
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Summer 8-7-2020 

Flight Data of Airplane for Wind Forecasting Flight Data of Airplane for Wind Forecasting 

Astha Sharma 
University of New Orleans, asharma6@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/td 

 Part of the Oceanography and Atmospheric Sciences and Meteorology Commons 

Recommended Citation Recommended Citation 
Sharma, Astha, "Flight Data of Airplane for Wind Forecasting" (2020). University of New Orleans Theses 
and Dissertations. 2811. 
https://scholarworks.uno.edu/td/2811 

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with 
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright 
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the 
work itself. 
 
This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=scholarworks.uno.edu%2Ftd%2F2811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2811?utm_source=scholarworks.uno.edu%2Ftd%2F2811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


 

 
 

Flight Data of Airplane for Wind Forecasting 

 

 

 
 

 

A Thesis 

 

 
 

 

 

 

Submitted to the Graduate Faculty of the  
University of New Orleans  

in partial fulfillment of the  

requirements for the degree of  

 
 

 

 

 

 
Master of Science 

in  

Computer Science 

 

 
 

 

 

 

by 
 

Astha Sharma 

 

B.E. Tribhuvan University, 2015 

 
August, 2020 

 



 ii 

Acknowledgments 

I would like to thank my master’s thesis advisors, Professor Dr. Md. Tamjidul Hoque and Professor 

Dr. Mahdi Abdelguerfi of the Department of Computer Science for constantly guiding me and 

encouraging me to work hard for the past two years. I am very grateful to Dr. Mahdi for the support 

and motivation he has given me through every stage of my research. I am thankful to Dr. Hoque 

for providing me an opportunity to learn and grow my knowledge in different areas of Machine 

Learning and helping me find the answers to my research questions.  

I would like to thank Dr. Elias Ioup from the Center for Geospatial Sciences, Naval Research 

Laboratory, Stennis Space Centre, Mississippi, USA, and Professor Dr. Shaikh Arifuzzman of 

Department of Computer Science, for serving as my committee members at hardship. 

I would also like to thank Pujan Pokhrel for helping me understand different ML approaches, 

which were beneficial as I worked through my research work.  

A very special thanks to my family. It would not have been possible without their support. I would 

like to thank my mom, dad, sister Dikchya, and brother Vinayak for having faith in me. 

Last but not least, I am thankful to my friends Manisha Panta, Reecha Khanal, and Rishav Rajendra 

for all the fun time and support. Thanks to everyone who was, directly and indirectly, involved in 

helping me get through my thesis research. 

  



 iii 

Table of Contents 

List of Tables ......................................................................................................................... ii 

List of Figures ....................................................................................................................... ii 

Abstract ................................................................................................................................ vi 

Chapter 1 – Introduction ....................................................................................................... 1 

Chapter 2 – Literature Review ............................................................................................... 4 

2.1 Traditional Approaches for Wind Forecasting ........................................................................4 

2.2 The Microsoft Project .............................................................................................................6 

Chapter 3 – Tools and Techniques ......................................................................................... 8 

3.1 Machine Learning Techniques ................................................................................................8 
3.1.1 k-Nearest Neighbors (kNN) ........................................................................................................................ 8 
3.1.2 Linear Regression ........................................................................................................................................ 9 
3.1.3 Random Forest (RF) .................................................................................................................................... 9 
3.1.4 Bagging Regressor..................................................................................................................................... 10 
3.1.5 Stochastic Gradient Descent ...................................................................................................................... 10 
3.1.6 Gradient Boosting ...................................................................................................................................... 11 
3.1.7 eXtreme Gradient Boosting (XGB) ........................................................................................................... 11 

3.2 Technologies Used ................................................................................................................. 12 
3.2.1 Spark .......................................................................................................................................................... 12 
3.2.2 Apache Spark Streaming ........................................................................................................................... 12 

Chapter 4 – Experimental Setup .......................................................................................... 14 

4.1 Dataset Collection ................................................................................................................. 14 
4.1.1 NOAA based Dataset ................................................................................................................................ 14 
4.1.2 Airplane Dataset ........................................................................................................................................ 15 

4.2 Dataset Selection ................................................................................................................... 15 

4.3 Data Analysis ........................................................................................................................ 19 

4.4 Feature Selection ................................................................................................................... 20 

4.5 Engineering the predictive model .......................................................................................... 21 
4.5.1 Sliding Window Technique ....................................................................................................................... 21 
4.5.2 Averaging .................................................................................................................................................. 23 
4.5.3 Training Model for Forecast ...................................................................................................................... 24 
4.5.4 Offline Predictive Model ........................................................................................................................... 25 
3.5.5 ML Models and Parameters ....................................................................................................................... 25 

Chapter 5 – Machine Learning Approach ............................................................................ 27 

5.1 No Free Lunch Theorem ....................................................................................................... 27 

5.2 Framework for Stacking-Based Models ................................................................................ 27 
5.2.1 Training Procedure .................................................................................................................................... 28 
5.2.2 Grid Search ................................................................................................................................................ 30 

Chapter 6 – Results and Discussions .................................................................................... 31 



 iv 

Chapter 7 – Conclusions ...................................................................................................... 34 

References........................................................................................................................... 36 

Vita ..................................................................................................................................... 38 
 

  



 v 

List of Tables 

Table 1. Microsoft Research Results.............................................................................................. 6 

Table 2. Dataset Statistics ............................................................................................................ 14 

Table 3. RMSE from applying 10FCV on Datasets ..................................................................... 16 

Table 4. Model Prediction at different test heights ...................................................................... 17 

Table 5. Model Prediction at different test heights ...................................................................... 17 

Table 6. RMSE at different window size using XGBC, LR, RF and KNN ................................. 22 

Table 7. Performance evaluation .................................................................................................. 24 

Table 8. Model Performance Evaluation...................................................................................... 24 

Table 9. Executed combinations of Stacked Models. .................................................................. 28 

Table 10. RMSE at different stages of the project. ...................................................................... 33 

Table 11. Output Comparison. ..................................................................................................... 34 

 

List of Figures 

Figure 1. Corresponding RMSE for different k values ................................................................ 20 

Figure 2. RMSE values obtained from using XGBoost, KNN, RF and Linear Regression ........ 22 

Figure 3. Var, MSE and R2 of different ML models ................................................................... 25 

Figure 4. Training the Stack-based framework ............................................................................ 30 

 

  



 vi 

Abstract 

This research solely focuses on understanding and predicting weather behavior, which is one of 

the important factors that affect airplanes in flight. The future weather information is used for 

informing pilots about changing flight conditions. In this paper, we present a new approach 

towards forecasting one component of weather information, wind speed, from data captured by 

airplanes in flight. We compare NASA’s ACT-America project against NOAA’s Wind Aloft 

program for prediction suitability. A collinearity analysis between these datasets reveals better 

model performance and smaller test error with NASA’s dataset. We then apply machine learning 

and a genetic algorithm to process the data further and arrive at a competitive error rate. The sliding 

window approach is used to find the best window size, and then we create a forecasting model that 

predicts wind speed at high altitudes 10 mins ahead of time. Finally, a stacking-based framework 

was used for better performance than individual learning algorithms to get root means square error 

(RMSE) of the best combination as 0.674, which is 98.4% better than the state-of-the-art approach. 

