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Abstract 
In recent decades there has been a considerable global increase in urban population, industrial 
productivity, energy demand, waste generation, and the emission of greenhouse gases from energy 
conversion. The agricultural, forestry, textile and food sectors generate large amounts of waste and their 
environmental impact has become a major cause for concern in societies around the world. Current 
efforts are concerned with maximization of combustion efficiency and energy-related processes in 
general by making use of industrial residues and reducing particulate matter. The present review 
addresses the availability of different types of biomass that can be used to produce renewable energy 
and focuses on agricultural, forestry, urban and industrial residues. It also provides a description of the 
physical and calorific characteristics of the various raw materials available for the manufacture of 
briquettes and other fossil fuel alternatives. 
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1. Introduction 
Social progress is based on the consump-
tion of large quantities of energy and most of 
this energy is obtained from the burning of 
fossil fuels such as coal and oil. Globally, 
65% of all primary energy consumed comes 
from fossil fuels (Arias and López, 2015). Alt-
hough these non-renewable forms of energy 
have accelerated humanity’s technological 
development, they have the disadvantage of 
generating environmental pollution (Sari et 
al., 2019). Unrestrained consumption of 
these finite and non-renewable resources is 
now driving a need for new environmentally 
sustainable sources of energy. Examples of 
these new sources include industrial resi-
dues which are not only renewable but have 
the potential to replace fossil fuels (Ji et al., 
2018). In fact, in recent years, hydrocarbons 
are increasingly being substituted for new, 

sustainable energy sources (Anggono et al., 
2018; Hernandez et al., 2015; Pandey, 
2019), a move motivated by growth in both 
industrial and domestic energy demand 
(Alarenan et al., 2020; Wu and Lee, 2020). 
Fossil fuel importing countries are becom-
ing increasingly interested in reducing their 
oil consumption (Musa et al., 2018), and 
states, industries and consumers must now 
fully confront the need for renewable alter-
natives (Karner et al., 2017). 
The energy strategies of first world coun-
tries now include projects to incorporate 
first and second generation biomass into 
renewable energy production (Campuzano-
Duque et al., 2016). Biomass has become an 
important energy resource thanks to its low 
production cost (Amarasekara et al., 2017; 
Ludevese-Pascual et al., 2016; Manzoor et 
al., 2017) and its chemical, physical and, 
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most importantly, calorific properties, and 
may constitute a viable alternative to coal 
for industrial energy generation and heating 
(Balasubramani et al., 2016). Furthermore, a 
move to biomass incineration may help to re-
duce overall greenhouse and acidic gas 
emissions (Kayo et al., 2016; Martinez et al., 
2020; Murphy et al., 2016). Such a change 
would require adaptations to the energy 
supply chain in order to facilitate waste 
selection, homogenization and storage in 
order to ensure the availability of sufficient 
quantities to sustain the production process 
(Balasubramani et al., 2016; Busov, 2018; 
Robles et al., 2018; Rojas et al., 2018b). As 
such, protocols would need to be developed 
within the various productive sectors for 
recycling and the manufacture of new 
energy sources from the available biomass 
(Ahmad et al., 2020; Jain and Kalamdhad, 
2020; Jalgaonkar et al., 2020; Verma and 
Kumar, 2020). Different industries produce 
different forms of waste which may be 
suitable for the production of biofuels and 
the generation of bioenergy (Go et al., 2019). 
Waste from the agricultural, forestry, textile 
and food sectors can be used to manufac-
ture biofuel briquettes (Hansted et al., 2016; 
Romallosa and Kraft, 2017; Vargas and 
Pérez, 2018), and experimental examples 
range from the creation of solid fuel from fly 
ash (Guo and Zhang, 2020; Makela et al., 
2016) to the combination of rice husks and 
pine sawdust (Nino et al., 2020). Energy can 
be generated from the incineration of a wide 
variety of biomass residues. Types of waste 
most commonly used are those generated 
by agriculture (e.g., seed husks, almond 
hulls, olive stones, grass), timber (e.g., 
wood chips, shavings, sawdust), food pro-
duction (e.g., processing residues), the tex-
tile industry (e.g., clothing, shoes), along 
with those produced by forestry (e.g., prun-
ing, cleaning) and the cultivation of woody 
crops (e.g., pruning, uprooting, fallen trees). 
In general, these forms of waste can be 
transformed into briquettes, chips or pellets 
(Patil, 2019). 
 

