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Closed-orbit theory of oscillations in atomic photoabsorption cross sections
in a strong electric field. II. Derivation of formulas

J. Gao and J. B.Delos
Physics Department, College of William and Mary, Wtlliamsburg, Virginia 23187

(Received 3 December 1991)

A formula for photoabsorption cross sections of hydrogen and alkali-metal atoms in a static electric
field is derived, based on the closed-orbit theory previously used to study hydrogen in a magnetic field.

Electric fields are simpler than magnetic fields, because the classical motion is regular and closed orbits
can be enumerated. In alkali metals the core modifies the relevant dipole matrix elements, and it pro-
duces additional phase shifts.

PACS number(s): 32.60.+i, 32.80.Cy, 32.80.Fb

I. INTRODUCTION

This is the second of our papers dealing with the effect
of closed classical orbits on the absorption spectrum of
atoms in a strong electric field. In the first paper [1] we

stated a formula that connects closed orbits with oscilla-
tions in the absorption spectrum of hydrogen and sodi-
um. We made comparison between theory and experi-
ment above threshold. Here we present a complete
theoretical analysis. The derivation is based on the
theory developed in Ref. [2]. The approximations and
physical picture used there are readily applied here.

The Schrodinger equation for a hydrogen atom in an
electric field is separable in parabolic coordinates.
Hence, unlike the case of an atom in a magnetic field, the
classical trajectories are not chaotic. In principle, we can
list all of the closed orbits that propagate away from and
return to the vicinity of the nucleus. For hydrogen three
approximations are used: (1) Near the atomic nucleus,
the electric field is negligible; (2) far from the nucleus, the
waves propagate semiclassically; and (3) returning waves
are similar to (cylindrically modified) Coulomb-scattering
waves.

For alkali-metal atoms, the potential energy felt by the
electron is Coulombic outside a core, and hence the radi-
al wave functions are hydrogenic functions with a phase
shift 5I. In addition, I-s coupling in the 3p configuration
mixes l, and s, into (j,m. ) states. These two effects
modify the angular distribution of the outgoing waves.
Moreover, when the wave returns to the ion core, it is
scattered. The scattered waves consist of a Coulomb-
scattered wave and a core-scattered wave as well. Both
of these waves then retrace the closed orbit and later re-
turn to the ion to produce oseillations which are associat-
ed with repetitions of the orbit. In other respects, the
cross section is similar to that obtained for hydrogen.

The paper is organized as follows. In Sec. II we briefly
explain the theory for atoms in magnetic fields given in
Ref. [2]. In Secs. III—V the behavior of waves in the vi-
cinity of the nucleus is discussed. We specify the initial
wave function and the dipole operator, then the wave
function near the ionization threshold and the radial in-
tegral, and finally the outgoing waves and the smooth

II. GENERAL FORMULA AND MODIFICATIONS

In Ref. [2] the formula for the average oscillator-
strength density Df (E) in a magnetic field was given.
We follow closely the formulation given in Ref. [2],
denoted here as "II," and equations from that paper are
referenced as, for example, [II, (5.13a)]. We restrict our-
selves here to the case where the light is linearly polar-
ized along the electric field (m-polarized light).

The photoabsorption cross section o(E) is related to
the average oscillator-strength density Df (E) by

222
a = Df(E),

m, c
(2.1)

and the oscillator-strength density is related to the
Green's function by

Df (E)=—2m, (E E,)—.

(DQ, ~1m' +~Df, ) . (2.2)

By dividing the Green's function into a "direct" part and
a "returning" part and by using a semiclassical approxi-
mation, it was shown in Ref. [2] that the oscillator-
strength density could be written as a smooth-
"background" term plus a sum of sinusoidal oscillations,

background. In Sec. VI we discuss the semiclassical
waves in the region where electric field and Coulomb field
are comparable. The amplitude and the phase of wave
functions are specified, and the effects of repetitions of
classical closed orbits are taken into account. In Sec. VII
the result of Secs. III-VI are put together to describe os-
cillations in the spectrum. In Sec. VIII we note that the
formula cannot be applied to the 8=0 orbit, and we
derive an expression for this case. In Sec. IX, by using
scaled variables to describe the properties of classical tra-
jectories, we are able to get a simple analytic expression
for the oscillator-strength density [3].

The accompanying paper examines the application of
this theory in the simplest case: E &0, for which only
one closed orbit exists. In future papers we will use the
theory to calculate cross sections for E (0 [4].
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Df (E)=Dfo(E)+g Cl, (E)sinhk(E) .
k

(2.3)

4m, (E E;—)
Dfo(E =0)= — g ~b/ I(n, l, l')

~$2 I'
(2.4)

The smooth-background term Dfo(E) is equal to the
oscillator-strength density that would be obtained in the
absence of a magnetic field,

A. Hydrogen

In the experiment on hydrogen reported in Ref. [6], the
electron was first excited to the n =2 shell and then ion-
ized. Both steps were performed with z-polarized light.
The external field couples the degenerate s and p states in
the n =2 shell (linear Stark effect), so the initial wave
function is

The integrals I(n, l, l') are dipole matrix elements be-
tween the initial bound state and the free states, and the
b&' are Clebsch-Gordan coefficients. Each oscillatory
term arises from a closed orbit labeled k. The amplitude
and phase constant C& and 6k are calculated from the
formula [II, (5.13a)] in atomic units

g; = g d(R„((r)YI (8,p),
I

or, more specifically,

1—[R2o Ypp(8, 0)+DER&, Y,p(8, 0)],
2

(3.1)

(3.2)

Ckexp(ibk)=(E E, )2' —~ rb
'

X (sin8"sin8" )' A "e
i f 2

2i(8r, )'"
X e ' exp[i(Sz /A' —

2
~p")]