 

Keywords: Machine Learning, Weather Forecasting, Genetic Algorithm, kNN imputation, Linear 

Regression, Extreme Gradient Boosting, Time Series Forecasting, Sliding Window, Stacking-

based Framework. 
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Chapter 1 – Introduction 
 

Weather forecasting is a scientific approach to predict the atmospheric conditions for a given time 

and location. The informal prediction of weather started millennia ago and was formally 

established in the 19th century.  People used to rely on hand-based calculations depending on the 

changes observed in barometer pressure, current weather or sky conditions, and position of clouds. 

However, with the advancement of technology, weather forecasting has now relied upon 

computer-based models, which take many atmospheric variables into account. But human skills 

are still required to choose the best forecast model based on accuracy. The errors in forecasting 

models can be a result of the chaotic nature of the atmosphere, the computational power required 

to solve spatial equations, the initial miscalculations, and the incomplete understanding of 

atmospheric processes.  

 Correct forecasting is essential because it helps protect life and property from potential 

loss. There are a lot of parameters that are included in weather forecasting like temperature, air 

pressure, wind speed, wind directions, and rainfall. Each has its own scope of importance. In our 

paper, we are mostly focused on predicting the wind speed at higher altitudes.  

 The aviation industry is a risky business, and small changes in the atmospheric conditions 

can highly affect perfectly fine airplanes flying at greater altitudes from the earth’s surface. But 

like everything else, airplanes are also coupled with the risk factors. Thankfully, science and 

technology can be used to come up with efficient approaches to reduce danger.  Airplanes in flight 

are highly affected by and susceptible to high altitude winds. These types of wind can be the cause 

of flight turbulence and potential threats associated with it. A heads-up on upcoming powerful 

storms can help change the direction or even re-schedule flights to avoid possible hazards.  
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The most popular form of transportation for long-distance travel in the US [1], airplane, is 

also a great resource for weather data. The data collected from an airplane during flight includes 

information about the aircraft’s position as well as meteorological and environmental 

measurements. These data are of great value for analyzing and predicting various natural 

conditions, like turbulence, which can assist the pilot and flight crew in making decisions about 

the future and avoid any possible mishap. In addition, these data can be used to monitor the flight 

progress and provide improved arrival and departure estimates to passengers. 

Most of the available fight scheduling applications in the US are based on the information 

provided by the Wind Aloft Program from the US National Oceanic and Atmospheric 

Administration (NOAA)[2]. This program collects data via the recurring release of weather 

balloons and radar. The forecasts models then use linear interpolation to combine information from 

the available measurements[3]. However, there is evidence that this NOAA data may not be 

sufficient for making accurate predictions[4]. In our research, we try to put some light on the wind 

information from NOAA data at different heights above the ground. 

The NOAA data come from weather models that are fed with measurements from ground 

stations along with data from weather balloons, satellites, and other instruments. The wind data 

are available at different altitudes ranging from 3,000 to 53,000 feet and include information from 

9 different regions of America: Northeast, Southeast, Northcentral, South Central, Rocky 

Mountain, Pacific Coast, Alaska, Hawaii, and West Pacific[5]. 

Alternatively, the Atmospheric Carbon and Transport-America (ACT-America) campaign 

from NASA covers 4 seasons and 3 regions of the central and eastern United States and is based 

heavily on direct in-flight measurements. Using a variety of instruments, airplanes record their 

positional data as well as meteorological and environmental readings across a variety of surface 
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and atmospheric conditions. The dataset includes 118 days of data with a temporal resolution of 1 

second. There is a total of 34 different features, including latitude, longitude, altitude, ground 

speed, air temperature, wind speed, and direction [6].  

Our objective is to choose a quality dataset from the set of above explained two groups, as 

a step forward in the direction of accurately forecasting/ nowcasting the wind speed.  

In this research, we first describe the model performances for each dataset based on linear 

regression and chose one over the other for the remaining part of the research. Then we further 

cleanse the dataset and apply machine learning algorithms to derive useful information about the 

wind speed. We then evaluate the performance based on the use of different algorithms and group 

together a bunch of outperforming classifiers to give a result better than the result obtained from 

each classifier. We also create offline software that predicts the wind speed in the next ten minutes. 

Finally, we compare the results with some related works. 

 The remainder part of this thesis is organized as follows. In Chapter 2, we review some 

research work related to weather forecasting. Chapter 3 is all about classical machine learning 

techniques (ML) as well as the relevant tools and technologies. In Chapter 4, we describe the setup 

of our study. Here, we introduce the datasets, feature extraction procedure, the forecasting models, 

and performance evaluation metrics used in our work. It also includes elaboration on the parameter 

selection and optimization of several state-of-the-art machine learning (ML) techniques 

implemented. Chapter 5 presents the Stacking-based framework and the performance comparison 

to relevant state-of-the-art techniques. In Chapter 6, we define the result and compare it with that 

from the Literature Review. Finally, Chapter 7 concludes the thesis work with the selection of the 

best performing predictor framework and future directions.  
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Chapter 2 – Literature Review 
 

In the literature review, we discuss similarities and differences in the work done in a similar context 

in the past, as in comparison to what we have done. We have put high efforts in understanding the 

weather and atmospheric components to implement their correlation in our approached wind 

model. Efforts have also been made to develop machine learning models for the predictive analysis 

of airplane data to improve upon the existing NOAA forecasts. 

2.1 Traditional Approaches for Wind Forecasting  

The very first weather report was published in “The Times” on August 1, 1861 [7][8]. The captain 

of “The Beagle,” Robert FitzRoy, was concerned about the weather and the threats associated with 

the ship in a sail. So using some instruments like a barometer and a couple of thermometers at the 

ports of Britain’s coast, he collected weather data which he used along with his instincts ruled by 

observation of the sky and the atmosphere to forecast the weather [7]. In 1911, the first marine 

weather forecast was issued via radio transmission, which included gale and storm warnings 

around Great Britain [8]. The first public radio forecast in the United States was made in 1925 by 

Edward B. Rideout, on the Edison Electric Illuminating station in Boston [8]. Today, there are a 

number of ways in which weather can be forecasted. A consensus of forecast models based on 

various parameters like model biases and performance can help reduce forecast errors [9]. There 

are a number of fields that need a special type of weather forecasting, and one of them is aviation.  

The aviation industry is very sensitive to changing weather. Fog, turbulence, icing are 

forms of weather hazard that can cause trouble in landing and takeoffs as well as airplanes in-flight 

[10]. Thunderstorms are another significant problem for most of the aircraft, which results in-flight 

turbulence because of their updrafts and outflow boundaries [10]. So with this information, it is 

viable to say that it is very important to accurately predict the weather, especially when it comes 
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to the aviation industry. However, most of the flight scheduling applications available in the United 

States today depend on the data provided by the Nation Oceanic and Atmospheric Administration 

(NOAA). For our research purpose, we will put some light on the significance of this particular 

set of data. The information that NOAA Winds Aloft service [5] provides on winds, we will refer 

to it as the NOAA data for simplicity.  

