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¿Para qué sirve la utopía?  

La utopía está en el horizonte. Camino dos pasos, ella se aleja dos 

pasos. Camino diez pasos y el horizonte se corre diez pasos más allá.  

¿Entonces, para qué sirve la utopía?  

Para eso sirve, para caminar. 

   

Fernando Birri 

 





 

vii 

 

A ACKNOWLEDGEMENTS 

Parte de esta tesis se ha escrito durante el confinamiento provocado por el Covid-19. 

El bicho nos ha llevado a una situación inesperada e imprevisible a la que nos vamos 

adaptando como buenamente podemos. A pesar de lo duro de la situación, si algo nos 

ha podido enseñar el poner el mundo en pausa es a valorar lo que es realmente 

importante para cada uno de nosotros. De todo ello, me quedo sin duda con la gente 

que durante estos años me ha acompañado. Gente muy especial en mi caso y a la que 

me gustaría dedicar unas palabras de agradecimiento en las siguientes líneas, a 

algunos por sus aportaciones a la tesis y a todos por estar ahí cuando lo he necesitado. 

En primer lugar, me gustaría agradecer a mi directora de tesis, Paloma Grau, la 

enorme confianza depositada en mí desde que llegué al Ceit y el esfuerzo realizado 

para que esta tesis salga adelante. Tengo claro que, sin tu apoyo y resolución a la 

hora de empezar la tesis, yo jamás habría tomado el camino de la investigación que 

hoy tanto disfruto y que, desde luego, hoy no estaría escribiendo estos 

agradecimientos. A mi codirector Gorka Sánchez, muchísimas gracias por tu cercanía 

y paciencia a la hora de trabajar conmigo en todo lo relacionado con el CFD. A pesar 

de que la tesis no integre finalmente el trabajo realizado en este campo, creo que la 

utilización del CFD en aguas residuales acabará siendo habitual en el futuro y que lo 

aprendido me será muy útil. Gracias a los dos por trabajar con tanta honestidad y 

rigor y por encontrar el equilibrio de hacerlo de una manera tan humana. 

Bereziki Izaro eskertu nahiko nuke, tesiari egindako ekarpen ikaragarriagatik, 

liburuan idatzita geratzen diren eta ez direnengatik. Benetan baloratzekoa da gauza 

txiki eta handietan egin duzun lan guztia, eta nola beti lagundu izan didazun inoiz ere 

aurpegi txarrik jarri gabe. Mila esker tesi hau aurrera eraman ahal izaten horrenbeste 

laguntzeagatik. 

I would like to thank my supervisor in Australia, Phil Schneider, for accepting me in 

Murdoch University as a visitor PhD student. Both your advice and friendship are 



viii  Acknowledgements 

 

 

 

 

truly appreciated. I would also like to thank Laynard, all the staff from Murdoch 

University and all the people I met in Australia. You all made it a great experience. 

Al centro tecnológico Ceit-BRTA y a la Universidad de Navarra por haberme dado 

la oportunidad de realizar esta tesis y permitirme colaborar como ayudante en varias 

asignaturas. Al Gobierno Vasco por financiar parte de la investigación con las becas 

Predoc y Predoc de Movilidad (Egonlabur) y a Caixabank por su Beca de Movilidad. 

Quisiera agradecer a mis compañeros de Ceit por haber hecho que estos ¡¡seis!! años 

pasen volando. A Enrique, director de la División de Agua y Salud por apoyar mi 

continuidad en el centro y permitir así que siga aprendiendo en esta nueva etapa. A 

Eduardo por la gran ayuda que ha supuesto para sacar adelante los artículos y de paso 

estructurar parte del contenido de la tesis. También, por la cercanía mostrada desde 

el día en que entré en Ceit para hacer la entrevista. A Luis Sancho, es un placer 

trabajar con alguien que siempre está dispuesto a enfocar las cosas con positividad y 

que favorece de tal forma el buen funcionamiento del grupo. A Tamara por ayudarme 

cada vez que he necesitado algo de West y por todo lo que me aporta en el día a día. 

A Luis Larrea, Ion Irizar, Sergio, Myriam y Garbiñe por prestarme ayuda cada vez 

que lo he necesitado. A Mikel Azcona y su entusiasmo, gracias por todo el trabajo 

realizado durante los primeros años, que nos permitió entender mejor el proceso de 

precipitación. A los investigadores de la División de Materiales por facilitarme el uso 

de sus equipos y ayudarme desinteresadamente cada vez que lo he requerido. A Alain 

y Jaime, por ser unos auténticos fueras de serie y solucionar todos y cada uno de los 

problemas informáticos y experimentales que me han surgido a lo largo del proceso 

de realizar la tesis.  

A Yaiza y a Jon por su amistad y compañía durante este viaje como doctorandos. Ha 

sido un camino largo, pero vamos acabándolo. Al resto de compañeros que han ido 

pasando estos años: Maider, Juan, Leire, Clemens, Elli, Luismi, Jesús y Andreu. A 

los alumnos que han estado en el departamento haciendo prácticas y PFGs. Al 

triangulo del mal, lo conformen quienes lo conformen. 

A un nivel más personal me gustaría agradecer a mi cuadrilla Kondarrak, a mis 

amigos de la uni y a mis amigos de Madrid, por todo lo vivido con ellos durante estos 

años. 

 



Acknowledgements  ix 

 

 

Por último, quisiera agradecer a mi familia el cariño y apoyo que me ha 

proporcionado siempre. A mis aitonas Ramón y Angelines, me da mucha pena no 

poder compartir el día de la presentación de la tesis con vosotros. No os preocupéis, 

la cabeza está encima de los hombros. Hondarribiko familia denari, attona eta amona, 

osaba-izebak eta lehengusuak, behar baino gutxiago ikusi arren oso presente 

zaituztet. Y por supuesto, a los de casa. Iñaki eta Ramon eta ama eta atta. Mila esker 

nigatik egiten duzuen denagatik ez da hitzik eskertzeko egunero ematen didazuten 

dena.  

 

Eskerrik asko denei 

Beñat 

 





 

xi 

 

A ABSTRACT 

Struvite (MgNH4PO4·6H2O) precipitation is a promising solution for phosphorus 

recovery in wastewater treatment plants. Controlled struvite precipitation can help to 

reduce eutrophication in the receiving waterways, fight global phosphorus scarcity 

and reduce operational problems generated by the uncontrolled precipitation of the 

mineral in the pipes. Due to the generated interest, the description of the precipitation 

process has been already included in existing wastewater treatment modelling 

libraries. 

However, following the classic wastewater treatment modelling approach, the 

process has been generally included as a one-step kinetic model. This one-step model 

type is limited for technological design and optimization purposes, as it does not 

include information about the mechanisms by which the precipitation occurs, nor the 

particle size distribution, a key variable for the performance of struvite as an effective 

fertilizer.  

Therefore, the aim of this thesis has been to upgrade existing one-step kinetic models 

by developing a mathematical model that could describe in detail the mechanisms 

occurring in struvite precipitation in order to be able to predict the resulting particle 

size distribution. This model is a population balance model in which hydrodynamic 

effects have been considered. 

The population balance model has been constructed according to Ceit’s plant wide 

model methodology, guaranteeing mass and charge balance. Therefore, it can be 

combined with the simulation of other unit processes used to describe wastewater 

treatment plants in a systematic and straightforward way. A sensitivity and 

collinearity analysis performed in the thesis, demonstrated that the model is coherent 

in its structure and valid to represent struvite precipitation processes.  
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In order to incorporate the hydrodynamic effects to the model, results obtained in an 

experimental campaign where struvite precipitation was analysed under different 

mixing and saturation conditions in two different experimental set-ups, were used. 

Obtained results showed that a higher mixing intensity could be linked with a faster 

pH decay, an increasing particle density and lower particle size. These effects were 

included in the population balance model using a calibration procedure based on 

Bayesian Monte Carlo techniques. From the calibration procedure, new kinetic laws 

were proposed for struvite nucleation and growth, where the effect of the 

hydrodynamics had been decoupled by explicitly including the shear rate as a process 

variable.  
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R RESUMEN 

La precipitación de estruvita (MgNH4PO4·6H2O) es una solución prometedora para 

la recuperación de fósforo en estaciones depuradoras de aguas residuales. La 

precipitación controlada de estruvita puede ayudar a reducir la eutrofización 

provocada por los vertidos de la depuradora, combatir la escasez global de fósforo y 

reducir los problemas operacionales generados por la precipitación incontrolada del 

mineral en las tuberías. Debido al interés generado, la descripción del proceso de 

precipitación ya se ha incluido en las librerías de modelado de tratamiento de aguas 

residuales existentes. 

Sin embargo, siguiendo el enfoque clásico de modelado de tratamiento de aguas 

residuales, el proceso se ha incluido generalmente con una cinética de un solo paso. 

Este hecho limita el uso del modelo matemático para fines de diseño y optimización 

de tecnologías, ya que no se consideran ni los mecanismos de precipitación ni la 

distribución del tamaño de partícula, siendo ésta una variable clave en el desempeño 

de la estruvita como fertilizante. 

Por lo tanto, el objetivo de esta tesis ha sido mejorar los modelos cinéticos de un paso 

existentes mediante el desarrollo de un modelo matemático que describe en detalle 

los mecanismos que ocurren en la precipitación de estruvita para poder predecir la 

distribución del tamaño de partícula resultante. Este modelo es un modelo de balance 

poblacional en el que se han considerado efectos hidrodinámicos. 

El modelo de balance poblacional se ha construido siguiendo la metodología de 

modelado integral de planta (‘Plant Wide Model’) de Ceit, garantizando el balance 

de masa y carga. Por lo tanto, se puede combinar con la simulación de otros procesos 

que ocurren en las estaciones depuradoras de aguas residuales de una manera 

sistemática y sencilla. Un análisis de sensibilidad y colinealidad realizado en la tesis, 

demostró que el modelo es coherente en su estructura y válido para representar 

procesos de precipitación de estruvita. 



xiv  Resumen 

 

 

 

 

Para incorporar los efectos hidrodinámicos al modelo, se utilizaron los resultados 

obtenidos en una campaña experimental donde se analizó la precipitación de estruvita 

bajo diferentes intensidades de agitación y grado de saturación. Los resultados 

obtenidos mostraron que una mayor intensidad de agitación podría estar relacionada 

con una caída más rápida del pH, un aumento del número de partículas y un menor 

tamaño medio de las partículas obtenidas. Estos efectos se incluyeron en el modelo 

de balance de población utilizando una metodología de calibración basada en 

inferencia bayesiana. A partir de la metodología de calibración, se propusieron 

nuevas leyes cinéticas para la nucleación y el crecimiento de la estruvita, donde el 

efecto de la hidrodinámica está desacoplado al incluir explícitamente la cizalladura 

como una variable de proceso. 
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L LABURPENA 

Estrubitaren (MgNH4PO4·6H2O) hauspeaketa aukera erakargarria da araztegietako 

hondakin-urek dakarten fosforoa berreskuratzeko. Estrubitaren kontrolpeko 

hauspeaketak hondakin-urak jasotzen dituzten ibai eta lakuetan eutrofizazioa 

murrizteko, fosforoaren urritasun globalari aurre egiteko eta araztegiko hodietan 

mineralaren kontrolik gabeko hauspeaketak sortzen dituen arazoak murrizteko lagun 

dezake. Sortutako interesa dela eta, hauspeaketa prozesuaren deskribapena aurretik 

sortutako eredu matematikoetan sartu izan da dagoeneko. 

Hala ere, hondakin-uren tratamenduak deskribatzeko erabiltzen diren eredu 

matematikoen ikuspegi klasikoa jarraituz, prozesua orokorrean urrats bakarreko 

eredu zinetiko gisa deskribatu da. Urrats bakarreko eredu mota hauek teknologien 

diseinu eta optimizaziorako mugatuak dira, ez baitute kontuan hartzen 

hauspeaketaren mekanismoen inguruko informaziorik, ezta partikulen tamaina ere, 

azken hau funtsezko aldagaia izanik estrubita ongarri bezala erabiltzerakoan. 

Hori dela eta, tesi honen xedea urrats bakarreko eredu zinetikoak hobetzea izan da, 

estrubitaren hauspeaketan gertatzen diren mekanismoak zehatz-mehatz deskribatu 

eta mekanismo hauen ondorioz sortutako partikula tamainak aurreikusteko gai den 

eredu matematikoa garatuz. Eredu hau efektu hidrodinamikoak kontuan hartu dituen 

populazio eredu matematikoa da. 

Populazio eredu matematikoa Ceiten araztegi eredu integral (plant wide model) 

metodologiaren arabera eraiki da, masa eta karga oreka bermatuz. Hori dela eta, 

hondakin uren araztegietan erabilitako beste prozesuen simulazioarekin konbinatu 

daiteke era sistematiko eta zuzenean. Tesian egindako sentsibilitate eta kolinearitate 

analisiak frogatu du eredua koherentea dela bere egituran eta estrubitaren 

hauspeaketa prozesuak irudikatzeko balio duela. 
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Efektu hidrodinamikoak ereduan txertatzeko, kanpaina esperimental batean lortutako 

emaitzak erabili ziren, non estrubitaren hauspeaketa nahasketa eta saturazio baldintza 

desberdinetan aztertu zen, bi multzo esperimental desberdinetan. Lortutako emaitzek 

erakutsi zuten nahasketa intentsitate handiagoak pH-aren jetsiera azkarragoa, 

partikula dentsitate handiagoa eta partikula tamaina txikiagoa dakartzala. Efektu 

horiek populazio eredu matematikoan sartu ziren, Bayesian-Monte Carlo tekniketan 

oinarritutako kalibrazio prozedura erabiliz. Kalibrazio prozeduratik, lege zinetiko 

berriak proposatu ziren estrubitaren nukleazio eta hazkuntzarako. Lege berri hauetan 

hidrodinamikaren eragina kontuan hartu da ebakidura-tasa esplizituki aldagai gisa 

sartuz. 

 



 

xvii 

 

T TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ................................................................................ VII 

ABSTRACT ........................................................................................................... XI 

RESUMEN ..........................................................................................................XIII 

LABURPENA ...................................................................................................... XV 

TABLE OF CONTENTS ................................................................................. XVII 

LIST OF FIGURES ........................................................................................... XXI 

LIST OF TABLES ........................................................................................... XXV 

NOTATION AND ABBREVIATIONS ....................................................... XXVII 

INTRODUCTION ................................................................................................... 1 

1.1 Background .......................................................................................... 1 

1.2 Problem identification .......................................................................... 5 

1.3 Objective of the thesis .......................................................................... 6 

1.4 Contents of the thesis ........................................................................... 7 

STATE OF THE ART ............................................................................................ 9 

2.1 Precipitation process: fundamentals .................................................... 9 

2.1.1. Chemical equilibrium definitions ...................................................... 10 

2.1.2. Mechanisms ....................................................................................... 14 

2.2 Precipitation process in conventional wastewater treatment modelling

 ........................................................................................................... 22 

2.2.1. Ceit’s Physico-Chemical Plant Wide Model (PC-PWM) .................. 23 

2.2.2. Nutrient Recovery Model (NRM) library .......................................... 25 

2.3 Population balance model (PBM) ...................................................... 27 

2.3.1. Definition ........................................................................................... 28 

2.3.2. Population balance model for struvite recovery ................................ 29 

2.3.3. Mechanisms of precipitation in the PBM .......................................... 29 

2.3.4. Mixing effects consideration in the PBM .......................................... 32 

2.4 Summary ............................................................................................ 34 



xviii  Table of contents 

 

 

 

A NEW MASS-BASED DISCRETIZED POPULATION BALANCE MODEL 

FOR PRECIPITATION PROCESSES: APPLICATION TO STRUVITE 

PRECIPITATION ................................................................................................. 35 

3.1 Abstract .............................................................................................. 35 

3.2 Background ........................................................................................ 36 

3.3 Materials and methods ....................................................................... 38 

3.3.1. Precipitation model ............................................................................ 39 

3.3.2. Parameter identifiability analysis ....................................................... 50 

3.3.3. Experimental set-up ........................................................................... 57 

3.4 Results and discussion ....................................................................... 57 

3.4.1. Parameter identifiability module........................................................ 58 

3.4.2. Fitting the model to the experimental data......................................... 67 

3.5 Summary ............................................................................................ 70 

EFFECT OF THE SHEAR RATE AND SUPERSATURATION ON THE 

NUCLEATION AND GROWTH OF STRUVITE IN BATCH STIRRED 

TANK REACTORS .............................................................................................. 73 

4.1 Abstract .............................................................................................. 73 

4.2 Background ........................................................................................ 74 

4.3 Materials and methods ....................................................................... 76 

4.3.1. Operational variables ......................................................................... 76 

4.3.2. Experimental set-up ........................................................................... 78 

4.3.3. Measurements .................................................................................... 80 

4.4 Results and discussion ....................................................................... 83 

4.4.1. Induction time .................................................................................... 83 

4.4.2. pH evolution ...................................................................................... 85 

4.4.3. PSD measurements in Experiment B ................................................. 91 

4.4.4. Photomicrographs .............................................................................. 98 

4.4.5. Practical application of the results ..................................................... 99 

4.5 Summary .......................................................................................... 101 

INCLUSION OF SHEAR RATE EFFECTS IN THE KINETICS OF A 

DISCRETIZED POPULATION BALANCE MODEL: APPLICATION TO 

STRUVITE PRECIPITATION ......................................................................... 103 

5.1 Abstract ............................................................................................ 103 

5.2 Background ...................................................................................... 104 

5.3 Materials and methods ..................................................................... 106 



Table of contents  xix 

 

 

5.3.1. Population balance model ................................................................ 106 

5.3.2. Analysis of the shear rate effect ....................................................... 108 

5.4 Results and discussion ..................................................................... 116 

5.4.1. Effect of the shear rate in the kinetic constants ............................... 116 

5.4.2. New proposed kinetic laws .............................................................. 121 

5.4.3. Comparison between the experimental and simulation results ........ 124 

5.5 Summary .......................................................................................... 129 

CONCLUSIONS AND FUTURE RESEARCH LINES................................... 131 

6.1 Conclusions ...................................................................................... 131 

6.2 Future research lines ........................................................................ 133 

REFERENCES .................................................................................................... 135 

TABLEAU METHOD ........................................................................................ 149 

SUPPLEMENTARY EXPERIMENTAL DATA ............................................. 153 

B.1. Supplementary data for Experiment A............................................. 153 

B.2. Supplementary data for Experiment B – PSD quality analysis ........ 160 

B.2.1. Repeatability of the measurements .................................................. 160 

B.2.2. Particle settling at the bottom of the reactor .................................... 161 

B.2.3. Homogeneity in the reactor .............................................................. 162 

B.2.4. Particle behaviour under SI = 0 condition ....................................... 163 

SUPPLEMENTARY DATA FOR CHAPTER 5 .............................................. 165 

PROJECTS GENERATED FROM THE THESIS .......................................... 169 

PUBLICATIONS GENERATED FROM THE THESIS ................................ 171 

International Journals ........................................................................................ 171 

Book Chapters ................................................................................................... 172 

International Conference Proceedings ............................................................... 172 

 

 





 

xxi 

 

L LIST OF FIGURES 

Figure 1.1: Evolution in the number of publications in Scopus for: (A) wastewater 

+ struvite + recovery (B) wastewater + circular + economy (C) wastewater + 

precipitation (D) population + balance + model........................................................ 4 

 

Figure 2.1: Solubility curve, adapted from (Pastor, 2008). .................................... 10 

Figure 2.2: Saturation diagram, adapted from (Pastor, 2008). ............................... 11 

Figure 2.3: Classification of different nucleation types, adapted from (Jones, 2002).

 ................................................................................................................................. 16 

Figure 2.4: Saturation diagram, adapted from (Pastor, 2008). ............................... 17 

Figure 2.5: Struvite crystals sampled from an experiment conducted for 10 days in 

a fluidised bed reactor. (A) struvite crystals after 1 day, (B) struvite crystals after 10 

days. ........................................................................................................................ 20 

Figure 2.6: Struvite particles sampled from a seeded experiment conducted for 10 

days in a fluidised bed reactor. (A) Sphere formed as a consequence of prismatic 

particle aggregation, (B) zoomed photomicrograph of the sphere. ......................... 21 

 

Figure 3.1: Representation of the aggregation process. ......................................... 47 

Figure 3.2: Procedure to calculate sensitivities and collinearity in this contribution.

 ................................................................................................................................. 56 

Figure 3.3: After linearly partitioning each parameter range in ten bins, 

representation of the averaged, maximum and minimum values of total sensitivities 

of the parameters within the points sampled inside each bin for (a) Kr Nucleation, (b) 

Nucleation Exponent, (c) Kr Growth, (d) Growth Exponent, (e) Kr Aggregation and 

(f) Aggregation Exponent. ....................................................................................... 59 

Figure 3.4: Averaged value of for each bin of the linearly partitioned range of the 

Aggregation Exponent for the six case studies. ....................................................... 60 

file:///D:/Users/BElduayen/2020/TESIS/PDF_Thesis2.docx%23_Toc56381641
file:///D:/Users/BElduayen/2020/TESIS/PDF_Thesis2.docx%23_Toc56381641


xxii  List of figures 

 

 

 

Figure 3.5: Collinearity Index calculated in pairs for Kr Aggregation and 

Aggregation Exponent vs. (a) sampled values of Kr Aggregation and (b) sampled 

values of Aggregation Exponent. ............................................................................ 62 

Figure 3.6: Importance index for the most important parameters: (a) Nucleation 

Exponent, Growth Exponent and Kr Growth and (b) Nucleation Exponent, Growth 

Exponent and Aggregation Exponent. ..................................................................... 66 

Figure 3.7: Simulated and experimental pH evolution for case study A (a) and case 

study B (b) and simulated and experimental final PSD for case study A (c) and case 

study B (d). .............................................................................................................. 70 

 

Figure 4.1: Effect on the induction time of the saturation index for the experimental 

conditions of this contribution and comparison with the results from Mehta and 

Batstone (Mehta and Batstone, 2013) (*) , Hanhoun et al. (Hanhoun et al., 2013) 

(**), Ohlinger et al. (Ohlinger et al., 1999) (***) and Bhuiyan et al. (Bhuiyan et al., 

2008a) (****). ......................................................................................................... 84 

Figure 4.2: Effect of the shear rate on the induction time for the blocks of Experiment 

A and B. .................................................................................................................. 85 

Figure 4.3: Effect of the shear rate on the induction time for the blocks of Experiment 

A and B. .................................................................................................................. 86 

Figure 4.4: Effect of the shear rate on the pH evolution for experimental runs in 

Block A1 (a) and Block A2 (b). .............................................................................. 88 

Figure 4.5: Effect of the shear rate on the pH evolution in some runs of Experiment 

B. ............................................................................................................................. 89 

Figure 4.6: Effect of the NaOH addition in the pH evolution of selected runs of Block 

B-LSI (a) and Block B-MSI (b). ............................................................................. 90 

Figure 4.7: Relationship between the average particle count and the inverse of the 

induction time on each experimental run in Experiment B. .................................... 92 

Figure 4.8: Relationship between the average particle count and shear rate for each 

experimental run in Experiment B. ......................................................................... 93 

Figure 4.9: Average and standard deviation for d10, d50 and d90 in B-LSI set (a). 

Average and standard deviation for d10, d50 and d90 in B-MSI set (b). Average of 

d10, d50 and d90 in B-HSI set (c) ........................................................................... 95 

Figure 4.10: Effect of the subsequent NaOH addition in the PSD for experimental 

runs 26 (200 rpm) (a), 27 (300 rpm) (b) and 28 (400 rpm) (c) of the B-MSI Block.

 ................................................................................................................................. 97 



List of figures  xxiii 

 

 

Figure 4.11: Scanning electron microscopy photomicrographs of experimental runs 

in Experiment A. ..................................................................................................... 98 

Figure 4.12: Photomicrographs of Experiment B: (a) B-LSI without NaOH addition 

(300 rpm), (b) B-LSI after NaOH addition (300 rpm), (c) B-MSI after 2 additions of 

NaOH (300 rpm), (d) B-MSI after 2 additions of NaOH (400 rpm), (e) B-HSI (200 

rpm) and (f) B-HSI (400 rpm). .............................................................................. 100 

 

Figure 5.1: General calibration procedure. ........................................................... 115 

Figure 5.2: Posterior density distribution for the Kr Nucleation for each shear rate. 

Posterior density values for 200 rpm (a), Histogram of the posterior density for 200 

rpm (b), Posterior density values for 300 rpm (c) Histogram of the posterior density 

for 300 rpm (d), Posterior density values for 400 rpm (e), Histogram of the posterior 

density for 200 rpm (b). ......................................................................................... 117 

Figure 5.3: Best Kr Nucleation Values vs. Nucleation Exponent. ....................... 118 

Figure 5.4: Posterior density distribution for the Kr Growth for each shear rate. 

Posterior density values for 200 rpm (a), Histogram of the posterior density for 200 

rpm (b), Posterior density values for 300 rpm (c) Histogram of the posterior density 

for 300 rpm (d), Posterior density values for 400 rpm (e), Histogram of the posterior 

density for 200 rpm (b). ......................................................................................... 119 

Figure 5.5: Best Kr Growth Values vs. Growth Exponent. .................................. 120 

Figure 5.6: Relationship between the best points of the Kr Nucleation (see Table 5.4) 

and decoupling of the constant with the shear rate. ............................................... 123 

Figure 5.7: Relationship between the best points of the Kr Growth (see Table 5.4) 

and decoupling of the constant with the shear rate. ............................................... 123 

Figure 5.8: Comparison between experimental results and simulations for the PSD 

of Experiment LSI- Lγ (A), the pH evolution of Experiment LSI- Lγ (B), PSD of 

Experiment LSI- Mγ (C), the pH evolution of Experiment LSI- Mγ (D), PSD of 

Experiment LSI- Hγ (E) and the pH evolution of Experiment LSI- Hγ (F). ......... 125 

Figure 5.9: Comparison between experimental results and simulations for the PSD 

of Experiment MSI- Lγ (A), the pH evolution of Experiment MSI- Lγ (B), PSD of 

Experiment MSI- Mγ (C), the pH evolution of Experiment MSI- Mγ (D), PSD of 

Experiment MSI- Hγ (E) and the pH evolution of Experiment MSI- Hγ (F). ...... 127 

Figure 5.10: Comparison between experimental results and simulations for the PSD 

of Experiment HSI- Lγ (A), the pH evolution of Experiment HSI- Lγ (B), PSD of 



xxiv  List of figures 

 

 

 

Experiment HSI- Mγ (C), the pH evolution of Experiment HSI- Mγ (D), PSD of 

Experiment HSI- Hγ (E) and the pH evolution of Experiment HSI- Hγ (F). ........ 128 

 

Figure B.1: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A1-300 rpm ...................................................................... 154 

Figure B.2: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A1-400 rpm ...................................................................... 154 

Figure B.3: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A1-500 rpm ...................................................................... 155 

Figure B.4: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A1-600 rpm ...................................................................... 155 

Figure B.5: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A1-700 rpm ...................................................................... 156 

Figure B.6: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A1-800 rpm ...................................................................... 156 

Figure B.7: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A2-300 rpm ...................................................................... 157 

Figure B.8: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A2-400 rpm ...................................................................... 157 

Figure B.9: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A2-500 rpm ...................................................................... 158 

Figure B.10: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A2-600 rpm ...................................................................... 158 

Figure B.11: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A2-700 rpm ...................................................................... 159 

Figure B.12: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A2-800 rpm ...................................................................... 159 

Figure B.13: pH evolution for runs 1-3 in MQ block........................................... 161 

Figure B.14: Solid concentration measurement for different the same concentration 

of reactants and different stirrer speeds in experimental runs in MQ and B-LSI block.

 ............................................................................................................................... 162 

 



 

 

xxv 

 

L LIST OF TABLES 

Table 2.1: Compilation of nucleation kinetic rate expressions for struvite by authors 

using the PBM framework. ..................................................................................... 30 

Table 2.2: Compilation of growth kinetic rate expressions for struvite by authors 

using the PBM framework.. .................................................................................... 31 

Table 2.3: Growth kinetic expressions.  ................................................................. 31 

 

Table 3.1: Equilibriums and constant values. ......................................................... 40 

Table 3.2: Stoichiometry matrix for nucleation (A) and growth (B) processes...... 44 

Table 3.3: Stoichiometry matrix for aggregation process. ..................................... 49 

Table 3.4: Case Studies A, B and C defined for the simulations. The listed 

component concentrations are those corresponding to the initial experimental 

conditions, prior to any precipitation reaction. pH N-P is the pH of the solution 

containing KH2PO4 and NH4Cl. pH Mg is the pH of the solution containing 

MgCl2·6H2O. ........................................................................................................... 51 

Table 3.5: Description of Case Studies D, E and F defined for the simulations. ... 51 

Table 3.6: Model parameters and the selected ranges. ........................................... 52 

Table 3.7: Results of the identifiability analysis performed in pairs of parameters. 

