayleigh instability model
describes why and how a falling stream of fluid breaks up into satellites with less surface area suitable
for substantiation of polydisperse modes. Additionally, according to the C0 continuity model [59],
the time of droplet breakup is determined more simplistically, like expression (18). However, a more
general solution (17) clarifies this approach because the droplet breakup’s mathematical model is a
nonlinear one.

Additionally, it should be noted that the numerical simulation models commonly use two spray
breakup models. The first one is the TAB model [32]. However, it should be pointed out that the
TAB model is recommended for only low-Weber-number injections and is well suited for low-speed
sprays into a standard atmosphere. Second, for Weber numbers greater than 100, the wave model is
more applicable [33]. Consequently, the proposed analytical model allows closing the gap between
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these two extreme cases. In addition, the proposed method does not operate only with similarity
criteria. It is precisely operated by the initial equations reflecting the physical and geometrical essence
of the secondary breakup. As a result, the proposed approach’s main advantage is the possibility of
analytical substantiation of the Weber number’s critical value in a range experimentally predicted by
previous researchers. Moreover, it should be noted that according to the TAB model, the breakup time
is determined numerically using empiric constants, which are dependent on the Ohnesorge, Taylor and
Weber numbers. On the other hand, the proposed technique based on Equations (17) and (32) makes it
possible to estimate droplet breakup time analytically.

It should also be noted that in the case of mainly used prilling equipment, the atomization
mode can be obtained for more than 800 Hz. This frequency depends on the height of a liquid layer,
a medium’s physical properties and the holes’ geometry. In addition, droplet breakup time can be
determined using the particle image velocimetry (PIV) method [60].

Moreover, the proposed model allows determining Weber’s critical values, Ohnesorge and Laplace
numbers for different Reynolds numbers. Particularly, expressions (21) describe the dependencies
for the Ohnesorge and Laplace numbers’ critical values for the Reynolds number’s different values.
It should be noted that the obtained range is additionally proved by the experimental results data [61].

Finally, this article significantly supplements the existing mathematical models. It allows
predicting the modes of liquid jets breakup and developing new equipment for granulating products
with improved characteristics.

6. Conclusions

Thus, the article investigates the secondary breakup of dropping liquid of the dispersed phase
in chemical technology processes. As a result, a mathematical model of the nonstationary decay of
droplets was developed. This model considers the impact of volume and surface forces on the relative
displacement of the decaying droplet.

The simulation results have allowed developing the dependence for a droplet’s critical size
and determining the required vibrational frequency. Additionally, the critical diameter of unstable
droplets was obtained, and the dependence of breakup time was calculated. These data have allowed
analytically determining the critical value of the Weber number.

Additionally, the dependencies between the Ohnesorge, Laplace and Reynolds numbers are
obtained analytically and proved experimentally. Particularly, for droplet diameters in a range of
1.6–2.6 mm, the Reynolds and Ohnesorge numbers are in a range of Re = (3.1–7.2) × 103 and
Oh = (0.35–0.81) × 10−3, correspondently.

The reliability of the achieved results was confirmed by the fact that the critical value of the Weber
number Wecr = 5.9 is in a range Wecr = 4–20, obtained experimentally by the previous researchers
D. Pazhi and V. Galustov, as well as by consistency between the determined critical size of decaying
droplets 1.98 mm and the experimentally obtained range of diameters 1.90–2.05 mm for the droplet
breakup at the oscillation frequency 240 Hz for the example of the modernized vibrational priller of
Sumy State University. In this case, the relative error is about 4%.

The obtained results can help create appropriate techniques and methodologies for designing the
vibrational prillers to get monodispersed prills and granules. Moreover, the proposed mathematical
model can also be extended to ensure the gas-dynamic equipment’s reliability for the separation of
gas–liquid systems.
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