In general, the commercial aircraft fly at heights between 23000 and 41000 feet. It is found 

that winds at these altitudes can vary from 30 to 120 knots [12]. The NOAA data includes wind 

measures from 176 different weather stations throughout the US by lofting high-altitude weather 

balloons in every 6 hours. The wind speed and magnitude are measured at a set of altitudes starting 

from the 3000 feet to 53000 feet above the sea level. In addition to that, a set of measurements 

from corresponding wind stations and wind data from radar observations are combined using ad 

hoc rules, like weighted average, to provide estimates of the winds over a wider range [2][13].  

Reports have shown that over the past 50 years, pilot voice is used in weather models. And 

for more than the last 20 years, efforts have been made to employ data from commercial aircraft 

for better weather modeling [14]. In these past 20 years, the privately-owned commercial aircraft 

data was made accessible to the government organizations for predicting weather phenomena. 

There is another program called Aircraft Meteorological Data Relay (AMDAR) [14], which 

focuses on providing meteorological data from aircraft. To date, AMDAR has centered efforts 

around constructing infrastructure to collect and disseminate the data. Efforts have also made 

qualitative analyses and in simple linear models using AMDAR data [15]. 

Our work is differentiated from prior work as we focus on the comparative analysis of two 

publicly available datasets, one from NOAA and other from the featureful and rich NASA data. 

We also dig deep into the filtering dataset and use it to create a predictive model for forecasting 
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winds at high altitudes. One of the reasons for using a rich dataset is to understand the 

environmental features that actually boost the possible wind speed. Although the environment 

variables cannot be controlled, the results from the wind predicting model can be used by pilots to 

make wise decisions about the schedules as well as the direction and position of the aircraft to 

avoid any disasters. One of the key benefits of the proposed method is that it allows for better 

predictions by mining available data.  

2.2 The Microsoft Project 

One of the major inspirations for this research is a similar project from Microsoft [3], in which 

they conduct a comparative analysis of possible approaches for wind prediction at a continental 

scale. The tried to predict the wind at different heights for given locations. There were 1653 

observations from 496 aircraft. However, they had removed all the observations with 0 and over 

100 knots of speed. They used Gaussian processes (GP) [16] for their predictive analysis. GP has 

been used to model natural phenomena, including spatial interdependencies [17], [18]. As an 

example, they have been applied in modeling wind energy and power forecast [19]. In the case of 

Microsoft, they directly observed the aircraft ground speed and extended the GP-based techniques 

to incorporate data that is auxiliary to the phenomenon being modeled. The results, as mentioned 

in Microsoft’s research paper using different approaches, are described in Table 1. 

 
Table 1. Microsoft Research Results 

Approach RMS Error 

NOAA data 51.53 

Gaussian Process Estimate 50.93 

Gaussian Process + Airplane Data 43.66 
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One of the problems with Microsoft’s project is that its data is not publicly available. 

However, in our research, we have removed the barrier by using open-source datasets that are 

easily available. Therefore, this research can be used as a benchmark for comparison. 
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Chapter 3 – Tools and Techniques 
 

In this chapter, we discuss all the different technical approaches we had applied to efficiently solve 

the problem definition associated with our dataset. 

3.1 Machine Learning Techniques  

This section comprises details about all the state-of-the-art machine learning methods, their 

working principles, strengths, and weaknesses. 

3.1.1 k-Nearest Neighbors (kNN) 

The k-Nearest Neighbors [20] algorithm is one of the simplest, non-parametric methods in 

machine learning which can be used for classification and regression problems. It is also known 

as instance-based or lazy learning because the algorithm makes local approximation and does not 

undergo explicit training before classification.  The training data is stored in memory and is used 

during the testing phase. It is a non-parametric technique for estimating a decision boundary or a 

regressive curve without making a strong assumption [20] 

The algorithm is based on feature similarity. It works by storing the entire training dataset and 

then finding the k most-similar training patterns as the prediction is made. The similarity can be 

measured in terms of distance (typically, the Euclidean distance) between the data instances. Then 

an instance is classified to a particular class based on the majority of votes among its identified k 

neighbors. We generally take k as an odd value. Since the algorithm stores all the training data, 

this algorithm is computationally expensive. However, it can be highly accurate in the case of 

nonlinear data. Overall, it is a very simple algorithm and often achieves very good performance.  
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3.1.2 Linear Regression  

 Linear regression is a simple and attractive regression algorithm which is derived from statistics 

and is studied as a model for interpreting the relationship between input and output variables. 

It is a linear model, a model that assumes a linear relationship between the input variables (x) 

against the single output variable (y). Or we can also say that y can be calculated from a linear 

combination of the input variables (x). The unknown model parameters are estimated from the 

data. Like in all other regression analyses, linear regression also focuses on the conditional 

probability distribution of the responses obtained from the predictors. 

Linear regression has been studied for a long time (more than 200 years old) and is the first 

type of regression analysis to be analyzed rigorously and to be used extensively in practical 

applications. This is because of the fact that models that depend linearly on their unknown 

parameters fit easily than models that are non-linearly related to their parameters. Additionally, it 

is also because the statistical properties of the resulting estimators are easier to determine. 

3.1.3 Random Forest (RF) 

Random forest [21] is an ensemble learning algorithm for both classification and regression 

problems that utilizes the predictive ability of multiple trained learners to create a single but better 

performance model. The algorithm creates a lot of individual decision trees based on randomly 

selected feature subspace from the training dataset. Using Bagging, each decision tree is trained 

on the randomly selected subset of the training data, in order to properly classify an unlabeled data 

instance, each decision tree votes for a class label meaning. Each decision tree-labels the instance 

as one of the output classes. The decision on the class of the instance is made on the highest votes 

obtained from the individual tree results in the forest. Despite being a complex form of algorithm 
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and requiring more computational resources, Random Forest is extremely flexible, has high 

accuracy, and can handle different feature types, including binary, categorical, and numerical. 

Randomization is applied in RF when selecting the best node to split.  While constructing 

multiple decision trees in RF, randomization (for selecting the best node to do a split) can be 

achieved using various algorithms like Gini index heuristics, Chi-Square, information gain 

between the features, or using splitting value classically equal to √𝑀, where M is the number of 

features in the dataset.  

3.1.4 Bagging Regressor 

Bagging, also known as Bootstrap Aggregation, is an ensemble method that creates different 

samples of the training dataset and creates a unique classifier for each of those samples. The result 

from these multiple classifiers are then combined based on say, average value, or voting. The thing 

to remember here is that each sample of the training dataset is different, which in-turn gives 

different (trained) classifiers and definitely a different focus and perspective on the problem.  

It helps reduce variance to escape from the overfitting problem. Generally applied to decision tree 

methods, it can be used with different other methods. Bagging is a special case of a model 

averaging approach. 

3.1.5 Stochastic Gradient Descent 

Stochastic gradient descent is one of the iterative methods for improving an objective function 

with proper smoothness properties. Since it replaces the actual gradient (obtained from the dataset) 

by an estimate (calculated from random subsets of data), it can be considered as a stochastic 

approximation of the gradient descent optimization. It reduces the computational burden and 

achieves faster iterations instead of a slightly lower convergence rate when it comes to computation 

of big data. 
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It is one of the important optimization techniques used in machine learning and is a popular 

algorithm for training a wide range of models, including support vector machine, linear regression, 

logistic regression, graphical models, etc.   

