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SUMMARY
The adult newt brain has a marked neurogenic potential and is highly regenerative. Ventricular, radial glia-like ependymoglia cells give

rise to neurons both during normal homeostasis and after injury, but subpopulations among ependymoglia cells have not been defined.

We showhere that a substantial portionofGFAP+ ependymoglia cells in the proliferative hot spots of the telencephalonhas transit-ampli-

fying characteristics. In contrast, proliferating ependymoglia cells, which are scattered along the ventricular wall, have stem cell features

in terms of label retention and insensitivity to AraC treatment. Ablation of neurons remodels the proliferation dynamics and leads to de

novo formation of regions displaying features of neurogenic niches, such as the appearance of cells with transit-amplifying features and

proliferating neuroblasts. The results have implication both for our understanding of the evolutionary diversification of radial glia cells as

well as the processes regulating neurogenesis and regeneration in the adult vertebrate brain.
INTRODUCTION

Adult neurogenesis is a distinctive feature of the telenceph-

alon in the mammalian brain. Neurogenesis proceeds by

neural stem cells (NSCs), giving rise to transit-amplifying

cells, which subsequently differentiate into neuroblasts

and mature neurons (Bonaguidi et al., 2012; Malatesta

et al., 2000; Noctor et al., 2001; Seri et al., 2004). Despite

the presence of NSCs and the apparent constitutive neuro-

genesis in the subventricular zone of the lateral ventricles

and in the hippocampus, the ability of mammals to replace

neurons that are lost due to injury or during the course of

progressive neurodegenerative diseases are modest at best

(Arias-Carrión et al., 2007, 2009; Kernie and Parent, 2010).

In contrast to mammals, several nonmammalian verte-

brate species, such as teleost fishes and salamanders,

display a remarkable ability to regenerate brain tissue by

processes that involve extensive neurogenic events (for a

recent review, see Grandel and Brand, 2013). Studies over

the past years have substantially increased our understand-

ing of adult neurogenesis in these species (e.g., Chapouton

et al., 2007). Both nongenetic and genetic cell-tracking

studies revealed that cells with radial glia features act as

neuronal progenitors in fishes and salamanders. These cells

line the ventricular system, express GFAP, and have long

processes reaching to the pial surface (Berg et al., 2010;

Kroehne et al., 2011; Maden et al., 2013; Pérez-Cañellas

and Garcı́a-Verdugo, 1996). The zebrafish telencephalon

has been shown to have a distinctive heterogeneity among

ventricular cells, in terms of anatomical localization and

protein-expression profiles (Chapouton et al., 2010; Ganz

et al., 2010; März et al., 2010).
Stem
Neurogenic regions have been mapped and revealed an

uneven distribution of actively dividing cells with progen-

itor potential along the ventricular system in anamniotes

(Adolf et al., 2006; Berg et al., 2010; Kaslin et al., 2009).

Some of these studies indicated that a correlation between

the distribution of active neurogenic niches and regions

with neuroregenerative capacity exists (Zupanc and

Zupanc, 2006); however, the two are not necessarily linked

to each other. For example, studies in the aquatic salaman-

der Notophthalmus viridescens (red-spotted newt) showed

extensive regeneration following ablation of neurons in

regions that are essentially devoid of neurogenesis under

normal conditions (Berg et al., 2010; Parish et al., 2007).

Nevertheless, the newt telencephalon harbors several pro-

liferative hot spots, such as the lateral wall of the ventricle

adjacent to the dorsal pallium (Dp) and the lateral wall of

the ventricle adjacent to the bed nucleus of the stria termi-

nalis (Bst) (Berg et al., 2010). Hence, the telencephalon

is an ideal model for studying the cellular composition

and regulatory mechanisms of neuronal regeneration

in an environment, which is permissive for constitutive

neurogenesis.

Here, we started to address to what extent GFAP+

ventricular cells, denoted as ependymoglia cells (Parish

et al., 2007), within and outside of the constitutively

active niches are different from each other in the newt

telencephalon. We define two different types of ependy-

moglia cells, which display uneven distribution along

the ventricle. Unexpectedly, we find that the majority of

ependymoglia cells display stem cell features in terms of

label retention and insensitivity to treatment that elimi-

nates rapidly dividing cells. However, these cells are not
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restricted to the proliferation hot spots but are dispersed

along the ventricular wall and create de novo neurogenic

regions after ablation of neurons. The proliferation hot

spots on the other hand are largely composed of cells

with characteristics of transit-amplifying populations.