The grey shaded value correspond to the pair of parameters with a maximum 

Collinearity index above 15 in the ‘Max. Collin’ column and to the pairs of 

parameters with the highest Identifiability index in the ‘Max. Ident’ column. ....... 63 

Table 3.8: Parameter set chosen to predict experimental data. ............................... 69 

 

Table 4.1: Relationship between the stirring speed and the average shear rate in 

Experiment A. ......................................................................................................... 78 

Table 4.2: Relationship between the stirring speed and the average shear rate in 

Experiment B........................................................................................................... 79 



xxvi  List of tables 

 

 

 

Table 4.3: Experimental runs in Experiment B, divided into four different blocks: 

Measurements quality (MQ), Low SI (B-LSI), Medium SI (B-MSI) and High SI (B-

HSI). ........................................................................................................................ 82 

 

Table 5.1: Experimental conditions of the N-P and Mg solutions. Each experiment 

is a combination of low, medium or high SI (LSI, MSI and HSI, respectively) with a 

low, medium and high shear rate (Lγ, Mγ and Hγ, respectively). ........................ 110 

Table 5.2: Simulation Case Studies. ..................................................................... 111 

Table 5.3: List of parameters present in the model with the symbols, units and the 

kinetic expressions where they are used. ............................................................... 112 

Table 5.4: Mode of the kinetic constants for each stirring speed and shear rate. . 121 

 

Table A.1: Components and species from the example ....................................... 150 

Table A.2: Tableau Matrix. .................................................................................. 150 

Table A.3: Mass action equation for each species. ............................................... 151 

Table A.4: Mass balance equation for each component. ...................................... 151 

 

Table B.1: PSD repeatability for runs 1-3 ............................................................ 160 

Table B.2: Results for the Zwietering’s equation used for the particle settling 

analysis. ................................................................................................................. 162 

Table B.3: Homogeneity in the Reactor in PSD and particle number. ................. 163 

Table B.4: PSD monitoring in saturated solution to evaluate the impact of 

agglomeration and/or breakage. ............................................................................ 164 

 

Table C.1: Selected parameter ranges for Kr Nucleation and Kr Growth ............ 166 

Table C. 2: Best values of Kr Nucleation (KB) and Kr Growth (KG) for each exponent 

group and the associated M values and Total M. .................................................. 167 



 

 

xxvii 

 

N NOTATION AND 

ABBREVIATIONS 

Abbreviations 

ai (mol/l) Activity of ion i 

aSeed  Initial specific area of surface per gram of seed 

A Surface area of the crystals 

ADM Anaerobic Digestion Model 

AE Algebraic equation 

Ai (m2) Total area of the crystals of size i 

Ai
’ (m2) Effective area of the crystals of size i 

ASM Activated Sludge Model 

AS0 Activation term for the initial mass of seed 

ASN Activation term for the case when there is not seed 

material 

ATSS Activation term for the suspended solids 

A1 Constant for power number calculation in unbaffled 

vessels 

A2 Constant for power number calculation in unbaffled 

vessels 

A3 Constant for power number calculation in unbaffled 

vessels 

b (m) Stir bar diameter 

B  Birth Function 

BC Constant for nucleation kinetic expression  

B-HSI High Saturation Index in Block B 

B-LSI Low Saturation Index in Block B 

B-MSI Medium Saturation Index in Block B 



xxviii  Notation and Abbreviations 

 

 

 

B0 (nuclei/day) Nucleation Rate 

c Concentration 

ce Solubility/Equilibrium concentration 

ci Concentration of element i 

c* Concentration in the particle-solution interface 

CFD Computational Fluid Dynamics 

CSTR Continuously Stirred Tank Reactor 

Cwi (g/m3) Concentration of i sized crystals 

CwTSS (g/m3) Concentration of total suspended solids 

dp (m) Particle diameter 

D Death Function  

Di Impeller diameter (m)  

DPBM Discretized Population Balance Model 

DT (m) Tank diameter  

eK Difference between the observed kth measured and 

simulated variable 

g (m/s2) Gravity constant 

G (mm/d) Linear Growth Rate 

fi Variation in the parameter 

h (m) Height 

HSI High Saturation Index 

Hγ High shear rate 

I Ionic strength 

IAP (mol/l)3 Ion Activity Product 

IWA International Water Association 

kB,T Temperature dependent nucleation coefficient 

kBol Boltzmann constant 

kd Mass transfer coefficient by diffusion 

kD,T Temperature dependent dissolution rate coefficient 

kG,T Temperature dependent growth rate coefficient 

kT Kinetic precipitation/redissolution coefficient 

ks Rate constant for surface integration 

KA (l/d) Kinetic constant of aggregation 

KB (nuclei/d·m3) Kinetic constant of nucleation 



Notation and Abbreviations  xxix 

 

 

KB
’(nuclei·snBS/d·m3) Kinetic constant of nucleation independent of the average 

shear rate 

KB,i,zγ (nuclei/d·m3) Kinetic constant of nucleation for the ith group of 

exponents and z condition of shear rate 

KG (mm/d) Kinetic constant of growth 

KG
’
 (mmα·snBS/d) Kinetic constant of growth independent of the average 

shear rate 

KG,i,zγ (mmα/d) Kinetic constant of growth for the ith group of exponents 

and z condition of shear rate 

Kr Generic kinetic constant 

Ksp (mol/l)3 Solubility Product Constant 

K1 Constant low numeric value for numeric stability  

K2 Constant low numeric value for numeric stability 

K3 Constant low numeric value for numeric stability 

L (mm) Crystal Length 

LH Latin Hypercube 

LH-OAT Latin Hypercube-One Factor at a Time 

Li (mm) Characteristic Length of i size 

LSI Low Saturation Index 

Lγ Low shear rate 

m Total number of variables 

mesfi (g) Mass of a single sphere of size i 

M(·) Sum of the square of the normalized differences for all 

the observed variables 

Mg Magnesium 

MO Model Outputs 

Mseed Time dependent mass of seed 

MSI Medium Saturation Index 

MWi (g/mol) Molecular Weight of compound i 

Mγ Medium shear rate 

n Total number of parameters 

nA Aggregation Kinetic Exponent 

nB Nucleation Kinetic Exponent 

nBS Exponent of the shear rate effect in the nucleation 

nB,i Nucleation Kinetic Exponent in the ith parameter set 



xxx  Notation and Abbreviations 

 

 

 

nd  Population Density 

nG Growth Kinetic Exponent 

nGS Exponent of the shear rate effect in the growth 

nG,i Growth Kinetic Exponent in the ith parameter set 

nG,C Exponent for size dependent growth 

ni Number of particles in the ith bin 

nj Number of particles in the jth bin 

nr Kinetic Exponent 

N Nitrogen 

ND Number of Particles per volume unit 

NK Number of the bin of the biggest crystal size 

NM Adjustable parameter in the calculation of the likelihood 

function 

NOBS Number of observed variables 

NP Power Number 

NPart Number of particles of the fertilizer 

NRM Nutrient Recovery Model 

NS (s-1) Stirrer Speed 

OAT One Factor at a Time 

p Number of sampled parameter set 

p(y) Probability of having the observed data 

p(y|θ) Likelihood function 

p(θ) Prior knowledge of the parameters 

p(θ|y) Posterior probability density function 

P Phosphorus 

PBM Population Balance Model 

PBT Pitched 4-bladed impeller 

PC-PWM Physico-Chemical Plant Wide model 

Pi (W) Power input 

PSD Particle Size Distribution 

PWM Plant Wide Model 

r (mm) Radius 

Re Reynolds Number 

si,j,k Sensibility caused in ith variable, by a change in jth 

parameter in kth point 



Notation and Abbreviations  xxxi 

 

 

s0 Dimensionless parameter representing initial seed surface 

S Sensitivity Matrix 

Sa Absolute Supersaturation 

SI Saturation Index 

SIMij Simulation output for the kth parameter pair and ith group 

S̃k Normalized Sensitivity Matrix of k parameters 

Sr Supersaturation Ratio 

S-HSI Simulation case study of High Saturation Index  

S-LSI Simulation case study of Low Saturation Index  

S-MSI Simulation case study of Medium Saturation Index  

tind (s-1) Induction time 

T Temperature 

Total M (·) Sum of the normalized differences obtained with each 

best parameter set for each shear rate.  

v Volume of the smallest sphere 

V (m3) Reactor Volume 

Vl (l) Reactor Volume in litre units 

Vfert Volume of the recovered fertilizer 

WRRF Water Resource Recovery Facility 

WWTP Wastewater Treatment Plant 

Xi (g) Total mass of the i sized bin 

y Observed data 

zi Valence of the ion i 

Greek symbols 

α Area Exponent 

α,i Area Exponent in the ith parameter set 

αG,C Constant for size dependent growth  

β (l/d) Aggregation Rate 

βC Vector of coefficients 

γ (s-1) Average shear rate 

γ B Parameter to describe the error model 

γi Activity coefficient of ion i 

γk Collinearity Index of the k parameter set 

δk,j Total influence of the parameter in each point 



xxxii  Notation and Abbreviations 

 

 

 

Δc (mol/l) Concentration driving force 

∆Ghom
crit  Free enthalpy of activation 

θ Parameter set 

θAn (°) Angle between the agitator and the horizontal surface 

θi ith parameter 

λk Smallest Eigenvalue of the Matrix 

μ (kg/m·s) Dynamic Viscosity 

ν Number of moles of ions per mole of electrolyte 

ρs (g/m3) Density of the solid 

ρL (kg/m3) Liquid density 

ρk Importance Index 

ρR Kinetic rate 

σ Relative supersaturation 

τ Shear stress 

Φ Shape factor 

  



 

 

1 

 

1   

INTRODUCTION 

1.1 BACKGROUND 

Circular economy is an economic framework that looks beyond the current take-

make-waste linear economic model and aims to redefine economic growth, following 

the next three principles (The Ellen MacArthur Foundation, 2020): 

 Design out waste and pollution. 

 Keep products and materials in use. 

 Regenerate natural systems. 

Consequently, circular economy promotes cross-sector collaboration to recycle and 

re-use the by-products of industrial or human activity. This collaboration holds 

benefits for both, the environment and the economy (European Commision, 2015). 

The general interest for using resources in a more sensitive way matches with a recent 

change in wastewater vision. Over the years, the biggest wastewater related concern 

has been the elimination of contaminants to fulfil existing legislation. Therefore, the 

development of technologies followed that objective. Despite reduction of 

contaminants is still the primary objective for wastewater industry, recently 

numerous case studies have shown that the role that wastewater plays could start to 

change: due to the global scarcity of some materials, wastewater perception is 

shifting from being considered a polluted source with contaminants to be eliminated, 

to a source of interesting elements to be recovered. Therefore, wastewater treatment 
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plants (WWTPs) have been started to be conceived as water resource recovery 

facilities (WRRFs). Nowadays, organic and inorganic matter, nutrients, energy or 

water itself can be recovered in WRRFs (Guest et al., 2009). Accordingly, challenges 

for investigation and development in WRRFs are oriented to design and optimization 

of new and existing element recovery technologies. 

One of the elements that can be recovered in WRRFs is phosphorus (P). 

Traditionally, P has been considered a pollutant in wastewater. Main challenges 

associated with its management are the operational problems caused by its 

uncontrolled precipitation (Buck, 2012; Mudragada et al., 2014) and eutrophication, 

an environmental problem in the receiving waterways, generated by the combined 

release of nitrogen (N) and P. Therefore, habitual efforts in P-rich wastewater streams 

focused on the removal of that element. However, in light of its recent consideration 

as a critical raw material (European Commission, 2018) and the expected peak in its 

net production in the 21st century (Cordell and White, 2011; Sverdrup and 

Ragnarsdottir, 2011), P recovery from wastewater has become an emerging concern 

(Peng et al., 2018). Municipal wastewater has the potential to substitute a significant 

portion of the increasing global demand of P (Amann et al., 2018), as in Europe alone 

about 227 kt P/year ends up in communal sewage sludge and extra 74 kt P/year is 

lost in the effluents of urban and decentralized WWTPs (van Dijk et al., 2016). Due 

to the recovery potential of P and its importance, over 30 processes now exist (at 

varying developmental stages) by which P can be recovered in WRRFs (Cieślik and 

Konieczka, 2017). 

Among the available options to recover P in WRRFs, controlled precipitation of 

mineral phosphates, most notably struvite (magnesium ammonium phosphate 

hexahydrate, MgNH4PO4·6H2O), has gained interest in recent years (Peng et al., 

2018; Robles et al., 2020). Struvite is a salt, equimolar in P, N and magnesium (Mg), 

which may be used as an effective fertilizer (i.e. Crystal Green ® obtained from 

PearlTM and BioSTRU ® from NuReSysTM are certified fertilizers in US/UK and 

Belgium, respectively) (Desmidt et al., 2015). The overall stoichiometry governing 

the precipitation process is: 

 Mg2+ +  NH4
+ + PO4

3− +  6H2O ⇄ MgNH4PO4 · 6H2O ↓  1.1 

Main advantages of recovering struvite are: (1) it reduces operational costs in 

WRRFs associated with the maintenance of reactors and pipes due to blockage of P 



Background  3 

 

 

salts, (2) it fights global P scarcity and (3) it reduces eutrophication problems in 

receiving waterways. Following this interest, some technologies have been recently 

developed that demonstrate the feasibility of the full-scale process (Egle et al., 2016) 

and around 100 full scale struvite recovery units are available worldwide (European 

Sustainable Phosphorus Platform, 2020). Most of the recovery units are located in 

North America, Japan and Europe (mainly Belgium, Netherlands, Germany and 

Austria) (Desmidt et al., 2015) and the biggest installation is located in the Chicago 

Stickney WRRF, producing around 9,000 t/year of struvite (European Sustainable 

Phosphorus Platform, 2020). Therefore, full scale struvite recovery is technically 

feasible, while the economic feasibility is influenced by the great variability of 

cost of the available technologies (Desmidt et al., 2015) and the price of the 

recovered product (Yetilmezsoy et al., 2017). 

Therefore, struvite is a well-known fertilizer that can be obtained in WRRFs by 

precipitation (Le Corre et al., 2009). Precipitation is a physico-chemical process in 

which a sparingly soluble solid phase is relatively rapidly formed from a liquid phase. 

This process is widely employed in the industry for separation and purification of 

materials (Myerson, 2001; Nagy et al., 2013) and its relevance is increasing in 

wastewater treatment.  

Considering the current and future importance of precipitation process in sustainable 

wastewater treatment, precipitation of struvite (and other materials) has already been 

included in mathematical modelling and simulation libraries for WRRFs (Ikumi et 

al., 2014a; Lizarralde et al., 2015; Solon et al., 2017). Therefore, existing libraries 

can predict the amount of obtained solid in a recovery reactor, based on the kinetic 

of precipitation and thermodynamics. In addition, these modelling and simulation 

libraries often combine information from the biological, chemical and physico-

chemical processes in the WRRF with its economic performance. This is a necessary 

information to assess the suitability of installing a recovery technology by evaluating 

its effect on the global WRRF behaviour. The opportunity of considering such effects 

while minimizing experimental needs can explain why mathematical modelling and 

simulation tools have been widely used over the last decades to design, operate and 

optimize wastewater treatment technologies (Fernández-Arévalo et al., 2017a, 

2017b; Lizarralde et al., 2019). However, existing modelling libraries present some 

limitations for the optimum design and operation of the technologies.  
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It is known that struvite performance as a fertilizer depends on the obtained particle 

size distribution (PSD) (Tarragó et al., 2016). This PSD will be conditioned by the 

inner mechanisms of the precipitation: primary nucleation (homogeneous and 

heterogeneous), secondary nucleation, growth, aggregation, attrition and breakage of 

particles. The weight of each mechanism in the obtained product is determined by 

the experimental conditions in the reactor, namely pH, supersaturation level, mixing 

energy, temperature and the presence of foreign ions in the precipitating solution (Le 

Corre et al., 2009). These experimental conditions vary in the existing technologies, 

as they show significant differences on the operation (continuous versus batch, 

different hydraulic retention times, etc.) and obtained product (Tarragó et al., 2016).  

Neither the information on the PSD nor the inner mechanisms of the process are 

rigorously included in previously named WRRF modelling approaches, where 

precipitation is defined as a one-step process. As considering the PSD and inner 

mechanisms is essential for the correct design, operation and optimization of element 

recovery reactors, one-step precipitation models have to be upgraded with new 

modelling frameworks for wastewater treatment modelling as the population balance 

model (PBM).  

In order to illustrate the increasing interest of some of the aforementioned research 

areas, Figure 1.1 includes the evolution in the number of publications in Scopus for 

the terms (A) wastewater + struvite + recovery (B) wastewater + circular + economy 

(C) wastewater + precipitation (D) population + balance + model. 

A 

 

B 

 
C 

 

D 

 
Figure 1.1: Evolution in the number of publications in Scopus for: (A) wastewater + 

struvite + recovery (B) wastewater + circular + economy (C) wastewater + precipitation 

(D) population + balance + model. 
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1.2 PROBLEM IDENTIFICATION 

The PBM can successfully describe the evolution in time and space of the distribution 

of properties of a group of discrete entities (particles, bubbles, cells, etc.) dispersed 

in a continuous phase. It typically considers an additional internal coordinate, which 

is some measure of the particles’ size. It includes explicitly inner mechanisms of the 

precipitation process and is able to predict the evolution of a PSD in a reactor. The 

PBM is a widely accepted tool for precipitation process modelling in industrial 

crystallization, however, only recently has been used to represent WRRF unit 

processes (Nopens et al., 2015). PBM has already been proved to be successful to 

track changes in the PSD in the struvite precipitation (Galbraith et al., 2014; Hanhoun 

et al., 2013; Triger et al., 2012). This evidences the great potential of the PBM for 

the correct prediction of the process’ outcome and its optimization. However, in order 

to be fully accepted for design and optimization of resource recovery technologies 

from wastewater, there are three main aspects that have to be addressed.  

Firstly, PBMs have generally been defined using number of particles as the 

dependent variable of the process, which is coherent with the model purposes, but, 

can lead to mass discontinuities (Hounslow et al., 1988). Although partially solved 

(Galbraith et al., 2014), this problem would make them incompatible with 

conventional models used in the wastewater treatment framework, which are mainly 

constructed on the basis of mass balances around the unit to be described as in the 

International Water Association (IWA) models: Activated Sludge Model (ASM) and 

Anaerobic Digestion Model (ADM) (Batstone et al., 2002; Henze et al., 2000). For 

a successful implementation of PBM in wastewater treatment industry, mass 

discontinuity must be avoided first. Using mass as internal coordinate automatically 

satisfies the mass balance (Scarlett, 2002). In addition, it allows to represent the PBM 

as a dynamic mass balance explicitly affected by the mechanisms of precipitation,  

as it is usually done in standardized methodology for wastewater treatment 

modelling.  

Secondly, calibrated parameter values for the parameters defining inner mechanisms 

of the precipitation of struvite are very variable in the literature (Galbraith et al., 

2014; Hanhoun et al., 2013; Mehta and Batstone, 2013). The same happens for other 

compounds, too (Chen et al., 2002; Ruan et al., 2016). Mechanisms occur 

simultaneously and obtaining meaningful experimental data to attribute to each 

mechanism its real effect on the precipitation is difficult, making calibration a very 
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challenging issue. Using mathematical analysis tools to evaluate the possibility of 

obtaining trustworthy parameter values will increase the confidence in the modelling 

framework. 

Thirdly, while most of the experimental variables affecting the process have been 

considered in existing PBMs representing struvite precipitation (Galbraith et al., 

2014; Hanhoun et al., 2013; Triger et al., 2012), there is a clear gap in the literature 

regarding inclusion of the mixing effects in the PBMs. PBMs have been mainly 

modelled and simulated in virtual continuously stirred tank reactors (CSTR), what 

limits their capacity for design and optimization of technologies. In this regard, 

taking into account mixing effects in the model construction would be a step forward 

in the understanding of precipitation processes and the natural step towards a more 

descriptive modelling. To this effect, some efforts have been already done for other 

compounds by including explicitly the shear rate, an operational variable related with 

the local velocity of the flow in each point (Ilievski et al., 2001), in the aggregation 

rate expressions (Hounslow et al., 2013). However, the effect of mixing in the 

mechanisms is still poorly understood and it should be further studied for its 

modelling. In addition, ignoring mixing effects could also be related with the shifting 

parameter values found in the literature, as they could be influenced by the mixing 

intensity for which they were obtained. 

Therefore, this thesis is focused on the three previously identified issues and intends 

to answer them by constructing a PBM that ensures mass continuity, where the 

identifiability of the parameters is analysed and which is capable to reproduce 

experimentally observed mixing effects.  

1.3 OBJECTIVE OF THE THESIS 

The aim of this thesis is to develop a mathematical model that can describe in detail 

the mechanisms occurring in a precipitation process for struvite recovery. Due to the 

process characteristics and specifications of new precipitation technologies, two 

novel approaches have been implemented: a mass-based PBM that guarantees mass 

continuity and the consideration of hydraulic effects in the precipitation mechanisms.  

In order to achieve this aim, the following objectives are established: 

 A PBM for modelling struvite nucleation, growth and aggregation has to be 

designed, constructed and implemented.  
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o Based on existing approaches, a new mass-balance-based PBM for 

describing struvite precipitation needs to be developed. This model has 

to be constructed according to Ceit’s plant wide model (PWM) 

methodology, guaranteeing mass and charge balance. Thus, its 

integration in a simulation of a WRRF with other unit processes will 

be systematic and straightforward. 

o The theoretical parameter identifiability of the constructed model has 

to be evaluated using model analysis tools as sensitivity analysis and 

collinearity analysis in order to increase the trustworthiness in the 

modelling framework. 

 The effect of the saturation index (SI) and local mixing intensity (related to the 

shear rate), on struvite nucleation and growth has to be experimentally identified.  

o Experimental campaigns where the effect of SI and local mixing 

intensity are analysed have to be done in small size batch experiments. 

o The necessary data for model calibration purposes has to be collected. 

 The shear rate has to be considered as a process variable in the previously 

constructed mass-based PBM. 

o A methodology has to be followed where the experimentally observed 

effects are evaluated for its inclusion in the kinetic rates of the 

mechanisms.  

o Based on the previous evaluation of the effect of the shear rate and SI, 

new expressions for the kinetic rates of the PBM where these 

operational variables are explicitly included, have to be proposed. 

1.4 CONTENTS OF THE THESIS 

This thesis is distributed in six chapters, which include the following information. 

Chapter 1 (Introduction) includes the context in which the research done for this 

thesis has been carried out. It also includes the general objectives and the summary 

of the contents of the thesis. 

Chapter 2 (State of the art) includes general information necessary to understand the 

nature of the research done. This information covers the fundaments of the 
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precipitation process, the modelling of precipitation process in conventional 

wastewater treatment modelling and the PBM. 

Chapter 3 (A new mass-based discretized population balance model for precipitation 

processes: application to struvite precipitation) includes the general description and 

equations of a PBM based on mass and charge continuity. In addition, a sensitivity 

and a collinearity analysis are performed to evaluate the identifiability of the 

parameters. 

Chapter 4 (Effect of the shear rate and supersaturation on the nucleation and growth 

of struvite in batch stirred tank reactors) includes an experimental study where the 

effect of the SI and the shear rate in the pH evolution and resulting PSD have been 

analysed in several struvite precipitation tests.  

Chapter 5 (Inclusion of shear rate effects in the kinetic rates of a discretized 

population balance model: application to struvite precipitation) includes the analysis 

performed regarding the necessity of including the shear rate as a process variable in 

the kinetic rates of nucleation and growth. For this issue the mass-based PBM 

presented in Chapter 3 and the experimental data gathered in Chapter 4 are used. 

Chapter 5 also includes new expressions where the effect of the shear rate is 

decoupled from the kinetic constants of the mentioned mechanisms. A comparison 

between the experimental results and simulation outputs is also provided for different 

mixing intensities and initial SI. 

Finally, Chapter 6 (Conclusions and future research lines) summarises the main 

conclusions of the thesis and proposes further research lines. 
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2   

STATE OF THE ART 

This chapter covers classic and up to date information, necessary to understand the 

nature of the research done. The chapter is divided in four sections: first, the 

fundaments of precipitation are briefly described. Second, a short description of the 

main modelling frameworks that have been used in wastewater sector to represent 

precipitation are included. Third, the PBM framework is described. Finally, the 

information provided in the chapter is summarized. Some of the aspects covered in 

this chapter will be repeated or further assessed in the Background section of chapters 

3, 4 and 5 in order to better understand the nature and need of the work done in each 

chapter. 

2.1 PRECIPITATION PROCESS: FUNDAMENTALS 

Crystallization is a phase change phenomena in which a solid phase is obtained from 

compounds dissolved in a solution. This phase change occurs due to an instability 

generated in the solution, often by cooling the solution, evaporating the solvent or by 

increasing the solute concentration (Pastor, 2008). On the other hand, in the 

precipitation process, also known as reactive crystallization, the instability is not 

generated by a physical change in the solution but due to the chemical reaction of 

two soluble compounds that result in a non-soluble product (Myerson, 2001). 

Main aspects of chemical equilibrium and the mechanisms by which precipitation 

occurs have been studied for years. These concepts are briefly described in this 
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section. For a fuller explanation, the interested reader is referred to the existing 

literature (Jones, 2002; Le Corre et al., 2009; Mullin, 2001; Myerson, 2001). 

2.1.1. Chemical equilibrium definitions 

2.1.1.1. Solubility 

The solubility, ce, is the amount of solute required to make a saturated solution under 

certain conditions (Myerson, 2001). In other words, it is the maximum quantity of a 

solute that can be dissolved in a certain amount of liquid under specific conditions of 

temperature and pressure (Pastor, 2008). Its units are usually g/l or mol/l (Le Corre 

et al., 2009).  

Usually, the solubility of a solute increases with the temperature, but there are some 

exceptions to this general trend (Mullin, 2001). A diagram representing generic 

dependence of the solubility of a chemical compound with respect to the temperature 

is included in Figure 2.1. For the specific case of struvite, the solubility has been 

reported to increase with temperature (Crutchik and Garrido, 2016; Le Corre et al., 

2009). However, some authors have found a maximum in its solubility between 25 

ºC and 35 ºC and a decrease at higher temperatures (Borgerding, 1972; Hanhoun et 

al., 2011). In any case, the effect of the temperature is not critical on struvite 

precipitation (Le Corre et al., 2009).  

 

Figure 2.1: Solubility curve, adapted from (Pastor, 2008). 
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The effect of pressure is generally negligible in the precipitation systems (Mullin, 

2001) and its effect is not usually reported in struvite precipitation studies. 

2.1.1.2. Saturation 

Saturation describes the potential of forming a precipitate in a solution by comparing 

the solute concentration with its solubility. This is a good starting point to understand 

why precipitation occurs and how it can be produced (Jones, 2002). For a particular 

solution three main possible states are usually defined (Pastor, 2008): 

1. Stable (undersaturated): The solute concentration is smaller than the 

solubility. When this occurs, if there is any crystal in the solution it will tend 

to dissolve. 

2. Metastable (supersaturated): It is a supersaturated solution in which crystals 

can grow but there is not spontaneous nucleation. 

3. Labile or instable (supersaturated): It is more saturated than the metastable 

zone. Both particle growth and nucleation can occur.  

For a compound where the solubility increases with the temperature, these states are 

included in a general diagram phase (see Figure 2.2). 

 

Figure 2.2: Saturation diagram, adapted from (Pastor, 2008). 
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Thus, supersaturation is a deviation from the equilibrium situation and the necessary 

condition for precipitation to happen. It is the key variable in any precipitation system 

as nucleation and growth of crystals are affected by it. There are different 

mathematical expressions to quantify supersaturation in a system. Some of the most 

common are (Mullin, 2001): 

 Concentration driving force: ∆c = c − ce 

 Supersaturation ratio: Sr =
c

ce
 

 Relative supersaturation: σ =
c−ce

ce
= Sr − 1 

where c is the concentration of the compound being evaluated. As it can be seen in 

the equations, the units of the concentration driving force will be concentration units 

(usually mol/l or g/l), while the supersaturation ratio and relative supersaturation do 

not have units. 

2.1.1.3. Solubility product  

When precipitation of sparingly soluble electrolytes is being analysed, 

supersaturation is expressed in terms of the solubility product (Mullin, 2001). The 

solubility product (Ksp) is the product of the concentration of the ions forming a salt 

in the equilibrium. Considering the generic salt AzBy(s), the ions dissolved from it 

are: 

AzBy(s) ↔ zAy+ + yBz− 2.1 

where z and y are the stoichiometric coefficients of A and B elements, which form 

ions with y+ and z- valences respectively.  

The solubility of these ions would be: 

ce =
[Ay+]e
z

=
[Bz−]e
y

 2.2 

Being [Ay+]e and [Bz−]e the concentrations of Ay+and Bz− ions in equilibrium. 

The solubility product is: 

Ksp = [A
y+]e · [B

z−]e 2.3 
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Thus, for sparingly soluble electrolytes, supersaturation expressions previously used 

can change as follows: 

 Absolute supersaturation: Sa =([A
y+] · [Bz−])1/𝜈 − (Ksp)

1/𝜈
 

 Supersaturation ratio: Sr =
c

ce
→ (

[Ay+]·[Bz−]

Ksp
)
1/𝜈

 

 Relative supersaturation: σ =
c−ce

ce
→ (

[Ay+]·[Bz−]

Ksp
)
1/𝜈

− 1 

where ν is the mole of ions generated from a mole of electrolyte. 

Another common mathematical expression used to represent supersaturation is the 

saturation index (SI): 

SI = log(
[Ay+] · [Bz−]

Ksp
) 2.4 

However, the application of these (or other similar) expressions based on the product 

of ion concentrations and the solubility product is only valid for very diluted and 

simple systems. When quantifying the precipitation potential in a more complex 

system, as wastewater, where the interactions with other ions need to be accounted, 

the activity of the ions has to be considered (Solon et al., 2015).  

Therefore, in wastewater treatment modelling the aforementioned expressions based 

on the product of the ion concentration should be improved by using the ion activity 

product (IAP). The IAP defined for a generic salt AzBy(s) is: 

IAP = aA · aB 2.5 

The activity of the ith ion, ai, is the product of the activity coefficient, γi (-), and the 

concentration of the ith ion, ci (mol/l): 

ai = γi · ci 2.6 

The activity coefficient can be calculated by different formulas, being the most 

common in wastewater treatment the Davies approximation to the Debie-Hückel law: 

log γi = 0.51 · zi
2 · (

√I

1 + √I
− 0.3I) 2.7 



14  State of the art 

 

 

 

Where zi is the valence (-) of the ith ion and I is the ionic strength, calculated as: 

I =
1

2
∑ci · zi

2 2.8 

For the specific case of struvite, the supersaturation has been quantified using the 

absolute supersaturation (Lizarralde et al., 2015), the supersaturation ratio (Hanhoun 

et al., 2013), the relative supersaturation (Mehta and Batstone, 2013; Vaneeckhaute 

et al., 2018) or the saturation index (Burns et al., 2021; Galbraith et al., 2014). 

2.1.2. Mechanisms 

Precipitation process is a simple yet very complicated phenomena. On one hand, 

precipitation could be simply understood as a relatively fast two-step process 

governed by two mechanisms. In the first step, phase separation occurs when small 

entities known as nuclei are born from the solution (nucleation mechanism). In the 

second, this entities increase their size until a stable size is reached by reactants 

consumption (crystal growth mechanism). On the other hand, these two steps take 

place simultaneously in the chemical reactor and often they are combined with other 

mechanisms as aggregation and crystal rupture, complicating the identification of the 

effect of each independent mechanism in the precipitation process.  

In addition, the mechanisms are affected by the change in the experimental variables 

in different ways. For example, the rate of nucleation and growth increases with an 

increasing degree of supersaturation in the system, but they depend on it on a 

different order, nucleation exhibiting a stronger dependence (Jones, 2002; Myerson, 

2001). Other variables as the mixing, seeding material, presence of ions or 

temperature can also affect the mechanisms (Le Corre et al., 2009).  

Despite the difficulty, identifying the weight of each mechanism in the precipitation 

process under certain experimental conditions is necessary to construct a 

mathematical model if it is going to be used for design and optimization purposes. In 

this section, nucleation, growth and aggregation are described as these are the most 

relevant mechanisms for struvite precipitation (Ye et al., 2016) and, consequently, 

the mechanisms that are considered in the PBM developed in the thesis. 
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2.1.2.1. Nucleation 

Nucleation is the mechanism by which crystals are born within a liquid phase 

(Mullin, 2001; Pastor, 2008). This mechanism involves the generation of small 

entities from the liquid that are in the edge of liquid and solid phase. Depending on 

the existing conditions, some of them will re-dissolve into the liquid and others will 

become the starting point of the precipitation. As precipitation occurs mostly under 

conditions of high supersaturation, where nucleation is favoured, the mechanism 

plays a major role in the process (Myerson, 2001).  

In a precipitation system, nuclei can be formed by different types of nucleation. 

Primary nucleation occurs in the absence of the crystallizing material, while 

secondary nucleation occurs due to the presence of this crystallizing material. Some 

authors believe that secondary nucleation is the main source of nuclei in industrial 

systems (Agrawal et al., 2017) as it is favoured under lower saturation conditions and 

when there is presence of particles in the system (Mehta and Batstone, 2013). 

However, primary nucleation still occurs in the presence of particles, especially when 

the saturation degree in the system is high (Agrawal et al., 2018). This happens 

because it is a very rapidly occurring local mechanism, which is not directly affected 

by the presence of other particles (Myerson, 2001). In addition, if the mixing is not 

good and high saturation zones are found in the reactor, primary nucleation is of 

relevance and the cause for obtaining crystals with smaller mean particle sizes 

(Mersmann, 2001). 

Nucleation can be further classified by distinguishing between primary homogeneous 

and primary heterogeneous nucleation and by dividing the secondary nucleation into 

different categories, as shown in Figure 2.3.  
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Figure 2.3: Classification of different nucleation types, adapted from (Jones, 2002). 

Despite in a real system all nucleation types could happen simultaneously and be of 

relevance, experimental evidence show that under controlled situations primary 

nucleation is favoured at high supersaturation and secondary nucleation is favoured 

at lower saturation (Mehta and Batstone, 2013). As the supersaturation needed for 

them is different, each of the nucleation types show different metastability limits. 

The metastability limit for each type of nucleation is schematically represented in the 

diagram in Figure 2.4. 
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Figure 2.4: Saturation diagram, adapted from (Pastor, 2008). 