3.1.6 Gradient Boosting  

Gradient Boosting [22] is a machine learning technique for both classification and regression 

problems. It helps produce a predictive model which is in the form of an ensemble of weak 

predictive models (typically, the decision trees). It implements the gradient descent algorithm to 

optimize an arbitrary differentiable loss function as it builds the model using the concept of 

boosting. It is also known as GBRT (Gradient Boosted Regression Trees) and MART (Multiple 

Additive Regression Trees). Using gradient boosting, one can generate a set of weak classifiers or 

the decision trees and train them based on random subsets of data in a gradual, additive, and 

sequential manner. This algorithm is used to find the shortcomings of models using gradients on 

the loss function. The loss function generally depends on the problem space. It is one of the 

potential techniques for constructing predictive models as it allows us to optimize user-specified 

cost function and often works great with categorical and numerical values. However, it can be 

computationally expensive and memory exhaustive as it requires a large number of trees and a 

large grid search for parameter tuning.  

3.1.7 eXtreme Gradient Boosting (XGB) 

The XGBC [23] algorithm is an efficient application of a gradient boosting framework. The 

gradient boosting approach facilitates the creation of new models that predict the residuals or errors 

of prior models and then add them together to generate a final prediction. It is called gradient 

boosting because it utilizes a gradient descent algorithm to optimize the loss function or user-

specified cost function. It aims to provide a scalable, portable, distributed, and parallel gradient 
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boosting and is specially designed for greater speed and better performance. It is an open-source 

software library that supports gradient boosting algorithm, stochastic gradient boosting with sub-

sampling at the row, column, and column per split levels and regularized gradient boosting with 

both L1 and L2 regularization. It has gained much popularity and attention lately because of its 

salient features, which make it different from other gradient boosting algorithms.  

3.2 Technologies Used 

In addition to the machine learning approach, we have also adapted to some technology to support 

the processing of big data in our project.   

3.2.1 Spark 

Spark is a cluster computing framework that uses a collection of objects called Resilient 

Distributed Datasets (RDDs) that allow users to perform the in-memory computation on large 

clusters [24]. RDDs are fault-tolerant, parallel data structures which make it possible to hold 

intermediate results in memory, control their partitioning in order to optimize placement of data 

and manipulate them using a rich set of operators [24]. As an outcome of the intermediate results 

being stored in memory, Spark is proven to be much efficient as compared to Hadoop or any 

similar technology for iterative analytics like PageRank calculation, k-means clustering, and linear 

regression [25]. 

3.2.2 Apache Spark Streaming 

Time-sensitive data needs real-time processing. Traditional MapReduce may not be a viable 

solution for such a case as it is suitable for offline batch processing where latency is not a big of a 

deal [26]. However, if the input data is being fed repetitively in discrete sets, multiple passes of 

the map and reduce tasks would create a computational overhead. This problem can be eliminated 

by using Spark.  Using Apache Spark Streaming, we can enable the program to store the 
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intermediate results within memory and when new data arrives, it is batched to perform quick and 

efficient transformations on them [26]. 
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Chapter 4 – Experimental Setup 
 

In this section, we put light on the experimental composition of our research, including initial 

selection, training, and validation of the dataset, feature extraction, and engineering of the 

predictive model. 

4.1 Dataset Collection 

The first step to our research starts with the data collection. Machine Learning approach works 

better when there is enough information to train the model. So, data was one of our major 

constraints. We could only work on our ideas if we had enough data on the problem. Therefore, 

we intensively searched for the relevant dataset on the internet and landed with two of them that 

closely met our requirements. One of them was from the Wind Aloft program by National Oceanic 

and Atmospheric Administration (NOAA), and another was from The Atmospheric Carbon and 

Transport (ACT) America by National Aeronautics and Space Administration (NASA). The basic 

statistics on both the dataset is given in Table 2. 

 

Table 2. Dataset Statistics 

Datasets Number of Instances Number of Features 

WIND ALOFT 170 5 

ACT AMERICA 1.5M 33 

4.1.1 NOAA based Dataset 

The data obtained from the Wind Aloft program by NOAA is being referred to as the NOAA data. 

We collected the NOAA data from their website itself. There was a total of 170 different locations 

for which the wind information was recorded at 3K – 39K feet above the sea level. It also included 

wind information from nine different reasons for the American continent, including Northeast, 
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Southeast, Northcentral, South Central, Rocky Mountain, Pacific Coast, Alaska, Hawaii, and West 

Pacific. The wind information provided by them included information about the direction, speed, 

and temperature in a single block. It was then broken down into individual information based on 

the decoding technique defined on their website. The latitude and longitude were calculated based 

on the individual station location. 

4.1.2 Airplane Dataset 

Another set of data from NASA’s ACT America project is referred to as the Airplane data. This 

dataset includes information from the two well-equipped airplanes. The sensors installed in the 

aircraft were used to collect atmospheric information like latitude, longitude, wind speed, wind 

direction, and air pressure. There is a total of 34 different variable information included in the 

dataset. This campaign covered four seasons and three regions of central and eastern United States. 

It contains a total of 118 days of data where individual file reflects flight information from each 

day. The spatial coverage for data is given as N: 49.11 S: 27.23 E: -71.91 W: -106.49, whereas, 

the temporal coverage is from July 11, 2016, to March 10, 2017. The temporal resolution of data 

was of 1 second.  

This is a rare type of dataset with so many different environmental variables that can 

possibly be affecting the wind speed at higher altitudes. Therefore, we came to the conclusion of 

utilizing its huge coverage to derive useful information for our future predictive model.  

4.2 Dataset Selection 

The availability of two different datasets gave us an opportunity to dive in through the performance 

of each on correctly predicting wind speed based on the relevant features and then make a 

comparative analysis among the two. The decision to use one over the other or even going for a 

stacking-based approach was dependent on the results obtained from the evaluation of the existing 
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datasets. In case of the airplane data, there were 33 different features, so we wanted to understand 

how these features are correlated to the wind speed. Our goal was to find the most relevant set of 

data that would give us the more accurate wind information. Therefore, we turned into finding the 

Pearson’s Correlation Coefficient for each feature against the wind speed for sample population 

and listed out the top 6 correlated features to wind speed. We then used the WEKA tool to perform 

a comparative analysis on the sample dataset. Linear regression was applied to the data and the 

Root Mean Squared Error was calculated.  

In the case of the NASA dataset, the original set of 34 features was reduced down to 6 by 

selecting only the features most strongly correlated to wind speed, wiz., Mach Number, Ground 

Speed, Track Angle, Drift Angle, Static Air Temperature and Wind Direction. For the NOAA data, 

since there are only a few features provided (direction, temperature, latitude, longitude, and 

altitude), all were included. The NOAA data was trained using 10-fold cross-validation at all 170 

different site locations at 30,000 feet height. A sample data of the first 3 days from the airplane 

data was also trained using 10 FCV. The RMSE, using Linear Regression, for both sources are 

given in Table 3.  

Table 3. RMSE from applying 10FCV on Datasets 

Source #Observations  RMSE 

Wind Aloft 170 20.0503 

ACT-America 45126 31.9042 

We also performed two simple analysis on this dataset at different heights in order to see if 

there is any height-wise data dependency: 

i. Use training data from one height and analyze the prediction on all remaining heights 
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ii. Used training data from the lowest and highest heights and analyzed the consistency of 

the prediction of immediate layers and the layers thereafter. 