2. Non-fossil fuel alternatives manufac-
tured from waste 
2.1 Briquettes 
Briquettes are generally produced by the 
combination and compaction of lignocellulo-
sic biomass in the form of organic raw mate-
rials (Arias and López, 2015). These include 
wood chips and shavings; different types of 
agricultural, textile and food waste (Hoyos 
et al., 2019; Rodriguez et al., 2017); residues 
from the production of timber, wooden pan-
els, furniture and other products; industrial 
biomass residues, urban biomass residues 

(Sawadogo et al., 2018) and charcoal (Riuji 
et al., 2016). Briquetting results in a final 
product that has a greater density than its 
constituent materials. The process is also 
known as densification and has several ad-
vantages. Briquettes offer a superior space-
to-weight ratio than chopped wood or chips, 
making transportation more efficient. Bri-
quetting also reduces the moisture content 
of the material to less than 12%. Briquettes 
come in different shapes, but the majority 
are cylindrical with diameters ranging from 
2 to 20 cm and lengths of between 15 and 
50 cm. The thermal conductivity coefficient 
of briquettes is higher than that of wood: as 
a compacted material, it contains less air, 
which slows combustion. Heating potential 
depends on aspects such as shape, mois-
ture content, density, calorific value and 
thermal conductivity coefficient (Martín, 
2014). 
 

 
 

Figure 1. Published works concerning use of agricultural, 
forestry, textile, and food sector residues in the 
manufacture of briquettes. (The research was searched 

in the SCOPUS database and Web of Science, with the 
keywords: briquette; pellets; waste; biomass). 
 

Given their physical, chemical and calorific 
properties, their ease of combustion, low 
humidity and high density, biomass bri-
quettes represent an attractive form of bio-
fuel for heating applications and the genera-
tion of electricity (Gangil, 2015; Tomeleri et 
al., 2017; Yank et al., 2016). The different 
raw materials used in the manufacture of 
briquettes produce different mechanical 
properties (Aransiola et al., 2019; Nhuchhen 
and Afzal, 2017). Different binding agents al-
low the production of briquettes of diverse 
shapes and sizes, and with varying degrees 
of firmness, compression, density, porosity, 
and other physical characteristics Bri-
quetting also helps to minimize ash residue 
and improve other environmental aspects 
(Berastegui et al., 2017; D’Agua et al., 2015; 
Davydenko et al., 2014; Gendek et al., 2018). 
Briquettes incorporate non-toxic and non-
polluting recycled materials and could be a 
form of environmental clean-up involving 
collection of waste materials. Furthermore, 
they offer a more appealing alternative to 
the felling of trees. Figure 1 illustrates the 
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proportion of academic studies conducted 
on the use of agricultural, forestry, textile, 
and food sector residues in the manufacture 
of briquettes. Between 2015 to 2020, most 
studies have focused on the manufacture of 
briquettes from food waste, followed using 
agricultural residue, forestry residue and, fi-
nally, textile waste. 
 

2.2 Pellets  
Pellets are a similar but smaller-scale equiv-
alent to briquettes, ranging from 6 to 7.25 
mm in diameter and between 10 and 36 mm 
in length. They have an average moisture 
content of between 6 and 10%, an ash con-
tent of below 3%, a bulk density greater than 
639 kg/m3, and a calorific value of around 4.7 
kWh/kg (16.9 MJ/kg) (Arulprakasajothi et al., 
2020; Lunguleasa et al., 2019; Ozturk et al., 
2019). Effectively, they are a granulated 
form of biomass (Pinheiro et al., 2016; 
Spirchez et al., 2018). 
 

 
 

Figure 2. Published works concerning use of agricultural, 
forestry, textile, and food sector waste in the 
manufacture of pellets. (The research was searched in 

the SCOPUS database and Web of Science, with the 
keywords: pellets; briquette; waste; biomass). 
 