In this thesis precipitating systems with relatively high saturation degree have been 

analysed. Therefore, only the effect of primary homogeneous nucleation has been 

considered in the PBM. However, all nucleation types are briefly described in the 

upcoming paragraphs. 

Primary homogeneous nucleation is the spontaneous creation of small entities from 

the liquid phase in the absence of other solid bodies. It is uncertain how homogeneous 

nucleation happens, however, it is usually accepted that a sequence of bimolecular 

additions is the cause (Mullin, 2001). The number of molecules present in a nucleus 

is considered to be between ten and several thousand.  

Due to the uncertainty associated with the mechanism, it is challenging to 

experimentally analyse the primary homogeneous nucleation and relating its rate to 

the effect of the experimental variables. One way of assessing the mechanism is by 

measuring the induction time. The induction time is considered to be inversely 

proportional to the nucleation rate (Hanhoun et al., 2013). Strictly, the induction time 

is the time elapsed between the generation of the supersaturation in the system and 

the appearance of the first nuclei, however, under controlled conditions it can be also 

related with the time lapse between the first stable pH is obtained and a change on it 

(Bhuiyan et al., 2008b; Mehta and Batstone, 2013). For struvite, the induction time 

decreases with an increasing saturation degree in the system (Bhuiyan et al., 2008a; 

Hanhoun et al., 2013; Mehta and Batstone, 2013; Ohlinger et al., 1999) and also with 



18  State of the art 

 

 

 

an increasing shear rate, associated with a higher mixing intensity in stirred tanks 

(Bhuiyan et al., 2008a).  

Regarding the kinetic rate of struvite primary homogeneous nucleation, its 

dependence with supersaturation is often represented with a power-law function 

where the exponent value varies (Burns et al., 2021; Galbraith et al., 2014). To the 

author’s best knowledge the effect of mixing in struvite primary homogeneous 

kinetics has not been explicitly accounted yet. However, some authors have shown 

that primary homogeneous nucleation rate increases with an increasing shear rate for 

poly (1-butene) melt (Wolkowicz, 1978) or polypropylene (Tribout et al., 1996), 

which is in line with the decreasing induction times found for increasing shear rates 

in struvite precipitation systems.  

Primary heterogeneous nucleation occurs when the nuclei are generated in the 

presence of a crystal phase that is not the one being analysed. The PBM developed 

in this thesis and the experiments performed did not consider the interaction of other 

crystals in the precipitation kinetics because that would increase the difficulty of 

identifying the individual effect of the supersaturation or mixing in the mechanisms. 

However, these interactions are relevant in real systems, where struvite precipitation 

might not be the only crystalline phase precipitating. In addition, there are 

commercial struvite recovery technologies as the Crystalactor® that use sand as seed 

material to precipitate struvite (Ewert et al., 2014). Furthermore, in precipitating 

systems that use alternative solid Mg sources as MgO or MgO by-products to recover 

struvite (Romero-Güiza et al., 2015a, 2015b, 2014; Stolzenburg et al., 2014), 

understanding how these solid Mg sources create the supersaturation in the system 

and afterwards the nucleation is performed is paramount for the design and operation 

of the technologies. 

Secondary nucleation involves several nuclei generation processes where the crystal 

phase analysed is involved. Jones distinguished five different types of secondary 

nucleation (Jones, 2002): contact (with other crystals or the crystallizer parts), shear 

(due to fluid flow), fracture (due to particle impact), attrition (due to particle impact 

or fluid flow) and needle (due to particle disruption). Its effect has not been 

considered in the model presented in this thesis because the experiments performed 

were mainly unseeded and had a high saturation degree, which, as mentioned, favour 

primary homogeneous nucleation. 
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2.1.2.2. Growth 

Once the nuclei stabilize, precipitation occurs through particle enlargement 

processes. Particle growth is the particle enlargement process where particles 

increase their size by consuming reactants.  

It is believed that crystal growth occurs through two sequentially occurring main 

processes. First, mass transport of reactants happens from the bulk supersaturated 

solution to the particle-solution interface by diffusion. Second, the reactants are 

incorporated to the crystal lattice through the surface integration process (also called 

surface reaction process) (Myerson, 2001). The intensity of each process is 

proportional to the concentration difference of the reactants between the bulk and the 

particle-solution interface and between the particle-solution interface and 

equilibrium concentration respectively (Mullin, 2001). The mass change of each 

process can be defined as:  

dm

dt
= kd · A · (c − c

∗) 2.9 

dm

dt
= ks · A · (c

∗ − ce) 2.10 

Where m is the mass of solid deposited in time t, kd is a coefficient of mass transfer 

by diffusion, A is the surface area of the crystal,  ks is a rate constant for the surface 

integration process and c∗ is the solute concentration in the particle-solution 

interface. c and ce are the concentration of the compound in the bulk and its 

solubility, as aforementioned. 

As the practical use of these equations is very limited due to the difficulty of 

determining the concentration at the particle-solution interface, the mass transfer 

from the liquid phase to the solid phase by crystal growth is generally assumed to 

depend on an ‘overall’ concentration driving force (c − ce) (Mullin, 2001) or other 

supersaturation expression that relates the concentration or activities of the ions in 

the bulk and equilibrium (see section 2.1.1.3).  

The kinetic rate of struvite crystal growth is dependent on the available surface and 

the supersaturation (Burns et al., 2021). The effect of the area has been considered 

either dynamically (Burns et al., 2021) or proportional to the initial seed loading 

(Mehta and Batstone, 2013; Vaneeckhaute et al., 2018). When the growth is 

proportional to the area of the initial seed loading the kinetic rate usually includes a 
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ratio of the time dependent crystal mass present in the system to the mass of the initial 

loading of crystals.  

Regarding mixing effects, growth rate dependency on the mixing is thought to be less 

important than for primary homogeneous nucleation (Tribout et al., 1996; 

Wolkowicz, 1978). To the author’s best knowledge there has not been any attempt to 

relate struvite growth kinetics with mixing intensity in a reactor. However, some 

authors have experimentally related the saturation decay in the system with the 

mixing intensity (Ariyanto et al., 2014) or the obtained particle size with the mixer 

rotation speed (Fang et al., 2016) or type (Ronteltap et al., 2010). 

Figure 2.5 illustrates the crystal growth of particles by showing two 

photomicrographs taken with a scanning electron microscopy at the beginning and 

the end of an experiment run for ten days in a fluidised bed reactor where struvite 

was precipitated. 

A  B  

Figure 2.5: Struvite crystals sampled from an experiment conducted for 10 days in a 

fluidised bed reactor. (A) struvite crystals after 1 day, (B) struvite crystals after 10 days.  

2.1.2.3. Aggregation 

Aggregation is the particle enlargement process where the effective impact of two 

small crystals form a bigger one. Aggregation is relevant when a high concentration 

of small particles exist (Myerson, 2001). This is the case of fluidised bed reactors, 

where under certain conditions, the small particles generated through nucleation and 

growth mechanisms are accumulated in the reactor and their union changes the final 

PSD (Ye et al., 2016). The fluidised bed reactors are relevant as commercial struvite 

recovery technologies as the PearlTM technology by Ostara or PhosphogreenTM by 
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Suez use this type of reactors. Both technologies recover struvite as spherical 

particles. This spherical shape is a consequence of aggregation between particles and 

contact between the aggregated entities. 

It is thought that some consumption of the dissolved ions is needed to create the bond 

between two colliding crystals (Liew et al., 2003). Therefore, the kinetic rate of 

aggregation is usually described as proportional to the supersaturation (Galbraith et 

al., 2014; Hounslow et al., 1988). Regarding the effect of the hydrodynamics, 

aggregation rate of calcium oxalate has been related with the energy dissipation rate 

or shear rate in the reactor (Zauner and Jones, 2000a). According to this contribution, 

the aggregation rate first increases and then decreases with an increasing energy 

input. This changing effect could be related with the idea that a higher energy input 

would favour the impact of the crystals, but when it is too high this impact would not 

be effective. To the author’s best knowledge struvite aggregation rate has not been 

related with the system hydrodynamics. In relation to the effect of other components 

in the mechanism, the strength and size of the struvite aggregates can be limited by 

the presence of impurities (Shih et al., 2017).  

Figure 2.6 shows how prismatic particles generated by nucleation and growth 

mechanisms form by aggregation a bigger spherical particle. 

A  B  

Figure 2.6: Struvite particles sampled from a seeded experiment conducted for 10 days 

in a fluidised bed reactor. (A) Sphere formed as a consequence of prismatic particle 

aggregation, (B) zoomed photomicrograph of the sphere. 
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2.2 PRECIPITATION PROCESS IN CONVENTIONAL 

WASTEWATER TREATMENT MODELLING 

As mentioned in Chapter 1, historically, the main purpose of the wastewater industry 

has been to reduce the contamination before releasing the treated water to the 

receiving waterways. Consequently, the developed modelling frameworks have been 

focused on representing the organic matter and nutrient removal processes. The 

models developed with this objective are the ASM, comprised by ASM1, ASM2, 

ASM3 and ASM2d models. These models have been extensively used to describe 

WWTP unit processes, however, their use is very limited when it comes to 

precipitation or nutrient recovery description within a WRRF context. The ASM1 

and ASM3 do not include precipitation-dissolution processes in the transformations, 

while the ASM2 model describes chemical phosphorus removal by precipitation with 

iron. This reaction is described as a one-step process, where the precipitated P is 

proportional to the concentration of dissolved P. Therefore, it ignores basic 

precipitation principles as solubility, supersaturation or the mechanisms governing 

the process. Moreover, ASM models do not allow the integration of nutrient recovery 

unit processes. This occurs because necessary physico-chemical components and 

transformations are not included in the model’s definition (Vaneeckhaute et al., 

2018).  

Fortunately, model libraries representing wastewater treatment have been upgraded 

and physico-chemical components and transformations have been combined with 

biochemical reactions in the PWM modelling frameworks developed over the last 

two decades. The PWM approaches are based on the compatible description of the 

transformations describing different unit processes in the WWTP. Despite they were 

originally conceived to combine classic water and sludge line models (Ekama et al., 

2006; Grau et al., 2007; Jones and Tákacs, 2004; Rosen et al., 2006), basics from 

which they were conceived (mass and charge continuity) allowed them for the 

straightforward implementation of chemical and physico-chemical processes. On this 

sense, based on the work by Koutsoukos et al. and Musvoto et al., (Koutsoukos et 

al., 1980; Musvoto et al., 2000b, 2000a) several libraries have extended the initial 

approach by including the precipitation kinetics of the salts that can be formed in a 

WWTP. Some of them are the Biological nutrient removal model 2 (Barat et al., 

2013), the PWM developed by the University of Cape Town (Ikumi et al., 2014b, 

2014a), the Ceit’s Physico-Chemical-PWM (PC-PWM) (Lizarralde et al., 2015) or 
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the libraries developed by the collaboration of different research groups (Kazadi 

Mbamba et al., 2015a, 2015b; Solon et al., 2017, 2015). 

These model libraries represent precipitation as a one-step process based on the 

supersaturation in the system and, in some cases, the crystal area or available growth 

sites. In addition, the Ceit’s PC-PWM describes the precipitation by including some 

effect of the mechanisms, as the precipitation rate of the salts is proportional to 

activation terms that represent the growth of crystals under seeded and unseeded 

conditions (Lizarralde et al., 2015). However, the library does not include 

information about the obtained PSD. This issue has been partially solved in Nutrient 

recovery model (NRM) library (Vaneeckhaute et al., 2018), where the focus of the 

model is on the obtained fertilizer quality and quantity and an average particle 

diameter can be obtained in the simulations.  

As the model developed in this thesis has been constructed following the equations 

and guidelines of the Ceit’s PC-PWM, in this section, the approach will be described. 

In addition, the kinetics describing precipitation process in NRM library will be 

discussed as they include different precipitation mechanisms and the particle 

diameter of the obtained fertilizer. 

2.2.1. Ceit’s Physico-Chemical Plant Wide Model (PC-PWM) 

Ceit’s PWM is organised as a model library, where the user can select the set of 

transformations required to describe the unit processes constituting the WRRF that 

has to be simulated. Ceit’s PC-PWM includes those transformations describing the 

solid-liquid and gas-liquid mass transfer phenomena. 

Ceit’s PWM was originally constructed combining models based on the ASM2d and 

ADM1 models (Grau et al., 2007) and over the years, the library has been extended 

by including models representing processes for anaerobic and aerobic sludge 

digestion (de Gracia et al., 2009), autothermal thermophilic aerobic digestion 

(Gomez et al., 2007), sludge ozonisation processes (Manterola et al., 2007) or recycle 

flow treatment technologies such as Sharon and Anammox (Grau et al., 2007). 

Furthermore, the dynamic heat transfer in multiphase biochemical reactors 

(Fernández-Arévalo et al., 2014) or the techno-economic assessment of the WRRF 

using cost models can also be simulated (Fernández-Arévalo et al., 2017a).  
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Due to these extensions, Ceit’s PWM, like other PWM approaches gathers the most 

relevant biochemical, physico-chemical (liquid-gas transfer and precipitation-

redissolution) and chemical equilibrium processes (acid-base reactions, ion pairing 

reactions, etc.) that can occur in a WRRF. These three types of processes are defined 

in the PC-PWM in two different modules according to their scope, nature of process 

being described and numerical solution. 

The first module is constituted by slow processes and these will be described by 

means of ordinary differential equations (ODEs), defined as proposed in standard 

IWA models, with stoichiometry and kinetics formulation. This module accounts for 

biochemical, precipitation-redissolution and stripping-dissolution processes. The 

second module is a set of fast processes (assumed at equilibrium) described using 

implicit, nonlinear algebraic equations (AEs) that include chemical reactions 

required for describing the buffer capacity of the aqueous solution and consequently, 

the correct description of the weak acid-base chemistry (Ikumi et al., 2014a; 

Lizarralde et al., 2015; Solon et al., 2015). The AEs system is solved at each 

simulation step using the proton balance approach. Both the mass balance and the 

proton balance can be described with the Tableau method (see Appendix A). 

In the PC-PWM, the kinetic rate ρr of the precipitation reactions are defined as 

follows: 

 ρr = kT · (IAP
1/ν − Ksp

1/ν)
n
· (ASO + AXTSS + ASN) 2.11 

where kT is the kinetic precipitation/dissolution coefficient, ASO, AXTSS and ASN are 

activator terms that change their value depending on the conditions in the system. 

ASO and AXTSS are indicators of the growth of crystals when there is material in the 

solution, while ASN is used to simulate crystal growth when no seed material is added. 

For a generic salt, they are defined as follows: 

AS0 = s0
⌈AzBy(s)⌉

[AzBy(s)]0
+ K1

 2.12 

AXTSS =
CwTSS

CwTSS + K2
 2.13 

ASN =
[Ay+] · [Bz−]

[Ay+] · [Bz−] + K3
 2.14 
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where s0 is a dimensionless parameter that represents growth of the available 

surface assuming a constant size distribution, CwTSS is the concentration of total 

suspended solids and K1, K2 and K3 are constants with a very low value to 

guarantee numerical stability. 

If an unseeded experiment is being simulated, precipitation through ASN path will be 

dominant. However, as crystals start to grow, ASO will become the dominant path. 

These activation terms help to quantify the effect of nucleation and growth process 

on the kinetic rate of precipitation. However, for design and optimization purposes 

the PSD is a key variable and its modelling is not considered in this approach.  

Therefore, even if chemical and physico-chemical processes are considered in the 

PC-PWM developed by Ceit, the model is limited when it comes to accurately 

represent the precipitation mechanisms. However, the fact that all components are 

expressed using their elemental mass composition, makes Ceit’s PC-PWM a very 

suitable framework to attempt the incorporation of a PBM within a PWM modelling 

context. This would allow the model to represent struvite precipitation in a more 

rigorous way for design and optimization purposes while making it compatible with 

the modelling of other unit processes needed to simulate the whole WRRF. 

2.2.2. Nutrient Recovery Model (NRM) library 

Developed by Vaneeckhaute et al., (Vaneeckhaute et al., 2018) it is a model tool 

focused on the quantity and quality of recovered products in WRRFs. The library 

includes dynamic physico-chemical three-phase models. In this section, the focus 

will be on how the liquid-solid mass transfer process is described in the library. 

The kinetic rate for liquid-solid mass transfer is described as: 

ρR = kT · (Sr − 1)
n 2.15 

Where ρR is the kinetic rate of precipitation/dissolution of a component, kT is the 

kinetic precipitation/dissolution coefficient, Sr is the saturation ratio, described as 

Sr = (
IAP

Ksp
)

1
ν⁄

 and n is the reaction order. 

The value of the supersaturation changes dynamically as precipitation occurs in the 

system. Additionally, the model chooses the dominant precipitation mechanism 

occurring in the system depending on the reactor’s operational condition. The model 
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considers four possibilities, depending on the supersaturation, presence of seed 

material and presence of crystals. Depending on these variables, the model selects a 

definition of kT and a value of n to define the precipitation kinetic. 

The first condition considers a situation where the system is under supersaturation 

condition (Sr> 1) and there is seed material in the solution. In that case, it is assumed 

that crystal growth dominates the precipitation and kT is then described as: 

kT = kG,T · aseed ·
Mseed

Vliq
  2.16 

Where kG,T is the temperature dependent growth rate coefficient, aseed is the specific 

area of surface per gram of seed before the seed crystals start to grow and Mseed is 

the time-dependent mass of seed material in the reactor, calculated at every time step. 

The value of n is 2. 

The second condition considers a situation where there is supersaturation in the 

system (Sr> 1) but there is not seed material present in the solution and/or the crystal 

size is not large enough to have an influence in the process. In this case, it is believed 

that the system is under nucleation conditions and kT is then described as kT = kB,T, 

where kB,T is the nucleation rate and the value of n is bigger than 2 and should be 

estimated experimentally for each precipitate. 

The third condition is an undersaturated (Sr< 1) solution with a presence of 

precipitate in the system. In this case, kT = kD,T where kD,T is the dissolution rate 

and n has a different value. The numeric value of the constants is not specified but 

the model allows the dissolution of the crystal. 

The fourth condition is the equilibrium condition (Sr= 1). The model considers that 

under equilibrium conditions, there is no change in the precipitation system. Thus, 

kT becomes 0 and both precipitation and re-dissolution are inhibited. 

In addition, the model defines aggregation and floc break-up kinetics by considering 

the effect of mixing and the particle number.  

From the crystal mass precipitating and considering each crystal phase density, the 

model is able to dynamically calculate the average particle size of the precipitated 

fertilizer, considering that the particles are spherical and that the number of particles 

is known:  
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dP = √
Vfert

Npart·
π

6

3
  2.17 

Where Vfert is the fertilizer volume, Npart is the particle number and 
π

6
 is the particle 

shape factor.  

The model presented by Vaneeckhaute et al. is an improvement in wastewater 

treatment because it changes the focus towards the recovered product quality while 

maintaining an overall view of the WRRF.  

However, the model presents some limitations when detailed modelling of the 

precipitation process is needed, as it does not consider PSD. In addition, even if the 

model includes different scenarios where the main mechanisms are of relevance, it is 

not clear how the mass balance is fulfilled when they are combined, as some of them 

are defined in particle number and others in mass.  

Therefore, it is clear that despite the recent improvements towards representing 

precipitation processes in wastewater treatment industry, still there is a need to 

upgrade the existing models with new frameworks that account main mechanisms of 

the precipitation and a dynamic change of the PSD while maintaining the mass and 

charge balance. 

2.3 POPULATION BALANCE MODEL (PBM) 

As opposed to the one step precipitation models commonly used in conventional 

wastewater modelling to represent precipitation process, the PBM explicitly includes 

the definition of the mechanisms and tracks changes in the PSD of the system.  

First formulated in 1964 by Hulburt and Katz (1964), the PBM is a well stablished 

tool to simulate particulate systems (Costa et al., 2007). Despite it has not been 

extensively used in wastewater industry, it is an accepted tool in other fields as the 

industrial crystallization, where it has been used since the 1970s (Nagy et al., 2013). 

Furthermore, it can be used to describe polymerization, bubble towers, aerosol 

reactors, biological processes, fermentation or cell culture (Costa et al., 2007).  

Due to the topic of this thesis, the focus in this section will be on the use of PBMs to 

represent struvite precipitation processes. However, the model framework can be 

applied in other processes occurring in a WRRF, as flocculation (Nopens et al., 
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2004), bubble dynamics (Climent et al., 2019), granulation (Abrahamsson et al., 

2018) or crystallization (Ye et al., 2018), among others (Nopens et al., 2015). 

The main advantage of the PBM when compared to one step kinetic models often 

used in the wastewater treatment modelling is that the PBM simulates the distribution 

of certain properties (e.g. size, composition) within a group of individual entities (e.g. 

particles, bubbles or cells) (Nopens et al., 2015). This is done by explicitly 

accounting the interaction of these entities with their environment (e.g. particles 

growing or dissolving) and between them (e.g. aggregation or coalescence) by 

defining the mechanisms of the process. The consequence is that the PBM can 

account the difference in the behaviour of the entities in the system based on the 

distribution of the properties considered. This is a clear improvement when detailed 

modelling of the process is needed, as the conventional approach used in wastewater 

modelling only considers non distributed (or ‘averaged’) scalar properties (e.g. single 

particle or bubble size). Another advantage is that due to its higher detail, the PBM 

can help in the understanding of the process under study. 

2.3.1. Definition 

The main equation of the PBM for a precipitation batch experiment can be expressed 

as (Galbraith, 2011): 

∂nD
∂t

+ G
∂nD
∂L

= B(L) − D(L) 2.18 

Where nD is the population density, L is the characteristic crystal length (the 

distributed property), G is the size independent linear growth rate, B is the birth 

function and D the death function.  

The population density nD defines the number of particles per volume unit (ND) 

within the size range L→ L + dL:  

nD(L) =  
dND
dL

 2.19 

the first term of the left of equation 2.18, 
∂nD

∂t
, is an accumulation term. The term 

G
∂nD

∂L
 accounts for the change in the distribution dynamics of the property (crystal 

length) by a continuous process (crystal growth), while the birth and death functions 
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consider the change due to discrete processes (aggregation or breakage) and account 

the rate at which particles of size L are formed (birth) and are removed (death). 

The analytical resolution for the PBM is only possible for the simplest cases, 

consequently, numerical methods, often involving some kind of discretization or 

decomposition of the main equation, are used for its resolution (Costa et al., 2007).  

2.3.2. Population balance model for struvite recovery 

Due to the advantages of the PBM over conventional modelling of precipitation in 

wastewater, several authors have successfully implemented the PBM framework to 

simulate struvite precipitation (Burns et al., 2021, 2016; Galbraith et al., 2014; 

Hanhoun et al., 2013; Triger et al., 2012; Ye et al., 2018). However, as mentioned 

above, the analytical resolution for the PBM is only possible for the simplest cases. 

As these simple cases are often far from the conditions of a real reactor, in the 

available contributions in the literature each author had to make assumptions and 

solve the PBM following different numerical approaches. For example, in the 

aforementioned contributions, discretization (Burns et al., 2021, 2016; Galbraith et 

al., 2014; Triger et al., 2012), the method of moments (Hanhoun et al., 2013) or the 

quadrature method of moments (Ye et al., 2018) have been used to solve the PBM. 

The resolution method used and the fact that all the contributions are based on 

particle populations can hinder the combination of the PBMs with the existing 

wastewater treatment libraries.  

The compatibility of the different modelling approaches is necessary in order to use 

the PBM within a WRRF context, where the performance of the precipitation reactor 

depends on the operation of the rest of the plant. The model presented in the Chapter 

3 of this thesis overcomes this barrier by defining mass-based components.  

2.3.3. Mechanisms of precipitation in the PBM 

The mechanisms of precipitation are explicitly included in a PBM. In this section, 

their definition in the existing contributions to represent struvite precipitation is 

going to be discussed.  
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2.3.3.1. Nucleation 

Nucleation kinetics are often presented as a function of the supersaturation in the 

system. The expressions used by some relevant works on the field of struvite 

simulation using PBM are included in Table 2.1.  

Table 2.1: Compilation of nucleation kinetic rate expressions for struvite by authors 

using the PBM framework. B0 is the nucleation rate, KB is the nucleation constant, nB is 

the Nucleation exponent, BC is a constant value, ∆Ghom
crit  is the free enthalpy of 

activation, kBol is the Boltzmann constant and T is temperature. 

B0 (
nuclei

l · min
) KB (

nuclei

l · min
) 

nB(−) or 

BC(−) 
Authors 

B0 = KB · SI
nB  8.509 · 107 nB = 1.68 

(Galbraith et al., 

2014) 

B0 = KB · SI
nB  7.509 · 107 nB = 1.68 (Burns et al., 2021) 

B0 = KB · exp (
−∆Ghom

crit

kBol · T
) 2.04 − 4.02 · 108 -- (Triger et al., 2012) 

B0 = KB · exp (
−BC
ln Sr

2
) 2.39 · 1011 BC = 449 

(Hanhoun et al., 

2013) 

Galbraith et al. (2014) and Burns et al. (2021) use a power law function where the 

primary homogeneous nucleation rate has an exponent of 1.68. The exponent value 

is relatively low if compared with classic precipitation theories, which state that the 

exponent of primary homogeneous nucleation is often higher (Myerson, 2001). 

Despite the regressed kinetic constant KB value is different, it shows a relatively good 

agreement between the two contributions. Triger et al. (2012) and Hanhoun et al. 

(2013) used different expressions to represent nucleation and also different ways of 

assessing supersaturation. This increases the difficulty to compare results between 

different contributions.  

2.3.3.2. Growth 

All the contributions reviewed used a size independent growth rate defined as a 

power law function. The exponent and kinetic constant regressed are included in 

Table 2.2.  
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Table 2.2: Compilation of growth kinetic rate expressions for struvite by authors using 

the PBM framework. G is the linear growth rate, KG is the Growth constant and nG is 

the Growth exponent. 

G (
μm

min
) KG (

μm

min
) nG (-) Authors 

G =  KG · SI
nG  KG = 12.49  nG = 5.269 (Galbraith et al., 2014) 

G =  KG · SI
nG  KG = 16.72  nG = 2 (Burns et al., 2021) 

G =  KG · SI
nG  KG = 90 − 120  nG = 1.15 − 2 (Triger et al., 2012) 

G =  KG · Sa
nG  KG = 300.7  nG = 1.34 (Hanhoun et al., 2013) 

As it can be seen, the values of the regressed constants and the saturation expressions 

vary between the different contributions.  

Regarding growth kinetic expressions, despite they are not commonly used in struvite 

precipitation, some authors have proposed kinetics where the crystal growth is not 

independent of the size of the particles. Nagy and Aamir collected some of these 

expressions and they are shown in Table 2.3 (Nagy and Aamir, 2012). The 

expressions use the SI for simplicity, but any other form of supersaturation could be 

used. 

Table 2.3: Growth kinetic expressions, where L is the characteristic length, 𝛂𝐆𝐂 is the 

size dependency growth constant and 𝐧𝐆𝐂 is an exponent (Nagy and Aamir, 2012). 

Growth Expression Validity Condition 

G =  KG · SI
nG · (1 + αGC · L)

nGC  (αGC ≠ 0,nGC ≠ 1) 

G =  KG · SI
nG  (αGC = 0,nGC = 1) 

G =  KG · SI
nG · (1 + αGC · L) (αGC ≠ 0,nGC = 1) 

G =  KG · SI
nG · LnGC (nGC ≠ 1) 

2.3.3.3. Aggregation 

In the field of struvite precipitation modelling through PBM framework, aggregation 

is not always considered. Despite Galbraith et al. (2014) considered its effect by 

defining the kinetics of the mechanism proportional to the SI in the system, most of 

the authors have avoided its inclusion in the PBM framework (Burns et al., 2021; 
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Hanhoun et al., 2013; Triger et al., 2012; Ye et al., 2018). This assumption is made 

because under some experimental conditions, aggregation may not be relevant. In 

addition, if the method of moments is used for the resolution of the PBM, aggregation 

cannot be considered. Considering that experimental evidence show that aggregation 

can affect the PSD in the system, especially in seeded and continuous experiments, 

which are the most similar conditions to a real reactor, it seems necessary to have the 

possibility to include this mechanism in the chosen modelling approach. 

Galbraith et al. (2014) used a size independent aggregation kernel, which is the one 

that provides best simulation outputs when compared to the experimental data 

(Bramley et al., 1996). As the resolution method used in Galbraith et al. is the 

discretization, Hounslow’s approach is used to model the aggregation process 

(Hounslow et al., 1988). This approach is explained in the Chapter 3 of the thesis. 

2.3.4. Mixing effects consideration in the PBM 

In struvite precipitation modelling, mixing is not usually contemplated. According to 

Pohorecki and Bałdyga (1983), however, the rate of precipitation and the size 

distribution of the obtained particles depend significantly on the mixing intensity. 

Therefore, ignoring mixing effects could be one of the reasons behind the shifting 

parameter values found in the PBMs describing precipitation of struvite, as they 

could have been obtained for different mixing intensities.  

Considering the effect of mixing in precipitation processes is challenging, since it 

occurs at different process scales: macromixing describes mixing at reactor scale, 

micromixing considers mixing in the smallest vortices and the ultimate molecular 

diffusion, while mesomixing lies between micromixing and macromixing (Torbacke 

and Rasmuson, 2004). 

In this regard, it is believed that the rate of mixing could be evaluated by means of 

micromixing models (Pohorecki and Bałdyga, 1983). As nucleation and growth 

occur at molecular scale, micromixing impacts directly both mechanisms, while 

mixing at bigger scales only affects indirectly the process by determining the 

micromixing environment (Phillips et al., 1999). Consequently, interaction between 

the micromixing and the kinetics of both mechanisms (especially nucleation) have 

been evaluated in several contributions (Baldyga et al., 1995; Baldyga and Bourne, 

1992; Marcant and David, 1991; Phillips et al., 1999). In these contributions the 
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mixing is considered inhomogeneous in the reactor and the precipitation model 

changes depending on this inhomogeneity.  

Micromixing in the aforementioned contributions has been characterized as a 

function of the energy dissipation rate. In experimental studies, the effect of mixing 

on the different mechanisms has been often quantified using the shear rate (De Santis 

et al., 2016; Forsyth et al., 2016; Mullin and Raven, 1962; Nappo et al., 2018). 

The specific energy dissipation rate and the average shear rate in a stirred tank are 

related as follows (Sánchez Pérez et al., 2006): 

Pi
V
= τ · γ 2.20 

where Pi is the power input, V is the volume of the liquid in the reactor, τ is the shear 

stress and γ is the shear rate. For Newtonian fluids, the dynamic viscosity is the ratio 

of shear stress and shear rate: 

µ =
τ

γ
 2.21 

therefore, eq 2.20 can be written as: 

γ = (
Pi
V · µ

)
1/2

 2.22 

Eq. 2.22 has been often used to quantify the average shear rate in a stirred vessel 

(Ilievski et al., 2001; Nappo et al., 2018; Sánchez Pérez et al., 2006). 

The models combining micromixing effect with nucleation and growth kinetics have 

not been implemented for struvite precipitation. Regarding aggregation, 

Vaneeckhaute et al. propose that the aggregation of crystal fertilizers obtained in 

WRRFs can depend on the average shear rate, based on a spherical particle model 

for macroscale flocculation (Vaneeckhaute et al., 2018). In addition, the use of other 

frameworks as CFD to simulate mixing effects in wastewater treatment is increasing. 

In this regard, Ye et al. (2018) coupled the PBM framework with CFD to represent 

struvite nucleation and growth in a fluidised bed reactor. Nevertheless, the kinetic 

rates of nucleation and growth used in Ye et al. (2018) did not explicitly account the 

micromixing effect as they were taken from previous contributions by Galbraith et 

al. (2014) and Hanhoun et al.(2013). 