The RMSE and MAE result from (i) at 30000 ft height is obtained as 23.4266 and 17.7324, 

respectively. The test results are given in Table 4. 

Table 4. Model Prediction at different test heights 

Test heights RMSE MAE 

3000 42.3677 34.62 

6000 38.3919 30.1 

9000 34.4851 25.92 

12000 30.8608 22.75 

16000 25.1507 17.52 

24000 21.334 12.36 

34000 10.4867 7.09 

39000 16.5777 11.68 

45000 34.1917 24.81 

53000 38.2205 29.25 

The RMSE and MAE result from (ii) at minimum height 3000 ft was is obtained as 7.4168 

and 6.3287 respectively, and at maximum height, 53000 ft was obtained as 13.7568 and 10.7422 

respectively. The test results are given in Table 5. 

Table 5. Model Prediction at different test heights 

Training heights Test heights RMSE MAE 

3000ft 

6000ft 8.3558 5.76 

9000ft 13.0813 10.18 
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12000ft 17.9335 14.55 

18000ft 24.5426 19.76 

24000ft 29.3036 23.92 

30000ft 42.3676 34.62 

34000ft 46.8712 39.99 

39000ft 52.5115 45.14 

45000ft 31.6993 26.05 

53000ft 18.4978 15.03 

53000ft 

3000ft 18.497 15.0294 

6000ft 19.4907 16.9295 

9000ft 20.2745 17.3897 

12000ft 22.5671 18.7397 

18000ft 24.8981 20.29 

24000ft 27.8131 21.4903 

30000ft 38.2202 29.2497 

34000ft 41.9856 33.7597 

39000ft 47.0656 38.7496 

45000ft 17.9293 12.7 

 

From Tables 3 and 4, we can conclude that we need to build separate models for different 

layers if we chose NOAA dataset over NASA data. On the other hand, the airplane data look much 

promising and have more features and observations than the NOAA data. Our research after that 

focused only on airplane data. 
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4.3 Data Analysis 

The airplane data chosen for the rest of the research needed a bit of analysis and cleansing before 

we start off using it for our predictive model. Therefore, we began preprocessing our airplane 

dataset by sampling data from 5 days (selected randomly) having a reasonable number of input 

rows. The random sampling approach was employed because it gives an equal probability of 

selection for each element in the full dataset, thereby reducing the probability of biased results.  

A deeper analysis of the available dataset revealed that more than 72% of the total rows had one 

or more missing fields. Almost 23–41% of the columns had missing values. This suggested that 

the available dataset is noisy. Simply dropping the rows with missing values would have been 

undesirable since it would mean losing a sizeable fraction of the data and potentially decreasing 

overall accuracy. We thus required a technique that could address gaps in data without losing 

samples. 

We adopted the very popular technique of replacing missing values called kNN imputation. 

Based on the kNN algorithm, kNN imputation is widely known because of its great performance 

in machine learning applications. Here, the average of the k nearest neighbors at a fixed distance 

is used as the imputation estimate. We used Euclidean distance as the fixed distance parameter. 

The value for k was decided after computing the root mean squared error (RMSE) for a range of 

different values, from k = 10 to 1,500. Our result showed the minimum RMSE of 6.177 at k = 500. 

Therefore, k = 500 was used for imputing the missing values in the dataset. 
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Figure 1. Corresponding RMSE for different k values 

4.4 Feature Selection 

Careful feature selection and filtering was a critical step of this research as we wanted to retain 

only the useful variables that are most related to the wind speed feature. For the feature selection 

process, we used the powerful genetic algorithm (GA) approach. GA gives a clear idea of feature 

selection without requiring expertise about the project’s domain and inclination. For instance, we 

can determine whether the Mach number of an airplane is highly correlated to wind speed without 

necessarily understanding the principles behind that variable. 

Two algorithms — Extreme Gradient Boosting (XGBoost) and Linear Regression — were 

used to analyze the fitness function, and the better algorithm was selected based on the output 

RMSE. Our GA ran for 300 generations for both fitness function algorithms. The following 

standard parameters were set for our GA: Population Size of 20, Crossover Rate of 80%, Mutation 

Rate of 5%, and Elite Rate of 10%. 
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At the end of 300 generations, XGBoost gave a total of 6 fittest chromosomes: indicated 

airspeed, Mach number, track angle, roll angle, potential temperature, and wind direction. Linear 

regression gave a total of 10: latitude, GPS altitude, ground speed, vertical speed, true 

heading, pitch angle, static pressure, sun azimuth, partial pressure water vapor, and saturated 

vapor pressure H2O. 

Since XGBoost reduced the number of chromosomes to 6 and obtained a fitness score 

(28.91) far better than linear regression (42.24), it was the better performer. Therefore, for 

prediction, we examined only these 6 features plus the wind speed. 

 

4.5 Engineering the predictive model 

After carefully working on the dataset for some time, we finally had it filtered with the selected 

feature set and reduced the noise as a result of the missing values. We then advanced to creating 

the predictive wind model. 

4.5.1 Sliding Window Technique  

We approached the time series forecasting with the sliding window technique. This approach takes 

a set of observations sequential in time and creates a model to fit in historical data. The model then 

predicts future outputs based on historical evidence. 

The first step consisted of selecting the sliding window size. We considered a set of window 

sizes, ranging from 2 to 14. Again, RMSE was the deciding factor. After calculating the RMSE 

using four regression algorithms, XGBoost, KNN, Random Forest, and linear regression, we 

obtained the least RMSE at window size 9. The least RMSE using linear regression was obtained 

at window size 10. However, the difference in RMSE at windows 9 and 10 is nominal. For 

consistency, however, and considering the 1-second resolution of the data, we settled on a window 
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size of 9 for all the algorithms. Figure 2 shows the RMSE values obtained at different window 

sizes for all the algorithms used at this step. 

 

Figure 2. RMSE values obtained from using XGBoost, KNN, RF and Linear Regression 

The better understanding of error values obtained at each window size using different 

algorithms can be visualized from the data in Table 6. 

Table 6. RMSE at different window size using XGBC, LR, RF, and KNN 
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Different Window Size RMSE_XGBoost RMSE_LR RMSE_RF RMSE_KNN 

Window 4 5.887 8.072 6.071 6.1 

Window 5 5.94 8.066 6.042 6.098 

Window 6 5.866 8.063 6.023 6.103 

Window 7 5.834 8.06 6.018 6.113 

Window 8 5.922 8.057 6.014 6.124 

Window 9 5.775 8.055 4.645 5.369 

Window 10 5.869 8.053 6.013 6.152 

Window 11 5.896 8.062 6.014 6.164 

Window 12 5.889 8.062 6.011 6.175 

Window 13 5.801 8.062 6.013 6.186 

Window 14 5.809 8.062 6.008 6.196 

 

4.5.2 Averaging  

 After deciding to move forward with the window size of 9, the next step was to take an average 

of all the variables in the dataset for a finite interval such that our data size reduces and gives us 

information about the wind speed and the correlated variables for this duration. After carefully 

understanding the total data points and the need for enough data for training and testing purposes 

for our future predictive model, we decided to take an average of 10 minutes. Since our data had 

a 1 second resolution so we took an average of every 600 (60 – for each second *10 – for each 

minute) points in each file. We ignored the remainder of every file. After averaging, we merged 

them into a single file with a total of 2127 data points. After this point, the file contained sorted 

variables and their averaged values for the best performing window size. 
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 These averaged files were also checked for errors using different predefined models in 

order to verify if the quality of data is retained. Table 7 discloses the error rates of different models 

on the given dataset.  