We also characterize dynamical changes in the cellular

composition of both hot spots and non-hot spots after

neuronal ablation and how Notch signaling relates to

these changes.
RESULTS

GFAP+ Ependymoglia Cells Form Neurospheres

Neurosphere formation is a hallmark of NSCs (Reynolds

and Weiss, 1992). We first tested whether the newt brain

harbors cells that can form neurospheres from different

parts of the brain.We observed that culturing cells inmedia

containing epidermal growth factor (EGF) and fibroblast

growth factor 2 (FGF-2) led to the formation of sphere-

like structures from both the telencephalon (Figures 1A

and 1B) and from dien- and mesencephalon (Figure S1

available online). Over 14 days, these spheres increased

in size and we frequently observed large numbers of

GFAP-expressing cells located in the core of the spheres

(Figure 1C). Double labeling with proliferating cell nuclear

antigen (PCNA) indicated that GFAP+ cells were prolifer-

ating (Figure 1D). Furthermore, after pulsing with the

nucleotide analog, 5-ethynyl-20-deoxyuridine (EdU), we

could find EdU/GFAP double-labeled cells in the center of

the spheres (Figure 1E). Upon changing to media without

growth factors and allowing the spheres to attach, we

found cells expressing the neuronal marker, Tuj1, and we

also observed the appearance of GFAP cells in the periphery

of the spheroid structures, along with cells migrating away

(Figures 1F–1H). These data indicated that GFAP+ cells have

stem cell properties.
Heterogeneity among GFAP+ Ependymoglia Cells

Wepreviously determined that proliferating ependymoglia

cells are predominantly found in hot spots, which were

previously defined by Berg et al. (2010) and are illustrated

in Figure 2A. However, heterogeneity among ependymo-

glia cells was not further studied. In order to test whether

we could define subpopulations among the seemingly

homogenous GFAP+ ependymoglia cells, we performed

immunohistochemical analyses using antibodies against

known glial markers in combination with prolifera-

tion markers. These efforts resulted in the distinction of

two subpopulations, which we subsequently denoted as

type-1 and type-2 cells, respectively.

First, we looked at Sox2 and GLASTexpressions, but both

of these proteins were ubiquitously expressed in ependy-
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moglia cells (Figures 2B, S2A, and S2B). Next, we deter-

mined the expression pattern of glutamine synthetase

(GS). We saw that GS staining clearly marked two distinct

populations of ependymoglia cells. One of the populations

expressed GS in addition to GFAP (type-1), whereas the

other population of cells did not express GS (type-2; Fig-

ure 2C). The GS� cells are found in clusters in hot spots

and make up 32% ± 4% of the ependymoglia cells in hot

spots (Figures 2C and S2C–S2E) and most (85% ± 2%)

of the proliferating ependymoglia cells in this region (Fig-

ure 2D). The remaining proliferating ependymoglia cells

(15% ± 2%) in hot spots are GS+ type-1 cells (Figure 2D).

In contrast, in non-hot spots, GS� cells make up 0.3% ±

0.2% of the ependymoglia cells, whereas most (90% ±

6%) of the proliferating ependymoglia cells in the non-

hot spots are GS+ (Figures S2C–S2E, 2E, and 2F). From these

data, we concluded that hot spots contain both prolifer-

ating type-1 and type-2 cells, whereas non-hot spots essen-

tially lack type-2 cells.

Given the documented role of Notch signaling in

the regulation of neural stem and progenitor cell fate, we

next determined the expression pattern of Notch1 receptor

among the ependymoglia subpopulations defined by GS

expression in hot spots and non-hot spots.We found active

Notch signaling occurring in Notch1+ ependymoglia cells

as assayed by electroporation of a reporter driven by the

12xCSL promoter (Hansson et al., 2006) and by in situ

hybridization (Figures S2F–S2H). The antibody recognized

a band of expected size in western blots (Figure S2I).

Consistently, the epitope region against which the anti-

body was raised is highly conserved across species (Figures

S2J and S2K). We found a marked unequal distribution

of Notch1 expression among the GFAP+ ependymoglia

cells in the hot spots (Figure 2G). Of GFAP+ cells, 77% ±

2% were Notch1+, whereas 23% ± 2% were Notch1� (Fig-

ure 2H). In addition, themajority of GFAP+ cells were either

Notch1+/GS+ or Notch1�/GS� (Figure 2H). This is consis-

tent with type-1 cells being GFAP+/GS+/Notch1+ and

type-2 cells being GFAP+/GS�/Notch1�.
We next analyzed the proliferation pattern among the

Notch1+ ependymoglia cells.We found that the vastmajor-

ity (94%±1%)ofproliferatingependymoglia cells in thehot

spots were devoid of Notch1 expression (Figures 2I and 2J),

whereasmost of the proliferating ependymoglia cells in the

non-hot spots were Notch1+ (Figures 2K and 2L). This is in

accordance with the observation that most proliferating

ependymoglia cells in the hot spots were devoid of GS

expression, whereas proliferating ependymoglia cells in

the non-hot spots expressed GS (Figures 2D and 2F).