Like briquettes, pellets are manufactured by 
the compaction or compression of waste 
materials (Durango et al., 2019; Marrugo et 
al., 2019). The main raw materials are resi-
due from sawmills and the furniture indus-
try, including rejected planks, sawdust, 
wood chips, offcuts, and dry shavings. 

These are compacted in a high-pressure 
mill, where the lignin content of the wood 
acts as a binder. Other forms of biomass, 
such as coal dust, can also be incorporated 
(Hidalgo et al., 2018). Wood pellets offer an 
attractive alternative to fuels such as coal, 
chopped wood, oil and other fossil fuel de-
rivatives. They are also relatively cheap and 
easy to store, provide uniform combustion, 
have a low moisture content, and release 
smaller amounts of contaminant gases 
(Forero-Núñez et al., 2014). In particular, 
pellets constitute a more environmentally 
friendly option given their lower CO2 emis-
sions than solid or chipped wood (Soto and 
Núñez, 2008). Figure 2 illustrates the pro-
portion of academic studies conducted on 
the use of agricultural, forestry, textile, and 
food sector residues in the manufacture of 
pellets. Between 2015 to 2020, most studies 
have focused on the manufacture of pellets 
from food waste, followed using agricultural 
residue, forestry residue and, finally, textile 
waste. 
 

3. Waste from different productive sec-
tors in the manufacture of briquettes 
3.1 Agricultural sector  
Production of first and second generation 
solid, liquid and gas biofuels (Boutesteijn et 
al., 2017) from biomass is achieved by the 
processing of primary sources and agricul-
tural and industrial waste from forestry, 
farming and livestock activities (Gutierrez-
Macias et al., 2015), and from bushy and ar-
boreal roundwood plantations. The process 
helps to improve agricultural sustainability 
and to protect natural resources such as 
water and soils. Production of biofuels using 
primary waste from agriculture and indus-
try, roundwood plantations, and forestry, 
farming and livestock activities, particularly 
on underexploited soils, constitutes a viable 
option today (Weiss and Glasner, 2018). 

 
Table 1 
Agricultural waste as raw materials for the manufacture of biomass briquettes 
 

Waste/residue type 
Calorific value 
(MJ/kg) 

References 

Sugarcane skin, 
Bamboo fiber 

SCS: 17.23  
BF: 16.92 

(Brunerova et al., 2018) 

Hemp and sunflower fiber 16.6 - 17.4 (Alaru et al., 2011) 

Sugarcane bagasse, sisal dust, cassava bran 15 (Muñoz-Muñoz et al., 2014) 
Semi-dried banana leaves 17.7 (de Oliveira et al., 2014) 

Maize  15.8 
(Bautista-Ramírez et al., 
2019) 

Sugarcane bagasse; coffee, rice, and soybean husk; peanut and 
caster seed shell; wheat and rice straw; maize, sunflower, jute, 
mustard, and cotton stalks; coir pith; tobacco wastes 

13.4 - 20.7 
(Patil, 2019) 
 