34  State of the art 

 

 

 

Regarding growth in other compounds, Samad et al. (2011)  proposed kinetic rates 

for size independent and size dependent growth of crystals where the stirring speed 

was included as a power law function. However, the expression is limited in its 

application as the stirring speed is not the only factor affecting mixing intensity in a 

reactor (stirrer type and size and liquid volume in the reactor should be also 

considered, at least).  

For aggregation, similar approaches as the one proposed in Vaneeckhaute et al. 

(2018) have been used before for other compounds (Hounslow et al., 2013). In 

addition, Samad et al. proposed a kinetic rate where the aggregation depends on the 

stirring speed (Samad et al., 2011).  

2.4 SUMMARY 

Precipitation process depends on supersaturation and occurs through various 

mechanisms. These mechanisms occur simultaneously in a precipitation reactor and 

depending on them the PSD in the system evolves differently. Despite precipitation 

has been used for years for product separation and purification, its interest and 

application in wastewater industry has been low. Therefore, main modelling 

frameworks in wastewater industry included precipitation in a very simplistic way. 

Due to the current interest in product recovery from WRRF, the interest in physico-

chemical modelling has increased. A modelling framework that could improve 

existing modelling is the PBM. The PBM considers the mechanisms of precipitation 

and tracks the PSD within the reactor. Despite some efforts have been made to 

represent struvite precipitation using the PBM approach, there is still the need to 

improve in the compatibility of the PBM with the existing conventional frameworks. 

In addition, the great variability of the parameter values and the fact that mixing 

effect in the process is often ignored, encourages the research for rigorous calibration 

and consideration of such effects. 



 

 

35 

 

3   

A NEW MASS-BASED 

DISCRETIZED POPULATION 

BALANCE MODEL FOR 

PRECIPITATION PROCESSES: 

APPLICATION TO STRUVITE 

PRECIPITATION   

This chapter has been redrafted from: 

Elduayen-Echave B., Lizarralde I., Larraona G. S., Ayesa E., Grau P., 2019. A new 

mass-based discretized Population Balance Model for precipitation processes: 

application to struvite precipitation. Water Research, 155, 26-41.  

3.1 ABSTRACT 

Mathematical models describing precipitation processes in one step need to be 

upgraded. PSD is a crucial variable and its inclusion in the modelling libraries is 

necessary if the technology wants to be optimized through simulation. With this 

objective, a mass-based PBM is presented in this chapter. The model has been 
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constructed using a stoichiometric matrix and a kinetic vector and using mass as the 

internal coordinate, as it is usually done in wastewater treatment modelling. 

Identifiability of the parameters of the model was evaluated using a sensitivity and a 

collinearity analysis for six simulation case studies of struvite precipitation. In 

addition, the model’s predictive capacity to represent experimental data obtained 

from two batch experiments performed in the laboratory was tested. The results of 

the analysis showed that the identifiability of the parameters depends on the available 

experimental data and explored scenarios. Lack of identifiability in the parameters 

could be the reason behind the shifting parameter values describing mechanisms of 

precipitation in the literature. This chapter helps to understand the possibilities and 

limitations that the PBM approach offer.  

3.2 BACKGROUND 

Available struvite recovery technologies show significant differences in their 

operation depending on the characteristics of the product to be recovered and the 

process restrictions (continuous versus batch, different hydraulic retention times, 

etc.) (Tarragó et al., 2016). The operation of the reactor and the weight of each 

mechanism (primary nucleation and secondary nucleation, growth, aggregation, 

attrition and breakage of particles) will determine the PSD in the reactor. As the 

performance of struvite as a fertilizer depends on the obtained PSD (Tarragó et al., 

2016), this is a very important aspect of the process. 

Mathematical modelling and simulation libraries for WRRFs include main 

precipitation processes occurring in the recovery facilities (Ikumi et al., 2014a; 

Lizarralde et al., 2015; Solon et al., 2017). These modelling approaches can predict 

the amount of obtained solid in a recovery reactor, based on the kinetics of 

precipitation and thermodynamics. In addition, these modelling and simulation 

libraries often combine information from the biological, chemical and physico-

chemical processes in the WRRF with its economic performance. This is a necessary 

information to assess the suitability of installing a recovery technology by evaluating 

its effect on the global WRRF behaviour. However, they usually do not include 

information on the precipitation mechanisms nor the PSD. Therefore, they should be 

upgraded with new modelling frameworks for wastewater treatment modelling as the 

PBM if they are going to be used for design and optimization of struvite recovery 

technologies.  
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As explained in Chapter 2 (section 2.3.2), the PBM has been proved to be successful 

to track changes in the PSD in the struvite precipitation already (Galbraith et al., 

2014; Hanhoun et al., 2013; Triger et al., 2012). Modelled PSD and reactants 

consumption show good agreement between the experimental data and model results. 

This evidences the great potential of the PBM for the correct prediction of the process 

and its optimization. However, as pointed out in Chapter 1, there are some aspects 

regarding PBM construction in the existing contributions that should be addressed. 

In this chapter, two of them are considered. 

Firstly, PBM models have generally been defined using number of particles as the 

dependent variable of the process, which is coherent with the model purposes, but, 

can lead to mass discontinuities (Hounslow et al., 1988). Although partially solved 

(Galbraith et al., 2014), this problem would make them incompatible with 

conventional models used in the wastewater treatment framework, which are mainly 

constructed on the basis of mass balances around the unit to be described (IWA 

ASM-ADM models) (Batstone et al., 2002; Henze et al., 2000). For a successful 

implementation of PBMs in wastewater treatment industry, mass discontinuity must 

be avoided first. Using mass as internal coordinate automatically satisfies the mass 

balance (Scarlett, 2002). In addition, if the PBM is discretized, the rate of change of 

mass in the bins of different sizes and the components in the system can be 

represented as a dynamic mass balance, as it is usually done in standardized 

methodology for wastewater treatment modelling. The mass-based approach has 

been used to describe comminution, sintering or granulation processes (Verkoeijen 

et al., 2002). However, those examples did not include the mechanisms of primary 

homogeneous nucleation and particle growth, which are necessary to describe the 

mass transfer occurring from the liquid phase to the solid phase. Moreover, the 

aggregation was defined for constricted-in-space aggregation (Sastry and Fuerstenau, 

1970) and a linearly partitioned size domain (Verkoeijen et al., 2002). Those 

considerations are not valid for a precipitation process where the solid concentration 

is small and a big range of sizes needs to be covered. 

The second aspect is that obtained parameter values for the parameters defining inner 

mechanisms of the precipitation of struvite are very variable in the literature 

(Galbraith et al., 2014; Hanhoun et al., 2013; Mehta and Batstone, 2013). The same 

happens for other compounds, too (Chen et al., 2002; Ruan et al., 2016). Mechanisms 

occur simultaneously and obtaining meaningful experimental data to attribute to each 

mechanism its real effect on the precipitation is difficult, making calibration a very 
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challenging issue. In addition, each author considers different model assumptions, 

which has a direct effect on the calibrated parameter values. For example, some 

authors did not include aggregation in the mechanisms of precipitation (Hanhoun et 

al., 2013; Triger et al., 2012), leaving growth as the only particle enlargement process 

in their model. This will inevitably lead to different parameter values comparing to 

the authors that include aggregation, even for the same experimental conditions and 

sampling method. In addition, many definitions for the kernels of the mechanisms 

have been used in the literature, especially for aggregation and breakage (Hill and 

Ng, 2002), which leads again to different parameter values. Moreover, the considered 

thermodynamic equilibrium rates, the use of activity coefficients and the way they 

are obtained are other important reasons for these differences. Election of the 

constants governing these equilibrium equations has a considerable effect on the 

predicted precipitation potential (Barnes and Bowers, 2017). Using mathematical 

analysis tools to evaluate the possibility of obtaining trustworthy parameter values 

will increase the confidence in the modelling framework. 

Therefore, the first objective of this chapter is to present a PBM scheme based on a 

mass balance approach where the mass is conserved and it is compatible with 

wastewater treatment models conventionally used. For this issue, the PBM was 

adapted to a conventional model structure in wastewater treatment modelling, where 

mass of the crystal entities is used as the internal variable, instead of particle number. 

The second objective is to evaluate the theoretical parameter identifiability of the 

constructed model using model analysis tools as sensitivity analysis and a collinearity 

analysis. This evaluation is helpful to understand the goodness of the modelling 

framework before any calibration procedure is followed. To conclude the chapter, 

model parameters were adjusted heuristically to reproduce experimental data 

obtained in two laboratory tests, as a preliminary illustration of the predictive 

capacity of the model, which will be further assessed in the fifth chapter of the thesis. 

3.3 MATERIALS AND METHODS  

In this section, the information is divided in three subsections. In subsection 3.3.1 a 

description of the presented model is given, in subsection 3.3.2 the methodology 

followed to implement the analysis tools used to assess the identifiability of the 

parameters is detailed and in subsection 3.3.3 the experimental procedure followed 

to show the predicting capacity of the model is described.  
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3.3.1. Precipitation model 

The model presented here describes the precipitation process of struvite. The main 

reaction for this process is: 

Mg2+ +  NH4
+ + PO4

3− +  6H2O → MgNH4PO4 · 6H2O ↓ 3.1 

the liquid-solid mass transfer process occurring in the reactor is defined by the PBM 

approach, described below. 

3.3.1.1. Population balance model 

As mentioned in section 2.3, the main equation of the PBM for a precipitation batch 

experiment can be expressed as (Galbraith, 2011): 

∂nD
∂t

+ G
∂nD
∂L

= B(L) − D(L) 3.2 

The mathematical model presented in this chapter is a discretized population balance 

model (DPBM). In a DPBM, the particle sizes are considered bins defined after the 

crystal size range is partitioned. For the resolution of the PBM a dynamic balance is 

applied to each bin.  

In this thesis, particle sizes are defined after partitioning the crystal size range in 30 

bins. Each of the bins corresponds to spherical particles sized between 0.001 and 

0.812 mm of radius. The volume size defined for each bin is twice the previous one, 

using a 2 geometric progression for the partition of the volume size domain. As a 

consequence, PSD in the model follows a true discretization where only particles of 

size v, 2v, 4v, etc. exist, being v the volume of the smallest spherical particle size 

considered.  

The difference between the DPBM presented in this chapter and most of the PBMs 

available in literature is the way in which particle-particle and particle-liquid 

interactions are defined. In this thesis mass is used as the internal coordinate, instead 

of using particle number. Each particle size bin is considered as a component in the 

model and its interaction with other components (ions in the liquid and/or other solid 

bins) is described by the precipitation mechanisms and is based on the mass 

continuity of the components. The ions considered are those employed in urban 

wastewater treatment models. They have been defined using common wastewater 
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equilibrium reactions, as ion pairing and acid-base reactions, following guidelines 

and equations proposed in Lizarralde et al. (2015) and showed in Table 3.1.  

Table 3.1: Equilibriums and constant values. 

Equilibrium Equilibrium Constant Constant Value 

H2PO4
− ↔ HPO4

2− + H+ KH2PO4− =
aH2PO4−

aHPO42− · aH+
 10- 7.198 

HPO4
2− ↔ PO4

3− + H+ KHPO42− =
aHPO42−

aPO43− · aH+
 10- 12.375 

MgH2PO4
+ ↔ H2PO4

− +Mg2+ KMgH2PO4+ =
aMgH2PO4+

aH2PO4− · aMg2+
 10- 40.8291 

MgHPO4 ↔ HPO4
2− +Mg2+ KMgHPO4 =

aMgHPO4
aHPO42− · aMg2+

 10- 15.175 

MgPO4
− ↔ PO4

3− +Mg2+ KMgPO4− =
aMgPO4−

aPO43− · aMg2+
 10- 4.654 

MgOH+ ↔ PO4
3− + OH− KMgOH+ =

aMgOH+

aMg2+ · aOH−
 1011.397 

NH4
+ ↔ NH3 + H

+ KNH4+ =
aNH4+

aNH3 · aH+
 10-9.244 

H2O ↔ OH− + H+ KW = aOH− · aH+ 10-13.997 

The mechanisms of precipitation in this contribution (primary homogeneous 

nucleation, particle growth and aggregation of particles) are defined using a Petersen 

matrix for the stoichiometry and a vector of kinetics. 

The kinetics of mechanisms are defined in a general way as power-law functions 

dependent on SI and kinetic constants and exponents. 

ρR = KRSI
nR 3.3 

where ρ
R
 is the rate of change of the mechanism, KR is the kinetic constant of the 

considered mechanism and nR is the exponent (-). Units of ρ
R
 and KR depend on the 

mechanism. 
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The SI is calculated in every time step using the IAP of the species conforming the 

struvite and the solubility product of the salt.  

SI = log (
aMg2+ · aNH4+ · aPO43−

KspStru
) 3.4 

where aiis the activity of ion i (mol/l) and KspStruis the solubility product of the salt. 

Many values for the solubility product have been reported in the literature (Doyle 

and Parsons, 2002; Rahaman et al., 2006). From the proposed values, KspStru= 

7.58·10-13 (mol/l)3
 was used for all the simulations in this thesis.  

As the PBM is mass-based, the model could be further extended with other reactions 

as: liquid-gas transfer, other salts precipitation or other chemical reactions in a 

systematic and simple way in order to simulate struvite or other salt precipitation 

process in a reactor operated with real wastewater. Mechanisms not considered in the 

PBM presented in this chapter, such as breakage or secondary nucleation, could be 

added too. However, this model accounts for the most important mechanisms, 

maintaining a good compromise between relatively simple implementation and 

realistic representation of occurring precipitation. In the next subsections how the 

implementation of each mechanism has been done in the model is described in detail. 

3.3.1.2. Nucleation 

As explained in Chapter 2, primary homogeneous nucleation is the spontaneous 

creation of small entities from the liquid phase in the absence of other solid bodies. 

These entities are in the edge of liquid and solid phase, some of them re-dissolve into 

liquid and others become the starting point of the precipitation. It is uncertain how 

primary homogeneous nucleation happens, however, it is usually accepted that a 

sequence of bimolecular additions is the cause (Mullin, 2001). The number of 

molecules present in a nucleus is considered to be between ten and several thousand. 

This size range is considerably smaller than the minimum size measurable with 

typically available equipment and, as a consequence, the ones considered in the 

PBMs in the literature. In this thesis, the radius (r) of this smallest size has been 

arbitrarily chosen as r = 0.001 mm, following the example of Galbraith et al. (2014). 

The nucleation rate should be understood as the appearance rate of particles of the 

smallest size considered in the model. This appearance is subjected in reality to 

nucleation and particle enlargement processes. The assumption is considered valid 
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as particles smaller than r = 0.001 mm have a very small effect on the obtained crystal 

mass. 

The created crystal mass of size r = 0.001 mm is proportional to the reactants 

consumption as defined in the stoichiometry. This appearance rate is defined as: 

B0 = KB · SI
nB · V 3.5 

where B0 is the particle birth rate due to primary homogeneous nucleation 

(nuclei/day), KB is the kinetic constant of the primary homogeneous nucleation 

(nuclei/(day·m3)),  V is the liquid volume in the reactor (m3) and nB is the Nucleation 

Exponent (-).  

Mass change in the smallest sized bin due to nucleation is: 

∂X1
∂t

= KB · SI
nB · V · mesf1 3.6  

where X1 (g) is the mass of struvite characterized as the smallest size at any time and 

mesf1 (g) is the mass of struvite in a single sphere of the smallest bin (constant value). 

Table 3.2 includes the stoichiometry matrix for primary homogeneous nucleation 

process. 

3.3.1.3. Crystal Growth 

Once the nuclei stabilize, precipitation occurs through particle enlargement 

processes: particle growth and aggregation. Particle growth is the particle 

enlargement process where particles increase their size by consuming reactants. The 

rate of change in the size of particles is defined as: 

G = KG ∙ SI
nG 3.7 

where G is the particle linear growth rate (mm/day), KG is the kinetic constant of 

growth (mm/day) and nG is the Growth Exponent (-). 

In addition to the SI, the mass of a bin Xi (g) disappearing due to the growth rate from 

the ith to the i+1th size (
∂Xi

∂t
|
Gi→i+1

) will be determined by the available crystal surface 

of the ith bin: 
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∂Xi
∂t
|
Gi→i+1

= − G · Ai · ρs 3.8  

where Ai (m
2) is the area of the i-sized crystals at any time and ρs is the density (g/m3) 

of the crystal. 

As the area is not a variable included in the model, it has to be converted to a term 

depending on mass: 

Ai =
Cwi · V

ρ ·
(Li + Li+1)

2

 3.9  

where Cwi (g/m3) is the concentration of i sized particles at any time and  Li and Li+1, 

the characteristic lengths of the ith and i+1th bin, are the radius of each bin (mm). 

Substituting Ai: 

∂Xi
∂t
|
Gi→i+1

= −G ·
Cwi · V

(Li + Li+1)
2

= − KG ∙ SI
nG

Cwi · V

(Li + Li+1)
2

 3.10  

as Xi = Cwi · V: 

∂Xi
∂t
|
Gi→i+1

= − KG ∙ SI
nG

Xi
(Li + Li+1)

2

 3.11  

the change in the total mass of the ith sized particles due to the growth mechanism 

(
∂Xi

∂t
|
G
) will be the difference between the particles that grow from the previous bin 

to the considered bin and the particles that grow from the considered bin to the next. 

∂Xi
∂t
|
G
=

∂Xi
∂t
|
Gi−1→i⏟      

mass growing from 
previous bin

−
∂Xi
∂t
|
Gi→i+1⏟      

mass growing to 
next bin

 
3.12  

The definition of these steps and the interaction with the ions in the reaction is defined 

in Table 3.2. 
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Table 3.2: Stoichiometry matrix for nucleation (A) and growth (B) processes. 
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https://www.sciencedirect.com/topics/earth-and-planetary-sciences/stoichiometry
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3.3.1.4. Aggregation 

Aggregation is the particle enlargement process where the effective impact of two 

small crystals form a bigger one. It is thought that some consumption of the dissolved 

ions is needed to create the bond between two colliding crystals (Liew et al., 2003). 

The consumption due to the bond formation is assumed as negligible in the 

stoichiometry of this model and its effect is taken into account by making the 

aggregation kinetics proportional to the SI: 

β = KA · SI
nA 3.13  

KA (l/d) and nA (-) are the size independent kinetic constant of aggregation (or kernel) 

and the Aggregation Exponent respectively and β (l/d) is the Aggregation rate. Size 

independent aggregation kernels are the simplest and the ones with the best results 

(Bramley et al., 1996). Some studies suggest that the effectiveness of the impact 

could be related to the competing speed of the bond formation and the shear rate in 

the reactor (Hounslow et al., 2013; Liew et al., 2003). The impact of the shear rate 

in the mechanisms of the PBM is not considered in this chapter and its inclusion will 

be discussed in Chapter 4 and Chapter 5. 

When considering a volume size domain partitioned using a 2 geometric progression 

for the partition, a problem arises when modelling the collision of two spheres. If the 

colliding particles have different volumes (as an example, v and 2v) the model cannot 

represent the birth of the 3v sized sphere, as this size is not defined. To overcome 

this problem, in the construction of the DPBM, the approach of  Hounslow for the 

discretization of the aggregation process (Hounslow et al., 1988) is adapted to a 

mass-based DPBM. The results of the approach are comparable to the results of other 

discretization types (Nopens et al., 2005) and it has been successfully used to 

represent struvite aggregation (Galbraith et al., 2014). The approach of Hounslow is 

based on the idea that the entity (of volume 3v) formed experimentally will be 

fractioned in the model: a fraction is upgraded to the next sized bin (size 4v) and 

another fraction stays in the biggest size of the colliding particles (size 2v). 

The development of the aggregation mechanism starts by defining that the effective 

collision of particles of two different sizes (i and j, being j≤i) is proportional to the 

number of entities present in the model divided by the liquid volume Vl (litre): 
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β · ni · nj

Vl
 3.14  

where ni and nj are the number of particles at the ith and jth bin. 

For a mass-based model, this means: 

β · Xj · Xi

Vl · mesfj · mesfi
 3.15  

where mesfj (g) and mesfi (g) are the mass of a j-sized and i-sized sphere 

respectively. 

For the Death term, the mass of jth size bin leaving the jth bin due to collisions with 

class i will be the number of this effective collisions multiplied by the mass in each 

j sphere.  

dXj

dt
=

β · Xj · Xi

Vl · mesfj · mesfi
· mesfj =

β · Xj · Xi

Vl · mesfi
 3.16  

analogously, the mass of i sized crystal leaving the ith bin due to collisions with class 

j will be proportional to the effective collisions multiplied by the mass in each i size 

sphere. As the sum of the mass of both particles will not be enough to obtain a particle 

of size i+1, it is consider that a part of the particle of size i passes to the i+1 bin, 

whilst another part stays in i (Hounslow’s approach). To this end, the mass leaving 

the the ith bin is multiplied by a 2j−i factor: 

dXi
dt
=

2j−i · β · Xj · Xi

Vl · mesfj · mesfi
· mesfi =

2j−i · β · Xj · Xi

Vl · mesfj
 3.17  

this process is described in a diagram in Figure 3.1. 

With this assumption, and considering that for the Birth term, the mass of i+1 size 

formed due to collisions between particles in the ith and the jth class, will be the sum 

of the mass leaving i and j classes due to collisions, mass of the solids is automatically 

conserved during aggregation: 

dXi+1
dt

= (
dXi
dt
+
dXj

dt
) 3.18  
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Figure 3.1: Representation of the aggregation process. 
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Combining equations: 

dXi+1
dt

=  
2j−i · β · Xj · Xi

Vl · mesfj
+
β · Xj · Xi

Vl · mesfi
=
β · Xj · Xi

Vl
· (
2j−i

mesfj
+

1

mesfi
) 3.19  

as  
mesfj

mesfi
= 2j−i: 

dXi+1
dt

=
β · Xj · Xi

Vl
· (

1

mesfi
+

1

mesfi
)

=
β · Xj · Xi

Vl
· (

2

mesfi
) ·
2j−(i+1) · mesfi+1

mesfj

=
β · Xj · Xi

Vl
· (
2j−i · mesfi+1
mesfi · mesfj

) 

3.20  

the stoichiometry matrix for four general equations is shown in Table 3.3. The 

aggregation process has been modelled analogously for all possible collisions 

occurring between all the bins defined in the model. Thus, considering all the 

mechanisms involved, the dynamic mass balance for each ith bin is: 

For i = 1:  

dX1
dt

= B0 · mesf1 −
G · X1

(L1 + L2)
2

− ∑
β · X1 · Xi
Vl · mesfi

i=NK−1

i=1

 3.21  

For i ≠ 1, NK:  

dXi
dt
=

mesfi
mesfi−1

· G · Xi−1

(Li−1 + Li)
2

−
G · Xi

(Li + Li+1)
2

+ ∑
β · Xj · Xi−1

Vl
· (
2j−(i−1)

mesfj
·
mesfi
mesfi−1

)

j=i−1

j=1

−∑
2j−i · β · Xj · Xi

Vl · mesfj

j=i

j=1

− ∑
β · Xj · Xi

Vl · mesfj

j=NK−1

j=i+1

 

3.22  

For i = NK:   

dXNK
dt

= ∑
βXjXNK−1

Vl
(
2j−NK+1

mesfj
)

j=NK−1

j=1

+

mesfNK
mesfNK−1

· G · XNK−1

(LNK−1 + LNK)
2

 3.23  
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Table 3.3: Stoichiometry matrix for aggregation process. 
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3.3.2. Parameter identifiability analysis 

The use of mass as internal coordinate in PBMs is uncommon and, to the author’s 

knowledge, it has not been used to simulate struvite precipitation until now. An 

identifiability analysis of the kinetic constants and exponents defining the 

mechanisms described in subsection 3.3.1 was considered necessary prior to any 

calibration procedure. This analysis was done in four steps: First, the model was 

implemented in WEST-DHI simulation platform. Second, six case studies in which 

all the mechanisms described in the model were expected to have some relevance 

were defined. Third, a quantification of the effect of each parameter on the model’s 

outputs was done integrating a local sensitivity method into a global sampling 

method. Finally, a collinearity analysis of the model was done so as to observe 

possible correlation effects between the parameters.  

3.3.2.1. Case studies 

For the simulations performed in this chapter, six different simulation case studies 

were defined in WEST-DHI. Case studies A, B and C were operated in batch mode, 

with very high SI and no seed material. In contrast, case studies D, E and F 

corresponded to a continuous operation of a precipitation reactor with an initial seed 

loading. All the simulations considered the reactors as CSTR. All the SI provided 

correspond to the equilibrium value of the SI that would be obtained if no reaction 

occurred in the reactors. 

Each of case studies A, B and C was a CSTR of 1 l capacity with an initial volume 

of 500 ml of a solution containing KH2PO4 and NH4Cl on it. Starting at simulation 

time t = 0 s, 150 ml of a solution containing MgCl2·6H2O were added in the first 10 

seconds. After that, no more external perturbation was introduced in the system. The 

difference among these scenarios were the initial concentrations of the species, as 

included in Table 3.4.  
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Table 3.4: Case Studies A, B and C defined for the simulations. The listed component 

concentrations are those corresponding to the initial experimental conditions, prior to 

any precipitation reaction. pH N-P is the pH of the solution containing KH2PO4 and 

NH4Cl. pH Mg is the pH of the solution containing MgCl2·6H2O. 

 Case 

Study 

Temperature 

(ºC) 

Mg 

(mol/l) 

N 

(mol/l) 

P 

(mol/l) 

pH 

N-P 

pH 

Mg 
SI 

A 30.00 0.15 0.19 0.10 7.99 8.06 3.91 

B 23.1 0.09 0.12 0.06 8.06 6.97 3.64 

C 25 0.015 0.02 0.01 8.00 8.00 1.86 

For case studies D, E and F a reactor of 11.4 L of capacity was used. Temperature 

was 21 °C. Precipitation process started with the reactor full of a solution containing 

0.228 mol/l NH4Cl and 0.114 mol/l KH2PO4  and 640 g of struvite seed material of 

average diameter of 185 µm. Starting at simulation time t = 0 s, 3 solutions entered 

the reactor with constant flows and continuously for 24 h. The first solution was 

formed by KH2PO4 and NH4Cl, the second one by MgCl2·6H2O and the third one by 

NaOH. For the three case studies, the same flow of the solution formed by KH2PO4 

and NH4Cl (0.3168 m3/day) and the solution formed by MgCl2·6H2O (0.0253 

m3/day) were used. The difference in the conditions of the simulations was achieved 

by changing the NaOH dosing quantity (0.0265 m3/day, 0.0132 m3/day and 0.0106 

m3/day for cases D, E and F, respectively), which affected the SI in the reactor. 

Details can be found in Table 3.5. The SI in the reactor for cases D, E and F were 

2.04, 1.19 and 0.65 respectively. The precipitated solid was retained in the reactor 

during the process.  

Table 3.5: Description of Case Studies D, E and F defined for the simulations. 

Concentration (mol/l) 

and component 

Flow (m3/day) 

in Case Study D 

Flow (m3/day) 

in Case Study E 

Flow (m3/day) 

in Case Study F 

0.005 KH2PO4 and 0.01 

NH4Cl 
0.3168 0.3168 0.3168 

0.07 MgCl2·6H2O 0.0253 0.0253 0.0253 

0.008 NaOH 0.0265 0.0132 0.0106 
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3.3.2.2. Sensitivity analysis 

The objective of running a sensitivity analysis is to verify how important each 

parameter is for the performance of the model. Usually, it is employed to simplify 

overparametrised models. In this chapter, it is used to verify that in the parameter 

range chosen, all the parameters and, consequently, the mechanisms, play a role in 

the outputs, as a previous step to the model calibration. Evaluated parameters and 

their ranges are included in Table 3.6. Choosing meaningful parameter values for the 

analysis is not straightforward, as the variability in the kernels and values for them 

is big in the literature. The ranges in this chapter were chosen to cover zones that 

included values observed in the literature review (Galbraith et al., 2014; Mullin, 

2001; Myerson, 2001; Triger et al., 2012) and also based on previous simulations 

performed by the authors.  

Table 3.6: Model parameters and the selected ranges. 

Name Symbol Description Unit 
Minimum 

Value 

Maximum 

Value 

Kr 

Nucleation 
KB 

Kinetic 

constant of 

nucleation 

Nuclei/day·m3 0.5·1012 9.9·1013 

Nucleation 

Exponent 
nB 

Kinetic 

exponent of 

nucleation 

-- 0.5 6 

Kr Growth KG 
Kinetic 

constant of 

growth 

mm/day 1.0 100 

Growth 

Exponent 
nG 

Kinetic 

exponent of 

growth 

-- 0.7 6 

Kr 

Aggregation 
KA 

Kinetic 

constant of 

aggregation 

l/day 0.5·10-5 9.9·10-5 

Aggregation 

Exponent nA 
Kinetic 

exponent of 

aggregation 
-- 0.5 6 
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The sensitivity analysis can be done following a global sampling technique or a local 

analysis technique. Global sampling methods pick parameter sets in the previously 

defined hyperspace in order to run the simulation with them. When enough 

simulations are done, an idea of how the results of the simulation change depending 

on the values of the parameters can be obtained (van Griensven et al., 2006). On the 

other hand, local analysis techniques evaluate the impact of changing slightly the 

value of the parameters at a previously defined point in the parameter hyperspace. 

This is especially useful when parameter values are known with some security (Brun 

et al., 2001). 

Considering the big uncertainty in the values of the kinetic parameters, and in order 

to explore a large zone in the parameter hyperspace, the sensitivity analysis was 

performed integrating a local analysis technique into a global sampling method. This 

integration consists on repeating the local analysis in many randomly or 

systematically sampled points. In this chapter, the Latin Hypercube-One factor At a 

Time (LH-OAT) method proposed by van Griensven et al. (2006) was used: points 

were sampled using the LH scheme and local sensitivities were calculated using the 

OAT method.  

For the quantification of the effect of each parameter, a little variation was introduced 

in the parameter of interest while the rest were maintained constant. The difference 

on the outputs for the simulations with and without this variation were computed. 

The result was the univocal variation on the model’s outputs for the change in each 

parameter: 

si,j,k = |
100 ∗ (MO(θ1, … , θj ∗ (1 ± fi),… , θn −MO(θ1, … , θj, … , θn))

[MO(θ1, … , θj ∗ (1 ± fi),… , θn) +MO(θ1, … , θj, … , θn)]
2

| 
3.24 

where si,j,k is the partial effect of the jth parameter on each ith output in the kth point, 

fi is the small variation in the parameter and MO (·) refers to the model outputs. Note 

that the variation in the parameters is a fraction of the parameter value at the selected 

point. The obtained value of the sensitivity is already normalized. 

The operation was repeated for all the parameters being analysed in each sampled 

point for the six different case studies: p·(n+1) simulations of each case study were 

performed, where p = 300 was the total number of points of the hyperspace selected 
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by the LH and n = 6, the number of parameters. Therefore, the influence of the six 

kinetic parameters used in the model was quantified using a total of 2100 runs for 

each of the six simulation case studies. 

The result of this iterative operation is a three-dimensional matrix: a bi-dimensional 

matrix for each p sampled point with m (number of outputs) rows and n (number of 

parameters) columns. The elements in these bi-dimensional matrixes are the partial 

effect of each parameter on each output, si,j,k. The outputs used for the sensitivity 

analysis were pH and PSD evolution during the simulated experiment. For the A, B 

and C case studies they were recorded every 10 seconds for the first 2 minutes of 

experiment because that was the most critical period and every minute for the next 

18 minutes, where little change is observed in the simulations. For the D, E and F 

case studies they were recorded every 10 minutes for the first two hours and every 

hour for the next 22 hours. 

