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Abstract— Knee Osteoarthritis (OA) is one of the most prominent diseases in an ageing society and has affected over 10 million 
people in Thailand. When people suffer from OA, it is very difficult to recover. Therefore, early detection and prevention are 
important. The typical way to detect OA is by using X-ray imaging. This research study is focused on early detection of OA by 
applying image processing and classification techniques to knee X-ray imagery. The fundamental concept is to find a region of 
interest, use feature extraction techniques and build a classifier that can classify between OA or non-OA imageries. There are four 
regions of interest obtained from each image: (i) Medial Femur (MF), (ii) Lateral Femur (LF), (iii) Medial Tibia (MT), and (iv) 
Lateral Tibia (LT). The ten texture analysis techniques are then adopted to generate the embedded properties of the bone surface. 
Once the feature vector has been generated the variety of techniques of machine learning mechanisms are applied to generate the 
desired classifiers, which can be used to distinguish between OA and non-OA images. From the conducted experiments, a total of 131 
images (68 OA cases and 63 non-OA cases) was used, the results obtained show that LF region with Local Binary Pattern descriptor 
produced the most appropriate classifier with an AUC value of 0.912. 
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I. INTRODUCTION 

Osteoarthritis (OA) is considered a degenerative disease 
of human joints. OA is the most prevalent disease of the 
joints in the ageing society and the most typical disease of 
arthritis which affects millions of people in the United 
States[1]. In Thailand, the people affected with OA has 
almost reached 10 million, which is 13% of Thailand’s 
population, as reported by the National Statistical Office 
(NSO) in 2014. The NSO also reports that Thailand is going 
to be an ageing society country in ten years. In the ageing 
society, knee OA affected approximately 10% of men and 13% 
of women in 2010 [2]. Symptoms of knee OA can be 
detected by the presence of pain, swelling, stiffness in the 
knee, reduced ability of movement and cracking sound when 
the knee is moved. Furthermore, OA can be early detected 
using medical images to prevent the progression to a more 
severe stage. Medical imaging that is widely used for OA 
early detection includes (i) X-ray image, (ii) Computed 
Tomography (CT) and (iii) Magnetic Resonance Imaging 
(MRI). In this work, the X-ray image is suggested due to the 
widely used in Thailand. Figure 1 below shows knee X-ray 
images for the (a) Normal and (b) OA case. 

 

 
Fig. 1  Normal and Osteoarthritis (OA) Knee X-ray Imagery 

 
The fundamental idea of this research is to apply image 

processing techniques on medical X-ray images to detect OA. 
Image processing is a technology in which algorithms can be 
used to enhance the image or extract some useful features 
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from the image to study for any specific purpose. Image 
processing is typically used in many researches, such as 
biology, medicine, astronomy, and biometrics. In other 
words, image processing is a specific technology used for: (i) 
classification, (ii) feature extraction, (iii) multi-scale signal 
analysis, (iv) pattern recognition and (v) projection. The 
implementation of image processing for classification in 
medical X-ray images is discussed in this work. 

The objective of the research is mainly focused on the 
classification of the OA and non-OA X-ray images from 
four sub-images of the knee in terms of the following 
regions of interest (RoI): (i) Lateral Femur (LM), (ii) Lateral 
Tibia (LT), (iii) Medial Femur (MF), and (iv) Medial Tibia 
(MT). The image can be analyzed in three main different 
ways (i) color-based analysis: image can analyze based on 
the color in the image, (ii) shape analysis: image can analyze 
based on the shape of the object in the image, and (iii) 
texture analysis: image can analyze based on the structure 
information of the object in the image. Texture analysis is 
one of the appropriate ways to analyze X-ray images 
because the X-ray image is the binary image (black/white 
color image). Texel is the basic unit of a graphic in terms of 
texture. A texture is a set of Texel’s occurring in some 
regular or repeated pattern. In other words, texture can 
produce information about the spatial arrangement of 
intensity in an image or selected image regions. In addition, 
texture can be analyzed by texture descriptors, which is a 
technique that can use statistics, filter banks, auto-correlation, 
etc. There are ten texture descriptors were applied in the 
work: (i) histogram feature, (ii) Local Binary Pattern (LBP), 
(iii) Completed LBP (CLBP), (iv) Rotated LBP (RLBP), (v) 
LBP Rotation Invariant (LBPri), (vi) LBP Histogram Fourier 
(LBP-HF), (vii) Local Ternary Pattern (LTP), (viii) Local 
Configuration Pattern (LCP), (ix) Haralick feature, and (x) 
Gabor filter feature. The detail is given in Section 5. 