Moringa oleifera biomass 15.87 - 23.31 (Pereira et al., 2018) 
Piñon (Araucaria angustifolia) residue 17.6 - 18.6 (Jacinto et al., 2016) 
Rice husk and bran 16.08 (Yank et al., 2016) 
Vine shoots, grape skins, stems, and seeds 18.4 - 20.6 (Rojas et al., 2018a) 
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The climatic conditions of certain countries 
provide a favorable environment in which to 
adapt various annual and perennial plant 
species to the production of biomass which 
can then be transformed into bioenergy 
(Benie et al., 2005). However, the primary 
obstacle to the production of these biofuels 
is the relative scarcity of suitable agricul-
tural land (Gao et al., 2019). The most abun-
dant sources of agricultural biomass for the 
production of roundwood-, pellet-, 
briquette- and wood chip-based biofuels are 
residues from forestry activities, waste from 
the furniture industry, and the products of 
roundwood plantations (Clavijo et al., 2020). 
Other important sources are cereals (maize, 
wheat, oats, barley), tubers (potato, beet, 
fodder turnip), and forestry biomass and its 
derivatives (lignocellulosic residues from 
harvesting and agro-industry). Each of these 
can be converted into liquid biofuels such as 
ethanol, methanol, and bio-oil. Oils from oil-
seeds (safflower, linseed, sunflower, rape, 
castor, jojoba, jatropha), algae and other 
species, along with recycled vegetable oils 
and animal fats can be used to produce liq-
uid biofuel such as biodiesel. Livestock ma-
nure; slaughterhouse waste; agricultural, 
agro-industrial and wholesale market resi-
dues; viticulture and winemaking residues; 
whey; and lignocellulosic residues can all be 
used to produce gas biofuels such as bio-
gas. Nut shells and cassava flour have been 
incorporated as binders in the manufacture 
of briquettes (Chungcharoen and Srisang, 
2020). The agricultural sector therefore 
plays a vital role as a generator of biomass 
suitable for conversion into biofuels and bio-
energy (Javed et al., 2019; Samadi et al., 
2020). Several agricultural sector waste 
types and their calorific values are pre-
sented in Table 1. 
 
3.2 Forestry sector 
Forestry activities generate large amounts 
of organic waste or biomass, which can be 
used for the production of biofuels that are 
less polluting than fossil fuel alternatives 

(Ayala-Mendivil and Sandoval, 2018). Bio-
mass in the form of residues produced by 
tree plantations, pulp plants and sawmills 
(Table 2) can be used for the manufacture of 
briquettes or pellets. For example, sugar-
cane residue has been combined with pine 
sawdust and red angelim (Dinizia excelsa) to 
make briquettes (Fernandez et al., 2017). 
Forestry residues can be categorized as tim-
ber-yielding and non-timber-yielding. The 
first category includes usable woody mate-
rials (e.g., crown, branches, foliage, 
stumps, shavings, sawdust, offcuts, bark, 
sawn timber), while the second consists of 
the non-woody vegetation of a forest eco-
system (e.g., seeds, fibers, rubbers, waxes, 
rhizomes, leaves, stalks and stems, lichens, 
mosses, fungi, resins and soils) (Ayala-
Mendivil and Sandoval, 2018).  
Natural forest biomass refers to the organic 
material within a forest ecosystem, while dry 
residual biomass constitutes material gen-
erated by forestry activities and the timber 
industry. Wet residual biomass refers to bio-
degradable waste, including urban and in-
dustrial wastewater and livestock waste, 
primarily manure. Finally come the energy 
crops, which are grown solely as biomass 
for conversion into biofuel. These include 
roundwood plantations (de Bikuna et al., 
2020; Jasiunas et al., 2020; Stolarski et al., 
2019; Yang et al., 2020).  
Conversion of forest residues into biomass 
has several advantages. In terms of energy 
generation, it has the potential to lower 
costs and yield a reduction in fossil fuel de-
pendence. Environmentally, it means in-
creased waste recycling, a reduction in the 
risk of forest fires, lower greenhouse gas 
emissions, and improvements to the quality 
of forest biomass. In socio-economic terms, 
biomass processing directly and indirectly 
creates jobs, provides the population with 
cheaper energy compared with that gener-
ated from fossil fuels, and results in lower 
rural to urban migration (Jackson et al., 
2018; Ko et al., 2019; Liu and Rajagopal, 
2019; Purohit and Chaturvedi, 2018). 