In close proximity of the proliferation hot spots, we

found GFAP� cells away from the ventricle, which ex-

pressed the cell-adhesion molecule polysialylated neu-

ronal cell adhesion molecule (PSA-NCAM), a marker for
s



Figure 1. Neurosphere-Forming Cells in the Newt Brain
(A and B) Isolated cells from newt brain cultured in DMEM/F12, FGF-2, and EGF formed small spheres after 4 days (A). These spheres
increased in size over time (B).
(C) GFAP+ cells are found in the center of the 14-day-old neurospheres.
(D and E) Neurospheres cultured for 14 days in DMEM/F12, FGF-2, and EGF contain proliferating GFAP+ cells as indicated by PCNA labeling
(D, arrows) and incorporate EdU (E, arrows).
(F–H) Neurospheres plated in poly-D-lysine plates and cultured in differentiation medium for 14 days produce Tuj1+ cells with long
extensions (F and G). GFAP+ cells were also observed away from the neurosphere (F and H).
The scale bars represent 50 mm.
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immature neurons (Rousselot et al., 1995), and which were

proliferating as assayed by minichromosome maintenance

protein 2 (MCM2) expression (Figures 2M and 2N). On

average, we found 211 ± 44 MCM2+/ PSA-NCAM+ cells in

hot spots. In contrast, regions around the dispersed prolif-

erating type-1 cells were devoid of proliferating type-2 and

PSA-NCAM-expressing cells (data not shown). These obser-

vations further corroborated the view that the proliferation

hot spots are constitutively active neurogenic regions,
Stem
composed by type-1 and type-2 cells and by neuroblasts,

whereas the non-hot spots are essentially devoid of type-

2 cells and neuroblasts.

Type-1 Ependymoglia Cells Have Stem Cell Properties

The selective localization of type-2 cells to the proliferating

hot spots led us to hypothesize that type-2 cells have

stem cell properties. Unexpectedly, our data showed the

opposite, indicating that a majority of stem cells are
Cell Reports j Vol. 2 j 507–519 j April 8, 2014 j ª2014 The Authors 509



Figure 2. Immunohistochemical Characterization of Ventricular Ependymoglia Cells
(A) All ependymoglia cells are GFAP+; proliferation hot spots such as the dorsal pallium (Dp) and the bed nucleus of the stria terminalis
(Bst) are marked as well as the striatum (Str). The drawing of the newt brain indicates the plane of section. Lines with arrows demarcate the
borders of the hot spots. Arrows highlight even expression of GFAP in the hot spots.
(B) Sox2 and GFAP are expressed in all ependymoglia cells. Arrow highlights even expression of Sox2 in proliferating PCNA+ cells.

(legend continued on next page)
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type-1 cells. Long-term label retention in pulse-chase ex-

periments using nucleotide analogs is a distinctive feature

of stem cells. We pulsed animals for 3 days with the nucle-

otide analog bromodeoxyuridine (BrdU) and subsequently

chased the analog before sacrificing the animals at various

time points. Following a chase period of 3 days, we found

22% ± 3% of BrdU being in type-1 cells. This percentage

increased gradually and reached 63% ± 13% after 90 days

(Figures 3A–3C and S3A).The remaining BrdU label was

found in GFAP� nonventricular cells after 90 days (data

not shown). In addition, type-2 cells in hot spots showed

the opposite trend of label retention, with hardly any

BrdU found after 90 days (Figure 3B).

As an additional tool, we treated animals with AraC,

which kills proliferating cells. AraC treatment is an estab-

lished method to selectively eliminate transit-amplifying

cells, which divide more frequently than slowly dividing

stemcells (Doetsch et al., 1999). Terminal deoxynucleotidyl

transferase-mediated dUTP nick-end labelling (TUNEL)

staining shows that AraC causes the death of ventricular

GFAP+ cells (Figure S3B). In accordancewith the label-reten-

tion experiment, administration of AraC led to the elimina-

tionof type-2 cells, as assayedbyNotch1/GFAP/PCNAtriple

labeling (Figures 3D and 3F). Twelve hours after AraC injec-

tion, the number of type-2 cells was reduced by 86% ± 2%

and their number increased by 2.5-fold after a 14 days

recovery period following the AraC treatment (Figures 3E

and 3F). Consistently, the number of proliferating type-2

cells increased 3-fold during recovery (Figures 3E and 3G),

indicating the compensatory proliferative burst after

the elimination of the type-2 cells. In contrast, neither the

total number nor the number of proliferating type-1 cells

changed significantly after AraC treatment and during the

recovery period (Figures 3D–3H).
(C) GS/GFAP/MCM2 staining reveals type-1 and type-2 cells. Arrow poi
Arrowhead points to the surrounding nonproliferating GFAP+/GS+ (ty
(D) Quantification of ependymoglia cells in hot spots coexpressing G
type-2 cells (GFAP+/GS�). n = 5; p < 0.05.
(E) GS/GFAP/MCM2 expression in non-hot spot. Arrowhead points to
(F) Quantification of ependymoglia cells in non-hot spots coexpressing
type-1 cells (GFAP+/GS+). n = 5; p < 0.05.
(G) Notch1�, type-2 ependymoglia cells (arrow) surrounded by Notch
of GS and Notch1 immunoreactivity.
(H) Quantification of GFAP-, Notch1-, and GS-expressing ependymogli
type-1 (Notch1+/GS+). n = 4; p < 0.05.
(I) The majority of PCNA+ cells in hot spots are type-2 ependymoglia
(J) Quantification of ependymoglia cells in hot spot regions coex
ependymoglia cells are type-2 cells (GFAP+/Notch1�). n = 5; p < 0.05
(K and L) Few PCNA+ type-1 (GFAP+/Notch1+) ependymoglia cells wer
(M) PSA-NCAM (NCAM) and type-2 (GFAP+/Notch1�) ependymoglia c
(GFAP+/Notch1+) ependymoglia cells and is devoid of PSA-NCAM expr
(N) MCM2-expressing PSA-NCAM+ cells in hot spots (arrow).
Data represented as mean ± SEM. The scale bars represent 50 mm.