Total influence of the parameter in each point (δk,j) was calculated averaging the 

effect for all the sampled outputs on a certain point: 

δk,j = √
1

m
∑si,j,k

2

m

i=1

 3.25  

the averaged results formed a bidimensional matrix 𝐒, named sensitivity matrix, 

where each element was the averaged effect of the change of each parameter on each 

point (𝐒 =  {δk,j}). 

3.3.2.3. Collinearity analysis 

A set of parameters in a model is identifiable if it fulfils two conditions: First, the 

individual change in the parameters has to affect the model outputs. Second, the 

change in one of the parameters cannot be compensated with an adequate change in 

another parameter (Brun et al., 2001). From the sensitivity analysis, it can be 

concluded which of the parameters have the biggest effect on the simulation outputs 

for the considered parameter bounds. However, it does not give any information on 

a possible correlation effect within the parameter set. In order to assess possible 

compensation effects on the parameters, a collinearity analysis was performed. 

In the collinearity analysis, parameters are usually organized in subsets. These 

subsets have k parameters, being k ≤ n, the total number of parameters in the model. 
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The Collinearity index (γk) of the parameters under study was calculated as proposed 

in Brun et al. (2001): 

γk =
1

min‖𝛃𝐂‖=1‖𝐒̃𝐤𝛃𝐂‖
=

1

√λk
 3.26  

being 𝐒̃𝐤 the normalized matrix with the k parameters forming the subset under study, 

𝛃𝐂 is a vector of coefficients of length k and norm = 1 and λk the smallest eigenvalue 

of the matrix 𝐒̃𝐤
𝐓
𝐒̃𝐤. Parameter identifiability problems are found within the set under 

study when the limit in the Collinearity index exceeds 15 (Brun et al., 2002) or 20 

(Soetaert and Petzoldt, 2010). As the identifiability of a parameter set depends on 

both the impact on the output of the change in the parameters and the linear 

independency of the subset, an additional index was calculated. The Importance 

index, ρk, considers both effects and it is calculated as (Brun et al., 2001):  

ρk = (det[𝐒
𝐓𝐒])1/2k 3.27  

a high sensitivity and a low collinearity will result in a high ρk value for the subset, 

which means a high identifiability. 

The collinearity analysis was performed for all the points sampled with the LH for 

two types of parameter sets. First, all the parameters were analysed in pairs to see if 

there were direct compensation effects between parameters in certain zones of the 

chosen range. Second, the Collinearity index and the Importance index were 

calculated for the six parameters, to find zones of the parameter range where all the 

parameters in the model are identifiable for the case studies used. 

The parameter identifiability study was done combining Matlab and WEST-DHI. 

The LH scheme was implemented in Matlab and the values of the parameters picked 

for each run. Once these values were chosen, the information was sent to the WEST 

simulation platform and the six case studies were reproduced. The information about 

the outputs of the model was recorded from the WEST-DHI simulation and translated 

to Matlab. Afterwards a perturbation of 1% was introduced in the first parameter and 

the simulations in WEST-DHI were repeated with the perturbed parameter set. This 

operation was repeated for all the parameters under study. The information of the 

outputs was used to calculate the sensitivities, the Collinearity index and the 

Importance index. Figure 3.2 explains the steps followed. 
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Figure 3.2: Procedure to calculate sensitivities and collinearity in this contribution. 
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3.3.3. Experimental set-up 

Experimental data for the determination of the parameter values was obtained from 

precipitation batch tests run in the laboratory. The batch test were performed in a 

magnetically stirred cylindrical vessel. The magnetic stirrer rotated at 300 rpm in all 

cases, to ensure similar hydrodynamics in all runs. 2 experimental conditions 

(corresponding to simulation case studies A and B) were used. Each of the conditions 

was run twice. The objective was to analyse the effect of different initial SI on the 

pH evolution and on the final PSD.  

In all the cases, 500 ml of a dissolution prepared with a determined quantity of 

KH2PO4 and NH4Cl were left in a 1-L capacity vessel. After that, 150 ml of a 

MgCl2·6H2O solution were added in ten seconds. Initial values of temperature, pH, 

concentrations and supersaturation (calculated in WEST-DHI) are included in Table 

3.4. As can be observed, initial concentration of species is significantly higher than 

those found in real WRRFs. This approach was followed for two reasons: in order to 

obtain enough solid mass in the precipitation for the PSD measurements and to 

experimentally analyse processes where the primary homogeneous nucleation is 

important.  

Each of the precipitation process was run for 20 min. The pH evolution and the final 

PSD were used for the determination of the kinetic constants and exponents. pH was 

measured every half second for the 20 min that the experiment lasted. After the 20 

min, the experiment was stopped. The precipitated solid was filtered and dried at 40º 

C for 96 h. Total mass of obtained solid was weighted and, after that, final PSD was 

obtained measuring the dried solid in air suspension by laser diffraction using a 

SYMPATEC H820. 

3.4 RESULTS AND DISCUSSION 

The model presented in section 3.3.1 was assessed from an identifiability and 

predictive capacity point of view. For this issue, first, the model was implemented in 

WEST-DHI. Second, different simulation scenarios were run to obtain meaningful 

results from the numeric analysis. Finally, a parameter set was found that could 

represent well the data from experiments performed in the laboratory. Results from 

those activities are included in this section. 
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3.4.1. Parameter identifiability module 

3.4.1.1. Sensitivity analysis 

Results from the sensitivity analysis showed that all the parameters had some effect 

on the outputs. The limit for considering a parameter non identifiable due to its low 

effect on the outputs is 1/1000 compared with the parameter with the biggest effect 

(Gábor et al., 2017). This is a substantially smaller value than the result obtained in 

this study. Therefore, all parameters were considered to play a role in the outputs. 

The total effect of each parameter on the total output for all the points sampled, δk,j, 

was included in Figure 3.3.  

As observed in Figure 3.3, the parameters had different distribution of their 

sensitivity within the pre-selected ranges. It should be reminded that this sensitivity 

calculation only informed about the zone of the parameter range where each 

parameter affected the outputs, not where it could represent experimental data with 

more accuracy. In addition, as the results of the sensitivity analysis could be biased 

by the values of the rest of the parameters, more meaningful conclusions were 

obtained when the effect of the collinearity was considered. However, before that, 

there were some tendencies that should be indicated.   

Attending the nucleation rate, Kr Nucleation had a constant and relatively low effect 

on the outputs for all the range. This result agreed with other studies, where even for 

larger ranges of the parameter value, the change in the nucleation constant had a little 

total effect (Hanhoun et al., 2013). The sensitivity of the Nucleation Exponent was 

relatively high and increased with its value. This could be explained by the fact that 

the case studies A, B and C used in the simulations had high initial SI and no seed 

material, which are the experimental conditions where primary homogeneous 

nucleation is most favoured. As there is not initial crystal mass in the solution, the 

primary homogeneous nucleation is the mechanism that triggers the precipitation. 

This will inevitably affect the evolution of the whole PSD and not only the smallest 

size. How fast particles are created will limit the consequent growth and aggregation 

of bigger particles, as it will limit the available concentration of them. Therefore, it 

will be an important mechanism for the evolution of the pH and PSD. On the other 

hand, case studies D, E and F had an initial seed loading and had relatively low SI 

(especially case study D). In these conditions, particle enlargement mechanisms 
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should be dominant, however, formation of fines can still occur (Agrawal et al., 

2018). 

 

 

 
Figure 3.3: After linearly partitioning each parameter range in ten bins, 

representation of the averaged, maximum and minimum values of total sensitivities 

of the parameters within the points sampled inside each bin for (a) Kr Nucleation, (b) 

Nucleation Exponent, (c) Kr Growth, (d) Growth Exponent, (e) Kr Aggregation and 

(f) Aggregation Exponent. 

 



60   A new mass-based discretized population balance model for precipitation processes 

 

 

 

Kr Growth and Growth Exponent showed different tendencies. The sensitivity of the 

Kr Growth is relatively constant for the whole range. Its value is nearly twice the 

value of the Kr Nucleation, but it is significantly smaller than the sensitivities of the 

three exponents. Sensitivity of the Growth Exponent reached the highest sensitivity 

of the six parameters for its lowest values. This highlighted the relevance of the 

process: Growth process is an important mechanism for different experimental 

conditions as it has a big effect on reactants consumption and, consequently, in the 

PSD. Sensitivity of the Growth Exponent decreased when its value increased, but it 

maintained a high sensitivity for the whole range.  

Considering the parameters that define aggregation, Kr Aggregation had a low and 

constant effect for all the parameter range. On the other hand, Aggregation Exponent 

presented higher average sensitivities as it increased. However, the dispersion of the 

values of the sensitivity was bigger than it was for other parameters, having some of 

the high values of the Aggregation Exponent a big effect on the outputs and others a 

very small one. This phenomenon needed further study and for that issue the effect 

of the Aggregation Exponent was analysed for each case study individually and the 

results recorded in Figure 3.4.  

 
 

Figure 3.4: Averaged value of for each bin of the linearly partitioned range of the 

Aggregation Exponent for the six case studies. 

From this analysis some ideas were obtained. Firstly, there was a clear increase of 

the effect of the Aggregation Exponent as its value incremented for the case studies 
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A and B. This effect could be explained in the model because a higher value of the 

Aggregation Exponent would mean a higher rate of aggregation for high SI for the 

same concentration of particles. Therefore, particles would get bigger faster at the 

initial steps of the precipitation (without reactants consumption), reducing the 

available surface area. Less surface area would mean less possibility to grow, which 

would mean a slower precipitation. A slower precipitation would maintain the SI 

high for more time, making the aggregation mechanism important for a longer period 

of time. However, experimental evidence from the literature show that when reactors 

are operated unseeded and with high SI, formation of fines governs the precipitation 

process rather than aggregation (Agrawal et al., 2018). Moreover, aggregation is 

important when the reactor is seeded and works in continuous mode (Shih et al., 

2017). These favourable experimental conditions for aggregation are far from case 

studies A and B and are more similar to case studies D, E and F, where the trend of 

the sensitivity of the Aggregation Exponent is different (it is bigger for low values).  

From the analysis of the parameters of the aggregation, two conclusions could be 

obtained: the first one was that the effect of the Aggregation Exponent for the highest 

values seemed not to be able to represent correctly the mechanism, as it gained 

relevance in case studies where it should not be important. The second one was that 

for certain experimental conditions (case studies D, E and F), the effect of the 

Aggregation Exponent can be important, and therefore, aggregation should always 

be considered when modelling precipitation processes. 

3.4.1.2. Identifiability analysis 

The identifiability analysis finds possible correlations amongst the parameters under 

study. As the objective of this analysis was to evaluate the possible interactions in 

the model, all the parameters were considered. However, when the number of 

parameters increases it is difficult to see their real effect on the Collinearity index. 

Therefore, looking for direct compensation effects, the Collinearity index and the 

Importance index were calculated first for each point sampled with the LH for every 

pair of the parameters. Afterwards, the operation was repeated for the whole set of 

six parameters that describe the model. 
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3.4.1.2.1. Identifiability analysis for parameter pairs 

Results of the maximum value of the Collinearity index, the maximum Importance 

index and the minimum Importance index for the analysis for parameter pairs were 

included in Table 3.7. 

Collinearity index values between 15 and 20 have been given as critical for parameter 

identifiability in the literature (Brun et al., 2002; Soetaert and Petzoldt, 2010). In the 

analysis performed, there is a pair of parameters (Kr Aggregation and Aggregation 

Exponent) with its value above 15. The distribution of the Collinearity index for that 

pair of parameters was included in Figure 3.5. 

Kr Aggregation and Aggregation Exponent had collinearity problems for big values 

of the exponent for any value of the Kr Aggregation. This agreed well with the 

sensitivity of Kr Aggregation, which was low and constant for the whole range (see 

Figure 3.3,e) and with the big variability of the sensitivity of the Aggregation 

Exponent for big values (see Figure 3.3,f). In addition, it showed that Aggregation 

Exponent is at least biased by other parameter. This means that depending on the 

considered experimental conditions chosen for the calibration its estimation could 

not be possible. 

  

Figure 3.5: Collinearity Index calculated in pairs for Kr Aggregation and Aggregation 

Exponent vs. (a) sampled values of Kr Aggregation and (b) sampled values of 

Aggregation Exponent. 
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Table 3.7: Results of the identifiability analysis performed in pairs of parameters. The 

grey shaded value correspond to the pair of parameters with a maximum Collinearity 

index above 15 in the ‘Max. Collin’ column and to the pairs of parameters with the 

highest Identifiability index in the ‘Max. Ident’ column. 

Number 

of Pair 
Parameter 1 Parameter 2 

Max. 

Collin 

Max 

Ident 

Min. 

Ident 
 

1 Kr Nucleation 
Nucleation 

Exponent 
4.67 250.35 37.73  

2 Kr Nucleation Kr Growth 5.32 170.49 48.06  

3 Kr Nucleation 
Growth 

Exponent 
4.31 256.26 98.21  

4 Kr Nucleation Kr Aggregation 2.72 90.02 18.44  

5 Kr Nucleation 
Aggregation 

Exponent 
2.45 216.31 20.72  

6 
Nucleation 

Exponent 
Kr Growth 2.91 463.84 53.53  

7 
Nucleation 

Exponent 

Growth 

Exponent 
7.81 508.07 85.63  

8 
Nucleation 

Exponent 
Kr Aggregation 3.03 293.45 17.58  

9 
Nucleation 

Exponent 

Aggregation 

Exponent 
2.83 630.79 16.38  

10 Kr Growth 
Growth 

Exponent 
6.68 463.46 73.14  

11 Kr Growth Kr Aggregation 2.97 203.30 22.12  

12 Kr Growth 
Aggregation 

Exponent 
2.17 396.42 26.41  

13 
Growth 

Exponent 
Kr Aggregation 3.42 296.24 38.32  

14 
Growth 

Exponent 

Aggregation 

Exponent 
3.87 637.14 40.62  

15 Kr Aggregation 
Aggregation 

Exponent 
23.57 244.79 5.35  
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More generally, pair of parameters sharing mechanism (pairs 1 and 10) or pair of 

parameters with the same relationship with SI (pairs 2 and 7) could have direct 

compensation problems if less simulation scenarios or data was used for the 

identifiability analysis. For instance, if only the information of the case studies A, B 

and C was used, the effect on the outputs could be compensated (being the value of 

the Collinearity index equal to 31) for Growth Exponent and Nucleation Exponent 

when both had big values, especially Growth Exponent. These two parameters 

determine the relationship of nucleation and growth with the SI. High values of 

Nucleation Exponent would lead to high values of concentration of the first bin very 

fast, which would at the same time accelerate the growth from the first bin to the 

second, the second to the third and so on. High values of Growth Exponent would 

accelerate growth at high SI, too. Therefore, for certain experimental conditions (in 

this case, case studies A, B and C) these parameters could be correlated, even for a 

big amount of considered data. In the analysis carried out in this chapter, a total of 

six case studies were considered. Therefore, this correlation was not a problem, as 

the case studies represented experimental conditions where the different effect of the 

parameters in the simulation could be distinguished. 

Results from the Importance index for the parameter pairs (see Table 3.7), indicated 

that the pairs of parameters with the highest maximum Importance index were the 

ones combining the three exponents and the Kr Growth. This result agreed well with 

the values of the sensitivities, which were lower for the other two parameters (Kr 

Nucleation and Kr Aggregation). Big differences were found between the maximum 

and minimum value, which remarks that the parameter identifiability largely 

depended on the parameter values. 

3.4.1.2.2. Identifiability analysis for the six parameters  

Results of the collinearity analysis of the whole parameter set, stated that from the 

300 sampled parameter combinations, 251 had a Collinearity index below the 

threshold of 15. As the six parameters can be involved in combinations with high 

Collinearity index (almost 15 or more), finding a zone graphically with no 

collinearity issues that include the effect of all the parameters is not straightforward. 

Therefore, the effect of the collinearity is included in the representation of the 

Importance index. 
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The Importance index combines information from the sensitivity and collinearity of 

the parameters. Figure 3.6 represented the Importance index of the six parameters in 

two plots for the four parameters that led to parameter pairs with highest Importance 

index. The graphs clearly showed that low values of the Growth Exponent and the 

Kr Growth, combined with high Nucleation Exponents led to parameter sets with a 

better identifiability (Figure 3.6,a). Effect of the Aggregation Exponent was not as 

clear (Figure 3.6,b). This was a logical result, as the Aggregation Exponent showed 

little average sensitivity for values below 2 (Figure 3.3,f) and a high collinearity with 

the Kr Aggregation for high values (Figure 3.5,b). 

From the obtained results it could be concluded that there were zones of parameter 

values with theoretical identifiability problems. This could be even more problematic 

if less data or experimental scenarios were used, as it is the usual case for PBM 

calibration. The identifiability problem could explain the differences in the values of 

the parameters found in literature for calibrated PBMs, more than small changes in 

the structures of the PBM or the used solving method. Considering this, a calibrated 

PBM should clearly indicate the limits of its application, as it is possible that the 

parameters chosen are not general values, but compensated among them for the case 

studies and/or parameter values chosen. In addition, when using the models, it should 

be considered that the parameter values can be good enough to represent a certain 

amount of data, but it is not correct to consider the processes or parameters 

individually, as they might be biased by the value of the rest of the parameters of the 

model. 

 



66   A new mass-based discretized population balance model for precipitation processes 

 

 

 

A 

 
 

B 

 

Figure 3.6: Importance index for the most important parameters: (a) Nucleation 

Exponent, Growth Exponent and Kr Growth and (b) Nucleation Exponent, Growth 

Exponent and Aggregation Exponent. 
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On the other hand, there were zones where the identifiability was possible for the 

data and case studies used. Some of the zones of the parameters with high 

identifiability (mainly for the exponents) were reasonable values, according to classic 

precipitation theories. This is important, as enforces the idea that the PBM can 

explain the precipitation in a realistic way, by including the main mechanisms in an 

explicit way. 

3.4.2. Fitting the model to the experimental data 

Based on the information obtained in the mathematical analysis conducted 

previously, the parameters under study were adjusted to reproduce the data obtained 

from the experiments undertaken in the laboratory and explained in subsection 3.3.3. 

Experimental results showed a sharp decay of the pH when the solutions contacted. 

This is something expected due to the high SI chosen for the experiments. The 

obtained solid size was small, as it tends to occur for high SI (Fang et al., 2016). 

Figure 3.7 shows the average of the evolution of the pH and the final PSD in the 

experiments. Obtained struvite mass was 7.6445 g for case A and 4.6601 g for case 

B. 

For the adjustment, values were chosen from the zone of the highest identifiability 

for those parameters that obtained a high value of the Importance index in the 

previously conducted analysis (exponents and Kr Growth). Kr Nucleation and Kr 

Aggregation were parameters with lower identifiability and their effect is not as 

important on the outputs as that of the rest of the parameters. Once the most important 

parameters were fixed, they were manipulated within the analysed range in order to 

obtain a value that led to a reasonable similarity between the experimental data and 

the results from the simulations.  

The Nucleation Exponent was fixed at 5. This value agrees with other contributions 

where it is stated that the exponent for secondary nucleation is often above 2 and the 

exponent for homogeneous nucleation is typically much higher (Myerson, 2001).  

Growth Exponent was fixed at 2. Growth Exponent presented a high identifiability 

for zones in which its value was low. In addition, classic growth theories state that 

the value of the Growth Exponent is usually between 1 and 2 (Mullin, 2001). 

Moreover, its value has been chosen between 1 and 3 for different definitions of the 

growth rate (Li et al., 2003). 



68   A new mass-based discretized population balance model for precipitation processes 

 

 

 

Regarding Aggregation Exponent, as mentioned in subsection 3.4.1, the high 

sensitivity found for its high values corresponded to unseeded, very high SI and batch 

simulation cases. On the contrary, the continuous case studies showed higher values 

of the sensitivity for lower values of the parameter. In addition, high values of 

Aggregation Exponent led to collinearity problems. Therefore, it was decided to 

choose a value of 2 for the Aggregation Exponent, out of the zone with collinearity 

problems. This value is in consonance with the observations made by Wócjik and 

Jones (1997), that found a linear increase of the agglomeration kernel with the growth 

rate.  

Kr Growth was selected in this contribution at 12 mm/d, slightly lower than the value 

of 18 mm/d obtained in Galbraith et al. (2014) for the growth rate of struvite. 

As explained above, the parameters with the lowest impact in the outputs were 

adjusted at the end: Kr Nucleation was fixed at 1013 nuclei/m3·day. This value is 

lower than the values obtained in Galbraith et al. (2014) and in Triger et al. (2012). 

However, those values in the literature were obtained for significantly lower values 

of the Nucleation Exponent in Galbraith et al. (2014) or a different kernel in Triger 

et al. (2012). On the other hand, Kr Aggregation was fixed at 10-5 l/d, lower value 

than the value obtained in Galbraith et al. (2014). However, the exponent of the 

aggregation was calibrated at 5.259 in Galbraith et al. (2014), whereas here it is fixed 

at 2. The fact that other contributions, reported different exponent and kinetic 

constant values while maintaining a good agreement between the simulated and the 

experimental values highlighted that correlation may exist when calibrating a PBM 

and emphasized the idea that it is very difficult to compare parameter values between 

contributions. 

Values obtained for the parameters are recorded in Table 3.8. It should be noted that 

the presented parameter values do not claim to be a perfect parameter set to describe 

the struvite precipitation process in every experimental condition, as this is not an 

objective of this chapter. However, the values recorded in Table 3.8 are considered a 

promising first step before a more rigorous calibration is done in Chapter 5. 

 

 

 



Results and discussion  69 

 

 

Table 3.8: Parameter set chosen to predict experimental data. 

Parameter Value Units 

Kr Nucleation 1013 Nuclei/(day·m3) 

Nucleation Exponent 5.0 --- 

Kr Growth 12.0 mm/d 

Growth Exponent 2.0 --- 

Kr Aggregation 10-5 l/d 

Aggregation Exponent 2.0 --- 

Figure 3.7 confronted the simulated pH evolution and final PSD with the 

experimental values. There was a small difference in the steady state for the pH value, 

this difference is related with the chosen Ksp. The difference was in concordance 

when the obtained solid was compared in the experiments and the simulations: 

7.6445 g in the experiment and 7.7512 g in the simulation for Case A and 4.6601 g 

in the experiment and 4.8868 g in the simulation for Case B. Discrepancies in the 

PSD between the experimental and simulated results were related with the low 

accuracy of the laser diffraction method to measure non-spherical particles (Hanhoun 

et al., 2013). In addition, as the measurements were done with dry solid it is possible 

that some post-drying agglomeration occurred, resulting in bigger particles measured 

than the ones existing before the filtration. 
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Figure 3.7: Simulated and experimental pH evolution for case study A (a) and case 

study B (b) and simulated and experimental final PSD for case study A (c) and case 

study B (d). 

3.5 SUMMARY 

For the optimum design and operation of material recovery technologies based on 

precipitation, conventional models used in the wastewater treatment industry should 

be updated, for example considering PSD and the effect of some operational 

variables. Developments done in the chapter have been focused on two main aspects: 

1) A new mass-based PBM has been developed, coherent in its structure with 

conventional wastewater treatment models and compatible with them. The 

model has been described using the usual notation in wastewater treatment 

modelling (stoichiometric matrix and kinetic vector), state variables are 

mass of components instead of number of particles, which guarantees mass 

continuity. The model proposed in this study included main precipitation 

mechanisms and common wastewater equilibrium reactions, as ion pairing 

and acid-base reactions. Moreover, other reactions related to liquid-gas 
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transfers, used in some precipitation technologies, or even biological 

reactions could be easily incorporated if required. The model constructed 

has been implemented successfully in WEST-DHI simulation platform. 

2) The results obtained from the sensitivity and collinearity analysis 

demonstrate that all the parameters have some weight in the outputs and that 

there are large zones of the parameter values where the identifiability is 

possible. Therefore, the structure of the model is considered valid. However, 

zones where correlation exists between the parameters were identified. 

Correlation effects could explain the variability in the parameter values 

found in the literature, where less data is available for calibration than the 

one generated synthetically. Correlation effects of the parameters should be 

considered before calibrating a PBM. 

Finally, the model has been experimentally verified and it demonstrated its capacity 

to reproduce some experiments performed in the laboratory with reasonable values 

of the parameters. A more rigorous calibration using more experimental data was 

performed in the fifth chapter of this thesis. 
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4   

EFFECT OF THE SHEAR RATE 

AND SUPERSATURATION ON 

THE NUCLEATION AND 

GROWTH OF STRUVITE IN 

BATCH STIRRED TANK 

REACTORS 

This chapter has been redrafted from: 

B. Elduayen-Echave, M. Azcona, P. Grau, P.A. Schneider, Effect of the shear rate 

and supersaturation on the nucleation and growth of struvite in batch stirred tank 

reactors, J. Water Process Eng. 38 (2020). doi:10.1016/j.jwpe.2020.101657. 

4.1 ABSTRACT  

Controlled struvite precipitation is a promising solution for P recovery in WRRFs. 

PSD of recovered struvite affects its efficacy as a fertilizer, so should be considered 

in the design and operation of struvite recovery reactors. This chapter analyses the 

effect of varying the average shear rate (between 150 s-1 and 876 s-1) and SI (between 
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0.76 and 2.96) in two different experimental set-ups. Solution pH and particle 

number and size measurements using an electric zone sensing method are used to 

monitor the process. In addition, photomicrographs are used to observe the shape of 

the precipitated particles. Interestingly, for identical thermochemical conditions, a 

higher mixing intensity, associated with the shear rate, leads to shorter induction 

times, faster precipitation and a greater particle density. On the other hand, for similar 

mixing conditions, a higher SI is also linked with shorter induction times, faster 

precipitation and a greater particle density. From the experimental data it is 

concluded that the effect of the fluid shear rate cannot be ignored and should be 

further studied in the precipitation process. 

4.2 BACKGROUND 

Municipal wastewater has the potential to substitute a significant portion of the 

increasing global demand of P (Amann et al., 2018). Consequently, recovery of P 

from wastewater has become an emerging concern (Peng et al., 2018). Among the 

available options to recover P, controlled precipitation of mineral phosphates, most 

notably struvite, has gained interest in recent years as a candidate for P recovery in 

WRRFs (Peng et al., 2018; Robles et al., 2020). Struvite is a well-known fertilizer 

and its use has been approved in some jurisdictions (i.e. Crystal Green ® obtained 

from PearlTM and BioSTRU ® from NuReSysTM are certified fertilizers in US/UK 

and Belgium, respectively (Desmidt et al., 2015)), while other countries, mainly 

central and northern European, are implementing laws that will transition towards 

closing the P cycle (Günther et al., 2018). The support of European public policies 

to recover P in WRRFs, instead of simply eliminating it (Huygens and Saveyn, 2018) 

is important to the development of a stable market for the recovered struvite that 

would encourage a more generalized implementation of nutrient recovery 

technologies. 

In parallel to the development of new legal frameworks, a better understanding of the 

process will assist in the design and implementation of struvite recovery 

technologies. Due to the interest generated, several studies have been performed 

analysing struvite precipitation’s main technical aspects, summarized in recently 

published reviews (Desmidt et al., 2015; Peng et al., 2018; Robles et al., 2020; 

Yetilmezsoy et al., 2017). The precipitation of struvite depends on the process 

thermochemistry, including pH, saturation level, temperature, presence of other 
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ions/complexes, as well as mixing energy and the presence of seed material (Le Corre 

et al., 2009). Many experimental studies have elucidated the influence of key 

variables, most notably struvite SI, on the precipitation rate of struvite (Agrawal et 

al., 2018; Crutchik and Garrido, 2016; Mehta and Batstone, 2013). However, to 

commercialize the recovery process, the purity and PSD of the precipitant must be 

considered as they vary with each technology and affect to the techno-economic 

performance of proposed technologies (Desmidt et al., 2015), the efficiency of the 

resultant fertilizer (Li et al., 2019) and the separation of the recovered product from 

the liquid phase (Wilsenach et al., 2007). 

The PSD in the reactor evolves as a consequence of simultaneously occurring 

precipitation mechanisms, including nucleation, growth and aggregation, all of which 

are affected by the hydrodynamics at varying mixing scales (macromixing, 

mesomixing and micromixing). While recent publications have analysed the effect 

on the PSD of changing the upflow velocity within the reactor (Tarragó et al., 2016; 

Ye et al., 2016) or changing the stirrer type in a stirred reactor (Ronteltap et al., 

2010), the effect of hydrodynamics remains uncertain (Ariyanto et al., 2014) and 

must be further studied (Ronteltap et al., 2010; Wilsenach et al., 2007). For example, 

another recent contribution suggests that smaller particles of struvite can be obtained 

with increased agitation (Fang et al., 2016), while the opposite trend was found for 

struvite-K formed in synthetic urine using a stirred reactor (Zhang et al., 2018). 

Finding conflicting results in the literature for the relationship between the mean 

crystal size and the mixing intensity occurs for other substances (Torbacke and 

Rasmuson, 2001). The absence of a validated methodology that considers the effect 

of different mixing intensities is a problem in predicting the PSD (Zauner and Jones, 

2000b) and likely explains at least some of these discrepancies. In addition, mixing 

in these contributions is defined by changing a particular operational variable in each 

system, which modifies the system operation at different mixing scales and makes 

the obtained results hard to extrapolate to other precipitation systems. 

Experimental data obtained in small-scale reactors that limit the impact of 

macromixing could help to better understand the fundamentals of micromixing in 

each mechanism and subsequently use this knowledge for the design, operation and 

optimization of larger systems. Assessing the impact of micromixing is important as 

it is the mixing scale that directly impacts the mechanisms (Phillips et al., 1999). 

Therefore, its effect, characterised as a varying shear rate or energy dissipation rate, 

has been studied in precipitation systems from an experimental (Tribout et al., 1996; 
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Wolkowicz, 1978) and modelling perspective (Baldyga et al., 1995; Hounslow et al., 

2013; Phillips et al., 1999). Hence, the objectives of this chapter are to identify the 

effect of the SI and local mixing intensity, characterised as the average shear rate on 

struvite nucleation and growth and to obtain relevant data for calibration purposes. 

The SI and the shear rate are operational variables ideally independent of the 

technology or experimental conditions of the study. Therefore, they were related with 

the induction times and the evolution of the precipitation process in two different 

experimental set-ups. In addition, in one of the experimental set-ups the evolution of 

the PSD was recorded. These data could be of help to understand the complex effect 

of mixing at local scale and use it to improve the P management and recovery. 

Furthermore, the data gathered in this chapter will be used in the Chapter 5 for the 

calibration of the PBM presented in Chapter 3. 

4.3 MATERIALS AND METHODS 

The initial concentration of all species and the pH (related to the SI) and the mixing 

intensity (related to the shear rate) were varied for two different experimental set-

ups, referred to as Experiment A and Experiment B. In all experiments the time 

evolution of solution pH was monitored, since pH decay can be associated with the 

extent of precipitation in a batch experiment (Hanhoun et al., 2013). In Experiment 

B the evolution of the PSD was measured for samples periodically removed from the 

reactor. 

4.3.1. Operational variables 

4.3.1.1. Saturation Index (SI) 

The SI is calculated in WEST-DHI wastewater treatment simulation platform, using 

typical equations and guidelines (Lizarralde et al., 2015) and the KspStru=7.58·10-13 

value used throughout the thesis, as the model reproduced well the pH equilibrium 

values and obtained mass quantity in the results of Chapter 3. 