 
Table 2 
Forest residues as raw materials for the manufacture of biomass briquettes 
 

Waste/residue type Calorific value (MJ/kg) References 

Wood chips (raw, torrefied and biochar) 678.5 - 6.534 (MJ/h) (Sahoo et al., 2019) 
E. urophylla and S. parahyba bark  0.0174 - 0.0192 (Sette et al., 2020) 
Piñón (Jatropha curcas) husk, sugarcane bagasse 14.7 - 17.1 (Maradiaga et al., 2017) 

Sawdust 16.0 - 52.8 
(Antwi-Boasiako and 
Acheampong, 2016) 

Pine and beech sawdust 15 - 18 (Deac et al., 2016) 
Sawdust and shavings (Pinus spp., Quercus spp.) 17 - 18 (Morales-Maximo et al., 2020) 

Torrefied (TOB) and non-torrefied (NTB) briquettes 19.6 
(Alanya-Rosenbaum and 
Bergman, 2019) 

Pine needles (Pinus roxburgii) 17.6 (Mandal et al., 2019) 
Palm oil mill sludge, sawdust 19.8 (Obi, 2015) 
Khaya ivorensis (African mahogany) biomass, 
charcoal, and briquettes 

2.5 - 15.8 (de Moraes et al., 2019) 
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Table 3 
Textile waste as raw materials to produce biomass briquettes 
 

Waste/residue type 
Calorific value 
(MJ/kg) 

References 

Biological sludge, cotton and other microfibres 16.3 - 23.5 (Avelar et al., 2016) 

Wood pulp, paper, and textile sludge 8.85 - 10.55 (Chiou and Wu, 2014) 

Metallurgical coke, pregelatinized starch, polyvinyl alcohol 28.4 (Rajput and Thorat, 2020) 

Cotton, polyester 15.5 - 16.8 (Nunes et al., 2018) 

Polyester fibers, cotton, starch, lumps, and old rags 14.9 - 20.9 (Suvunnapob et al., 2015) 

Cotton fabric and textiles  15.70 - 16.26 (Yasin et al., 2020) 

Textile dyeing sludge and cattle manure 4.11 - 15.86 (Zhang et al., 2020) 

Household waste, canary grass, plastic, and textile fraction 18 (Hedman et al., 2007) 

Textile industry wastewater, rice straw 10 (Moliner et al., 2018) 

Rubber elastomers, carbon black, metal, textile, zinc oxide, 
others 

< 0.000198 (Landi et al., 2018) 

 

3.3 Textile sector 
Globally, the textile industry generates sales 
of at least US$ 2.5 trillion and provides at 
least 75 million jobs; however, despite high 
demand, profit has declined due to price 
differentiation (Yaghin, 2020). The industry 
is also responsible for 10% of carbon 
emissions globally, produces around 20% of 
the world’s wastewater, and consumes vast 
amounts of energy. Less than 1% of the 
material produced by the textile industry is 
recycled, resulting in a loss of at least US$ 
100 billion in raw materials each year. 
Around 85% of textiles are sent to landfill or 
incinerated, and 73% of clothing destined 
for reuse is lost before it can be processed. 
Greater recycling and reuse of textile waste 
would contribute considerably to address-
ing the environmental issue (Calvo and 
Williams, 2019; Lucato et al., 2017; 
Shevchenko et al., 2019).  
The textile industry is one of the most pollut-
ing and consumes large amounts of re-
sources, including raw materials (both natu-
ral and synthetic), water, transportation, 
and treatment of waste, primarily in the form 
of primary and biological sludge from 
wastewater treatment. For example, India’s 
textile and clothing industry exported 12.4% 
of the global total in 2017, generating textile 

waste of which only around 8% was recycled 
(cotton and artificial fabrics and threads, 
woolen and silk fabric, makeup and clothing) 
(Jafari, 2019; Kim, 2019; Navone et al., 
2020). Furthermore, textile sludge varies in 
composition, but tends to contain high levels 
of organic material, nitrogen, phosphorus 
and micronutrients, as well as dyes and 
heavy metals (Avelar et al., 2016; Yuvaraj et 
al., 2020). Disposal of textile waste repre-
sents a high cost to companies, and repur-
posing of the various residue types by trans-
forming them into valuable biofuel sub-
products (Table 3) constitutes an attractive 
option. An example of this is the 
manufacture of briquettes from solid textile 
waste (Avelar et al., 2016), which would go 
some way towards mitigating environmental 
damage (Avelar et al., 2016; Nunes et al., 
2018; Piribauer and Bartl, 2019; Turemen et 
al., 2019). Another means of classifying bio-
mass from the textile sector is to differenti-
ate between post-industrial waste (material 
left over from the processing and cutting of 
fabrics), pre-consumption waste (garments 
which do not reach the market due to de-
fects or which are discarded by the manu-
facturer), and post-consumption waste (fin-
ished material that has reached the end of 
its usable life).