Stem
These data show that type-1 ependymoglia cells that

make up 92% ± 4% of the ventricle wall of the telenceph-

alon (Figures S2C–S2E) have stem cell properties and sug-

gest that type-2 cells in the hot spots have properties of

transit-amplifying cells.

Ependymoglia Cell Dynamics during Neuronal

Regeneration

Next,we testedhowependymoglia cells respond to the abla-

tion of neurons. We tested two possibilities. The first possi-

bility was that only the hot spots respond by increased pro-

liferation of type-1 and type-2 cells and neuroblasts. The

second possibility was that both the hot spots and the

non-hot spots respond to loss of neurons. To distinguish be-

tween these two possibilities, we ablated cholinergic neu-

rons and analyzed hot spots and non-hot spots, which are

localized in proximity to the ablated neuronal population

(Figure S4). Injection of the selective neurotoxin AF64A led

to the ablation and subsequent regeneration of choline ace-

tyltransferase (ChAT)-expressing neurons (Figures 4A and

4B). During the course of regeneration of cholinergic neu-

rons,weobserved an increase of both type-1 and type-2 cells

(Figures 4C–4H). The most striking change that we found

was the appearance of type-2 and proliferating PSA-

NCAM+ cells in and around the non-hot spots (Figures 4F–

4Hand4L–4N).Thesedata indicated thedenovogeneration

of a neurogenic niche as a response to neuronal ablation.

Ependymoglia Cell Dynamics and Notch Signaling

during Homeostasis and Neuronal Regeneration

Next, we tested how manipulation of Notch signaling im-

pinges on ependymoglia cell dynamics during normal ho-

meostasis and after ablation of neurons. To interfere with

Notch signaling, we used the small molecule, DAPT, which
nts to MCM2+/GFAP+/GS� (type-2) ependymoglia cells in hot spots.
pe-1) ependymoglia cells.
FAP, GS, and MCM2. Note that most MCM2+ ependymoglia cells are

proliferating type-1 cell (GFAP+/GS+).
GFAP, GS, and MCM2. Note that most MCM2+ ependymoglia cells are

1+, type-1 ependymoglia cells (arrowhead). Note the colocalization

a cells shows that, in hot spots, the vast majority of GFAP+ cells were

cells (GFAP+/Notch1�; arrow).
pressing GFAP, Notch1, and PCNA. Note that almost all PCNA+

.
e observed outside of hot spots. Quantified in (L). n = 5; p < 0.05.
ells in hot spots (arrow). The surrounding region contains type-1
ession (arrowhead).
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Figure 3. Type-1 Cells Are Resistant to AraC and Retain BrdU Labeling after Extended Chase
(A–C) A pulse of BrdU was chased for 3 days (A). BrdU-labeled type-2 ependymoglia cells in hot spots (arrow). BrdU-labeled type-1
ependymoglia cells after a 90-day chase (arrowhead; B). Type-2 ependymoglia cells were identified by lack of Notch1 expression (arrow).
Percentage of GFAP+/BrdU+ cells that were type-1 ependymoglia cells (C). p < 0.05 between 3 days chase and 90 days chase. n = 4.

(legend continued on next page)
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is a g-secretase inhibitor (Geling et al., 2002). In the absence

of neuronal ablation, DAPT treatment led to increased pro-

liferation of type-2 cells in the hot spots (Figures 5A–5C).

On the other hand, we did not observe any statistically sig-

nificant change in the proliferation of type-1 cells—neither

in the hot spots nor in the non-hot spots (Figures 5B–5D).

We also determined how DAPT treatment influenced the

number of proliferating PSA-NCAM+ cells and found that

it was increased by 45% ± 7% (Figures 5E–5G).

After ablation of cholinergic neurons, the injury-respon-

sive increased proliferation of type-1, type-2, and PSA-

NCAM+ cells in the hot spots was not significantly altered

by DAPT treatment (Figures 6A and 6B). Conversely,

whereas normal proliferation was not influenced in the

non-hot spots by DAPT treatment, the ablation-responsive

increase in type-1 cells was inhibited by DAPT (Figure 6C).

Counting the PSA-NCAM+ cells in the non-hot spots

showed increased proliferation after DAPT treatment

(Figure 6D).