Table 7. Performance evaluation 

Models VAR RMSE R2 

Linear Regression 0.215 7.703 0.215 

KNN 0.913 2.644 0.913 

Random Forest 0.993 0.772 0.993 

Bagging 0.978 1.327 0.978 

 

4.5.3 Training Model for Forecast 

At this step, we focused on feeding data to the ML algorithms in a slightly different way. The 

features (X) from the first data point were linked to the goal (y) of the second data point, the 

features from the second data point were linked to the y of the third data point, and so on. We did 

this in order to help the machine understand the nature of the upcoming (10 minutes ahead) wind 

speed based on the current environmental features.  We used different algorithms like Linear 

Regression, kNN, Random Forrest, Bagging, etc., to understand the performance of each on the 

given dataset.  Table 6 shows the model performance evaluation under parameters specified under 

Models and Parameters in Chapter 4. 

Table 8. Model Performance Evaluation 

Models VAR RMSE R2 

Linear Regression 0.997 6.538 0.997 

KNN 0.993 10.066 0.993 
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Models VAR RMSE R2 

Random Forest 0.998 5.540 0.998 

Bagging 0.997 6.236 0.997 

 

The same table can be better visualized in the column chart, figure 3. 

 

Figure 3. Var, MSE, and R2 of different ML models 

4.5.4 Offline Predictive Model 

Depending on the best performing model, i.e., Random Forest, we created an offline wind 

predictive model. A python script was generated to run pass the arguments (6 features obtained 

from the feature selection process in Chapter 3) to the model to give the wind value in knots. The 

result obtained was fairly accurate, with an error rate of 0.59.  

3.5.5 ML Models and Parameters 

We tried different algorithms for our problem domain and then evaluated the performance of each 

model using different evaluation metrics like RMSE, Variance, and R2. Based on the results 
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obtained from each model, we derived a conclusion on using the best performer model for 

predicting wind speed at higher altitudes. 

We investigated six different supervised machine learning algorithms under different 

parameter settings. We used simple yet but effective and widely used algorithms such as k-Nearest 

Neighbors (kNN) [20], Linear Regression, Random Forest (RF) [21], Bagging, Gradient Boosting 

Classifier (GBC) [22], and Stochastic Gradient Descent.  

We used the novel Scikit-learn library in order to build the model and fine-tune the parameters 

of different learning algorithms, as mentioned above. The parameters were defined as k = 100 for 

k – Nearest Neighbors, 3000 estimators for Random Forest, 10 estimators for Bagging, 0.02 

learning rate, and 500 estimators for Stochastic Gradient Descent. The Linear Regressor model 

was set up with default parameters. 
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Chapter 5 – Machine Learning Approach 
 

5.1 No Free Lunch Theorem 

In Machine Learning, there is a famous No Free Lunch theorem developed by Wolpert et al. [33]. 

According to this theorem, every problem is unique, and there is no specific algorithm that is 

defined to work best for every problem. Hence the name No Free Lunch. Therefore, if we are 

working with a machine learning approach for our problem domain, we must at least try a couple 

of algorithms to see which one is performing better and only use the best or a combination of best 

performers for deriving the solution model.  

The choice of a learning algorithm is dependent on various factors like the nature and size of 

data under consideration, roughness of the decision boundary, the problem definition, and the 

computational time.  

5.2 Framework for Stacking-Based Models 

In this section, we describe the novel Stacking-based machine learning framework. Stacking 

multiple best performing classifiers give a result that is better than all the classifiers considered 

individually. We applied the Stacking technique to generate better wind predictor.  

Stacking, an ensemble technique, combines several machine learning algorithms to create one 

predictive model. The prediction probabilities from selected base learners are augmented to the 

original feature set to build a new feature-set. Then the meta-classifier is trained on this new 

feature-set, reinforcing the final predictions [27][28][29].  

Stacking implementation has at least two levels of learning stages. In our study, we prepared 

one layer of base learners and one layer of meta-learner. In the first stage of learning, we generated 

ML models for based layers using the Scikit-learn library. All the first level prediction probabilities 

from these base models were used as features and augmented with the original feature vector. 
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Then, the augmented feature vector was used for training the final level of the learner or the meta-

classifier [30][31][32]. 

Considering machine learning algorithms are based on different working principles, we 

explored several state-of-the-art ML algorithms – KNN, RF, Linear Regression, Bagging, and 

XGBC. The selection of base and meta-learners was influenced by the underlying principle of the 

selected algorithm. We created different combinations of base learners with KNN, RF, Linear 

Regression, Bagging, and XGBC. Likewise, linear regression was chosen as the meta-classifier. 

As shown in Table 9, we generated different combinations of base classifiers, including the meta-

classifier, leading to different Stacking-based models. 

Table 9. Executed combinations of Stacked Models. 

Models Combination of Base Classifiers Meta classifier RMSE 

1 RF+KNN LR 0.674 

2 

3 

RF+KNN+XGB 

RF+KNN+LR 

LR 

XGBC 

0.737 

0.681 

4    

5    

6    

 

5.2.1 Training Procedure 

In the training phase, we used a state-of-the-art framework to generate the subsets of the dataset 

for the parent nodes (note that each subset of a dataset contains a feature-set with all its child 

nodes) and invoked our proposed stacked generalization-based framework to train different tiers 

of learners. We used the 10-fold cross-validation technique on our dataset while we ran it through 

different base classifiers to generate a new subset with predicted probabilities for each feature of 
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the dataset. All prediction probabilities were concatenated with the original dataset to generate a 

new subset of the training dataset, which was finally used as a training set to train meta-classifier. 

This way, a stacked model was developed by training different combinations of base and meta 

classifiers. We also calculated the model performances using RMSE to get the actual error rate 

due to stacking. The cross-validation is done in order to ensure that we are not overfitting out 

model.  

Figure 4 represents the training phase for our proposed Stacking-based framework, where 

part (a) illustrates training base classifiers with the instances of child nodes (XINITIAL), which gives 

a set of prediction probabilities (XPROB) and part (b) illustrates a new feature set (XFINAL) resulted 

by augmentation of the set of prediction probabilities (XPROB) with the feature vector (XINITIAL). 

  

Base Classifier1 

Base Classifier2 

Base ClassifierN 

XINITIAL Base Classifiers 

Meta Classifier 

Meta Classifier 

(a) (b) 

XINITIAL 

XFINAL 

XPROB 

XPROB 
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Figure 4. Training the Stack-based framework[33]. 

5.2.2 Grid Search 

The hyperparameters of a model is a characteristic external to the model but affect the 

performance. The values of hyperparameter are set before the learning process is initiated, such as 

the value of k in k-Nearest Neighbors, the number of hidden layers in Neural Network, etc. Grid 

search is a technique to find the optimal hyperparameters for a model to give the most accurate 

predictions [34].  