Xy(8,")g*(8f),

where

(2.5)

in which A, =1 for the 2s+2p state and A, = —1 for the
2s —2p state; thus,

1 1
dp

2 2
(3.3)

Combining the initial state with the z component of the
dipole operator, one obtains for }Dg; ) a combination of
partial waves times Clebsch-Gordan coefficients. The re-
sult is written in the form

and

y(8)= g (
—1) 'I(n, l, l, )b/ Yt (8,0)

1

(2.6)

DP, = g dIR„Ir gb/'m Yt'm(8~p)
I

The coefficients are defined as

= f YI' (8,q)cos8YI (8,q)»n8d8dq,

(3.4)

(3.5)

1/2

&2( +)((8r)' ')
I(n, l, l&)= I R„I(r)r dr . (2.7)

and the values needed in this paper are

oo=V'3 bio=V'3 bzo=V' —,', z&
=V'

—,', (3 6)

Here 0, and 0f are the initial and final angles of the kth
closed orbit, Szk+2(8r&)' is the classical action around
the orbit, p" is the Maslov index, A 2 is the classical am-

plitude, and rb is an arbitrary boundary radius which we

typically take to be around 50ao. Ck and 5k are obtained

by evaluating the amplitude and the phase of the right-
hand side of Eq. (2.5). For further details, see Ref. [2].

The above formula was derived to describe the absorp-
tion spectrum of hydrogen in a magnetic field. To de-
scribe the spectrum of hydrogen and alkali-metal atoms
in electric fields, several modifications of the formula
must be made. First, we need to modify the initial wave
function; for hydrogen in electric fields the initial state is
a combination of s and p states, while for sodium, the
effect of spin-orbit coupling must be incorporated.
Second, for alkali-metal atoms, each of the continuum
wave functions P„i is a hydrogenic function with a radi-
al phase shift 61 =~pl caused by an atomic core. Third,
we need to include repetitions of the closed orbits.
Fourth, the formula does not apply to the orbit that goes
up and down the field with I9; =Of =0.

III. WAVE FUNCTIONS QF THE INITIAL STATE

Ionization cross sections depend upon the initial state
from which the atom is ionized.

For hydrogen, then,

Df =(1/&2)[rR2pV' —Y]p+ArR~~(V —Ypp+V' Y2p)]

(3.7)

B. Pseudohydrogen

and

g; =R„,(r)YI (8,y)

Dq, =rR„,(r)yb, ', Y, (8,q).

(3.8)

(3.9)

For the initial 3p state, we have

lj/ =R 3 &
( r ) Y']p ( 8 p )

and

(3.10)

In his studies of the Stark effect, Harmin [5] used an
artificial model of hydrogen, in which the coupling be-
tween s and p states was ignored. (His purpose was to
compare hydrogen with alkali-metal atoms, which do not
have this degeneracy. ) To compare our results with his,
we also consider this model, which we call "pseudohydro-
gen. " It is just like real hydrogen, except that the initial
states are

D 1//&': rR 3 ] ( r )( V & & Ypp +V 3 Ypo ) (3.11)
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C. Sodium

In the experiments on sodium [6], again the electron
was first excited from 3s to 3p states using a laser that
was linearly polarized parallel to the electric field. Since
the spin-orbit splitting (17 cm }exceeded the laser reso-
lution (0.3 cm '), the laser selected either the P3/2 or
the P, /2 state with the ionizing energy [7]
E3/2

—24 476. 3 cm ' and E, /2
= —24 493.5 cm

The initial-state wave function is then either

R»(r)(Q —', Ytoa++ —,
' Y»P) for j = —'„m.= —,

' (3.12a)

or

R3t(r)(Q —,
' Ytoa —Q—', Y»p) for j =

—,', m =
—,
' (3.12b)

or the analogous states having m~
= —

—,'. a and p are two
spin states, with

I (2,0, 1)=4.6888,

I (2, 1,0)= 1.3535,

I (2, 1,2)=5.4142,

I (3, 1,2)= 11.1282,

I ( 3, 1,0)=3.7094 .

(4.1}

[The value of I(3, 1,0) given in Ref. [2] was not correct. ]
To describe the wave functions for Na, we must divide

space into several regions: (1} For ro & lao, inside the
core, the wave function cannot be expressed in any simple
form; it must be computed by some ab initio method.
However, we do not need much information about this
region. (2) For lao Sr 550ao, the wave functions are
written in terms of the regular and irregular Coulomb
function for the excited electron,

a= 0
J2I+l( sr } . 2l+I(

Rt "s(r)=cos5& — —sin5&v'sr 3/8r

(4.2a)

Generalizing this case, the initial situation corresponds to
an incoherent statistical mixture of two pure states: Both
have the same value of j, one has mj =

—,', and the other
has m. = —

—,'. Each of these can be written as

o. Y2i+t(v'sr ) J2i+t(~8r )
R, '"s(r) =cos5, — +sin5,

&sr 3/Sr

(4.2b)

where yt/2 y —t/2 P d

(3.13) R 0,out( r )
—R 0, reS

( r ) + lR 0, irrel( r )I I I

J2i+i(3 sr ) Y2i+i(~8r )
I +lv'sr 3/Sr

(4.2c)

C3/2 —+ z

Cl/2 —+ t

C3/2 —+ t

1

( 1/2 — +z
3

(3.14)

Hence, for sodium,

DP; = g C~ rR«gb&'~ Yi.~(8, tp)y~ ~; (3.15)
m I'

RI'"g is the wave function that is regular at the origin,
RI ""'g is the one that is irregular at the origin, and RI '"'
is the outgoing wave function at large distances. 5& is the
phase shift to the Coulomb wave caused by the sodium
core. 5I =p&/m is set by taking the quantum defect pi on
the branch [5]

—
—,
' &p, &+—,',

if j=2, mj=2,

D tt/ = rR 3 i ( Q —Y2otx +Q 9 Yoo(x +Q —
5 Y2iP )

i.e.,

p& ~(pi+ —,
' )(mod 1 ) ——,

' .

or ifj =
—,', m =

—,',
(3.16) This choice ensures the proper sign of the dipole matrix

element IN, (n, l, l'). The values are

"R 3t (+ ~~ Y2O~+ + 9 YOO~ + t5 Y2i p} ~

(3.17}

po= 1.350-+ +0.350,

p, =0.856~ —0. 144,

p2=0. 014, pI) 3 0 .