4.3.1.2. Mixing intensity 

The mixing intensity was changed in Experiments A and B by varying the rotational 

speed of the stirrer. The stirrer speed was varied from 300 rpm to 800 rpm in 

Experiment A and from 200 rpm to 400 rpm in Experiment B. As the stirrer speed is 

https://www.linguee.es/ingles-espanol/traduccion/throughout.html
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not a variable that can be directly related between different systems, its effect was 

related to the average shear rate. The average shear rate can be related to the specific 

energy dissipation rate as shown in section 2.3. The average shear rate in the reactor 

(eq. 4.1) was calculated as follows (Ilievski et al., 2001): 

γ = [
Pi
μ · V

]

1
2⁄

 4.1  

where γ is the average shear rate (s-1) in the fluid volume, Pi is the power input to the 

reactor (W), μ is the dynamic viscosity (kg/m·s) and V is the volume of liquid in the 

reactor (m3). 

The power input (eq. 4.2) was calculated as follows (Wodołażski, 2017): 

Pi = NP · ρL · NS
3 · Di

5 4.2 

where NP is the power number (-), ρL is the density of the liquid (kg/m3), NS is the 

stirring speed (s-1) and Di is the diameter of the impeller (m). 

Experiment A was mixed with a magnetic stirrer and NP was calculated in eq. 4.3 

based on the correlation proposed for unbaffled vessels by (Nagata, 1975), as in (Liu 

and Rasmuson, 2013): 

NP = 
A1
Re
+ A2 · (

103 + 1.2 · Re0.66

103 + 3.2 · Re0.66
)

A3

· (
h

DT
)

(0.35+
b
DT
)

· (sin θAn)
1.2 4.3 

where A1, A2and A3 depend on system geometry, DT is the inner diameter of the tank 

(m), h is the height of the liquid (m), b is the diameter of the stir bar (m), θAn is the 

angle between agitator blade surface and horizontal surface, considered 90° (Liu and 

Rasmuson, 2013), and Re is the Reynolds number, defined in eq. 4.4 as: 

Re =
NS · Di

2 · ρL
μ

 4.4 

with these considerations, NP value is between 1.21 and 1.24 in the Experiment A. 

Experiment B was mixed with a 5-cm diameter pitched 4-bladed impeller (PBT). The 

power number of this stirrer is considered to be 1.3 (Asiri, 2012; Ayranci and Kresta, 

2011). 
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4.3.2. Experimental set-up 

4.3.2.1. Experiment A 

Experiment A was executed in a 250-mL reaction vessel of inner diameter 56.3 mm, 

mixed with a magnetic stirrer (IKA® RCT basic IKAMAG™ safety Control, IKA-

Werke, Germany). The bar had a length of 30.5 mm and diameter of 6 mm.  

In these experiments 100 mL of a solution containing KH2PO4 (0.01 M) and NH4Cl 

(0.02 M) were placed in the reactor at pH = 7. This was stirred and, once the pH had 

stabilized, 10 mL of Mg solution, prepared with MgCl2·6H2O, were added with a 

pipette. Two molarities of Mg were used, 0.01 M and 0.015 M, resulting in two 

different initial SI values: 0.76 (Block A1) and 0.92 (Block A2), respectively. The 

mixing intensity was varied from 300 to 800 rpm in 100-rpm increments. In total 12 

experimental conditions were evaluated. Each experiment was executed three times. 

The results included in this chapter are the average of these repetitions, the results 

with the standard deviations are included in Appendix B. Based on the 

aforementioned equations, the relationship between the stirring speed and the 

average shear rate is included in Table 4.1. 

Table 4.1: Relationship between the stirring speed and the average shear rate in 

Experiment A.  

Stirring speed (rpm) 

 

 

Average shear rate (s-1) 

300 204 

400 313 

500 436 

600 571 

700 719 

800 876 

4.3.2.2. Experiment B 

For Experiment B, a 1000-mL stirred reactor was used. Its inner diameter was 100 

mm, with rounded corners at the base of the reactor. The PBT stirrer was situated 1 

cm above the bottom of the reactor. The reactor was stirred between 200 and 400 

rpm, leading to calculated average shear rate as shown in Table 4.2. 
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Table 4.2: Relationship between the stirring speed and the average shear rate in 

Experiment B.  

Stirring speed (rpm) 

 

 

Average shear rate (s-1) 

200 150 

300 276 

400 425 

In all the experiments, 500 mL of a solution, prepared from NaH2PO4 and NH4Cl, 

were charged in the stirred reactor. Once the pH stabilized, 250 mL of a Mg solution, 

prepared using MgCl2·6H2O, were added over a 15-s duration. All solutions were 

prepared with ultrapure water.  

The impact of SI was analysed by varying the initial concentrations of all species and 

pH. All experiments employed a 1:1.5:2 molar ratio for P:Mg:N. Two P 

concentrations were used: 0.03 M and 0.012 M. These P concentrations, while 

relatively high if compared with conditions encountered in WRRFs, were used to 

identify the extent of primary homogeneous nucleation in the experiments, following 

the work done in Chapter 3. In addition, these conditions are similar to real reactors 

where a high local SI is present, such as near the feed points or in inefficiently mixed 

regions. 

The experimental runs performed are shown in Table 4.3. In order to present average 

results, they were grouped into three main blocks, corresponding to their average 

initial SI: Low SI (B-LSI), Medium SI (B-MSI) and High SI (B-HSI), which 

corresponded to a SI equal to 2.10, 2.57 and 2.96, respectively. In the runs marked 

with ‘NaOH addition’, once equilibrium had been reached, the pH and thus the SI 

were increased by the addition of a known volume of a NaOH solution. This elicited 

a subsequent positive supersaturation in the solution, resulting in a new pH decay 

and change in the PSD under situations where crystals were already suspended in 

solution (i.e. seeded experiments). 
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4.3.3. Measurements 

The following measurements were taken in the experimental runs. 

 pH evolution and induction time. 

 PSD measurements in Experiment B. 

 Photomicrographs. 

4.3.3.1. pH evolution and induction time 

From the measurement of the pH evolution, the induction time was estimated. The 

pH was monitored using an InPro® 3030/120 (InPro® 3030/120, Mettler-Toledo 

GmbH, Switzerland) in Experiment A and an Orion™ 8175BNWP ROSS™ Sure-

Flow™ pH Electrode (Orion™ 8175BNWP ROSS™ Sure-Flow™ pH Electrode, 

Thermo Fischer Scientific, USA) and an Orion™ 8156BNUWP ROSS Ultra™ pH 

Electrode (Orion™ 8156BNUWP ROSS Ultra™ pH Electrode, Thermo Fischer 

Scientific, USA) in Experiment B. The induction time is considered to be inversely 

proportional to the nucleation rate (Hanhoun et al., 2013). In the experiments here 

described, the induction time was calculated as the time elapsed between the first 

stable pH obtained and a decrease of 0.05 units of pH (Mehta and Batstone, 2013). 

4.3.3.2. PSD measurements in Experiment B 

PSD was measured periodically during the experimental runs of Experiment B, using 

a Multisizer 4 Coulter Counter (Multisizer 4 Coulter Counter, Beckman Coulter, 

USA). A 1000-µm aperture tube was chosen for the measurements, which could size 

and count particles between 20-600 µm of spherical volume equivalent diameter. 

Measurements were done by sampling 5 mL of suspension with a Pasteur pipette 

from the precipitation reactor. Unless indicated otherwise, all samples were taken in 

the same point, 4.5 cm from the bottom of the reactor. The sample was transferred to 

the measuring vessel of the Multisizer 4 Coulter Counter, already filled with 

electrolyte eluent. The measurements in the Multisizer 4 Coulter Counter are based 

on the electric zone sensing method, which requires an electrolytic solution for the 

measurements. 

For this study, the electrolytic solution was prepared with ultrapure water, with 0.9% 

in mass of NaCl that was saturated in struvite. For the saturation, an excess of 
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previously crystallized struvite was diluted in a 2-L Schott Duran bottle for at least 4 

hours. After saturating, the electrolyte was filtered with 0.45 µm paper. 

The control mode in the measurements of the Multisizer 4 Coulter Counter was the 

measuring time (7 s) and the current and gain were 3200 µA and 1, respectively. All 

samples were measured in duplicate and the results shown are the average of both 

measurements. 

In order to relate the change in the PSD with the effect of local mixing intensity and 

the SI and not to other physico-chemical effects, a number of preliminary issues were 

considered for the PSD measurements in Experiment B: 

1. Repeatability of the measurements. 

2. Avoiding particle settling at the bottom of the reactor. 

3. Homogeneity of the particle distribution within the reactor. 

4. Particle behaviour under SI = 0 condition. 

Experimental runs performed for this analysis are included in Table 4.3 as Block MQ 

(measurements quality) and the results are given in Appendix B. 

4.3.3.3. Photomicrographs 

Photomicrographs of the resultant precipitates were taken for both experiments. In 

Experiment A, the photomicrographs were taken after filtering and drying the solid 

at 40 °C using scanning electron microscopy (Philips XL30CP Scanning Electron 

Microscope, Philips, Netherlands). In Experiment B the photomicrographs were 

taken of liquid samples with a binocular microscope (Nikon Eclipse E-100 Binocular 

Microscope, Nikon, Japan). 
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Table 4.3: Experimental runs in Experiment B, divided into four different blocks: 

Measurements quality (MQ), Low SI (B-LSI), Medium SI (B-MSI) and High SI (B-

HSI). 

Block Run 
P Conc 

(mol/l) 

N-P 

pH 

Mg 

pH 

Stirring speed 

(rpm) 

NaOH 

addition 

MQ 

1 0.03 8.00  90  

2 0.03 8.00  90  

3 0.03 8.00  90  

4 0.012   140  

5 0.012   180  

6 0.012   180  

7 - - - 300  

8 - - - 250  

B-LSI 

(SI = 2.10) 

9 0.012 8.11 7.09 200  

10 0.012 8.05 7.04 200  

11 0.012 8.14 7.73 300  

12 0.012 8.03 6.85 300  

13 0.012 8.02 7.47 400  

14 0.012 7.97 7.00 400  

15 0.012 8.06 5.55 300  

16 0.012 8.07 5.53 300  

17 0.012 8.11 5.68 200 X 

18 0.012 8.20 5.56 300 X 

19 0.012 8.06 5.58 400 X 

B-MSI 

(SI = 2.57) 

20 0.03 7.79 5.23 300  

21 0.03 7.85 5.29 200 X 

22 0.03 7.73 5.17 300 X 

23 0.03 7.80 5.31 400 X 

24 0.03 7.73 5.49 200  

25 0.03 7.74 5.53 300  

26 0.03 7.75 5.48 200 X 

27 0.03 7.72 5.51 300 X 

28 0.03 7.72 5.50 400 X 

B-HSI 

(SI = 2.96) 

29 0.03 8.05 8.25 200 X 

30 0.03 8.05 8.21 300 X 

31 0.03 8.05 7.96 400 X 
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4.4 RESULTS AND DISCUSSION 

4.4.1. Induction time 

The induction times were experimentally determined from the pH measurements. 

Strictly, the induction time is the period between the establishment of the 

supersaturation and the formation of the first stable nuclei. This is not a 

straightforward measurement and it strongly depends on the measurement technique 

(Hanhoun et al., 2013). In this thesis, the induction time was considered as the time 

taken for the pH to change 0.05 units, as previously done (Mehta and Batstone, 2013). 

This pH-change approach is a relatively accessible way to assess nucleation, but will 

inevitably include some particle growth. Despite the fact that nucleation is a 

stochastic process (Nappo et al., 2018), trends could be observed when analysing the 

effect of the different SI and mixing intensities in the induction times of the 

Experiment A and Experiment B. 

4.4.1.1. Effect of the SI 

Figure 4.1 shows the inverse of the induction time (1/tind) against the SI for each 

experimental condition (chemical and stirrer speed) in this contribution. When data 

from the same experiment was compared, the induction time was inversely 

proportional to the SI. This was expected from classical nucleation theory for 

homogeneous nucleation (Mullin, 2001). In addition, linear relationship for 

log tindvs. 1/ (log Sr)
2 (Mehta and Batstone, 2013; Ohlinger et al., 1999), for 

ln tindvs. 1/(ln Sr)
2 (Hanhoun et al., 2013) and for 1/SI2 (Bhuiyan et al., 2008a) 

have already been proposed in the literature for struvite. 

Since SI = log(Sr
3
), these linear relationships were included in Figure 4.1 for 

comparison. Interestingly, Figure 4.1 shows that the data from Experiment A, 

Experiment B and literature are not comparable. In particular, induction times from 

B-LSI and A1 were similar, while their supersaturation was very different. This 

meant that, despite being important, the supersaturation was not the only factor 

affecting the induction time. This could be expected as other studies confirm that 

experimental conditions, such as the shear rate (Bhuiyan et al., 2008a; Liu and 

Rasmuson, 2013; Ohlinger et al., 1999), reactor volume (Steendam et al., 2018), 

temperature (Liu et al., 2014), agitator type (Liu et al., 2015) or the presence of 
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baffles in the reactor (Liu et al., 2015), affect the induction time of a nucleation 

process. In the next section the effect of the shear rate is analysed. 

 

Figure 4.1: Effect on the induction time of the saturation index for the experimental 

conditions of this contribution and comparison with the results from Mehta and 

Batstone (Mehta and Batstone, 2013) (*) , Hanhoun et al. (Hanhoun et al., 2013) (**), 

Ohlinger et al. (Ohlinger et al., 1999) (***) and Bhuiyan et al. (Bhuiyan et al., 2008a) 

(****). 

4.4.1.2. Effect of the shear rate 

Results included in Figure 4.2 show that for cases with the same SI, for shear rates 

under 600 s-1, the increase in the mixer rotation speed, and the consequent increase 

in the shear rate, meant a shorter induction time for both Experiment A and 

Experiment B. This result agreed well with the existing literature (Ariyanto et al., 

2014; Bhuiyan et al., 2008a; Ohlinger et al., 1999) and was consistent with theory: 

applying more energy to the system enhances homogeneous nucleation, overcoming 

the energy barrier and generating stable nuclei. Thus, higher shear rate would 

promote the generation of stable nuclei and would result in shorter induction times, 

because of an increased primary homogenous nucleation rate. The same effect of the 

shear rate in the nucleation rate was observed in the literature in very different 

experimental conditions (Bhuiyan et al., 2008a; De Santis et al., 2016; Forsyth et al., 

2016)  

When the shear rate increased over 600 s-1 in blocks A1 and A2, the induction time 

was not further reduced. Bhuiyan et al. had similar results, once a determined shear 
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rate value was reached in their experiment (Bhuiyan et al., 2008a). A higher shear 

rate favours the diffusion of the reactants, accelerating the homogeneous nucleation 

until some extent, but once a specific value is reached, attrition is favoured, 

generating counter effects in the nucleation rate (Mullin and Raven, 1962). 

Despite the shear rate correlates to the experimental induction times observed, thus 

partially predicting this phenomenon, the addition of the SI as another potential effect 

does not fully explain the data from the different experiments. Therefore, more 

research is needed to fully delineate the struvite nucleation mechanism dependencies. 

 

Figure 4.2: Effect of the shear rate on the induction time for the blocks of Experiment 

A and B. 

4.4.2. pH evolution 

The analysis of the dependence of the induction time on both the SI and the shear 

rate helps to understand how these two variables affect to the earliest stages of 

struvite precipitation, where nucleation is considered to be the dominant mechanism. 

However, as precipitation in the batch test proceeds, particle enlargement becomes 

important. During particle enlargement, reactants are consumed from the liquid and 

transferred to the solid phase and, in batch tests, this phenomenon results in a pH 

decay until equilibrium is reached. 
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4.4.2.1. Effect of the SI 

Figure 4.3 shows the pH evolution for selected runs of each block of Experiment A 

and B. Runs selected are the ones with the lowest stirrer speed (300 rpm for 

Experiment A and 200 rpm for Experiment B). 

A higher initial SI introduces more crystal embryos into suspension (as it will be 

further discussed in 4.4.3. section), as a consequence of an enhanced nucleation. 

Therefore, runs with the highest SI have greater specific surface area upon which 

crystals can grow. In addition, struvite growth is proportional to the SI (Bhuiyan et 

al., 2008b; Galbraith et al., 2014; Hanhoun et al., 2013; Triger et al., 2012). Both 

effects related with a high SI accelerate the transformation of the dissolved species 

into struvite crystals. The consequence of both effects can be observed in Figure 4.3, 

where the pH decay speed aligned well with the SI, as the runs had an increasingly 

sharper decay as their initial SI augmented (in an ascendant order: A1, A2, B-LSI, 

B-MSI and B-HSI).   

 

Figure 4.3: Effect of the shear rate on the induction time for the blocks of Experiment 

A and B. 

4.4.2.2. Effect of the shear rate 

Among the experimental runs with the same initial SI, higher stirrer speeds led to 

faster pH decay. While the initial and final pH values depended on the initial 

chemical conditions, as they are related to the thermodynamics of the process, how 

fast the equilibrium was reached depended on the stirrer speed. This trend was 
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especially noteworthy in the experiments with low SI (blocks A1, A2 and B-LSI), as 

can be seen in Figure 4.4 and Figure 4.5. 

Once nucleation took place, particle enlargement (i.e. growth and/or aggregation) 

followed. Since an increasing growth rate for increasing shear rate has been reported 

in the literature (De Santis et al., 2016; Forsyth et al., 2016), this might explain the 

more rapid pH decay observed for the high mixing rate experiments. On the other 

hand, kinetic expressions where the aggregation rate is inversely proportional to the 

shear rate have been already proposed (Hounslow et al., 2013). An increasing growth 

rate and decreasing aggregation rate with the shear rate, combined with the enhanced 

nucleation suggested by the analysis of the induction times, could explain the faster 

decay of the pH. However, as the pH decay in the system due to growth of the 

particles is subject to the number of particles generated in the nucleation step, the 

effect of the shear rate on the growth process is still uncertain. This effect is further 

assessed in Chapter 5, by comparing the effects of mixing in nucleation and growth 

using mathematical tools.   

Results from Experiment A, in Figure 4.4 (a,b), show that changing the stirrer speed 

has a greater effect at lower stirrer speeds, as the pH decay in the experiments with 

300 and 400 rpm is significantly slower than in the rest. According to the obtained 

results, once a certain value is reached, the shear rate has not a clearly discernible 

impact. As it happened for nucleation, it is logical to expect that the increase in the 

shear rate favoured the diffusion of the reactants to the reacting surface of the particle, 

accelerating precipitation, but once a certain shear rate level is reached, increasing it 

has no effect or even has negative effects on crystal growth, due to attrition. 

In Experiment B, increasing the stirring speed also accelerated the runs, especially 

the B-LSI block. In the B-HSI block, where SI is higher, the precipitation process is 

dominated by the SI and the effect of the shear rate is not evident (see Figure 4.5). 
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A 

 

B 

 

Figure 4.4: Effect of the shear rate on the pH evolution for experimental runs in 

Block A1 (a) and Block A2 (b). 
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Figure 4.5: Effect of the shear rate on the pH evolution in some runs of Experiment B. 

4.4.2.3. Effect of the NaOH addition 

In some of the experimental runs of Experiment B, NaOH was added once 

equilibrium had been reached. This generated a non-equilibrium condition in a 

system where particles were already suspended. 

In runs 17-19 of B-LSI Block, 5 mL of a 0.5 M NaOH solution were added once 

equilibrium was established. As it is observed in the pH evolution of Figure 4.6 (a), 

the induction time when the NaOH solution is added is shorter than at the beginning 

of the experiment for all the runs, despite the saturation being lower. This effect is a 

consequence of having particles in the solution and suggests that the relevant 

mechanisms could be secondary nucleation and/or growth, as they are related with 

the availability of crystals in the solution. 

This effect is repeated in the runs 21-23 and 26-28 of the MSI Block. In runs 21-23, 

10 mL of the 0.5 M NaOH solution were added once, while in runs 26-28, 5 mL of 

the 0.5 M NaOH solution were added at two different times. The pH increase was 

bigger in the runs where the 10 mL were added. As the supersaturation generated in 

runs 21-23 was bigger than in runs 26-28, the decay was also sharper (see Figure 4.6 

(b)). 

In every case, runs with the lower stirrer speed took longer to reach the new 

equilibrium. This is a combination of two effects: on one hand, higher stirrer speeds 

lead to enhanced diffusion of the reactants to the reacting surface, as reported in 
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subsection 4.4.2.2., on the other, as it is further explained in section 4.4.3., runs with 

lower stirring speed have fewer, larger particles. As the total mass of suspended 

crystals is the same for experiments with the same initial chemical conditions, this 

turns out as less available surface from which particles can grow, slowing the 

precipitation process. 

A 

 

B 

 

Figure 4.6: Effect of the NaOH addition in the pH evolution of selected runs of Block 

B-LSI (a) and Block B-MSI (b). 
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4.4.3. PSD measurements in Experiment B 

The experiments performed in the MQ block uncovered the limitations of the PSD 

measurements. From these measurements, it was concluded that the reactor in 

Experiment B was well mixed in the macro scale and that all the changes in the PSD 

could be linked with a change in the measured pH. The results of the MQ block are 

included in Appendix B. 

4.4.3.1. Particle number at equilibrium 

The number of particles measured in the experiments gave a good insight about the 

precipitation process. In this subsection, the average particle count at equilibrium for 

all the experimental runs performed in Experiment B are shown. Equilibrium values 

were considered those measured after 25 min of experiment in the B-LSI block and 

after 20 min in the B-MSI and the B-HSI blocks. 

4.4.3.1.1. Effect of the SI 

An increasing SI in the system was related with a shorter induction time for both 

systems studied in this contribution in section 4.4.1.1. due to a favoured nucleation 

mechanism (see Figure 4.1). This relationship was confirmed in the particle number 

measurements. Figure 4.7 relates the induction time and the total particle count 

measured in the equilibrium for every run of Experiment B. Three clear blocks are 

distinguished, associated with the different SI in the system. The results observed 

confirm that the nucleation can be related with the induction time, as more particles 

are obtained for shorter induction times, as a consequence of a higher SI. 
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Figure 4.7: Relationship between the average particle count and the inverse of the 

induction time on each experimental run in Experiment B. 

4.4.3.1.2. Effect of the shear rate 

As it happened for the SI, an increasing shear rate was related with a shorter induction 

time in section 4.4.1.2 for Experiment B, due to a favoured nucleation mechanism 

(see Figure 4.2). Again, this relationship was confirmed in the particle number 

measurements. As observed in Figure 4.8, the number of counted particles increased 

with the shear rate when experiments with similar initial chemical conditions were 

compared. The only exception was the B-HSI block, where the highest shear rate had 

the lowest particle number average. As this experiment had the highest SI and shear 

rate, nucleation mechanism was very important. As it will be further discussed in 

section 4.4.3.2 this lead to a great number of small particles that could be under the 

detection limit of the equipment. 
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Figure 4.8: Relationship between the average particle count and shear rate for each 

experimental run in Experiment B. 

4.4.3.2. PSD at equilibrium 

Figure 4.9 shows the average of the PSD measurements at equilibrium for the B-LSI, 

B-MSI and B-HSI blocks. The results are presented as average values of every 

experimental run of each block for the d10, d50 and d90 (diameters that comprise the 

10%, 50% and 90% of the particle number in the sample with a diameter less than 

each value, respectively). 

4.4.3.2.1.  Effect of the SI 

The d10 values were similar for the results of the different blocks, despite the 

different initial SI. This was reasonable, since the detection limit of the equipment 

(30 µm, to avoid noise measurement near the limit of 20 µm) was near the d10 value. 

Comparing B-LSI and B-MSI blocks, d50 and d90 values were higher in the B-MSI 

block than in the B-LSI block. A higher SI promoted nucleation, but once nuclei were 

generated they began to grow, a mechanism that is also favoured at high SI. The 

competition between both mechanisms depends on the SI, on the shear rate and on 

the available surface of the crystals. Despite there being more nuclei in the system, 

the reactants concentration was greater in the liquid for B-MSI block compared to B-

LSI block, which resulted in larger particles. 
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When comparing the results between the B-MSI and the B-HSI block, the opposite 

effect was observed. In the case of the B-HSI, the higher SI promoted nucleation, 

which likely dominated growth. In the initial steps of the precipitation process in the 

experiments of the B-HSI block, more nuclei were created from which more particles 

grew, providing a faster reactant consumption, as it was seen in the shorter induction 

times and sharper pH decay that the experiments in this block had when compared 

with the other blocks. This, ultimately led to smaller particle populations than in B-

MSI, as it was confirmed in the d90 value, which was considerably smaller in the B-

HSI than in the other two blocks. 

4.4.3.2.2.  Effect of the shear rate 

In every experimental block, for similar initial thermochemical conditions, a higher 

stirrer speed led to a lower mean particle size at equilibrium as it is shown in Figure 

4.9. 

This trend was in agreement with the results obtained in (Fang et al., 2016) and was 

consistent with the induction times, the pH evolution measured in the experiments 

and the counted particles: as a higher stirrer speed favoured the formation of more 

nuclei, more points where crystals could start to grow were available, resulting in a 

shorter induction time, a faster pH decay due to the greater availability of crystal 

surface to grow and a smaller ultimate mean size of the particle population. 

The effect of the stirrer speed on the B-HSI runs was lower than in the rest of the 

experiments. This effect is also in good agreement with the small differences seen in 

the pH decay speed for the experiments with the highest SI and the counted particles. 

According to the obtained results, when the SI is very high, its effect in the 

precipitation process is dominant over changes related with the shear rate. These 

results could be compared with other experimental set ups, as similar results were 

obtained by Zauner and Jones when compared the average size of particles in semi-

batch experiments when introducing a high concentration and low concentration feed 

in a reactor: when increasing the dissipated energy in the reactor, the low 

concentration feed had a decreasing average size while in the experiments with a high 

concentration feed the average size was constant (Zauner and Jones, 2000b). 
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Figure 4.9: Average and standard deviation for d10, d50 and d90 in B-LSI set 

(a). Average and standard deviation for d10, d50 and d90 in B-MSI set (b). 

Average of d10, d50 and d90 in B-HSI set (c) 
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4.4.3.2.3. Effect of the subsequent NaOH addition 

In experimental runs were NaOH was added after the onset of equilibrium, the PSD 

measured before and after the additions could be compared. The generation of a new 

supersaturation in a system where crystals were already present helped to evaluate 

the change in the PSD in a situation where particle enlargement mechanisms (mainly 

growth and secondary nucleation) should dominate. 

After analysing the change in the PSD due to these additions in runs 17-19, 21-23 

and 26-28, it could be concluded that the change was more significant in the 

processes with the lowest stirrer speed (200 rpm). According to the obtained 

measurements, experimental runs with the lowest stirrer speed had initially bigger 

and fewer particles in the reactor. Therefore, the newly generated supersaturation 

reaches the equilibrium by dividing its effect in less particles, making the changes 

more noticeable. As an example, the changes in the PSD due to the additions of 

NaOH in runs 26-28 are included in Figure 4.10. 

In Figure 4.10, starting from the moment Mg solution was added to the system, PSD 

measurements at times 90 s, 25 min, 85 min and 125 min are shown. NaOH was 

added twice to the system: 50 min and 95 min after the experiment started (see Figure 

4.6 (b)). Comparing the PSD at 90 s (equilibrium was not reached yet) for the 

different stirrer speeds, it is seen how the run with the highest stirrer speed (Figure 

4.10 (c)) has bigger particles, due to a faster reaction. However, when the first 

equilibrium is reached (PSD at 25 min), the biggest particles measured are in the run 

with the lowest stirrer speed (Figure 4.10 (a)). PSD measurements at 85 and 125 min 

show the distribution at the second and third equilibriums. Again, the experiment 

with the lowest stirrer speed contains bigger particles. 

An addition of NaOH could have also generated a localized high SI zone in the 

reactor, where homogeneous nucleation could be favoured. However, this was not 

the case for any of the runs as, the d10 was consistent and an enlargement of the 

particles was observed in every case.  
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Figure 4.10: Effect of the subsequent NaOH addition in the PSD for 

experimental runs 26 (200 rpm) (a), 27 (300 rpm) (b) and 28 (400 rpm) (c) of 

the B-MSI Block. 
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4.4.4. Photomicrographs 

Photomicrographs helped to understand the evolution of the precipitation process. In 

Figure 4.11 and Figure 4.12, the photomicrographs of runs performed in Experiment 

A and Experiment B, respectively, are included.  

  

Figure 4.11: Scanning electron microscopy photomicrographs of experimental runs in 

Experiment A. 

Shape of struvite particles has previously been related with the pH (Prywer et al., 

2012) and the supersaturation (Shaddel et al., 2019). The crystal shapes observed in 

this contribution are consistent with those results, as particles of Experiment A were 

similar to the shape of particles previously observed for low pH and supersaturation 

and the shape of particles of Experiment B was similar to the ones obtained at high 

pH and supersaturation. 

Regarding the size of the obtained crystals, size of the crystals in Experiment A is 

considerably smaller than the size of the particles of Experiment B. A probable 

explanation is that despite the less favoured nucleation in Experiment A, related with 

the long induction times, due to the low concentration of the reactants in the solution 

particles could not grow bigger afterwards. 

Photomicrographs of Experiment B are shown in Figure 4.12. For the B-LSI block, 

leaf-shape dendritic crystals were obtained, in combination with contact and 

penetration twins (see Figure 4.12 (a) and (b)). For B-MSI block, mainly X-shaped 

and leaf crystals were obtained. The irregularities observed in the surface of the 

crystals seen in Figure 4.12 (c) and (d) could be a consequence of a secondary 

nucleation process generated by the new supersaturation created by the NaOH 

addition. Photomicrographs from HSI (Figure 4.12 (e) and (f)) block showed that 
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crystals nucleated and grew independently and that secondary nucleation or 

aggregation were not favoured, mainly obtaining X-shaped crystals. Despite the leaf-

type crystals are related with the highest supersaturation and pH in the literature 

(Prywer et al., 2012; Shaddel et al., 2019) in the results obtained in this thesis this 

was not the case. In addition, not such a clear distinction could be made in the 

obtained particles, having them often a mixture of shapes in the same experiment. 

According to the photomicrographs obtained, crystal aggregation, understanding it 

as the stable bonding of two already formed crystals, was not the main mechanism 

occurring. Most of the photomicrographs showed monocrystals, as a result of a 

precipitation process dominated by homogeneous nucleation, growth and/or 

secondary nucleation. 

4.4.5. Practical application of the results 

The impact of the SI and the shear rate on the particle number and the nucleation 

mechanism have important consequences for the design and scale-up of precipitation 

reactors. Under conditions of poor mixing in the reactor, localized zones of high 

supersaturation would likely result at the feeding points. This would enhance 

homogeneous nucleation, reducing the mean size of the product particles (Mersmann, 

2001). An option to avoid such localized zones could be to increase the stirring speed, 

favouring mixing at macro scale. However, this effect, under certain conditions might 

lead to more particles in the system, as observed in the results of this contribution. 

Consequently, a compromise would be needed between good mixing in the macro 

scale and an excessive shear rate in order to avoid unwanted nucleation. 

The pH measurements for Experiments A and B and the PSD measurements in 

Experiment B showed that regardless the reactor size or stirrer type, the presence of 

particles in the solution and changing the mixing intensity and SI in the reactor 

influenced the evolution of the struvite precipitation in the system. Moreover, the 

effect of varying these conditions was more noticeable for the lower saturation and 

mixing intensities, which would be closest to the conditions found in full scale 

reactors. Presence of particles in a zone with a high local saturation could reduce 

unwanted nucleation as growth mechanism would be favoured due to the available 

surface area of crystals. Controlling both the presence of particles in a determined 

zone of the reactor and the local mixing intensity and SI would help to control the 
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evolution of the precipitation process and the PSD in the reactor and it could be the 

key to reduce the presence of fine particles in the reactor. 