 
3.4 Food sector 
A review of the relevant literature reveals 
considerable variation in definitions and 
classifications of food waste. One debate 
concern whether food waste should refer 
exclusively to the edible parts of food or to 
inedible parts as well. Another questions 
whether food waste should be limited to ma-
terials destined for human consumption or 
extended to waste generated along the sup-
ply chain, given the multiple potential 
sources of biomass provided by the food 
sector. The most widely accepted approach 
is to consider those edible foodstuffs dis-
carded early in the supply chain; that is, dur-
ing production, post-harvest, and industrial 
processing. Also included are those edible 

and inedible food parts that are removed 
from the supply chain, such as those des-
tined for composting, anaerobic digestion 
(Gustavsson et al., 2011), or bioenergy. One 
example of the latter is the manufacture of 
briquettes using bean husk waste from cof-
fee production, achieving an activation en-
ergy value of between 104.90 kJ/mol and 
345.2 kJ/mol (Setter et al., 2020). Many au-
thors define food waste as goods produced 
for human consumption but which, for vari-
ous reasons, are discarded or used for other 
unrelated purposes (Alexander et al., 2017; 
Buzby and Hyman, 2012; Griffin et al., 2009).  
Fresh vegetables, for example, are consid-
ered food waste (Table 4) if they reach 
maturity and are not harvested for economic 
reasons, as a result of damage caused by 
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animals, or due to climatic factors, poor 
seed quality, excess production, insufficient 
growth, or unappealing appearance (Ayerst 
et al., 2020; Cattaneo et al., 2020; Narciso, 
2020; Newman and Tarp, 2019). They are 
also considered food waste if they are har-
vested but are subsequently discarded as 
unsuitable for human consumption due to 
chemical contamination, excessive or insuf-
ficient pesticide use, infestations, infec-
tions, transport and storage issues, or non-
compliance with quality or aesthetic stand-
ards (Frison and Clément, 2020). Animal 
products, including those resulting from hu-
man food production, are considered food 
waste if they are destined for energy valori-
zation, anaerobic digestion, or composting. 
It is during the industrial processing stage 
that the largest quantity of food waste is pro-
duced, including that resulting from produc-
tion errors and/or changes; excess produc-
tion; non-compliance with standards; poor 
management, handling, storage or transpor-
tation (within facilities); and inedible materi-
als left over from the process. Globally, 
between 20 and 40% of food waste is 
generated during the manufacturing stage 
(García-García et al., 2017; Masud et al., 
2020; Qi et al., 2020; Teigiserova et al., 2020; 
Westerholm et al., 2020). 
 

4. Perspectives on waste and chal-
lenges for the future 
According to estimates by the International 
Monetary Fund, global economic growth will 
rise from 2.9% in 2019 to 3.3% in 2020, 
driven by manufacturing and international 
trade. The global urban population has 
grown rapidly since 1950, increasing from 
746 million to 3.9 mil millions in 2014 
(Nations-United, 2014) and to 7.7 mil millions 
2019 (Nations-United, 2019). This growth 
and development has had negative impacts 
on climate change, the risk of international 
conflict over access to strategic resources, 
and the growing threat of epidemics and 
pandemics (Acikgoz and Gunay, 2020; 
Lomborg, 2020; Sarkodie et al., 2020a; 
Sarkodie et al., 2020b). 