IV. %'AVE FUNCTION NEAR THE IONIZATION
THRESHOLD AND RADIAL INTEGRAL The asymptotic forms for large r (valid for

5ao ~ r 5 50ao) of these wave functions are

For hydrogen (and pseudohydrogen) the wave func-
tions near the ionization threshold were given in Eqs. [II,
(4.4)—(4.11)],and the relevant dipole matrix elements are
also defined in Eq. (2.7) of this paper. The values needed
are

R "s(r}=I

1/2

cos[&sr —(l + ,' )n. —

vr/4+5' ]I&'sr, —(4.3a)
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R 0, irreg( r )I
2

&8. r

1/2

sin[&8r —(I + ,' )—7r

vr—/4+ o( ]I&8r (4.3b)

V. THE SMOOTH-BACKGROUND ABSORPTION,
THE OUTGOING WAVES, AND THE g's

With the radial wave functions defined above, the
direct part of the Green's function is

R O, out( )—
I

2

~&8r

1/2

exp[i [Vgr —(I+ ,' )vr—

—rr/4+ 5( ] ] /"t/8r

Gd+;, (r, r', E)= g Yr (6 tp)gi (r r')Y
I, m

2R ' ' (r )R '"'(r )

gt (r, r')= '2~(R EReg( }REout(r ) )

(4.3c)
where W is the Wronskian

(5.2)

Equations (4.2) are exact solutions to the Coulomb
Schrodinger equation at E =0, and they give an adequate
approximation to the solution for a reasonable band
around E =0.

The ionization cross section is proportional to the di-
pole matrix elements between the initial states and the
E=0 states. Let us define

IN, (n, l, 1')= t/8 f R„&(r)R~.'"s(r)r dr,
0

(4.4)

It follows that our radial integrals differ from his by the
same factor. He gave values for the required integrals
based upon an unpublished calculation by K. T. Cheng.
We will use those values (divided by &2) in our calcula-
tion:

IN, (3, 1,0)=Q —,'(3.32—5.39E),

IN, (3, 1,2)=Q —,
' (5.79—152.2E),

(4.6)

where E is in hartrees.

where R„&(r) represents a radial factor for the initial state
and R& '"s(r) is the regular solution at E =0, normalized
so that its asymptotic part matches Eq. (4.3a). Such in-
tegrals are analogous to the hydrogenic integral [II,
(4.12)], and for sodium, the integral IN, (n, l, l') will re-
place the hydrogenic integral I(n, l, l') everywhere in our
formulas.

In comparison, Harmin, in his calculation, defined
similar radial matrix elements, but normalized his wave
functions differently. His wave functions were normal-
ized by 5 functions in energy

f Rf'g„;„(r,E)Rf'P„;„(r,E')r dr =5(E E'), (4.5)—
0

and a detailed analysis shows that our radial wave func-
tions differ from his by

R& '"'s(r) =Q—'R H's, ;„(r,E =0) .

A. Background absorption

As was shown in Ref. [2], the smooth-background ab-
sorption is related to the direct part of the Green's func-
tion by the formula

Dfo(E =0)=—2(E E;)—
(DQ; IlmGd+, IDq; & . (5.3)

Straightforward application of Eq. (5.1}and the appropri-
ate formula for Dg, leads to the following results.

For hydrogen

Dfo(E=O)= 4(E E;)—g~d—tb&' I(n, l, l')~2

=
—,'[—,'I(2, 0, 1) +,4, I(2, 1,2) + —,'I(2, 1,0) ]

=3.939 . (5.4)

This value applies to either initial state (2s+2p).
For pseudohydrogen,

Df0(E =0)= —4(E E; ) g ~b~' —I (n, l, l')
~

=—'[—,'I(3, 1,0) + ,', I(3, 1,2) ]-
=8.356 . (5.5)

For sodium,

Dfo(E=O)= 4(E E;) g ~C—J b&'. —IN, (n, l, l')~ . (5.6)
I', m

In this case, the values for the two possible initial states
are not the same. For j =—', , rn =

—,',

W=RtRz —R2R
&
=i/(8mr'2) .

This formula applies to hydrogen or to sodium. In the
latter case, the Green's function is understood to contain
a unit operator acting upon spin states.

Df (E=())=—', fD(E0= m0=0~0)+—,'Dfo(E=O, m =1~1)
=4E,. [—', IN, (3, 1,0) + —,', IN, (3, 1,2) + ,', IN, (3, 1,2) ]-
=2.373 (5.7a)

while for j =
—,', m, =

—,',
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Df0(E =0)= ,'D—fo(E=O, m =0~0)+ ', D—fo(E =O, m = 1~1)
=4E, [—,'IN, (3, 1,0) + —,', IN, (3, 1,2) + —,', IN, (3, 1,2) ]

=1.936 .

Therefore, l-s coupling simply superposes the background absorption with different values of m.

(5.7b)

B. Outgoing waves

The quantity Gd;, }DP, ) represents the initial outgoing wave that is produced when the photon ionizes the atom. For
r ~ 5ao, the asymptotic expression can be used for Ri '"'(r

& ), and the outgoing wave becomes

p,„,(r) =Gd+;, ~Dg; )

i )
i /223/4 —3/4e —i3+/4e iv 8r

( 8 )e imp
$m (5.8)

= g f,„,(r, 8)e' (5.9)

in which

(8)=g( —1)'Yi (8,0)e '
J &8Yi" (8'y')Ri'"s(r')

I

XDP;(r')r dr' . (5.10)

The functions p (8) represent the angular distribution of
the outgoing waves. They are evaluated for the various
cases by again using the appropriate initial state in Eq.
(5.10).