In order to corroborate this interpretation, we analyzed

neurosphere cultures. We reasoned that the neurosphere

cultures mimic an injury response due to the dissociation

process and would primarily be composed by type-1 cells

derived from non-hot spots, as these are the quantitatively

dominating population (81% ± 3%) in the forebrain. In

agreement with the in vivo results, we found that DAPT

treatment decreased the proliferation of the neurosphere-

forming ependymoglia cells as assayed by EdU incorpora-

tion (Figures 6E–6G).

These results indicated that, during normal homeostasis,

stem cell (type-1) proliferation is not Notch-signaling sen-

sitive and proliferation of transit-amplifying cells (type-2)

and neuroblasts (PSA-NCAM+) is Notch-signaling sensitive.

The insensitivity of stem cells to Notch signaling remains

in the hot spots also during regeneration; however, the

injury-responsive increased stem cell proliferation in the

non-hot spots is dependent on Notch signaling.
DISCUSSION

In this paper, we characterized cellular heterogeneity

among ventricular radial glia-like ependymoglia cells in

the newt telencephalon. Our findings reveal two principal

subpopulations among these cells: one having stem cell

features (type-1) and the other with features of transit-
(D–H) AraC treatment (D) reduces the number of type-2 ependymoglia
spots. After 14 days of recovery (E), the number of type-2 ependymogl
n = 5. Recovery for 14 days after AraC treatment also caused an incr
proliferation of type-1 ependymoglia cells (G). p < 0.05; n = 5. The num
n = 5.
Data represented as mean ± SEM. The scale bars represent 50 mm.

Stem
amplifying cells (type-2; summarized in Figure 7). We also

define differential sensitivity among ependymoglia cells

to treatment with the g-secretase inhibitor DAPT during

homeostatic and regenerative conditions, suggesting that

Notch signaling has a context-dependent and cell-type-

specific role in regulating precursor cell fate in the newt

telencephalon (summarized in Figure 7).

The newt telencephalon harbors distinct proliferation

hot spots (Berg et al., 2010). An unexpected observation

presented in this paper is that the seemingly randomly

proliferating type-1 ependymoglia cells are label-retaining

and insensitive to AraC treatment. Hence, the ventricular

system in the newt telencephalon appears to be lined

by rarely self-renewing stem-like ependymoglia cells, and

this may be one factor behind these animals’ marked

neuroregenerative capacity.

Indeed, upon ablation of cholinergic neurons, we found

several indications for the formation of neurogenic niches

in non-hot spots. Although, due to the lack of selective

tracing methods, the fate of non-hot spot cells in relation

to cells generated in the hot spots can at present not be

determined, our observations suggest a de novo generation

of a lineage in non-hot spots as a response to injury. First,

we observed the increased number of proliferating type-1

cells. Second, we observed the appearance of proliferating

type-2 cells in vicinity of the type-1 cells. Third, in prox-

imity to the type-1 and newly formed type-2 cells, we

also noted an injury-specific appearance of proliferating

PSA-NCAM-expressing cells.

The newt brain lacks GFAP-expressing parenchymal as-

trocytes (Berg et al., 2011; Parish et al., 2007). It is likely

that ependymoglia cells are responsible for functions that

are carried out by astrocytes in mammals, such as protect-

ing neurons from excitotoxicity by metabolic regulation

of glutamate involving GS (Norenberg and Martinez-Her-

nandez, 1979). Whereas many glial markers, for example

GFAP and GLAST, are common for all ependymoglia

cells in the newt brain, GS selectively labels the type-1 cells.

This finding is noteworthy in an evolutionary comparative

context. Because GS does not mark cell populations

with transit-amplifying characters, this observation may

support the view of astrocytes being NSCs in vertebrates

(Kriegstein and Alvarez-Buylla, 2009).

It is interesting to note that the zebrafish telencephalon,

which is also highly regenerative (Baumgart et al., 2012;

Kroehne et al., 2011), lacks a distinct GS� cell population
cells (arrow) but had no effect on type-1 ependymoglia cells in hot
ia cells increased (F). p < 0.05 between control and AraC treatment.
ease in PCNA+ type-2 ependymoglia cells but had no effect on the
ber of PCNA+ type-1 cells was also unaffected in non-hot spots (H).
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Figure 4. Ablation of ChAT+ Neurons Leads
to De Novo Generation of Type-2 and
Proliferating PSA-NCAM Cells in Non-Hot
Spots.
(A and B) ChAT+ neurons are present in the
parenchyma of the bed nucleus of the stria
terminalis (A). The drawing of the newt brain
indicates the plane of section. ChAT+ neurons
are lost 7 days after injection of AF64A (A)
and subsequently regenerate after 25 days
(A). Quantified in (B). p < 0.05; n = 5.
(C–E) Compared to control (C), there is an
increase of PCNA+ type-2 ependymoglia cells
(arrow) in the hot spot adjacent to the
ablated ChAT+ neurons (D). Quantified in (E).
p < 0.05; n = 5.
(F–H) Compared to control (F), ablation of
ChAT+ neurons caused an increase of PCNA+