Global waste generation is expected to grow 
from 2 mil millions tons to 3.4 mil millions 
tons by 2050 (Kaza et al., 2018). According 
to the World Bank, the East Asia and Pacific 
regions generate 23% of the world’s waste, 
while 34% is created by high-income coun-
tries. This waste consists of plastic (12%), 
green foods (44%), glass (5%), metal (4%), 
paper and card (17%), rubber and leather 
(2%), wood (2%), and other materials (14%). 
According to the United Nations, treatment 
and disposal of waste is achieved by com-
posting (5.5%), incineration (11.1%), con-
trolled landfill (3.7%), unspecified landfill 
(25.2%), sanitary landfill (with landfill gas 
collection, 7.7%), open dump (33%), recy-
cling (13.5%), and other solutions (0.3%). 
These projections and figures are a clear il-
lustration of the startling accumulation of 
waste around the world and the short-term 
impact that this is having on the environ-
ment. Development and implementation of 
improved farming practices could drive a re-
duction of at least 30% in waste generation 
globally, including through the conversion of 
these residues into new energy products 
that offer a valuable ecological alternative to 
conventional fossil fuels (Moustakas et al., 
2020; Shariat Panahi et al., 2020; Shirzad et 
al., 2019). 
Furthermore, there is a need for the diverse 
legislation of emerging and developing 
countries to be brought into line with more 
demanding waste treatment standards, 
such as those of Europe, North America and 
Japan (Mutz et al., 2017). Many countries 
around the world have seen an opportunity 
to develop strategies based on the techno-
logical and economic model of the circular 
economy (Momete, 2020); that is, to reduce 
(reduce the volume of waste generated by, 
for example, the agricultural, forestry, tex-
tile and food industries, as well as the cost 
of collection and treatment of waste), to re-
use (cleaning and repair of a discarded 
product so that it can be reused), and to re-
cycle (collection and transformation of 
waste into secondary raw materials) (Dau et 
al., 2019; Rosa et al., 2020). 

 
Table 4 
Food waste as raw materials for the manufacture of biomass briquettes 
 

Waste/residue type Calorific value (MJ/kg) References 

Charcoal, wild cassava, bioethanol 17.7 - 19.7  (Gesase et al., 2020) 

Recovered wood, food waste 19.5 - 21.3  (Myrin et al., 2014) 

Molasses as a binder 23.54 - 29.21  (Wang et al., 2019) 

Food waste 0003 - 0.009  (Elkhalifa et al., 2019) 

Artichoke stalks, wheat straw 15.6 - 17.71  (Titei et al., 2019) 

Food processing sludge 18.59 - 25.70  (Chiou et al., 2015) 

Jackfruit peel waste 20.1 - 22.6 (Pratiwi et al., 2019) 

Food waste, molasses 25.2 - 32.3  (Zhai et al., 2018) 

Olive oil waste 31.8  (Arvanitoyannis et al., 2007) 

Coconut fiber, rice husk, mineral coal 0.0158 - 0.0239 (Hoyos et al., 2019) 
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The success of the circular economy model 
depends on appropriate management of 
waste. This includes promotion of product 
repair and reuse, increases in efficiency in 
terms of energy and resource consumption, 
increases in the recycled content of new 
products, boosting of high-quality remanu-
facturing and recycling, reductions in carbon 
footprint and in the use of water and other 
crucial materials, the elimination of single-use 
products and of planned obsolescence, a 
move towards business models based on 
products as services, promoting digital 
transformation and traceability of products 
and materials, and promoting efficient and 
environmentally sensitive economic growth 
(Çetinay et al., 2020; Cramer, 2020; Jabbour et 
al., 2020; Kokkinos et al., 2020). 
 
5. Conclusions 
Humanity is currently facing serious envi-
ronmental challenges. Advancements in 
technology, population growth, urbanization 
and increased energy consumption are 
producing vast quantities of waste, and the 
use of environmentally harmful processes to 
meet energy demands are driving climate 
change and threatening the world’s ecosys-
tems. The need to formulate and implement 
new programs of waste repurposing, sus-
tainability and renewable energy production is 
now more urgent than ever. Significant 
advances have been made in these areas in 
recent years, but far more is required if we are 
to address the environmental challenges of 
our time in any meaningful way. Future 
research should address Industry 4.0 and the 
green and circular economies, placing the 
focus on utilization of agricultural, forestry, 
textile and food industry waste, the 
development of new waste-based businesses, 
the generation of energy by alternative means, 
and the global alignment of production, 
recycling and waste repurposing policies. 
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