For hydrogen, we obtain

function —i.e., the angular distribution of outgoing waves
depends on whether the electron spin is up or down. The
general formula for the p (8) is

(8)= QCJ g ( —1) I(n, l, l')bi Yi (8,0)e
J

(5.16}

The specific forms with different quantum numbers are,
for j=—m. =—' —3 —1

27

(8)= g di( —1)'I(n, l, l')bi' Yi. (8,0),

or, explicitly,

yo(8) =Q-,' [AI(2, 1,0)boo YOO(8, 0)

+ A.I (2, 1,2)b20 Y2O(8, 0)

I(2 0 1)bioYio(8 0)]

(5.11)

(5.12)

po(8) =Q —,
' [booIN, (3, 1,0)Yoo(8, 0)e

+bzoIN, (3, 1,2) Y20(8,0)e ']a,
yi(8) =Q —,'b2&IN, (3, 1,2) Y2& (8,0)e 'p

and, for j =
2 mJ =

2

po(8) =Q —,
' [booIN, (3, 1,0)Yoo(8, 0)e

(5.17a)

(5.17b)

For the special case 0=0,

~0(0)= (A /&24m }I(2,1,0)+ (A /&16m. )I(2, 1,2)

+bzoIN, (3, 1,2) Y20(8,0)e ']a,
pi(8) = —Q —,'b 2(IN, (3, 1,2) Y2, (8,0)e 'p .

(5.18a)

(5.18b)

—(1/~8m. )I (2,0, 1) . (5.13)

~o(8) =b00I(3, 1,0)Yoo(8, 0)+bqoI(3, 1,2) Yqo(8, 0} .

The value of po(0) is —2.3382 for A. = —1, and 0.4676 for
A, =1.

For pseudohydrogen, Eq. (2.6) is correct, and

When 8=0, both y's only have a spin-up part. In other
wards, aH our observed oscillations in sodium are caused
by the mf =0 final state:

geo(0) = —[IN, (3, 1,0)e +2IN, (3, 1,2)e ']a

(5.14) =(0.312e +1.09e ')a, j =
—,', m. =-,' (5.19a)

All the other ~'s are equal to zero. The value at 0=0 is

~0(0)=&1/12mI (3, 1,0)+&1/3nI (3, 1,2)

po(0) = —[IN, (3, 1,0}e +2IN, (3, 1,2}e ']a
3&4~

,'(0 312e —+.1 09e ')a, j. =—', m. =
—,
'

=4.2290 (5.15) (5.19b)

For sodium, due to the spin-orbit coupling, for each
quantum number j, the outgoing wave is a spinor

The angular distributions of the outgoing waves are plot-
ted in Fig. 1.
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(3) 28-2p s+2p (b) 3p (c) P, P„,
J,(t, 8, )= B(r, 8)

8 t, 8, )

at the initial and final boundary rb, then,

A2=IJ2(0, 8, )/J (t 8;)I'",

(6.3)

(6.4)

FIG. 1. The angular distribution of the outgoing waves: (a)
2s+2p initial state; (b) 3p initial state; (c) 3 P3/21/2 initial state.
Dashed lines are spin-up states, and solid lines are spin-down
states.

VI. SEMICLASSICAL RETURNING WAVES

where t, is the time of first return to the boundary.
When a closed orbit returns to the nucleus, the

Coulomb field sends the electron back to retrace exactly
the orbit in reverse. However, the neighbors do not re-
trace their steps. They pass behind the nucleus and go
back out close to the closed orbit, following it around un-
til it returns again. The amplitude for the nth return is
obtained by evaluating the same two-dimensional Jacobi-
an (6.3) at t„, the time of the nth return to the boundary,

A" = IJ (0, 8;)/J (t, 8;)I'" . (6.5)
As is well known, the semiclassical wave function can

be calculated from classical trajectories provided the
wave function is known on an initial surface. Since our
Hamiltonian has cylindrical symmetry, the three-
dimensional wave function can be separated:

P(r, 8, y) =Q,„,(r, , 8, ) A (r, 8,y)

X exp[i[St(r, 8)/fi pm. /2]] e—' ~ . (6.1)

We take the boundary sphere as the initial surface. The
amplitude is related to a two-dimensional quantity
Az(r, 8) by the formula

A (r, 8,y)= A2(r, 8)Ir, sin8, /r sin8I'~ (6.2)

A. The amplitude A&

In Ref. [2] which dealt with orbits of energy E =0 in a
magnetic field, all the orbits were unstable. Therefore,
each closed orbit contributed a substantial oscillation
only on its first return, and in most cases, the contribu-
tion of the second or third returns of an orbit were negli-
gible. However, in the case of an electric field, for E &0
the relevant orbits are stable, and for E )0 the instability
is rather weak. Therefore, many repetitions of a given or-
bit can produce visible effects. For the hydrogen atom,
the effects can be calculated using only minor
modifications of Eq; (2.5). For sodium, on the other
hand, the effects of repetitions are nontrivial.

Computationally, instead of integrating the neighboring
orbits step by step when they are close to the nucleus, we
neglect the electric field inside the boundary radius and
use analytical formulas for Kepler orbits. Specifically, on
each return of a trajectory to the boundary rb, the value
of 0 and p& are recorded; then, using standard formulas
for Kepler orbits, one can show that the trajectory goes
back out through the boundary at an angle

p~/rb 1
8' =8—

2(sgnp & )sin '
~

+n/2.
(1+2Eps)'

(6.6)

and with p&=p. Hence, the neighbor is launched in a
new direction, and it can be followed numerically until its
next return. (A better way to treat this problem is given
by Mao and Delos [12].)