A 

 

B 

 

C 

 

D 

 

E 

 

F 

 

Figure 4.12: Photomicrographs of Experiment B: (a) B-LSI without NaOH addition 

(300 rpm), (b) B-LSI after NaOH addition (300 rpm), (c) B-MSI after 2 additions of 

NaOH (300 rpm), (d) B-MSI after 2 additions of NaOH (400 rpm), (e) B-HSI (200 rpm) 

and (f) B-HSI (400 rpm). 
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4.5 SUMMARY 

The utility of struvite as a sustainable fertilizer and the feasibility of the recovery 

technology depends on its PSD. The objective of this chapter was to analyse the 

combined effect of the supersaturation and the shear rate on nucleation and growth 

mechanisms of the resultant particle populations, since the role of hydrodynamics is 

unclear and its influence often ignored. As a general trend, higher shear rates 

favoured homogeneous nucleation, measured through reduced induction times and 

greater particle number densities. This phenomena led to more rapid precipitation 

and reduced population mean particle size. Higher SI favoured nucleation and growth 

mechanism and was related to a faster precipitation process and a greater particle 

density. According to the obtained results, both variables should be considered in 

homogeneous nucleation and growth, when the PSD is of importance. The results 

obtained improve the existing knowledge on the struvite precipitation process and 

give the necessary data for the calibration purposes of Chapter 5. 
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5   

INCLUSION OF SHEAR RATE 

EFFECTS IN THE KINETICS OF 

A DISCRETIZED POPULATION 

BALANCE MODEL: 

APPLICATION TO STRUVITE 

PRECIPITATION  

The content of this chapter has been sent for its revision to Water Research. 

 

 

5.1 ABSTRACT 

The effect of mixing in the modelling of processes based on mass transfer phenomena 

is commonly ignored in wastewater treatment modelling. In this chapter, the effect 

of the average shear rate in the nucleation and growth rates of struvite is analysed by 

combining experimental data from Chapter 4 with simulation results obtained with 

the mass-based DPBM presented in chapter 3. According to the obtained results, the 

effect of the average shear rate is identifiable for the selected data and mechanisms. 
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Therefore, it should be considered when a more detailed modelling of the process is 

needed. Consequently, in this chapter, the average shear rate has been decoupled 

from the kinetic constants and kinetic rates where it is explicitly included as a power 

law function have been proposed. The exponents in these power law functions for 

the primary homogeneous nucleation and growth are 1.3 and 0.3, respectively. 

Considering shear rate effects allowed to see in the simulation outputs experimentally 

observed effects: a faster pH decay and smaller particle distribution for increasing 

mixing intensities. 

5.2 BACKGROUND 

For decades, mathematical modelling and simulation tools have been used in the 

design, operation and optimization of WWTPs (Fernández-Arévalo et al., 2017a, 

2017b; Lizarralde et al., 2019). To date, the main modelling and simulation approach 

used in WWTPs described complex biochemical and physicochemical reactions, 

assumed to take place in CSTR (IWA ASM-ADM models) (Batstone et al., 2002; 

Henze et al., 2000). As a result, these models are independent of the mixing intensity 

and, consequently, limited in their application and scope for the design and 

optimization of technologies dependent upon mass transfer phenomena. Unit 

operations based on mass transfer phenomena are especially important in the 

emerging conception of WWTPs as WRRFs and upgrading the classic modelling 

libraries is necessary for the correct description of the processes occurring within 

(Vaneeckhaute et al., 2018). Clearly, accounting for mixing effects in process model 

development would enhance the understanding of WRRFs’ unit processes and would 

be an important step towards more descriptive modelling (Burns et al., 2021).  

Modelling the effect of mixing in wastewater treatment processes is challenging, 

since it occurs at different process scales: macromixing, mesomixing and 

micromixing (Torbacke and Rasmuson, 2004). The consideration of the mixing scale 

compromises the modelling approach needed to represent mixing in the reactors. 

Macromixing and even meso-scale mixing effects could be associated to the transport 

of the reactants and different discrete entities (i.e. bubbles or particles) in the system 

by dividing the reactor into smaller zones or elements, using different approaches 

such as CFD, compartmental modelling or tanks in series, depending on the required 

detail. On the contrary, micromixing affects those processes occurring at molecular 

scale, as nucleation and growth in precipitation systems. Therefore, mixing effects in 
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the kinetics of precipitation processes, should be studied by considering micromixing 

(Phillips et al., 1999).  

In the mechanism’s formulation of the discretized PBM presented in Chapter 3, the 

effect of supersaturation, which combines the effects of concentration of reactants, 

temperature and pH, is included as a power law function as it is often done in the 

PBMs representing struvite precipitation (Burns et al., 2021, 2016; Galbraith et al., 

2014). Furthermore, the presence of other ions and even seed material can be 

systematically included in their formulation, if needed. However, the model does not 

consider micromixing effects, as it often happens in the literature. 

Including micromixing effects in the existing PBMs is very challenging, as its effect 

in the reaction mechanisms is poorly understood (Mao and Yang, 2017). Despite the 

difficulties, some efforts have been already done. Some authors have studied the 

interaction between micromixing and kinetics in PBMs by describing different zones 

in the reactor depending on the micromixing, which is associated with the energy 

dissipation rate (Baldyga et al., 1995; Phillips et al., 1999; Pohorecki and Bałdyga, 

1983). Other authors have considered an average shear rate in the reactor and 

explicitly included it in the aggregation rate expressions (Hounslow et al., 2013; 

Vaneeckhaute et al., 2018). This approach is also used when modelling flocculation 

(Nopens et al., 2004). Both possibilities have in common that the precipitation model 

is applied in environments considered homogeneous from a mixing perspective, as it 

is recommended in Baldyga et al (1995). 

In this chapter, the second approach will be used to evaluate the effect of the 

micromixing on the kinetic rates of the mechanisms constituting the discretized PBM 

presented in Chapter 3. As aforementioned, this approach has been used to simulate 

aggregation in PBMs. However, its use to evaluate the shear rate effects in nucleation 

and growth is not extended. As the shear rate has been related in the literature with 

the nucleation (De Santis et al., 2016; Forsyth et al., 2016; Mullin and Raven, 1962; 

Nappo et al., 2018) and growth (De Santis et al., 2016) it is believed that its effect in 

the modelling of these mechanisms should be further studied and, if necessary, 

included in the kinetic expressions of the PBM describing them. In addition, 

modelling the shear rate as a process variable may help to obtain parameter values 

that are independent of the local mixing intensity.  

Therefore, the objectives of this chapter are twofold. First, to consider if the average 

shear rate should be decoupled from the kinetic constants of the mechanisms of the 
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previously presented PBM, based on the comparison between the experimental data 

obtained under different saturation and mixing conditions in Chapter 4 and 

simulation outputs from this chapter. Secondly, if so, to propose new dependency 

laws for the kinetics of the PBM where the shear rate effect is explicitly included, 

based on parameter values calibrated using Bayesian Inference for different mixing 

intensities. The methodology employed could be useful not only to improve the 

modelling and understanding of struvite precipitation, but also of other unit processes 

in a WRRF based on mass transfer phenomena, such as biofilm-based processes, 

granular technologies, aeration, membrane fouling, adsorption or other precipitation 

processes. 

5.3 MATERIALS AND METHODS 

This section is divided in two main sections. In the first section, the PBM described 

in Chapter 3 is briefly re-introduced. Despite its general description and equations 

have been included in Chapter 3, the model has been adapted to better represent the 

experimental data obtained in Chapter 4. In the second section, the experimental runs, 

the simulation studies and the methodology combining both to determine the effect 

of the shear rate in the kinetics of the PBM mechanisms is explained.  

5.3.1. Population balance model 

The general description and equations of the PBM are included in Chapter 3. As 

previously mentioned, the volume size domain was partitioned into 30 different size 

bins using a 2 geometric progression. Each bin corresponded to the known volume 

of spherical particles sized between 0.001 and 0.812 mm of radius. The kinetics in 

the model depend on the value of the SI at any time. This SI value was calculated 

using KspStru= 7.58x10-13 as it has been done throughout the thesis. 

The kinetics describing the primary homogeneous nucleation and growth 

mechanisms were described as follows: 

B0 = KB · SI
nB · V 5.1 

 

G = KG · SI
nG 5.2 

https://www.linguee.es/ingles-espanol/traduccion/throughout.html
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where B0 is the particle birth rate due to primary homogeneous nucleation 

(nuclei/day), KB (nuclei/(day·m3)) is the kinetic constant of the homogeneous 

nucleation (Kr Nucleation),  V is the liquid volume in the reactor (m3), nB (-) is the 

Nucleation Exponent, G is the particle linear growth rate (mm/day), KG (mm/day) is 

the kinetic constant of growth and nG (-) is the Growth Exponent. 

The model presented in Chapter 3 also included the aggregation mechanism. 

However, this mechanism was removed from the PBM in the present chapter. As the 

photomicrographs included in Figure 4.12 in Chapter 4 showed that the particles 

precipitated in the experiments were single crystals, including this mechanism was 

not necessary. Moreover, including the aggregation mechanism would mean having 

more parameters to calibrate, which could lead to identifiability problems and 

compensation in the parameter values as observed in the results of Chapter 3. 

Therefore, considering only the effects of primary homogeneous nucleation and 

growth in the system, the change in the mass of the smallest bin 
∂X1

∂t
 could be 

described as follows: 

∂X1
∂t

=  KB ∙ SI
nB · V · mesf1 − KG · SI

n · A1 · ρS 5.3 

where mesf1is the mass (g) of struvite in a single sphere of the smallest bin, A1 (m
2) 

the available area of the smallest sized crystals at any time and ρS the density (g/m3) 

of the crystals. 

For the rest of the i bins, the mass change 
∂Xi

∂t
 is described by the growth: 

∂Xi
∂t
=

mesfi
mesfi−1

· KG · SI
n · Ai−1 · ρS − KG · SI

n · Ai · ρS 5.4 

as the area was not a variable included in the model, it had to be converted to a term 

depending on mass: 

Ai =
Cwi · V

ρS · Φ ·
(Li + Li+1)

2

 5.5 

being Cwi (g/m3) the concentration of i-sized particles at any time in, Li and Li+1 the 

radius (mm) of the ith and i+1th bin, respectively, and Φ a shape factor that relates the 

volume, the area and the characteristic length of the crystals. 
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Preliminary simulations (results not included) performed with this model structure 

showed that the simulation could not faithfully describe the experimental data 

gathered from experiments in Chapter 4. Therefore, some changes were made to the 

growth model.  

The original model formulation for crystal growth presented in Chapter 3 is valid for 

an isotropic growth of the crystals, regardless its shape, because in this case Φ is a 

constant numeric value that can be embedded in the KG when this is calibrated (as it 

is done in Chapter 3). However, struvite crystal faces do not necessarily grow 

equally. As a result, their shapes usually are not spheres or regular polyhedrons, as it 

has been seen in Chapter 4 or the available literature (Prywer et al., 2012; Shaddel et 

al., 2019). Therefore, from the total volume of the particle, the growth rate is 

proportional only to a portion of its total area. This effect has been addressed in the 

mathematical model by considering only the effective area of the particle. This has 

been done elevating to an exponent α (-) the characteristic length. Therefore, the 

effective area of the crystal, named Ai
′
, becomes: 

Ai
′ =

Cwi · V

ρS ·
(Li + Li+1)

2

 α  
5.6 

If the value of α (-), known as the Area Exponent, is greater than unity, growth for 

bigger particles is less favoured than for the smaller ones. This change maintains the 

simplicity of the general PBM structure, as the 2 geometric progression for the 

partition of the volume size domain and the characteristic lengths associated to each 

bin are maintained as if the particles were spheres, but the results addressed are more 

realistic as the growth is only proportional to the effective area of the crystal. 

However, it added an extra parameter to the calibration procedure.  

5.3.2. Analysis of the shear rate effect 

The analysis of the effect of the shear rate in the kinetics of the PBM was performed 

combining experimental results with outputs from simulation case studies. Bayesian 

inference was used to relate the model outputs to the experimental results, with 

Figure 5.1 showing the general analysis procedure. 
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5.3.2.1. Experimental runs 

Data from nine experimental runs performed in the Chapter 4 was gathered to 

experimentally observe the effect of the shear rate in the precipitation. The selected 

experiments were runs 9, 11 and 13 from the B-LSI block, 26-28 from the B-MSI 

block and 29-31 from the B-HSI block from the Experiment B (see Table 4.3 in 

Chapter 4). These nine experimental runs combined three different initial chemical 

conditions and three different stirring speeds.  

As previously explained in Chapter 4, in all the experiments, 500 ml of a solution, 

prepared from NaH2PO4, NH4Cl and NaOH, were charged in a 1-L vessel stirred with 

a 5-cm diameter 45º PBT stirrer. Afterwards, 250 ml of a MgCl2·6H2O solution were 

added over a 15-second duration. All solutions were prepared with ultrapure water. 

In all the experimental runs the P:N:Mg molar relation after the mixing of both 

solutions was 1:2:1.5 (see experimental conditions in Table 5.1). 

Measured variables were pH (continuous) and PSD (periodically) with a Beckman 

Coulter Multisizer 4 (Multisizer 4 Coulter Counter, Beckman Coulter, USA). A 

1000-µm aperture tube was employed to measure particles between 20-600 µm of 

spherical volume equivalent diameter. The electrolyte was prepared with ultrapure 

water and 0.9 wt%  NaCl, which was saturated in struvite to avoid particle dissolution 

during the measurements. The control mode in the measurements of the Beckman 

Coulter Multisizer 4 was the measuring time (7 seconds). The current and gain, were 

3200 µA and 1, respectively. 
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Table 5.1: Experimental conditions of the N-P and Mg solutions. Each experiment is a 

combination of low, medium or high SI (LSI, MSI and HSI, respectively) with a low, 

medium and high shear rate (Lγ, Mγ and Hγ, respectively). 

Experiment 
P  

(mol/l) 

N 

(mol/l) 

Initial 

pH N-

P 

Mg 

(mol/l) 

Initial 

pH Mg 

Stirring 

Speed 

(rpm) 

Shear 

Rate 

(s-1) 

Experiment 

LSI-Lγ 
0.018 0.036 8.11 0.054 7.09 200 150 

Experiment 

LSI- Mγ 
0.018 0.036 8.14 0.054 7.73 300 276 

Experiment 

LSI- Hγ 
0.018 0.036 8.02 0.054 7.47 400 425 

Experiment 

MSI- Lγ 
0.045 0.09 7.74 0.135 5.48 200 150 

Experiment 

MSI- Mγ 
0.045 0.09 7.72 0.135 5.51 300 276 

Experiment 

MSI- Hγ 
0.045 0.09 7.72 0.135 5.50 400 425 

Experiment 

HSI- Lγ 
0.045 0.09 8.05 0.135 8.25 200 150 

Experiment 

HSI- Mγ 
0.045 0.09 8.05 0.135 8.21 300 276 

Experiment 

HSI- Hγ 
0.045 0.09 8.05 0.135 7.96 400 425 

5.3.2.2. Simulation case studies 

Three different simulation case studies were defined in WEST-DHI, based on the 

experimental runs shown in subsection 5.3.2.1. The shear rate was not included as a 

process variable in the simulations, as the original PBM did not include its effect in 

the kinetics. Therefore, the difference between the simulation case studies was the 

initial chemical condition. The simulation case studies were named S-LSI, S-MSI 

and S-HSI, and corresponded to the experimental conditions with low, medium and 

high SI, respectively (see Table 5.2).  
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In each of the simulation case studies defined, 500 ml of a solution with the required 

concentration of NaH2PO4 and NH4Cl were placed in a 1-L capacity reactor. Starting 

at simulation time t = 0 s, 250 ml of a MgCl2·6H2O dissolution were added over a 

15-second duration, as it was done in the experimental runs. After that, no further 

external perturbations were introduced. The initial pH in the solutions of each 

simulation case study is the average of the three experimental runs with the 

corresponding SI. The SI value was calculated in WEST-DHI, using the equations 

and guidelines from Lizarralde et al., (2015). 

Table 5.2: Simulation Case Studies. 

Simulation 

Case 

Study 

P 

concentration 

(mol/l) 

N 

concentration 

(mol/l) 

Initial 

pH 

Mg 

concentration 

(mol/l) 

Initial 

pH 
SI 

S-LSI 0.018 0.036 8.09 0.054 7.43 2.10 

S-MSI 0.045 0.09 7.73 0.135 5.50 2.57 

S-HSI 0.045 0.09 8.05 0.135 8.14 2.96 

5.3.2.3. Bayesian inference module 

The comparison between the experimental and simulation outputs was done in 

Matlab using Bayesian Monte Carlo techniques. Its objective was to find a parameter 

set θ (KB, nB, KG, nG, α)  that could faithfully reproduce the pH evolution and the 

periodically measured PSD for each mixing intensity to extract dependency laws that 

related the parameters to the shear rate. The parameters analysed were those included 

in nucleation and growth rate equations (see Table 5.3). 

 

 

 

 

 
 

 



112   Shear rate effects in the kinetics of a discretized population balance model 

 

 

 

Table 5.3: List of parameters present in the model with the symbols, units and the 

kinetic expressions where they are used. 
∂X1

∂t
|
N

 corresponds to the mass change in the 

smallest bin due to nucleation and 
∂Xi

∂t
|
Gi→i+1

corresponds to the mass change from the ith 

to the i+1th bin due to growth. 

Name Symbol Description Units Kinetic Expression 

Kr Nucleation KB 

Kinetic 

constant of 

Nucleation 

nuclei

day · m3
 

∂X1
∂t
|
N
=  KB ∙ SI

nB · V · mesf1 

Nucleation 

Exponent 
nB 

Kinetic 

Exponent of 

Nucleation 
(-) 

Kr Growth KG 

Kinetic 

constant of 

Growth 

mmα

day
 

∂Xi
∂t
|
Gi→i+1

= KG · SI
nG ·

Cwi · V

(Li + Li+1)
2

 α  
Growth Exponent nG 

Kinetic 

Exponent of 

Growth 
(-) 

Area Exponent α 
Area 

Exponent 
(-) 

According to the Bayes Theorem, there is a value of the posterior probability density 

function associated to each parameter set. This value of the posterior probability 

density function depends on the prior knowledge of the parameters in the model and 

the observed data: 

p(θ|y) =
p(y|θ) ∙ p(θ)

p(y)
=

p(y|θ) ∙ p(θ)

∫ p(y|θ) ∙ p(θ)
θ

∝ p(y|θ) ∙ p(θ) 5.7 

Where p(θ|y) is the value of the posterior probability density function of the 

parameter set θ for the experimental data y, p(θ) is the prior knowledge, p(y|θ) is 

the likelihood function and p(y) is the probability of having the observed data, which 

acts as a normalizing constant in order to express the theorem proportionally (Martin 

and Ayesa, 2010). The basic idea behind using Bayesian Monte Carlo techniques is 

that it is enough to have many simulations that can draw approximately the shape of 

the posterior probability density function p(θ|y), instead of analytically computing 

it (Vrugt and Bouten, 2002).  
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The prior knowledge about the model is defined in the prior probability density 

function (p(θ)), where the information available about the parameters before any 

measurement is done is included. In this chapter, this information was the upper and 

lower value of the range of the parameters to be calibrated. This range was selected 

based on the results obtained in the sensitivity analysis in Chapter 3 and the available 

literature and can be seen in Table C.1 in Appendix C. As every parameter value 

within the range had the same probability to be chosen, the prior probability density 

function was non-informative. 

The likelihood function (p(y|θ)) quantifies the agreement between the measured data 

y and the answer of the model for each parameter set θ. A higher value in the 

likelihood function corresponds therefore to a more accurate simulation. Different 

likelihood functions have been used in the literature (Blasone et al., 2008). Based on 

(Vrugt et al., 2003), in this contribution the likelihood of a parameter set, θ, to 

describe the observed data, y, was quantified as: 

p(y|θ) =  M(θ)−NM(1+γB)/2 5.8 

  

M(θ) = ∑ |ek(θ)|

Nobs

k=1

 2 5.9 

Nobs is the number of observed variables and ek(θ) the normalized difference 

between the measurement of each kth variable and its correspondent simulation 

output. These differences were normalized in order to give similar weights for the 

pH and PSD measurements: pH differences were divided by 0.5 and PSD percentage 

differences by 10. NM is an adjustable parameter that is used to establish the relative 

weight for each parameter set. If NM = 0, the same likelihood is assigned to all 

parameter sets. When NM → ∞, the posterior probability of the mode (the parameter 

set with the greatest likelihood) will tend to 1, whereas the rest will tend to 0 (Blasone 

et al., 2008). For the analysis performed here, NM was fixed at 10. γB specifies the 

error model of the residuals, which were considered normally distributed (γB= 0).  

The posterior distribution was calculated as follows: 

p(θ|y) =
p(y|θ) ∙ p(θ)

p(y)
=
M(θ)−NM/2

∑M(θ)−NM/2
 5.10 

As it is seen in Figure 5.1 the data gathered in the nine experimental runs was 

classified considering their shear rate. Therefore, the experiments were divided into: 
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low shear rate (Lγ), medium shear rate (Mγ) and high shear rate (Hγ). Thus, each of 

the groups had the data obtained from three experimental runs performed with the 

same shear rate and a different initial SI.  

The results from Chapter 3 suggested that the PBM could have identifiability 

problems. Therefore, in order to reduce the number of parameters to be regressed for 

each shear rate, the exponents (Nucleation Exponent, Growth Exponent and Area 

Exponent) were presumed independent of the shear rate and fixed as the first step of 

the procedure. For the other two parameters (Kr Nucleation and Kr Growth) 1000 

parameter values were randomly chosen using the Metropolis Hastings algorithm 

within previously defined parameter ranges. Each parameter set was named θij, 

corresponding the subscript i to the group with the known and previously fixed 

exponents and the subscript j to the randomly chosen kinetic constants. 

For the parameter set θij, a simulation of each simulation case study was performed. 

The outputs of these simulations (SIMi,j) were compared with the corresponding 

experimental data of each shear rate (Lγ,Mγ and Hγ). From this comparison, a 

M(θij)zγvalue was assigned to each parameter set for each shear rate (being the 

subscript zγ =  Lγ,Mγ or Hγ, depending the case). Consequently, three different 

distributions of the posterior density function (one distribution for each shear rate) 

were obtained. The goodness of fit of the 1000 simulations from each i group was 

evaluated with the Total M(θi), understanding Total M(θi) as the sum of the M(θij)zγ 

obtained for the best parameter set for each shear rate and θi the parameter group 

formed by the exponents of the i group (nB,i, nG,i, αi) and the three pair of  kinetic 

constants (KB,i,zγ and KG,i,zγ) that best represented the experimental data for each 

shear rate.  

After the 1000 simulations were done and the posterior distributions calculated, new 

values of the exponents were selected manually and again 1000 randomly selected 

kinetic constant values were picked. The procedure was repeated until the value of 

Total M(θi), could not substantially decrease. This procedure was repeated for 21 

different exponent value combinations, having in total 21,000 simulations of each 

case study. 
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Figure 5.1: General calibration procedure. 
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5.4 RESULTS AND DISCUSSION 

This section is divided into three subsections. In the first subsection, the results of 

the analysis of the effect of the shear rate in the parameters are provided. In the 

second a relationship between the shear rate and the kinetic rates is proposed. In the 

third, the experimental results and the results of the simulated case studies are 

compared. 

5.4.1. Effect of the shear rate in the kinetic constants 

Calibration results from the simulation group with exponent values: Nucleation 

Exponent = 13, Growth Exponent = 2 and Area Exponent = 1.8 were used to analyse 

the effect of the shear rate in the kinetic constants. The parameter group (KB,i,Lγ, 

KB,i,Mγ, KB,i,Hγ, nB,i,  KG,i,Lγ, KG,i,Mγ, KG,i,Hγ, nG,i, αi) calibrated from this group was 

the one that could overall best describe the experimental data. Best results of the 

kinetic constants for each shear rate for each group and the calculated Total M(θi) 

for each group are reported in Table C.2 in Appendix C. 

Figure 5.2 includes the posterior density distribution for the Kr Nucleation parameter 

in the selected simulation group for each of the analysed shear rates. Figure 5.2 (a, c, 

e) shows the value of the posterior density for each sampled Kr Nucleation value, 

while Figure 5.2 (b, d, f) is a histogram where parameter range has been partitioned 

in 15 bins and the value of the posterior density for the points within each bin has 

been added. As it is observed, the Kr Nucleation parameter is identifiable for every 

shear rate condition. In addition, the mode of the Kr Nucleation parameter is different 

for each shear rate. Therefore, the effect of the shear rate in the Kr Nucleation 

parameter should be decoupled for a more detailed description of the mechanism. 

Moreover, the posterior density distribution showed a well-defined peak for every 

shear rate, which meant that the selected parameter range was adequate for the study. 

The smallest and the biggest values of the Kr Nucleation are related with a too slow 

or a too fast nucleation rate, respectively. Both possibilities led to a bad 

representation of the experimental data, according to the obtained results. 
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Figure 5.2: Posterior density distribution for the Kr Nucleation for each shear rate. 

Posterior density values for 200 rpm (a), Histogram of the posterior density for 200 rpm 

(b), Posterior density values for 300 rpm (c) Histogram of the posterior density for 300 

rpm (d), Posterior density values for 400 rpm (e), Histogram of the posterior density for 

200 rpm (b). 
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Analogously to the previously analysed 1000-simulation group, calibration results 

from each of the other 1000-simulation group (included in Table C.2) showed that 

the values of the Kr Nucleation that best represented the experimental data obtained 

with each shear rate increased with the shear rate. In addition, these best Kr 

Nucleation values were clearly influenced by the pre-selected Nucleation Exponent 

value (see Figure 5.3). Even if the effect of both parameters on the simulation output 

is not the same, the best values of the Kr Nucleation were smaller as the Nucleation 

Exponent increased. Therefore, there was a compensation effect between both 

parameters for the type and amount of data used.  

 

 
Figure 5.3: Best Kr Nucleation Values vs. Nucleation Exponent. 

Observing Figure 5.3 is of special interest, since it likely explains why values of the 

parameters describing the nucleation mechanism differ in the literature of 

precipitation modelling of struvite (Burns et al., 2021; Galbraith et al., 2014; 

Hanhoun et al., 2013; Triger et al., 2012). On one hand, the effect of compensation 

is clear as the best Kr Nucleation is clearly influenced by the pre-selected value of 

the Nucleation Exponent. On the other hand, the best value of the Kr Nucleation 

increases with an increasing shear rate. Therefore, both, compensation and ignoring 

mixing effects could be the reasons for the shifting parameter values of the 

contributions found in the literature.  
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Regarding growth mechanism, Figure 5.4 (a, c, e) shows the value of the posterior 

density for each sampled Kr Growth value in the same 1000-simulation group, while 

Figure 5.4 (b, d, f) is a histogram where parameter range has been partitioned in 15 

bins, as done in Figure 5.2. 
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Figure 5.4: Posterior density distribution for the Kr Growth for each shear rate. 

Posterior density values for 200 rpm (a), Histogram of the posterior density for 200 rpm 

(b), Posterior density values for 300 rpm (c) Histogram of the posterior density for 300 

rpm (d), Posterior density values for 400 rpm (e), Histogram of the posterior density for 

200 rpm (b). 
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The trend is similar to the one observed for the Kr Nucleation. Again, distributions 

with distinctive peaks were obtained and the mode is significantly different for each 

shear rate, which means that the Kr Growth depends on the shear rate and its effect 

should also be decoupled. 

Figure 5.5 shows best Kr Growth values for each shear rate in each 1000-simulation 

group against their corresponding value of the Growth Exponent. As it happened for 

the nucleation mechanism, the best values of the Kr Growth were bigger as the shear 

rate increased within the same 1000 simulation run. 

Regarding parameter identifiability, lower Kr Growth values were obtained for an 

increasing Growth Exponent. In addition, Kr Growth best values were also lower for 

an increasing value of the Area Exponent, showing that in this case the correlation 

was more complex than for the nucleation mechanism, as it involved the interaction 

of three parameters. Therefore, even if the role of these three parameters in the 

equations describing growth mechanism was different (see section 5.3.1), as the Kr 

Growth value calibrated was not unique, it could be concluded that correlation 

existed among the parameters describing growth mechanism.  

 

 
Figure 5.5: Best Kr Growth Values vs. Growth Exponent. 
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5.4.2. New proposed kinetic laws 

Table 5.4 includes the mode of the Kr Nucleation and Kr Growth for each shear rate 

and the pre-selected exponent values. From the mode of the parameter values, a 

relationship between the kinetic constants and the shear rate is proposed (see Figure 

5.6 and 5.7) for the re-definition of the kinetic rates.  

Table 5.4: Mode of the kinetic constants for each stirring speed and shear rate. 

Stirring speed 

(rpm) 

Shear rate 

(s-1) 

Kr Nucleation 

(nuclei/(m3·day)) 

Kr Growth 

(mmα/day) 

200 150 7.17E+06 1.87 

300 276 1.49E+07 2.16 

400 425 2.80E+07 2.50 

These relationships are power functions with the shape: 

KB = KB
′  · γnBS 5.11 

 

KG = KG
′ · γnGS 5.12 

Where KB
′ (

nuclei

m3·day
· snBS) is the new kinetic constant independent of the average 

shear rate for homogeneous nucleation, nBS (-) is the exponent of the shear rate 

dependence for homogeneous nucleation mechanism, KG
′  (

mmα

day
· snGS) is the new 

kinetic constant independent of the average shear rate for growth and nGS (-) is the 

exponent of the shear rate dependence for growth mechanism. 

Therefore, the proposed nucleation and growth rate expressions are written as 

follows. 

∂X1
∂t
|
N
= KB

′ · γnBS ∙ SInB · V · mesf1 5.13 

 

∂Xi
∂t
|
Gi→i+1

= KG
′ · γnGS · SInG ·

Xi

(Li + Li+1)
2

 α  
5.14 
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From the relationships included in the Figure 5.6 and 5.7, the values of the parameters 

were obtained and the effect of the shear rate decoupled from the KB and KG: 

KB = 10415 · γ1.3004 5.15 

 

KG = 0.4578· γ0.2791 5.16 

For the mixing conditions studied, the value of each calibrated Kr Nucleation and Kr 

Growth increased with the shear rate value (see Table 5.4). The proposed 

relationships accounted this effect. Power functions were chosen because they 

represented well the relationship between the shear rate and the Kr Nucleation and 

Kr Growth, quantified as a high value of R2. In addition, power functions were 

considered a good option due to the stability they offer when included in 

mathematical models and because they allow quantitative comparisons of the effect 

of the shear rate on each mechanism. In this sense, the exponents of the power 

functions were approximately 1.3 for primary homogeneous nucleation mechanism 

and 0.3 for growth. Therefore, according to the analysis procedure followed, the 

effect of the shear rate in the nucleation mechanism was greater than in growth. This 

higher effect of the shear rate on the nucleation mechanism than in growth agrees 

well with previous literature findings (Tribout et al., 1996; Wolkowicz, 1978).  

However, the proposed relationships should be considered only a starting point in the 

evaluation of the shear rate in the modelling of kinetics of the nucleation and growth 

mechanisms for struvite, as other mathematical functions could also relate the shear 

rate and the kinetic constants for the available data. In addition, due to the correlation 

between the parameters describing the same mechanism, parameter values from the 

proposed relationships should not be separately used to express nucleation or growth 

kinetics. Also, other effects accounted in the literature, such as the possible negative 

effect of attrition in the nucleation for high mixing intensities (Mullin and Raven, 

1962), are not taken into account in the proposed power functions. Therefore, their 

use out of the limits of the operational values for which they have been calibrated is 

not recommended.  