type-1 and the appearance of PCNA+ type-2
ependymoglia cells (arrow) in the ventral
non-hot spot. Quantified in (H). p < 0.05;
n = 5.
(I–K) Compared to control (I), ablation of
ChAT+ neurons caused an increase of PSA-
NCAM (NCAM) MCM2+ cells in the hot spot
(arrow). Quantified in (K). p < 0.05; n = 5.
(L–N) Lack of PSA-NCAM+/MCM2+ cells in
the ventral non-hot spot (L). Ablation of
ChAT+ neurons caused the appearance of
PSA-NCAM+/MCM2+ cells in non-hot spots
(arrow; M). Quantified in (N). p < 0.05; n = 5.
Data represented as mean ± SEM. The scale
bars represent 50 mm.
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Figure 5. Inhibition of Notch Signaling Causes an Increase in
Cell Proliferation during Homeostatic Conditions
(A–D) Control (A) versus DAPT-treated (B) brains shows an increase
in PCNA+ type-2 ependymoglia cells in hot spots (arrows). Quan-
tified in (C). p < 0.05; n = 5. No significant effect of DAPT treatment
on non-hot spot cells (D). n = 5.

Stem
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that expresses other canonical glial genes, such as S100b

and GFAP (Ganz et al., 2010; März et al., 2010). However,

the fish telencephalon seems to harbor label-retaining cells

with low or no glial marker expression (Ganz et al., 2010).

Another interesting comparison with the zebrafish telen-

cephalon is that Notch1 is mainly expressed in quiescent

radial glia cells in the fish (Chapouton et al., 2010). In

contrast, in the newt telencephalon, the Notch1 antibody

equally labels proliferating and nonproliferating cells

in the non-hot spots. In addition, no increase in prolifer-

ating PSA-NCAM+ cells was observed after stab injury to

the zebrafish telencephalon (Baumgart et al., 2012). These

observations reflect differences in the cellular organization

and the injury response comparing newts and zebrafish.

Nevertheless, DAPT treatment has been shown to reduce

the injury-induced production of cells with active neuroge-

nin reporter in the zebrafish telencephalon (Kishimoto

et al., 2012), which is similar to our findings in the newt

telencephalon showing that DAPT treatment reduces the

injury-induced proliferation of type-1 cells in the non-

hot spots. The altered sensitivity to DAPT treatment

of the type-1 cells after injury comparing hot spots and

non-hot spots further reinforces the differences between

injury-induced and constitutive neurogenesis, as previ-

ously suggested by Berg et al. (2010) and Kizil et al. (2012).

The importance of Notch signaling in the regulation of

neuronal precursor cell fate has been well documented

also in mammals, and perturbation of Notch signaling

has profound effects both during homeostatic conditions

as well as in injury models (Ables et al., 2010; Basak

et al., 2012; Carlén et al., 2009; Chapouton et al., 2010;

Ehm et al., 2010; Imayoshi et al., 2010). In the mouse

brain, quiescent NSCs are insensitive to the loss of Notch

signaling. However, upon injury-induced activation of

NSCs, Notch signaling is required to fully reinstate neuro-

genesis (Basak et al., 2012). Further cross-species com-

parisons, preferentially by involving targeted fate-mapping

approaches, of how Notch signaling impinges on neuro-

genesis are likely to reveal novel ways of enhancing regen-

eration in the adult vertebrate brain.
EXPERIMENTAL PROCEDURES

Animals
Adult red-spotted newt Notophthalmus viridescens (Charles

Sullivan) were housed at 15�C–20�C. All experimental procedures

were performed according to European and local ethical permits.
(E–G) Control (E) versus DAPT-treated (F) brains shows an increase
in MCM2+ PSA NCAM+ (NCAM) cells (arrows) in hot spots. Quantified
in (G). p < 0.05; n = 4.
Data represented as mean ± SEM. The scale bars represent 50 mm.
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Figure 6. Injury Leads to Changes in the Cellular Response to
Inhibition of Notch Signaling
(A and B) After ablation of cholinergic neurons, DAPT treatment
does not significantly affect the injury-induced proliferation
neither of type-1 and type-2 ependymoglia cells (A) nor the PSA
NCAM+ (NCAM) cells (B) in hot spots. n = 5.
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Treatments
BrdU (Sigma) 20 mg/kg was injected intraperitoneally twice daily

for 3 days and chased for various amounts of time. Cholinergic ab-

lations were carried out according to Berg et al. (2011) by intracra-

nial injection into the lateral ventricle of 50 ng AF64A. ChAT+ cells

were quantified in the bed nucleus of the stria terminalis. The

Notch-signaling reporter 12xCLS-H2BYFP (Hansson et al., 2006)

was electroporated into the lateral wall of the lateral ventricle as

described previously (Berg et al., 2010). AraC (500 mg/kg; Sigma)

was delivered via intraperitoneal injections twice daily for 5 days.