B. The phase

The phase of the semiclassical wave function is calcu-
lated as follows. In Eq. (2.5) the phase Sz is f p dq on a
closed orbit starting and ending at the boundary rb, and
the term 2(8rb)' corrects this phase to include the ac-
tion integral from r =0 to r =rb. Hence, each time the
orbit passes through the nucleus, the phase increase by
2(8rb )'~ . It follows that the semiclassical phase for the
nth return of the kth closed orbit is

The amplitude is calculated by computing each classi-
cal closed orbit and its neighbors, and evaluating the
two-dimensional Jacobian

S"'"=n(Sz+2+8rb) .

If EWO, then (8rb )'~ should be replaced by

(6.7)

1
r 2 E+-

r

1/2 1/2
1

arctan —1—
Er

1/2
7T E&0
2

(6.8a)

f V'2E+2/r dr= '

0 1
r 2 E+-

r

1/2
2+ E

1/2

1n(v'Er +&Er+1), E )0 . (6.8b)
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The Maslov index is computed by counting caustics en-
countered by the trajectory [8]. For any Hamiltonian of
the form

H =p l2m+ V(q), (6.9)

the Maslov index increases by 1 at each simple zero of
the Jacobian J(t) As trajectories are integrated, we
monitor J2(t) for changes of sign, and increment iu at
each such change. In addition, as stated in Ref. [2], the
index increases by 1 each time an orbit passes through
p=O. (One might expect that the Maslov index for the
nth repetition of the orbit, p", is equal to np'; however,
this relation does not always hold. A general formula for
iu" is given in Ref. [12].)

Furthermore, at each return to the nucleus the Maslov
index increases by 2 if 8f%0 and by 1 if 8f =0. This
change is due to a focusing effect of the orbits close to the
nucleus.

For 8fWO, the proof is a trivial extension of formulas
given in II. Using the approximation discussed therein,
we derived a closed-form expression for the incoming
part of the returning wave [II, (4.23a)]:

1 )m in /22 —3/2 —i

field. According to the description given in Fig. 3 of Sec.
IV D of Ref. [2], we took a zero-energy Coulomb scatter-
ing wave, rotated it so that its incoming direction would
correspond to the direction of approach of the kth trajec-
tory, and then spun it around the zero axis to recover cy-
lindrical symmetry.

For hydrogen, the resulting approximations for the re-
turning waves, and their effect on the oscillator-strength
density, were fully described in II. Here we develop the
corresponding approximation for alkali-metal atoms, in-
corporating the phase shifts due to the atomic core.

%aves returning to the sodium ion must satisfy two
conditions: (i) They must be the solutions of the
Schrodinger equation for Na, and (ii) since the potential
deviates from Coulomb form only at small r, the incom-
ing waves must be same as hydrogenic ones,

(& ) =(& )~ Na, 8f inc T c,8f inc '

The required expressions for the incoming part of the
wave functions are as indicated in [II, (4.23a) and
(4.23b)]:

(qm ) ( 1)mein/22 —3/2~ —i

Xexp [ i 2+r [ 1—+cos( 8—8f ) ] ]

X(r sin8fsin8) ' e™~. (6.10)

X exp [ i 2)rlr [1+—cos(8—8f ) ] ]

X ( r sin8f sin8) ' e' (7.1)

By precisely the same method, the corresponding expres-
sion for the outgoing part of the returning wave is

(f ) ( 1)me
—in/22 —3/2~ —1

~ Na, 8f inc

—g( —1)' 2 ~ ' Yi' (8,0) Yi (8, ip)
2 I

X exp [i2+r [1+cos(8 —8f ) ] ]

X ( r sin8f sin8) ' e'

X exp[i( 3/8r +1m +3rrl—4) ]lr . (7.2)

(6.11)
The partial-wave expansion of the returning wave is

These asymptotic expressions hold for r ~ 10ao and 8
close to Of. Hence, at the boundary r =rb, 0=Of, the
scattered wave is related to the incoming wave by

0N~, e 2~i~ ' (r)Y (8 ip)
I

(7-3)

i2V/grb
(g, e )„„=e ' e '(g, );„, . (6.12)

Clearly, the phase difference between the Coulomb scat-
tered and the incoming wave is (2{/l8rb n). The first—
term is the classical action from the boundary to the ori-
gin and back to the boundary. The second term is natu-
rally incorporated into the Maslov index for the trajecto-
ry, and it shows that this index increases by 2 in each re-
turn to the nucleus. {The case 8=0 will be examined in
Sec. VIII.)

/Ii =e ' —(
—1)™Yi*(8f,O)&8;v'2 (7.4)

therefore,

—g( —1)' Yi' (8f,0)Yi (8,q&) 8

where Ri '"g(r) is given in Eq. (4.3a). Here is the point at
which waves returning to a sodium ion differ from those
returning to a hydrogen ion —the radial wave functions
are different. If we use Eq. (4.3a) to separate fN, e intof
incoming and outgoing waves and match the incoming
part with (7.2), then

VII. RETURNING AND SCATTERED WAVES
CLOSE TO THE NUCLEUS (FOR 8%0) Xg o, reg(r)e

i5
(7.5)

As stated in Ref. [2], the returning waves are assumed
to be similar to the wave that would be obtained from a
plane-wave source at infinite distance in a pure Coulomb

Let us now evaluate the overlap of the returning wave
with the "source" (Df; ~gN, e ) [noting also that

Yi (8f,0) is real ]:
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(
—1) (Dg; ~tj'IN, e ) = —g( —1)'YI* (8f,0)e '(Dp, ~&8RI "'sYI )

I

—g ( —1)'e '[ YI (6f,0)CI I(n, l, l')bI. y ]
2 I J

4m
(8f) .

v2

(7.6)

(8) is the "unexpected conjugate" of y (8): It contains the Hermitian conjugate of the spin state y, and (in

principle) complex conjugates of the coefficients bI', C~, the integral I(n, l, l'), and YI (8f,0), but it does not contain
i5(

m» m»» 1m f»
the complex conjugates of e '. In our case (linear polarization), all the quantities marked [] are real, so p (8) is the
transpose spinor to y (8).