In order to have results that are more conclusive and to avoid possible compensation 

effects, it is wise to calibrate the model using data from different experimental 

configurations and with more case studies. However, changing the experimental 
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configuration would undoubtedly affect the shear rate average value and spatial 

distribution in the reactor, further complicating to obtain representative data.  

 
Figure 5.6: Relationship between the best points of the Kr Nucleation (see Table 5.4) 

and decoupling of the constant with the shear rate. 

 
Figure 5.7: Relationship between the best points of the Kr Growth (see Table 5.4) and 

decoupling of the constant with the shear rate. 
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The main advance of substituting the original kinetic constants by these new 

relationships is the decoupling of the shear rate in each kinetic rate. This 

transformation helps to simulate the effect of experimentally changing the local 

mixing intensity, due to a varying stirrer speed. 

This is a step forward in modelling precipitation process as this effect is very often 

ignored. Furthermore, the methodology followed could help to describe more in 

detail other unit processes based on mass transfer phenomena and improve existing 

IWA modelling libraries by decoupling the shear rate in their kinetic constants. In 

addition, explicitly including the shear rate effects in the kinetics could be useful for 

scaling-up of processes, if methodologies to create compartmental models are further 

developed. Compartmental models are a promising solution to simulate in a 

simplified way the SI and solid distribution in precipitation reactors (Liiri et al., 

2010). Using CFD to create the compartmental models where the calibrated PBM 

would be implemented would help to have more realistic simulation results, as both 

the effect of macro and micro scale mixing would be included. For this issue, it is 

necessary to have a model where the information of the behaviour of the PSD under 

different mixing and SI regimes is included, as the one proposed in this chapter. 

5.4.3. Comparison between the experimental and simulation results 

Experimental results showed that for the same initial SI, a higher shear rate, as a 

consequence of a higher stirring speed, led to a faster pH decay and to smaller particle 

sizes. Here, these experimental results are compared with the outputs of simulations 

performed with the parameter values from Table 5.4. The agreement between the 

experimental data was good and justified the need of improving the original PBM 

with the Area Exponent and the shear rate dependency. 

5.4.3.1. Low Saturation 

The comparison between the experimental results and the simulations for the Low SI 

is included in Figure 5.8. These results show that the pH decay has been well 

addressed, especially in the 400 rpm experiment. The experimental samples of the 

PSD for the calibration were taken at minutes 20 and 60. As it can be observed in the 

pH evolution charts in Figure 5.8, at 20 minutes the experiments almost had reached 

the equilibrium, i.e. a constant pH value. Therefore, little change could be observed 

in the experimentally measured PSD. This effect was also addressed in the model, 
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where the simulated PSD were very similar at times 20 and 60 minutes in the three 

cases. 
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Figure 5.8: Comparison between experimental results and simulations for the PSD of 

Experiment LSI- Lγ (A), the pH evolution of Experiment LSI- Lγ (B), PSD of 

Experiment LSI- Mγ (C), the pH evolution of Experiment LSI- Mγ (D), PSD of 

Experiment LSI- Hγ (E) and the pH evolution of Experiment LSI- Hγ (F). 
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5.4.3.2. Medium Saturation 

Figure 5.9 shows the comparison between the experimental results and the 

simulations for the Medium SI. Results of the pH decay show a very good agreement 

between the experimental and simulation results. The PSD were measured at 90 

seconds and 50 minutes in order to have values at non-equilibrium and equilibrium 

conditions. Results from the simulations show how the PSD increased from the first 

sampling time to the second, as it happened in the experiment. However, the model 

underpredicts the final PSD, especially in the 400 rpm case.  

5.4.3.3. High Saturation 

Results from the experiments performed at High SI and the corresponding simulation 

results are included in Figure 5.10. These experiment showed a very sharp pH decay, 

associated with a fast precipitation. This fast precipitation is confirmed by the little 

change observed at the PSD measurements at times 45 seconds (non-equilibrium) 

and 20 minutes (equilibrium). The model was able to predict reasonably well the fast 

pH decay and the non-equilibrium and equilibrium PSD for all the shear rates. 
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Figure 5.9: Comparison between experimental results and simulations for the PSD of 

Experiment MSI- Lγ (A), the pH evolution of Experiment MSI- Lγ (B), PSD of 

Experiment MSI- Mγ (C), the pH evolution of Experiment MSI- Mγ (D), PSD of 

Experiment MSI- Hγ (E) and the pH evolution of Experiment MSI- Hγ (F). 
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Figure 5.10: Comparison between experimental results and simulations for the PSD of 

Experiment HSI- Lγ (A), the pH evolution of Experiment HSI- Lγ (B), PSD of 

Experiment HSI- Mγ (C), the pH evolution of Experiment HSI- Mγ (D), PSD of 

Experiment HSI- Hγ (E) and the pH evolution of Experiment HSI- Hγ (F). 
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5.5 SUMMARY 

The effect of mixing in the modelling of processes based on mass transfer phenomena 

is commonly ignored in wastewater treatment modelling. For the specific case of 

precipitation, the experimental evidence gathered in Chapter 4 and results from the 

literature showed that the shear rate affected the process. Including the shear rate in 

the kinetics of the mechanisms described in the model is a way to consider the effect 

of micromixing. However, micromixing effect is rarely included in the modelling of 

nucleation and growth of crystals. This should be changed if a more detailed 

description of the process is required, as it happens when design and optimization of 

the technologies is pursued. From the results obtained in this chapter it can be 

concluded that: 

1) The comparative analysis performed between the experimental data and the 

simulation outputs showed that the effect of the shear rate is identifiable in 

nucleation and growth processes. Therefore, the decoupling of the shear rate 

from the kinetic constants is recommended. 

2) From the considered data, the new expressions proposed for the nucleation 

and growth mechanisms of the mass-based discretized PBM applied to 

struvite precipitation are power law functions including the shear rate to an 

exponent. This transformation in the kinetics helped to reproduce in the 

simulations the effect that changing the stirrer speed had in the experimental 

results: a faster pH decay and a smaller PSD for an increasing stirring speed. 

Explicitly including the shear rate as a process variable is a step forward in the 

modelling of WRRF unit processes and opens a way to improve existing IWA 

modelling libraries, develop methodologies to create compartmental models and 

improve scaling-up of such processes. 
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 6   

CONCLUSIONS AND FUTURE 

RESEARCH LINES  

6.1 CONCLUSIONS 

The main outcome of the thesis is a mathematical model capable to describe in detail 

mechanisms occurring in a precipitation process of struvite for its recovery. This 

model is a mass-based PBM where hydrodynamic effects have been considered. The 

model, which has been calibrated for different SI and mixing intensities, showed a 

good agreement between the experimental data and simulated results. In addition, the 

research done in the thesis has allowed to reach the next main conclusions: 

 A mass-based PBM including main struvite precipitation mechanisms 

(nucleation, growth and aggregation) was designed, constructed and 

successfully implemented in WEST-DHI simulation platform.  

o The mass-based model was designed according to Ceit’s PWM 

methodology, guaranteeing mass and charge balance. This is an 

improvement to the previously existing contributions as the integration 

of the PBM in a simulation of a WRRF with other unit processes will 

now be systematic and straightforward. 

o An evaluation of the theoretical parameter identifiability was done. 

Results from this analysis showed that all the parameters describing 

the considered mechanisms had some weight in the outputs and that 

there are large zones of the parameter values where the theoretical 

identifiability was possible. Therefore, the structure of the model was 

considered valid. 
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 The effect that the initial SI (related with the concentration of the species 

participating in struvite precipitation and the initial pH) and the mixing 

intensity (related to the shear rate) have in struvite precipitation was 

experimentally analysed in two different experimental set-ups. 

o Higher shear rates favoured primary homogeneous nucleation, 

measured through reduced induction times and greater particle number 

densities. This phenomena led to more rapid precipitation and reduced 

population mean particle size. Higher SI favoured nucleation and 

growth mechanism and was related to a faster precipitation process 

and a greater particle density.  

o As the SI and the local mixing intensity played a role in struvite 

nucleation and growth mechanisms, their effect should be included in 

the kinetics of the process when the PSD is of importance. The data 

collected in the experimental campaigns was considered relevant and 

valid for calibration purposes. 

 The effect of local mixing intensity, quantified as the shear rate was included 

in the kinetics defining the mechanisms of the mass-based PBM. 

o A methodology based on Bayesian Monte Carlo techniques was used 

to assess the effect of the shear rate in the primary homogeneous 

nucleation and growth mechanisms, based on experimental data and 

simulation outputs. According to the obtained results, the effect of the 

shear rate in both mechanisms was identifiable.  

o As a consequence of the identified effect of the shear rate, new kinetic 

laws for the PBM where the shear rate effect is explicitly included 

were proposed. Including the shear rate in the kinetics of the model is 

a way to consider the effect of mixing at local scale. This 

transformation in the kinetics helped to reproduce in the simulations 

the effect that changing the stirrer speed had in the experimental 

results: a faster pH decay and a smaller PSD for an increasing stirring 

speed. 
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6.2 FUTURE RESEARCH LINES 

The calibrated model is capable to successfully reproduce the precipitation in a 

stirred tank under different average shear rate and the SI conditions. However, for its 

generalized use, the effect of the mixing at the macro scale should also be considered. 

Especially because struvite precipitation is often performed in fluidised bed reactors, 

which distinguish operating zones depending on a decreasing upflow velocity. The 

decreasing upflow velocity classifies particles by its size. 

For a general application of the calibrated PBM for design and optimization 

purposes, it would be interesting to follow the research done in this thesis by: 

 Developing a methodology where the CFD and PBM model outputs are 

combined. CFD could be used to simulate the hydrodynamics in the reactor 

and under the assumption that the precipitation does not interfere in the 

hydrodynamics, obtain compartments based on different chemical, shear 

rate and solid distribution conditions. Therefore, CFD could be used as a 

way to ‘measure’ the shear rate in any reactor type and as a data source for 

the compartmental modelling. The mass-based PBM could be afterwards 

implemented in each of the compartments, for a much more detailed 

simulation of the precipitation process. 

 Perform more experiments to explore different experimental conditions in 

order to increase the trustworthiness of the parameter values and the 

proposed kinetic relationships with the shear rates. 
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A   

TABLEAU METHOD 

The Tableau method is used to represent chemical equilibrium relationships. In this 

method mass balances and equilibrium relationships are systematically represented 

using a matrix structure, as explained in Lizarralde (2015).  

The chemical system is represented using a set of components and a set of species. 

Species are every chemical entities to be considered. Each species can be written as 

the product of a reaction only involving components, while components cannot be 

written as the product of a reaction involving other components. 

The cells in the matrix are written in order to express the species present in the system 

as lineal combinations of the components. The definition of mass balances is done as 

the sum of all species written as lineal combination of the component in each column. 

The equilibrium relationships are defined as products in each line of the matrix. 

The Tableau method will be applied to a simple example with the next four acid-base 

chemical reactors. 

 H2O  H+ + OH- 

 NH4
+  H+ + NH3 

 H2PO4
-  H+ + HPO4

= 
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 HPO4
=  H+ + PO4

3- 

The first step of the Tableau method is the definition of the components and species 

from the chemical system. This is done in Table A.1. 

Table A.1: Components and species from the example 

Components Species 

H2O H2O OH- 

H+ H+ NH3 

NH4
+ NH4

+ HPO4
2- 

H2PO4
- H2PO4

- PO4
3- 

The second step of the Tableau method is the construction of the Tableau matrix (see 

Table A.2). 

Table A.2: Tableau Matrix. 

Species 
Components 

H2O H+ NH4
+ H2PO4

- Log K 

H2O 1     

H+  1    

NH4
+   1   

H2PO4
-    1  

OH- 1 -1   -13.997 

NH3  -1 1  9.244 

HPO4
2-  -1  1 7.198 

PO4
3-  -2  1 19.573 

The third step of the Tableau method is to define the mass action law for each defined 

species. This is done in Table A.3. 
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Table A.3: Mass action equation for each species. 

Species  

H2O [H2O] = [H2O] 

H+ [H+] = [H+] 

NH4
+ [NH4

+] = [NH4
+] 

H2PO4
- [H2PO4

−] = [H2PO4
−] 

OH- [OH−] = [H2O] · [H
+]−1 · 10−13.997 

NH3 [NH3] = [NH4
+] · [H+]−1 · 109.244 

HPO4
2- [HPO4

2−] = [H2PO4
−]·[H+]−1 · 107.198 

PO4
3- [PO4

3−] = [H2PO4
−]·[H+]−2 · 1019.573 

The fourth step is to write the mass balance equations for each component: 

Yj =∑aij · Ci − Tj
𝑖

 

where, Yj is the difference between the calculated total dissolved concentration of the 

jth component and the known analytical total dissolved concentration of component 

j, aij is the stoichiometric coefficient of component j in species i, Ci is the 

concentration of the ith species and Tj is the concentration of the jth component. 

Table A.4: Mass balance equation for each component. 

Components  

H2O 
Mass balance is neglected on H2O because it is 

presumed to be present in constant activity 

H+ YH+ = (CH+ − COH− − CNH3 − CHPO4− − CPO42−) − TH
+  

NH4
+ YNH4+ = CNH4+ + CNH3 − TNH4+

 

H2PO4
- YH2PO4

− = CH2PO4
− + CPO42− + CPO43− − TH2PO4

−
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From the combination of the equilibrium relationships (Table A.3) and mass balance 

equations (Table A.4) a set of three equations with three unknown values needs to be 

solved. The mathematical solution reached will give the value of 0 to YH+, YNH4+ and 

YH2PO4− or, more practically a value smaller than some acceptable convergence error. 
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B 
 

  

SUPPLEMENTARY 

EXPERIMENTAL DATA 

This appendix includes the supplementary data obtained in the experiments 

performed for the completion of Chapter 4. 

B.1. SUPPLEMENTARY DATA FOR EXPERIMENT A 

In Figures B.1-B.12 the average pH evolution, the average + standard deviation 

(stdev) pH evolution and the average – stdev pH evolution of the runs of Blocks A1 

and A2 from Experiment A are shown. 
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Figure B.1: Average pH evolution, Average + stdev pH evolution and Average – stdev 

pH evolution for A1-300 rpm 

 

 

Figure B.2: Average pH evolution, Average + stdev pH evolution and Average – stdev 

pH evolution for A1-400 rpm 
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Figure B.3: Average pH evolution, Average + stdev pH evolution and Average – stdev 

pH evolution for A1-500 rpm 

 

 

Figure B.4: Average pH evolution, Average + stdev pH evolution and Average – stdev 

pH evolution for A1-600 rpm 
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Figure B.5: Average pH evolution, Average + stdev pH evolution and Average – stdev 

pH evolution for A1-700 rpm 

 

 

Figure B.6: Average pH evolution, Average + stdev pH evolution and Average – stdev 

pH evolution for A1-800 rpm 
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Figure B.7: Average pH evolution, Average + stdev pH evolution and Average – stdev 

pH evolution for A2-300 rpm 

 

 

Figure B.8: Average pH evolution, Average + stdev pH evolution and Average – stdev 

pH evolution for A2-400 rpm 
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Figure B.9: Average pH evolution, Average + stdev pH evolution and Average – stdev 

pH evolution for A2-500 rpm 

 

 

Figure B.10: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A2-600 rpm 
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Figure B.11: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A2-700 rpm 

 

 

Figure B.12: Average pH evolution, Average + stdev pH evolution and Average – 

stdev pH evolution for A2-800 rpm 
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B.2. SUPPLEMENTARY DATA FOR EXPERIMENT B – 

PSD QUALITY ANALYSIS 

In order to relate the change in the PSD with the effect of local mixing and the SI and 

not to another possible physico-chemical effect, a number of preliminary issues were 

considered for the PSD measurements in Experiment B: 

1. Repeatability of the measurements. 

2. Particle settling at the bottom of the reactor. 

3. Homogeneity of the particle distribution within the reactor. 

4. Particle behavior under SI = 0 condition. 

Experimental runs performed for this analysis are included in Table 4.1 (in Chapter 

4) as Block MQ (Measurements Quality) and the results are given here. 

B.2.1. Repeatability of the measurements 

An experiment was executed three times to determine the repeatability of the 

measurements in Experiment B (runs 1-3). For these experiments, the space between 

the bottom of the reactor and the stirrer was 2.5 cm and the stirrer speed 90 rpm. 

Molar ratio was 1:1.5:2 in P:Mg:N and initial pH 8.00. Initial concentration of P was 

0.03 M. Tracked variables were the pH evolution and PSD at two different times of 

the experiment (1 minute and 20 minutes).  

Table B.1: PSD repeatability for runs 1-3 

 

Repeatability test run 1-3 

Run 1 Run 2 Run 3 1 min 20 min 

1 

min 

20 

min 

1 

min 

20 

min 

1 

min 

20 

min 

Avg 

1 

min 

Stdev 

1 

min 

Avg 

20 

min 

Stdev 

20 

min D10 (µm) 33.50 56.31 32.82 58.49 32.97 72.84 33.10 0.29 62.55 7.33 

D50 (µm) 45.70 111.15 44.59 108.20 45.27 117.90 45.19 0.46 112.42 4.06 

D90 (µm) 63.58 149.86 64.64 147.02 57.52 158.90 61.91 3.14 151.93 5.07 
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Figure B.13: pH evolution for runs 1-3 in MQ block 

B.2.2. Particle settling at the bottom of the reactor 

The stirrer speeds were selected in order to:  

1. Maintain suspension of precipitant solids. 

2. Avoid vortex formation. 

Accordingly, stirrer speeds between 200 and 400 rpm were chosen. 

The minimum speed to prevent settling, Njs (rpm), was chosen based on the 

Zwietering’s equation (eq B.1):  

Njs = S(
g(ρs − ρL)

ρL
)
0.45 X0.13dp

0.2ν0.1

D0.85
 B.1 

Where S (-) is a constant, g is the gravitational constant (m/s2), ρs is the solid density 

(kg/m3), X is the solids loading mass (100·mass of solid/mass of liquid), dpis particle 

diameter (m) and ν is the kinematic viscosity (m2/s). Runs 4-6 were used to measure 

particle concentration in the system under stirrer speeds lower than 200 rpm and 

experimentally observe possible settling effects in the system. 

Particle settling could also have occurred in the measuring vessel of the Multisizer 4 

Coulter Counter. To avoid potential settling, batch experiments were carried out in 

close proximity to the measuring device. In addition, the suspension formed by the 
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sample and the electrolyte solution was stirred for 15 seconds in the Multisizer 4 

Coulter Counter before measurements were taken. 

Table B.2: Results for the Zwietering’s equation used for the particle settling analysis. 

 Njs (rpm) 

Mass (g) dp = 100 (µm) dp = 300 (µm) dp = 600 (µm) 

1 83 104 119 

2.5 94 117 134 

10 112 140 161 

 

 

 

Figure B.14: Solid concentration measurement for different the same concentration of 

reactants and different stirrer speeds in experimental runs in MQ and B-LSI block. 

 

B.2.3. Homogeneity in the reactor 
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were done to ensure that the PSD and particle concentration were therefore uniform 

in the reactor. Samples were taken after equilibrium was achieved, after the 

precipitation took place in the reactor and added to a Schott Bottle previously filled 

with 100 ml of struvite-saturated electrolyte before measuring. 

Table B.3: Homogeneity in the Reactor in PSD and particle number. 

Run and Stirrer 

Speed (rpm) 

Sampling 

Point 

d10 

(µm) 

d50 

(µm) 

d90 

(µm) 

Particle 

Count 

Run 9 

(200 rpm) 

Upper 42.81 76.98 157.22 939 

Lower 40.03 78.47 158.52 1109 

Middle 40.85 71.65 152.41 1116 

Average 41.23 75.7 156.05 1054 

Stdev 2.84 4.35 3.68 105 

Run 11 

(300 rpm) 

Upper 42.31 72.78 124.32 1839 

Lower 41.25 77.51 135.64 1492 

Middle 40.43 71.9 128.76 2382 

Average 41.33 74.06 129.57 1808 

Stdev 1.82 4.25 8.02 582 

Run 13 

(400 rpm) 

Upper 37.71 63.09 108.56 2236 

Lower 38.16 65.59 108.72 2704 

Middle 40.02 67.85 112.45 2077 

Average 38.63 65.51 109.91 2339 

Stdev 1.12 2.18 3.08 419 

B.2.4. Particle behaviour under SI = 0 condition 

Possible changes in the PSD in the equilibrium (as indicated by the solution pH)  

were also considered. Aggregation and/or breakage could change the PSD once SI 

was zero (i.e. equilibrium), decoupling PSD evolution from the SI variation, 

measured as a pH change.  

To ensure that all the changes in the PSD were related only to changes in the 

evolution of the SI in the reactor, 2 experiments were performed (runs 7-8 in Block 

MQ). Both experiments had a SI=0, which was obtained by letting 750 ml of a seeded 

dissolution of 0.012 M P and 1:1.5:2 in P:Mg:N react until a stable pH was obtained. 

The quantities of seed added and the rpm in the experiments were 2 g and 300 rpm 
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for run 7, and 15.18 g and 250 rpm for run 8. PSD was periodically measured in these 

experiments. 

Table B.4: PSD monitoring in saturated solution to evaluate the impact of 

agglomeration and/or breakage. 

 time d10 (µm) d50 (µm) d90 (µm) 

Run 7 

20 min 42.21 91.65 145 

45 min 41.6 88.25 143.8 

2h 45.44 94.07 144.72 

5 h 42.75 91.31 144.88 

Avg 43 91.32 144.6 

Stdev 1.46 2.07 0.47 

Run 8 

3 min 51.9 110.1 158.85 

15 min 53.22 118.9 174.1 

30 min 48.49 110 170.28 

60 min 52.18 114.8 165.7 

120 min 52.52 113.75 165.4 

240 min 51.44 111.2 164 

Avg 51.63 113.13 166.39 

Stdev 1.5 3.14 4.81 
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C   

SUPPLEMENTARY DATA FOR 

CHAPTER 5 

In this appendix, extra information of the simulations performed in the Chapter 5 and 

the results obtained is included. Table C.1 includes the minimum and maximum 

values of the Kr Nucleation and Kr Growth in each of the 1000-simulation group. 

Table C.2 includes the best values of the Kr Nucleation and Kr Growth for each group 

and shear rate, the M value obtained for each parameter pair and the Total M for each 

1000-simulation group. 
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Table C.1: Selected parameter ranges for Kr Nucleation and Kr Growth 

Simulation 
Growth 

Exponent 

Area 

Exponent 

Nucleation 

Exponent 

Kr Nucleation Kr Growth 

Min Max Min Max 

1 2 1.6 10 1·106 5·108 1 15 

2 2 1.6 11 1·106 5·108 1 15 

3 2 1.6 12 1·106 5·108 1 15 

4 1.8 1.6 10 1·106 5·108 1 15 

5 1.8 1.6 11 1·106 5·108 1 15 

6 1.8 1.6 12 1·106 5·108 1 15 

7 1.8 1.8 10 1·106 5·108 1 15 

8 1.8 1.8 11 1·106 5·108 1 15 

9 1.8 1.8 12 1·106 5·108 1 15 

10 2 1.8 10 1·106 5·108 1 15 

11 2 1.8 11 1·106 5·108 1 15 

12 2 1.8 12 1·106 5·108 1 15 

13 2 2 10 1·106 5·108 1 15 

14 2 2 11 1·106 5·108 1 15 

15 2 2 12 1·106 5·108 1 15 

16 2 1.8 13 5·105 9·107 0.5 5 

17 2 1.8 14 5·105 9·107 0.5 5 

18 2 1.8 15 5·105 9·107 0.5 5 

19 1.9 1.8 13 5·105 9·107 0.5 5 

20 2.1 1.8 13 5·105 9·107 0.5 5 

21 2.2 1.8 13 5·105 9·107 0.5 5 
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Table C.2: Best values of Kr Nucleation (KB) and Kr Growth (KG) for each exponent 

group and the associated M values and Total M. 

    200 rpm 300 rpm 400 rpm  

Sim nG α nB KB KG M KB KG M KB KG M Total M 

1 2 1.6 10 1.35E+08 3.83 53.60 2.35E+08 4.25 34.39 4.10E+08 4.72 19.22 107.22 

2 2 1.6 11 4.74E+07 3.80 47.31 9.44E+07 4.36 31.96 1.59E+08 4.66 18.56 97.83 

3 2 1.6 12 2.35E+07 4.11 43.20 3.76E+07 4.35 30.47 7.51E+07 4.70 19.64 93.30 

4 1.8 1.6 10 1.18E+08 4.57 54.73 2.37E+08 5.24 36.41 3.74E+08 5.62 20.20 111.34 

5 1.8 1.6 11 4.40E+07 4.33 48.80 9.58E+07 4.96 33.97 1.53E+08 5.59 19.80 102.57 

6 1.8 1.6 12 2.02E+07 4.69 43.66 3.33E+07 4.31 34.38 5.93E+07 5.53 20.44 98.48 

7 1.8 1.8 10 1.22E+08 2.33 53.34 2.30E+08 2.53 34.12 3.78E+08 2.86 18.90 106.35 

8 1.8 1.8 11 5.62E+07 2.32 47.41 8.11E+07 2.31 32.21 1.68E+08 2.85 18.50 98.13 

9 1.8 1.8 12 2.40E+07 2.32 42.43 3.79E+07 2.62 29.83 7.37E+07 2.97 19.46 91.72 

10 2 1.8 10 1.19E+08 1.96 53.07 2.30E+08 2.15 33.05 3.80E+08 2.51 18.48 104.59 

11 2 1.8 11 5.85E+07 2.16 47.61 1.03E+08 2.13 30.56 1.59E+08 2.52 17.65 95.81 

12 2 1.8 12 2.27E+07 1.86 41.44 3.52E+07 2.12 28.45 6.56E+07 2.42 17.82 87.72 

13 2 2 10 1.30E+08 1.05 54.21 2.45E+08 1.19 33.20 4.05E+08 1.28 18.67 106.08 

14 2 2 11 4.22E+07 1.22 51.98 1.27E+08 1.13 32.15 1.72E+08 1.27 17.71 101.84 

15 2 2 12 2.01E+07 1.11 42.08 4.29E+07 1.13 28.08 7.20E+07 1.28 17.85 88.02 

16 2 1.8 13 7.17E+06 1.87 36.40 1.49E+07 2.16 27.55 2.80E+07 2.51 19.22 83.17 

17 2 1.8 14 3.39E+06 2.03 32.68 7.10E+06 2.33 28.77 1.06E+07 2.57 21.85 83.29 

18 2 1.8 15 1.39E+06 2.16 31.41 2.59E+06 2.33 29.65 4.32E+06 2.58 25.24 86.31 

19 1.9 1.8 13 7.41E+06 2.13 36.09 1.42E+07 2.35 28.14 2.53E+07 2.60 19.69 83.92 

20 2.1 1.8 13 7.84E+06 1.68 36.64 1.46E+07 1.98 27.25 2.80E+07 2.37 18.93 82.81 

21 2.2 1.8 13 8.19E+06 1.73 36.81 1.67E+07 1.80 27.27 2.93E+07 2.21 18.72 82.80 

 

 





 

 

169 

 

D   

PROJECTS GENERATED FROM 

THE THESIS  

 

The topic of the thesis has been (Birziphos) and is going to be (Magnyfos) further 

developed in two projects funded by regional and national authorities. 

 Magnyfos- Utilización de subproductos de magnesio para la 

recuperación del fósforo en estaciones depuradoras de aguas residuales 

mediante precipitación de estruvita 

The project aims to design, develop and validate in a real environment a 

technological solution that will allow to recover P from urban wastewater. 

This will be made by using industrial by-products with a high concentration 

in MgO as a Mg source in the process. The research will be done by 

combining experimental work at laboratory, pilot and real scale with 

mathematical simulation tools as the PWM, PBM and/or CFD. 

- Funding Organism: Proyectos de I+D+i «Retos-Colaboración» del 

Programa Estatal de Investigación, Desarrollo e Innovación Orientada a 

los Retos de la Sociedad, en el marco del Plan Estatal de Investigación 

Científica y Técnica y de Innovación 2017-2020 
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- Partners: Magnesitas Navarras S.L., NILSA, Universidad de Barcelona, 

Ceit 

- Period: 01/07/2020-31/12/2023 

 

 Birziphos - Recuperación de Fósforo a partir de Residuos Sólidos 

Urbanos: Avanzando hacia una Economía Circular 

The project aimed to experimentally validate a technological solution to 

recover P salts from anaerobic digestion leachate and to develop the use of 

modelling techniques to represent precipitation processes. Experimental 

work carried out in a fluidised bed reactor showed the feasibility of the 

process. Multiphase simulations in CFD were used as a support tool in the 

operation of the fluidised bed reactor. 

- Funding Organism: Diputación Foral de Gipuzkoa, Subvenciones para 

actuaciones en materia de prevención, reutilización y reciclaje de 

residuos domésticos. Economía circular (2018-PREV-000028-01) 

- Partners: Tecnun, Ceit 

- Period: 01/01/2018-31/10/2018 
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E   

PUBLICATIONS GENERATED 

FROM THE THESIS  

The scientific publications derived from the present thesis are listed below: 

INTERNATIONAL JOURNALS 

Published papers 

1. Elduayen-Echave B., Lizarralde I., Larraona G. S., Ayesa E., Grau P., 2019. A 

new mass-based discretized Population Balance Model for precipitation 

processes: application to struvite precipitation. Water Research, 155, 26-41.  

2. B. Elduayen-Echave, M. Azcona, P. Grau, P.A. Schneider, Effect of the shear 

rate and supersaturation on the nucleation and growth of struvite in batch stirred 

tank reactors, J. Water Process Eng. 38 (2020) 10. 

doi:10.1016/j.jwpe.2020.101657.  

Submitted papers 

1. Chapter 5 has been re-drafted from an article submitted to Water Research. 
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BOOK CHAPTERS 

1. B. Elduayen-Echave, A. Ochoa de Eribe, I. Lizarralde, G. Sánchez, P. Grau, 

Frontiers in Wastewater Treatment and Modelling, 1st ed., Springer International 

Publishing, Cham, 2017. doi:10.1007/978-3-319-58421-8. ISBN: 978-3-319-58420-

1. 

INTERNATIONAL CONFERENCE PROCEEDINGS 

Elduayen-Echave, B, Lizarralde, I., Schneider, P.A., Larraona, G. S. and Grau, 

P. 

Title: Calibration of a Population Balance Model including the Shear Rate 

as a variable in the Kinetics of the Process 

Conference: 10th IWA Symposium on System Analysis and Integrated 

Assessment, Watermatex 2019 

Date: 1-4 September, Copenhagen (Denmark) 

 

Lizarralde, I., Elduayen-Echave B., Larraona, G.S. and Grau, P.  

Title: Advanced Modelling Tools for the Description of Struvite Recovery 

Technologies 

Conference: The 16th IWA Leading Edge Conference on Water and Wastewater 

Technologies 

Date: 10-14 June 2019, Edinburgh (United Kingdom) 

 

Elduayen-Echave, B., Lizarralde, I., Schenider, P.A., Sánchez-Larraona, G. and 

Grau P. 

Title: Advanced modelling tools for the description of struvite recovery in 

WRRF 

Conference: WRRmod 2018.  

Date: 10-14 March 2018, Lac Beauport, Quebec (Canada) 
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Elduayen-Echave, B., Ochoa de Eribe, A., Lizarralde, I., Sánchez-Larraona, G., 

Ayesa, E. and Grau P. 

Title: Sensitivity Analysis and Calibration with Bayesian Inference of a 

Mass-based Discretized Population Balance Model for Struvite 

Precipitation 

Conference: Frontiers International Conference on Wastewater Treatment, 

FICWTM2017 Date: 21-24 May 2017, Palermo (Italy) Best Paper Award in 

Anaerobic digestion category. 
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