The proposed mechanism offers three major advantages: 
(i) fast speed processing, (ii) can be applied in a future study 
with different imaging modalities, and (iii) can help non-
specialist researchers or new profession MD (Medical 
Doctor) to analyze OA/non-OA images. On the other hand, 
the proposed framework still has two main limitations: (i) it 
is a semi-automatic system which needs an action from a 
human to identify the RoI and (ii) the experiment applied 
with the small dataset. 

The remainder of this paper is arranged as follows. The 
materials and methods of the research are presented in 
Section 2. Section 3 describes the result and discussion of 
the works. Enduringly, the study conclusion is described in 
Section 4. 

II. MATERIALS AND METHOD 

In this section, the materials and proposed methods of the 
research are presented. In this section is separated into two 
different sub-sections: Sub-section A presents the related 
work, while the proposed framework is described in Sub-
section B. The dataset used in this research and the process 
of identification of the region of interest are mentioned in 
Sub-section C. In the context of this research texture analysis 
mechanism is suggested to analyze the knee X-ray image. 
Thus, the description of texture analysis is presented in Sub-
section D. The brief explanation of the algorithms used in 

dimension reduction process is discussed in Sub-section E. 
Finally, the classification techniques which is used to 
generate the desired classifiers are presented in Sub-section 
F. 

A. Related Works 

In recent years there has been substantial research work in 
OA detection and classification [3]–[7]. The early detection 
of OA can be applied to medical imaging and used in 
conjunction with a professional clinician to classify the OA. 
On the other hand, the implementation of classification 
techniques to medical imaging for OA detection has been 
considered as an interesting topic in image processing 
research. Texture plays as one of the most important 
properties in images as it shows the arrangement of pixels in 
objects to analyze. Therefore, the texture is one of the useful 
solutions in medical image processing for diagnosis and 
detection of OA in a clinical setting[6], [7]. In [4], the 
research focused on the RoI of tibia texture for the analysis 
of OA. Texture analysis can be applied to various types of 
medical images, including X-ray [4], MRI [8], CT[9], and 
Infrared[10]. In addition, the texture of an object can be 
analyzed using texture descriptors, which is a technique to 
represent and handle texture in a numeric form. Texture 
descriptors include: LBP [7], [11]; CLBP[12]; LBPri ; LBP-
HF[13] and LTP[14], [15]. 

The study presented in [3] introduced a method to analyze 
knee OA X-ray images which combined different types of 
features: (i) shape, (ii) statistical, (iii) Haralick, (iv) texture 
analysis and (v) first-four moments features. The 
classification algorithm used in [3] was Random Forest, with 
the data divided into 40% for training and 60% for testing. 
The features considered in [16] to analyze texture for 
radiographic OA of knee joint were: (i) entropy, (ii) mean, 
(iii) median, (iv) standard deviation, (v) variance, and        
(vi) Tamura texture features. 

Furthermore, texture analysis applications have been 
widely applied in the medical research for the detection of 
various diseases including: tumor heterogeneity [9], [17], 
[18]; brain tumor [19], [20]; head and neck cancer[21], [22]; 
emphysema[23], [24]; prostate segmentation [25]–[27], 
colon cancer[28], [29]; small vessel disease and blood brain 
barrier [30], breast cancer [31]–[34]; skin cancer [35]–[37] 
retinal vessel segmentation[38], [39] and lung cancer [40], 
[41].  

B. Proposed Framework  

The proposed framework is presented in Figure 2. The 
figure shows the three main processes considered: (i) Region 
of interest (RoI) identification, (b) texture extraction, and (c) 
classification. First and foremost, in order to detect OA/non-
OA imagery by using texture analysis, it is required to have 
good quality sub-images of texture. RoI selection is used to 
select a specific area or sub-image, which is considered to 
have a unique identity for detecting OA by using texture 
analysis. The RoIs in this process are selected from four 
different regions as shown in Figure 2 (a): (i) two on the 
femur bone on the lateral and medial side, and (ii) two on the 
tibia on the lateral and medial side. The output of the RoI 
selection process is the four RoIs: (i) Medial Femur (MF) 
RoI, (ii) Lateral Femur (LF) RoI, (iii) Medial Tibia (MT) 
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RoI, and (iv) Lateral Tibia (LT) RoI. The output of the RoI 
selection process was used as the input of the texture 
extraction process. 