Each returning orbit carries with it a returning wave which is equal to a constant times 11N e defined above:
Rs f

g„,t(r, 8, tp)=e' +22 (r, 8)exp[i[St (r, 8) pn—/2] j(r, sin8, . /r sin8)'~2/, „t(,, 6,. ) .

This is set equal to a constant times (7.1) on a boundary point r =rf, 8= 8f.
P«t(rf, 6f, rp) Nm(QNa —

s (rf, 8f, tp));„, .

(7.8)

(7.9)

Combining Eqs. (7.1) and (7.8), we get

N = Az (rf, 8f)exp[i [S2 (rf, 8f) pn/—2]jg c(rt, , 8;)e ' 2 ~ me '(r, /r)~ )(sin8, sin8f)'~ ( —1)

Setting r; =rf =rb and using Eq. (5.8) for t)'Ic„„we obtain

(7.10)

N (Dp; ~gN, e ) =( —1)2' ~ rb
' e '(sin8;sin8f)' e ' "

A2 exp[i[St (r, 8) pn. /2] j—p (8;)p (8f) .

(7.11)

Near the boundary, the scattered part of the wave function can be extracted from Eq. (7.5):

(gN, e )„„= — g (
—1)™2 m

' YI" (8f,0) YI (6, tp)r exp[i[(8r)' 17r 3n /4]—je—
2 I+ml

It is obvious that (pN, e )„„canbe separated into two parts [9],

(7.12)

( PNa, IIf }scat ( Pc, ef }scat+(encore, ef }scat

where

(7.13)

and

(tI'I, II )„„= — g ( —1}' 2 ~ ' YI' (8f,0) YIm(6, tp)r exp[i[(8r)' lm3rr/4—]j.—
2 l~/m

(7.14a)

(tt„„& )„„= — g ( —1)™2~
m

' YI' (8f,0)YI (8, rp)r exp[i[(8r)'~ —lm 3n/4]j(e—' —1) .
l~ mf

(7.14b)

( ttt, e )„„is the cylindrically modified Coulomb-scattered wave; it is the same as the scattered wave that arises in hydro-
f

gen. These waves are strongly backward focused, so they go out in the Of direction. These waves then retrace the
closed orbit in reverse, and return to the nucleus later to produce oscillations that we associate with repetitions of the
orbit. (g„„II )„„is the wave scattered from the very compact core of the sodium ion. Since for sodium the phase

f
shifts 61 decrease quickly to zero with increasing I, the partial-wave expansion of the core-scattered waves contains only
three terms (1=0,1,2), with s and p waves strongly dominant. In contrast to the Coulomb-scattering wave, which is

strongly backward focused, the core-scattered wave is almost spherically symmetric. The core scatters the returning
waves from each closed orbit and produces outgoing waves on every other closed orbit. Later, when these waves re-
turn, they give interference structure in the oscillator-strength density, and they again produce Coulomb-scattered and
core-scattered waves (Fig. 2).

Our calculations show that the effect of core-scattered waves is small. Neglecting these terms, we form our final for-
mula for the oscillator-strength density for Bf%0:

Df t(E)=[—2(E E; ) r/]lsm g N —(Dp; ~ttIN, II )
m, k, n

(7.15}
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initial outgoing waves
on each closed orbit

returning waves
on each closed orbit

interference oscillations in
photoabsorption cross section

outgoing
Coulomb scattered waves

retracing orbit
plus

outgoing core-scattered
waves on every orbit

FIG. 2. Coulomb-scattered wave and core-scattered wave in the repetitions of the closed orbit.

Im[C k „exp(ib k „)],
m, k , n

(7.16)

where

exp(1 iIt ) (E E )219/4~3/2r —1/2e ' "b
e t'(3/4)e—

The indices m, k, n correspond to the nth repetition of
the kth closed orbit having I, =m A.

Equation (7.16) is a general formula for the oscillator-
strength density for hydrogen and pseudohydrogen, as
well as sodium. The only difference among them is in the

(8) factors.

VIII. THE SPECIAL CASE 8=0

I

function is

f,, e, =o=Jo(2&v» (8.1)

where g=r+z =2z. Using the asymptotic approxima-
tion for the Bessel function, the closed-form expressions
for the incoming part and the scattered part of the re-
turning wave are

' 1/2

If m =0, there is a closed orbit lying on the z axis with
0;=of =0. For this orbit, the partial-wave expansions
(7.2) —(7.9) [II, (4.22c)], and [II, (4.23b)] still apply. How-
ever, the closed-form expressions [II, (4.23a)] and (6.10)
do not hold, since the required stationary-phase approxi-
mation does not apply for Of =0. Therefore, the
oscillator-strength density cannot be obtained from the
general formula simply by taking the limit of 0f =0. This
case must be analyzed separately.

—i [(8z) —7T/4]

(+ =)r c,s/=0 scat

1/2
i [(8z) / —m-/4]

so at the boundary r = rb,

i (2+8r —n /2)(4,0&
——0). t.

= (4,e/
——0)

(8.2)

(8.3)

(8.4)

A. Returning and scattered waves

If the electrons at large distance approach the nucleus
along the positive z direction, then the closed-form wave

This proves that for 8=0, each time the orbit passes
through the core, the Maslov index increases by l, and an
additional phase 23/8r is added to the wave function.