We used GridSearchCV from sklearn library to find the best hyperparameters for different 

models, including k-Nearest Neighbors, Random Forest, Bagging, Gradient Boosting, and 

Extreme Gradient Boosting. The outperforming hyperparameters were k=200 for k-Nearest 

Neighbors, max_depth = 5, n_estimators = 50 for Random Forest, n_estimators = 50, max_depth 

= 5, min_child_weight = 2 for extreme Gradient Boosting. 
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Chapter 6 – Results and Discussions 
 

For this paper, we performed a handful of experiments like comparing the available datasets to 

deciding on choosing the best, analyzing and improving the quality of the selected dataset, and 

finally, presented a method of predicting the speed of one of the critical atmospheric phenomena, 

wind.  

In the beginning, when we were not very familiar with both the dataset, NASA’s dataset 

looked more promising because of the number of feature sets, the total number of observations 

and the spatial and seasonal coverage. However, we did some experiments to see if the NOAA’s 

dataset can be used for further analysis. Since the NOAA website had the data spread according to 

the different heights, we tried to see if there were any height-wise data dependency. Therefore, we 

tried a couple of approaches to understand data behavior. First, we trained our model (using Linear 

Regression)  at one height and tested the model at all other heights, one at a time. And secondly, 

we trained the model (Linear Regression based) at the lowest and highest heights and tested them 

against all other heights, one at a time. In both cases, we did not see any kind of trend that could 

be used to support data dependability. As a result, we completely switched to using NASA’s 

dataset for the rest of the experiment. 

A simple analysis of sample data from the NASA dataset helped us understand the ratio of 

missing values present in the dataset. Dropping the missing values was not an option because it 

would cut off most of the observations, leading to lower accuracy. Therefore we used an approach 

called kNN imputation, where the missing values were replaced with the mean of the k-nearest 

neighbors. Therefore, we first found out the best value for k neighbors, which was obtained from 

the root mean square error obtained from using different k values on the given dataset. This 



 32 

experiment gave us the best value of k as 500, figure 1. Using this value, we performed the kNN 

imputation to cover the missing values and complete our dataset. 

The next step required filtering of only useful features, and this was done by using the 

Genetic Algorithm for feature selection. We used some standard parameters like Population Size 

of 20%, Crossover Rate of 80%, Mutation Rate of 5%, and Elite Rate of 10% and ran two 

algorithms XGBoost and Linear Regression as the fitness function to obtain two different sets of 

fittest chromosomes. Since XGBoost gave the lowest fitness score (lower the better) and the least 

number of chromosomes, therefore, we stuck with this output. The entire dataset was then filtered 

based on only these six features, namely, Indicated Air Speed, Mach Number, Track Angle, Roll 

Angle, Potential Temperature, and Wind Direction. 

Next, we applied the sliding window technique, where we used different window sizes 

ranging from 2 to 15 and calculated the RMSE at each window to see which window size is giving 

us the lowest error. For this experiment, we used four different ML algorithms, XGBoost, Linear 

Regression, Random Forest, and k-Nearest Neighbor, of which three showed window 9 to be the 

best performer. Therefore, we used the window size 9 dataset. 

At this stage, we had a noise-free filtered dataset. However, it still needed some operation 

because the dataset we were using until this point was recorded at a time difference of one second. 

Therefore, we took an average of every ten minutes of data, which led to a drastic reduction in data 

points from over a million to 2127 observations. Thereafter, we used this dataset on different 

classifiers to check the model performance (Table 8). The training was done in such a way that the 

features from one line were mapped to the wind speed at the next line. This was done to help the 

model understand the nature of the wind speed in every other ten minutes. And among all the 
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classifiers Random Forest was performing the best, it was used to create an offline wind predictive 

model. 

Last but not least, we tried stacking-based models using the different combinations of base 

and meta layers. The best performing stacking-based model had Random Forest and KNN at base 

layer and Linear Regression at the meta layer. 

Our approach is valuable and general enough for use in similar cases and publicly available 

datasets. As a result of our different experiments, we have been able to obtain competitive results 

at each step of the project, as demonstrated in Table 10. 

Table 10. RMSE at different stages of the project. 

 

State Datapoints RMSE 

Initial State 45126 31.904 

After kNN Imputation 78023 6.177 

After Sliding Window 1595422 5.775 

After Training Model 2127 5.540 

 

Our RMSE obtained at different stages of the project show a significant improvement. 

Recall that the best RMSE obtained by Microsoft’s project discussed earlier was 43.66. This is a 

good indication that our project is headed in the right direction.  
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Chapter 7 – Conclusions 
 

The number of commercial and military aircraft flying in the sky each day is massive and only 

expected to increase. Applying the in-flight data these aircraft collect to wind speed prediction can 

be efficient and cost-effective. Although the ten minutes ahead forecast may not be very significant 

in making flight schedules, it can be used in multiple other decision-makers about the airplane in 

flight, like deciding whether or not to move forward in case of possible turbulence, decisions about 

changing the direction of the aircraft, decisions about landing or takeoff and decisions about 

changing the trajectory of the aircraft.  

This wind model is also closely related to turbulence experienced in flight, which depends 

on the wind speed at a particular position and altitude. We can, therefore, extend this project to 

create a predictive model that can be used to optimize flight time based on wind speed. Improving 

wind speed models also has applications in the creation of more fuel-efficient aircraft designs. 

Nevertheless, the result of this project is impeccable when compared to that of the NOAA and 

Microsoft models (Table 11). 

Table 11. Output Comparison. 

Projects RMS Error 

Wind Aloft from NOAA  51.53 

Microsoft Research Project 43.66 

Our Project 5.54 

 

Current airplane flight planner applications are using weather information from the NOAA-

based Wind Aloft program, which is quite noisy and less accurate. With a better system in place, 
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keeping track of flights can help manage arrivals and departures more efficiently and assist in 

making decisions about flight schedules. 

 

  



 36 

References 

[1] Air Traffic by Numbers. Federal Aviation Administration, June 2019. 

[2] Federal Aviation Administration (FAA)/ Aviation Supplies & Academics (ASA). Aviation Weather 

Services: FAA Advisory Circular 00-45g, Change 1. July 2010. 

[3] A. Kapoor, et al. “Airplane Aloft as a Sensor Network for Wind Forecasting.” Proceedings of the 13th 
International Symposium on Information Processing in Sensor Networks, 2014, pp. 25–34. 

[4] C. Roberts. “America Has Gotten Bad at Predicting Weather - but There’s a Plan to Fix It.” Observer 

Media Group Inc., August 26 2019. 

[5] National Oceanic and Atmospheric Administration. “Wind/Temp Forecast.” Aviation Weather Center, 

2019, https://www.aviationweather.gov/windtemp/help. 

[6] Yang, M., et al. “ACT-America: L1 Meteorological and Aircraft Navigational Data.” ORNL DAAC, 

2018. 

[7] Laskow, Sarah. “The Very First Forecast.” Theatlantic.Com, November 20. 2014, 

https://www.theatlantic.com/technology/archive/2014/11/the-very-first-forecast/382911/. 

[8] “Weather Forecasting.” Wikipedia, https://en.wikipedia.org/wiki/Weather_forecasting. 

[9] Kimberlain, Todd. TC Genesis, Track, and Forecasting. 