Animals were either sacrificed 12 hr after the last injection or

allowed to recover for 14 days before being scarified. DAPT (N-[N-

(3,5-difluorophenacetyl-L-alanyl)]- S-phenylglycine t-butyl ester;

Axxora) was administered as previously described (Chapouton

et al., 2010). Briefly, a stock solution of 10 mM DAPT in DMSO

was diluted in swimming water to a final concentration of

100 mM. Control animals were placed in equal concentration of

DMSO. Newts were treated for 48 hr. Newts ablated with AF64A

were treated withDAPT between 5 and 7 days after toxin injection.

Cell Culture
All media were diluted by 33%with water to match the osmolality

of the newt cells. Newts were anesthetized with a solution of 0.1%

MS-222 (Sigma). The isolated brain was digested in 30 U/ml Papain

(Sigma), L15 (Gibco), 40 mg/ml DNase (Roche), and 2 mg/ml ova-

mucoid (Worthington Biochemical) for 1 hr at room temperature.

Next, L15 containing 2 mg/ml ovamucoid and 40 mg/ml DNases

was added at a ratio 1:1 and left at room temperature for 5 min.

Cells were spun down and resuspended in L15 and triturated

with a p1000. Cell suspensionwas filter through30 mmcell strainer

(Gibco) before being spun down and resuspended in Dulbecco’s

modified Eagles medium (DMEM)/F12/Glutamax (Gibco), 2%

B27 (Gibco), 100 U/ml penicillin-streptomycin (Gibco), 20 ng/ml

EGF (Gibco) and 20 ng FGF-2 (Gibco). Cells were plated in un-

coated 24-well plates and cultured at 25�Cat 2%CO2. Every fourth

day, cells were supplemented with fresh growth media. After

14 days, neurospheres were plated out on dish coated with poly-

D-lysine (Sigma) and allowed to differentiate inDMEM/F12/Gluta-

max media with no growth factors. Neurospheres were generated

and cultured as described above either in the presence of 10 mM

DAPT (Axxora) or vehicle from days 7 to 9. Twenty micromolar

EdU (Invitrogen) was added to the medium for 8 hr at day 9;

spheres were dissociated and plated on poly-D-lysine-coated plates

(Sigma) for immunohistochemistry.

Immunohistochemistry
Immunohistochemical staining of brain tissue was performed

as described previously (Berg et al., 2011; Kirkham et al., 2011).
(C and D) After ablation of cholinergic neurons, DAPT treatment
leads to a decrease in injury-induced proliferation of type-1
ependymoglia (C) and an increase in PSA-NCAM+ cells in non-hot
spots. p < 0.05; n = 5.
(E–G) DAPT treatment caused a decrease in the incorporation
of EdU by GFAP+ neurosphere cells (E and F). Quantified in (G).
p < 0.05; n = 4.
Data represented as mean ± SEM. The scale bars represent 50 mm.
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Figure 7. Summary of Proliferation Dynamics during Homeo-
stasis and Regeneration in the Presence or Absence of Notch-
Signaling Inhibitor
(A) Expression patterns of various glial and proliferation markers
expressed by type-1 and type-2 ependymoglia cells.
(B) In the graphic representation of the cells lining the ventricle,
squares represent type-1 cells (GFAP+, Notch1+, and GS+), diamonds
depict type-2 cells (GFAP+, Notch1�, and GS�), and circles denote
PSA-NCAM+ neuroblasts. The thickness of the arrows indicates the
relative number of cycling cells, with dashed line being the lowest
and thick bold being the highest.
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Neurospheres were fixed in 4% formaldehyde for 15 min at room

temperature and treated with 0.1% Triton X-100 in PBS (Sigma).

Cells and 20 mm newt brain coronal sections were incubated at

4�C for 15–18 hr in blocking solution containing either PBS, 4%

goat serum (Invitrogen), and 0.1% Triton X-100 or PBS, 0.2% fish

skin gelatin (Sigma), 0.2% BSA (Sigma), and 0.2% Triton X-100

with the following primary antibodies: mouse anti-GFAP-CY3

(1:500; Sigma), goat anti-GFP (1:500; Abcam), guinea pig anti-

GLAST (1:1,000; Frontier Institute), rabbit anti-Sox2 (1:500;

Abcam), rabbit anti-glutamine synthetase (1:500;Millipore), rabbit

anti-MCM2 antibody (1:200; Abcam), PSA-NCAM (1:8,000;

Millipore), rabbit anti-Notch1 (1:100; Santa Cruz Biotechnology),

mouse anti-PCNA (1:500; Chemicon), rat anti-BrdU (1:500; Accu-

rate Chemical and Scientific), and anti-ChAT (1:250; Millipore).