If we consider sodium instead of hydrogen, then the in-
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( PNa, 8&=0)scat ( P csee=0)scat+( score, 0&=0)scat &

1/2

(8.5)

(& =)core, 9&=0 scat
7T 8z

L

e /ri (+8r —3n /4) ~ 3/4

corning waves remain the same as those for hydrogen,
and as before, the scattered wave function is a combina-
tion of a Coulomb-scattered wave (8.3), which is focused
on the z axis, and a core-scattered wave, which is again
described by (7.14b) with HI=0. Writing the scattered
wave in terms of Pl(cos8) instead of Yl (O, tp), we obtain 1/2

A2 = lim
I J2(0, 0, )/J, (r, o)I'"=

0-0 30
(8.7)

Therefore, at the boundary r =rb, the three-dimensional
amplitude is

(i) The amplitude of the semiclassical wave function
[Eq. (6.2)] is undefined when 8=8;=0, so we need to take
this limit carefully. Since the two-dimensional amplitude
is

2l +1 i25(X g — PI(cos8)(e ' —1) .
I 2

(8.6) (8.8)

Again the core-scattered waves go out on every closed or-
bit and produce interference structure when they return
(negligible in the cases we have examined).

(ii) The amplitude of the returning wave near the core
is calculated by the standard method: The semiclassical
returning wave is set equal to a constant N times the
closed-form expression (8.2):

B. Formula for the oscillator-strength density (8=0)

Only a few changes need to be made in order to derive
the oscillator-strength density.

W„t =&(P,, e, =o);..
We find

(8.9)

N = t(t,„t(rb, 0)A exp[i (S2 prr/2) —
]

1 2

2 nv'Sr.
1/2

exp[ i (+8r—l, —~/4) ]

ae,=2 vrrb
'~ e '"e exp[i (S2 pm/2 —

m /2)]y—o(0),
f

(8.10)

where po(0) is given in Eqs. (5.13), (5.15), and (5.19) for
H, and "Pseudo-H, " and Na. The same constant N rnul-

tiplies the partial-wave expansion (7.3) of the returning
wave close to the nucleus, and, as in Eq. (7.7),

(Dg; lg„,,=, ) = —y, (0) .
4m.

(8.11)

Finally, combining Eqs. (8.8), (8.10), and (8.11),
straightforward algebra gives

Df &(E)= Q lm[C„exp(i b „)]

I

going, returning, and scattered waves in the vicinity of
the nucleus. The only statement we have made about the
waves in the rest of space is that they can be described by
a semiclassical approximation (6.1). In this section we
describe classical trajectories in combined Coulomb and
electric fields, and give formulas for the actions and arn-

plitude A (r) that are used in the semiclassical approxi-
mation. Most of the formulas are standard "textbook"
results, and we only briefly summarize the essential ones.

A. General properties

ae,=Im g(E E;)2 nrl, '—
Bt9f

X exp[i (S" p„tr/2—
H= —'(p +p +( / )

—1/(p +z )' +y'z .

A transformation to scaled variables according to

(9.1)

The Hamiltonian of a hydrogenic atom in a homogene-
ous static electric field F is

in which

S"=n (S +22+8r ).b

—m/2)]go(0)y o(0), (8.12) p=p/a, z =z/e,

p, =p, /p, p, =p, /p, r=r/r

with

(9.2a)

For E & 0 in an electric field, the Maslov index on the nth
return is 2n —1.

IX. CLASSICAL TRAJECTORIES
AND SCALED VARIABLES

Up to this point, we have dealt mainly with the quan-
tum aspects of the problem: the initial state, and the out-

(x=F ' g=F y =FI~ (9.2b)

where the only parameter is L, the scaled component of

then converts the Hamiltonian to the form

H=H/P2=p, /2+P 2/2+L /2p2 —1/(p +z )'i +z,
(9.3)
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angular momentum L =1,/aP= m AF ' . It follows
that the shapes of all the trajectories depend only on the
parameter L and on the scaled energy E/F'

Defining parabolic coordinates and their corresponding
canonical momenta,

by the formula

P=cos8, + 29, s—in 8, —L cos8, /P, .sin 8, .

B. Semiclassical phase and amplitude

(9.9)

u =(9+z)' v =(9 z—)'

z= —,'(u —v ), p=uv,

pg p v +pz~~ pv up~ S zv

+ —41 Pu PU L ,
(

i z)
2 g2+v2 2g2v2

(9.4a}

(9.4b)

(9.4c)

(9.4d)

The change in phase of the semiclassical wave function
on one cycle around the closed orbit is

Sz= g(p„du+p„dv), (9.10a)

fp„du = f(2P+2su —u L /—2u +2)' du, (9.10b)

fp„dv =f ( 2P+—2sv +v L /2—v +2)'i dv .
we introduce an independent variable ~ which connects
to time t by [10]

(9.10c)

=u +v
d 7.

(9.5)

The circle on the integral means that it is evaluated from
the initial to the final surface. The "period" of the orbit
(in fictitious time) will also be used below. It is

I=(u +v )(8—E) (9.6a)

=—'(p„+p„)+—'(u —v )+ +u v 2 2+2 2v2

This change of independent variables from t to r(t)
preserves the canonical form if the new effective Hamil-
tonian is defined as

r= fdu/(2P+2su —u L /2u —+2)'i (9.11)

Likewise, the amplitude factor A (r) of the semiclassi-
cal wave function can also be derived from Eqs. (9.7).
The relevant Jacobian

( 8 )
B(x,y, z)

a(r, 8, ,q, )—s(u +v )
—2. (9.6b)

As u, v, p„, and p„evolve with the "fictitious time" 7, H
is conserved and its value is zero. [Note that du /dr =p„,
but du/dt=p„/( u+v ).] For the Hamiltonian (9.6b)
the motion in the u and v directions can be separated:

where

= uvJ~(r, 8, ), (9.12)