[10] Aircraft Owners and Pilots Association. Aircraft Icing. 2/2/2007. Accessed May 26 2008. 

[11] National Weather Service Forecast Office Dodge City, Kansas. Aviation Hazards They Didn’t Tell 

You About. September 10, 2008. 

[12] Boccia, L., et al. “Low Multipath Antennas for GNSS-Based Attitude Determination Systems 

Applied to High Altitude Platforms.” GPS Solutions, 2008. 

[13] Jeppsen Private Pilot Manual. Sanderson, 2001. 

[14] National Oceanic and Atmospheric Administration. Aircraft Data Web. https://amdar.noaa.gov/. 

[15] http://amdar.noaa.gov/docs/mamrosh-ams-98/. 

[16] C.E. Rasmusen, and C. Williams. “Gaussian Processes for Machine Learning.” MIT Press, 2006. 

[17] N. A. C. Cressie. “Statistics for Spatial Data (Revised Edition).” Wiley, 1993. 

[18] Guhaniyogi, R., et al. “Adaptive Gaussian Predictive Process Models for Large Spatial Datasets.” 

Environmetrics, vol. 22(8), 2011. 

[19] Jiang, X., et al. “Adaptive Gaussian Process for Short-Term Wind Speed Forecasting.” 2010 
Conference on ECAI, 2010. 

[20] Altman, N. S. “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression.” The 

American Statistician, vol. 46, no. 3, 1992, pp. 175–85. 

[21] Breiman, L. “Random Forests.” Machine Learning, vol. 45, no. 1, Oct. 2001, pp. 5–32. 

[22] Friedman, J. H. “Stocastic Gradient Boosting.” Comput Stat. Data Anal., vol. 38, no. 4, 2002, pp. 

367–78. 

[23] Chen, T., and C. Guestrin. “XGBoost: A Scalable Tree Boosting System.” Proceedings of the 22nd 

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, 
California, USA, 2016), 2016. 

[24] Zaharia, Matei., et al.  “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for in-Memory 

Cluster Computing.” 9th USENIX Conference on Networked System Design and Implementation, 

USENIX Association, 2012. 

[25] Gopalani, Satish, and Arora Rohan. “Comparing Apache Spark and Map Reduce with Performance 

Analysis Using K-Means.” International Journal of Computer Applications, vol. 113, no. 1, 2015. 

[26] Matei Zaharia, et al. “Spark: Cluster Computing with Working Sets.” 2nd USENIX Conference on 
Hot Topics in Cloud Computing, 2010, pp. 10–10. 

[27] Sumaiya Iqbal, Md Tamjidul Hoque, “PBRpredict-Suite: A Suite of Models to Predict Peptide 

Recognition Domain Residues from Protein Sequence,” in Oxford Bioinformatics Journal, 2018 

[Published]. 

https://doi.org/10.1093/bioinformatics/bty352


 37 

[28] Avdesh Mishra, Pujan Pokhrel, Md Tamjidul Hoque, “StackDPPred: A Stacking based Prediction of 

DNA-binding Protein from Sequence,” in Oxford Bioinformatics Journal, 2018 [Published]. 

[29] Michael Flot, Avdesh Mishra, Aditi Sharma Kuchi, Md Tamjidul Hoque, “StackSSSPred: A 

Stacking-Based Prediction of Supersecondary Structure from Sequence,” Book Chapter (Chapter 5, 

pp 101-122), in: Kister A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, 

vol 1958. Humana Press, New York, NY, 2019 [Published]. 

[30] Corey Maryan, Md Tamjidul Hoque, Christopher Michael, Elias Ioup, Mahdi Abdelguerfi, “Machine 

Learning Applications in Detecting Rip Channels from Images,” Applied Soft Computing, Elsevier 

Journal, 2019 [Published]. 

[31] Aditi Sharma Kuchi, Md Tamjidul Hoque, Mahdi Abdelguerfi, and Maik Flanagin, “Machine 

Learning Applications in Detecting Sand Boils from Images,” Array, Elsevier Journal, 2019 

[Published]. 

[32] Duaa Mohammad Alawad, Avdesh Mishra, and Md Tamjidul Hoque, “AIBH: Accurate 

Identification of Brain Hemorrhage using Genetic Algorithm based Feature Selection and Stacking,” 

Machine Learning and Knowledge Extraction (MAKE) journal, MDPI, 2020 [Published]. 

[33] Panta, M., et al. Traning Procedure for Stacking Based Model. 

https://player.slideplayer.com/100/17310465/slides/slide_15.jpg. 

[34] Krishni. An Introduction to Grid Search. January 5 2019, https://medium.com/datadriveninvestor/an-

introduction-to-grid-search-ff57adcc0998. 

 

 

  

https://doi.org/10.1093/bioinformatics/bty653
https://link.springer.com/protocol/10.1007%2F978-1-4939-9161-7_5
https://www.sciencedirect.com/science/article/pii/S1568494619300778
https://doi.org/10.1016/j.array.2019.100012
https://www.mdpi.com/2504-4990/2/2/5


 38 

Vita 

The author Astha Sharma was born in Lalitpur, Nepal. She received his bachelor’s degree in 

Computer Engineering from the Tribhuvan University in Kathmandu, Nepal, in 2015. After two 

and a half years of professional experience, she joined the Graduate program of Computer Science 

at The University of New Orleans. She worked at Canizaro Livingston Gulf States Center for 

Environmental Informatics center as a graduate assistant while working on her thesis. This 

research work was conducted under the supervision of Dr. Md Tamjidul Hoque, Dr. Elias Ioup 

and Dr. Mahdi Abdelguerfi in 2019/2020 

 

 

 

 
 


	Flight Data of Airplane for Wind Forecasting
	Recommended Citation

	Acknowledgments
	Abstract
	Chapter 1 – Introduction
	Chapter 2 – Literature Review
	2.1 Traditional Approaches for Wind Forecasting
	2.2 The Microsoft Project

	Chapter 3 – Tools and Techniques
	3.1 Machine Learning Techniques
	3.1.1 k-Nearest Neighbors (kNN)
	3.1.2 Linear Regression
	3.1.3 Random Forest (RF)
	3.1.4 Bagging Regressor
	3.1.5 Stochastic Gradient Descent
	3.1.6 Gradient Boosting
	3.1.7 eXtreme Gradient Boosting (XGB)

	3.2 Technologies Used
	3.2.1 Spark
	3.2.2 Apache Spark Streaming


	Chapter 4 – Experimental Setup
	4.1 Dataset Collection
	4.1.1 NOAA based Dataset
	4.1.2 Airplane Dataset

	4.2 Dataset Selection
	4.3 Data Analysis
	4.4 Feature Selection
	4.5 Engineering the predictive model
	4.5.1 Sliding Window Technique
	4.5.2 Averaging
	4.5.3 Training Model for Forecast
	4.5.4 Offline Predictive Model
	3.5.5 ML Models and Parameters


	Chapter 5 – Machine Learning Approach
	5.1 No Free Lunch Theorem
	5.2 Framework for Stacking-Based Models
	5.2.1 Training Procedure
	5.2.2 Grid Search


	Chapter 6 – Results and Discussions
	Chapter 7 – Conclusions
	References
	Vita