For BrdU and PCNA staining, sections and cells were treated with

PBS containing 2 M HCL and 0.5% Triton X-100 for 20 min at

37�C. For PSA-NCAM and MCM2 staining, sections were incu-

bated in citrate buffer (10 mM sodium citrate, 0.05% Tween 20

[pH 6]) at 37�C for 30 min. After labeling with the primary anti-

body, sections and cells were washed 3 3 5 min in PBS before the

appropriate secondary antibodies (Molecular Probes) were applied

in blocking solution for 2 hr at room temperature. Triple labeling of

GFAP with two other antibodies required additional 5 min incuba-

tion in 4% formaldehyde at room temperature after incubation

with the secondary antibodies. This was followed by 1 hr incuba-

tion at room temperature with GFAP-CY3 (1:1,000; Sigma) in
Stem
blocking solution. Sections were mounted in mounting medium

containing 1 mg/ml DAPI (Dako). TUNEL was performed post-

antibody incubation following the manufacturer’s instructions

for cryosections (In Situ Cell Death Detection Kits for detection

by fluorescent microscopy; Roche). Images for cell counting of

tissue sections were captured with LSM-700 using ZEN software

(both Zeiss), Angstrom Grid confocal microscope (Leica Microsys-

tems) using velocity software (PerkinElmer), or Axioplan2 using

Axiovision software (both Zeiss). In areas of high cell density,

confocal z stacks were captured, and for large areas, confocal tile

montages were created. Images were manipulated with Volocity

(PerkinElmer) or Photoshop (Adobe) using linear adjustments.

Cell counts were performed on a region starting with the prolifer-

ation hot spot adjacent to the bed nucleus of the stria terminalis to

the most caudal part of the telencephalon.
In Situ Hybridization
A fragment of Notch1 was amplified from newt adult brain cDNA

using the following primers: For: TCT CCG TTT CAA CAG TCT

CC; Rev: AAG TTG GTG GCT GGG AGT GT. The fragment was in-

serted into pCR4 topo cloning vector using TOPO TA cloning kit

(Invitrogen). Digoxigenin-labeled probes were synthesized using

T7 and Sp6 RNA polymerase kit (Roche). Brains were dissected

out and prepared in a similar manner to immunohistochemical

procedure (see above), except that ribonuclease (RNase) free

reagents were used. Ten micrometer coronal sections were fixed

in 4% formaldehyde for 15 min, treated with 0.2 N HCL for

12 min, washed, and then incubated in acetylation buffer (0.1 M

trietholamine and 0.25% acetic anhydride) for 10 min. Next, the

slides were rinsed in RNase free water and permeabilized with a so-

lution of 1 mg/ml Proteinase K (Roche) and 2mMCaCl2 for 15min

at 37�C. The slides were incubated in prehybridization buffer (50%

deionized form of amide, 53 saline sodium citrate [SSC], 53 Den-

hardt’s solution, 250 mg/ml yeast RNA, 500 mg/ml herring sperm

single-stranded DNA [ssDNA]; Sigma) for 2 hr at room temperature

before being incubated in hybridization solution (50 ng probe,

50% deionized form of amide, 53 SSC, 53 Denhardt’s solution,

250 mg/ml yeast RNA, 500 mg/ml herring sperm ssDNA) for 16 hr

at 60�C. The slides were then washed with 0.23 SSC buffer con-

taining 0.05% tween 20 at 70�C for 3 3 1 hr. Finally, the probes

were detected by TSA Plus Fluorescence for in situ hybridization

(PerkinElmer) following the manufacturer’s instructions.
Western Blot
Newt brains were homogenized using downs homogenizer in

lysis buffer containing 50 mM Tris (pH 8; Sigma), 150 mM NaCl

(Sigma), 10% glycerol (Sigma), 1% NP40 (Sigma), 0.5% deoxycho-

late (Sigma), and proteinase inhibitorsmix (Roche). Protein extract

was boiled in sample buffer (Invitrogen) and ran on SDS-PAGE gel

(Invitrogen) before being transferred onto polyvinylidene fluoride

membrane. Membranes were incubated overnight at 4�C with

rabbit anti-Notch1 antibody (1:1,000; Santa Cruz Biotechnology)

in blocking buffer containing Tris-buffered saline, 5% BSA

(Sigma), and 0.1% Triton X-100. Anti-rabbit-horseradish peroxi-

dase (1:10,000; GE Healthcare) in blocking buffer was incubated

for 1 hr at room temperature before the membrane was treated

with enhanced chemiluminescence following the manufacturer’s
Cell Reports j Vol. 2 j 507–519 j April 8, 2014 j ª2014 The Authors 517
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instructions (GE Healthcare) and imaged using Image Quant LAS

4000 (GE Healthcare).

Alignments
Notch1 sequences forHomo sapiens (ref: NP_060087.3),Musmuscu-

lus (ref: NP_032740.3), and Xenopus laevis (ref: NP_001081074.1)

were obtained from the National Center for Biotechnology data-

base. Notch1 sequence for Notophthalmus viridescens was obtained

from an inferred proteome (Abdullayev et al., 2013). Alignment

was performed using DNAstar mega align.

Statistical Analyses
Student’s t test was used where p values are indicated. In all figures,

n represents the number of biological replicates.
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