B(x,y, z)B(p, z, yQ(u, v, y)B(r, 8;,y;)
B(p,z, p)B(u, v, p)B(r, 8;,y; )B(t,8;,g; )

—'p + —,'u —su +L /2u —1=P

,'p, i v Ev—+L/2v— 1=—P . —
(9.7a)

(9.7b)

B(u, v)J2(r, 8; )= (9.13)

The constant p is a conserved quantity closely related to
the Laplace (or Runge-Lenz) vector [11]

P= —[L z/p +P (zP —pP, ) z/&]+ ,'p —. (9.8)—

The quantities (Bu/Br)& and (Bv/Br)s are, respective-
l l

ly, p„and p„which can be related to u and v through the
conservation law (9.7). The other two derivatives
(Bu/88, ), and (Bv/88;}, can be calculated as follows.
On the initial surface,

In our case, trajectories all begin radially outward on a
circle of radius r;; hence, the term 2p —

pp, initially van-
ishes. Then p can be related to the initial position (r;, 8; )

u, =r, ' (1+cos8 )' v, =r, ' (1—cos8 )'

so

(9.14)

J2(r= 0, 8)=+r, /2[c os( 8; /2)(. 2 P+2 Eu,
—u; —L /2u, . +2)' +sin(8, /2)( —2P+2sv; +v, L/22, . +2)'~ ]

—. (9.15)

At the final time, when the electron returns, these deriva-
tives with respect to 0; depend upon integrals over the
whole trajectory. As the electron moves along its path,
increases as

r(u, 8, )=I du/[2P(8;)+2su —u —L /2u +2]'~2 .
Ql

(9.16)

and, similarly

Bv

ae,
a7.

Bv g.

(9.17a)

(9.17b)

So at the (fixed) final time of return to the boundary, Numerical evaluation of these integrals gives J2(rf 8 ), '
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and the semiclassical amplitude is

A =(u, v, /ufvf)' [J2(0,8;)/J2(rf, 8;)]'

C. Evaluation for the special case 0=0

(9.18)
S(E)=f(4+2eu —u )'i du,

and the fictitious period of the orbit is

r(e)= f du/(4+2Eu —u )'i

(9.19)

(9.20)

As stated before, when the angular momentum L =0,
there is a closed orbit with 0=0, and the motions of this
closed orbit and its neighbor are mainly along the u
direction (u =0). The constant /3 is

The neighbors of the closed orbit are slightly off the u

direction. Their motion in v is sensitively dependent on
8. The velocity in the u direction is obtained from (9.7b),
and we can neglect the 0 ( v ) term in that equation,

P= lim (cos8;+ ,'r sin—8,) .
8,. 0

The two-dimensional action (9.10a) has no v integral,

8U =[2su +2(1—cos8;)]'
d7

Therefore,

(9.21)

Q(1 —cos8; )/e sinh(v'2E~+arcsinhQr;c, ), e &0
u(r, 8;)= '

Q(1—cos8;)/lel sin(v'2lel~+arcsinQr, lel ), e &0 .

(9.22a)

(9.22b)

only for E &0. It counts the additional caustics that
arise when the neighbors of the 8=0 orbit cross over.
The number of such crossings can be determined by ex-
amining Eq. (9.24):

r

0, E)0
V 2 Int( n a /n ), E & 0 9.27

At the boundary u, =uf the amplitude at the final point
on the orbit is

1/2
BUf

'f ae,

BU;

"ae, (9.23)A= lim
0,. ~0

Qr, /2v'2E

sinhv 2Er

V'r, /2v'2IE
I

sinv'2l c. l r

E. &0

1/2

Df, (E)=g(E)F"4y .„Si(v'2lElnr)

XsinIn [S(e)F '~ —m]

E. (0 .

When E. =0, then

QS, /2A= —v„m /2+ 5], (9.28)

where g(E) and b, are related to the radial dipole in-

(9.25)
'T

Extending this argument, the amplitude on the nth return
is obtained by replacing ~(e) by n~(e). Similarly, the
scaled action on the nth return is given by nS(E). These
are the quantities that belong in the formula (8.12):

0.380

(9 24) where a = &2 le lr(e ). This formula is finally reduced to

1/2

Df, (E)=Im g (E E; )2 mF'~—
Si(v'2 elnr)

X exp(i [n [S(s)F ' —~]—v„vr/2I )

Xgo(0)go(0) (9.26)

where Si(v'2lelnr) means sin(v'2lEln~) if c. &0 and
sinh(v'2Enw) if c, )0. Here the phase associated with the
nth repetition of the closed orbit has three terms. The
first term n [S(c.)F '~

] is simply the nth multiple of the
classical action. The term —n~ comes from the follow-
ing facts. Above E =0, there is a caustic at the turning
point of the orbit and a kind of focus at the nucleus, so
the Maslov index of the returning wave on the nth return
is 2n —l. In addition, Eq. (8.12) contains another vr/2,
so —p„~/2 —~/2=n~. The last term v„~/2 applies

0.360

0.340
~ W

0

0.320—

0.300—
0.0 50.0

E(1/cm)
100.0

FIG. 3. Phase change of oscillations above threshold caused

by phase shift associated with quantum defect. The solid line is

the photoabsorption cross section for sodium; the dashed line is
the cross section that would be obtained by setting 6=0.
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tegrals and quantum defects

g(E)=(E E—; )2 m. ~gpyp~, b, =arg(J/pgp) . (9.29)

For H or Pseudo-H $4p$40 is a real number, so 6=0. For
sodium $40$4O is a complex number; by applying some
simple complex algebra, we obtain the magnitude of gogo
as

6=arg(pppp) =0.5184 .

Figure 3 displays the effect of the phase shift 5 on the ab-
sorption spectrum.

For E )0, Eq. (9.28) is compared with experiments in
the accompanying paper.
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