Texture extraction (refers to Figure 2(b)) was used to 
extract the texture of each sub-image from Figure 2(a). 
Feature extraction is a process used to extract the feature by 
using texture descriptor and decrease the size of feature 
space from extracting in terms of the number of values and 
dimensions by applying feature selection to produce the 
feature vector. Feature descriptor is a technique widely used 
to extract features. 

 

 
Fig. 2 Texture Analysis on Knee OA Classification Techniques 

 
The research study presented here considered ten different 

feature extraction techniques, with seven of them belonging 
to the Local Binary Pattern (LBP) family. LBP is a popular 
texture descriptor technique which is applied to analyze the 
center pixel in relation to neighboring pixels. In addition to 
LBP, another six feature descriptors related to LBP applied 
in this research are: (i) Completed LBP (CLBP), (ii) Rotated 
LBP (RLBP), (iii) LBP Rotation Invariant (LBPri), (iv) LBP 
Histogram Fourier (LBP-HF), (v) Local Ternary Pattern 
(LTP) and (vi) Local Configuration Pattern (LCP). Besides 
the texture descriptors from the LBP family, the authors 
implemented three other descriptors: (i) histogram feature, 
(ii) Haralick feature, and (iii) Gabor filter feature. The 
implementation of the ten feature descriptors was 
implemented in MATLAB. When texture descriptor was 
applied, the feature space is produced. Feature selection was 
applied in order to reduce the feature space in term of 
number and dimensionality. The output of this process is a 
feature vector which is used as the input of the classification 
process. 

Classification is the final process of the proposed 
framework (refers to Figure 2(c)). In order to classify 
OA/non-OA images, it is required to use machine learning 
algorithms to apply with the feature vector that was 
generated in the texture extraction process. Nine machine 
learning methods were applied: (i) Decision Tree (C4.5),  (ii) 
Binary Split Tree, (iii) Average One-Dependence Estimators 
(AODE), (iv) Bayesian Network (BN), (v) Naïve Bayes 
Classier, (vi) Support Vector Machine (SVM),  (vii) Logistic 
Regression, (viii) Sequential Minimal Optimization (SMO), 
and (ix) Backpropagation. The implementation of the 

machine learning algorithms on the feature vector was then 
evaluated using several typically used evaluation measures. 

C. Dataset and Region of Interest (RoI) identification  

In this section, the knee X-ray dataset collection, and the 
analysis of the region of interest (RoI) of the knee for 
classification are presented.  

1) Dataset: The dataset applied in this research study was 
collected from two local hospitals in Thailand. The number 
of images used was 131, and they were divided as follows: (i) 
63 non-OA images, and (ii) 68 OA images. To protect the 
data privacy of the patients that participated in this study, for 
each image collected only the image data was used, thus 
excluding personal information (e.g. age, gender, address, 
etc.). 

2) Region of Interest (RoI): Four different places in the 
knee X-ray images were identified and used as RoI for 
texture analysis, and they are shown in Figure 3: 

 

 
Fig. 3 The Four RoI of Texture Analysis 

 
Once four different RoIs were identified from a collection 

of X-ray images. Therefore, four image data sets were 
generated. Each set containing the 131 images and could be 
named as (i) Medial Femur (MF) dataset, (ii) Lateral Femur 
(LF) dataset, (iii) Medial Tibia (MT) dataset, and (iv) Lateral 
Tibia (LT) dataset. The four RoI datasets were used for 
analysis and evaluation using image processing and 
classification techniques. 

D. Texture Analysis  

A brief detail of ten texture descriptors used with 
reference to the work illustrated in this paper is presented in 
this section. Texture descriptor is a technique to characterize 
image textures or regions. Texture descriptor can observe the 
region of interest in images or specific the region border. 
Texture feature is one of the most important image features 
which is used for image mining and image classification. 
The texture is a feature that gives the information of 
intensities in an image. In this section, ten texture feature 
descriptors are discussed for extracting texture feature: (i) 
histogram feature, (ii) Local Binary Pattern, (iii) Completed 
LBP, (iv) Rotated Local Binary Pattern, (v) Local Binary 
Pattern Rotation Invariant, (vi) Local Binary Pattern 
Histogram Fourier, (vii) Local Ternary Pattern, (viii) Local 
Configuration Pattern, (ix) Haralick feature, and (x) Gabor 
filter feature descriptor. Each texture descriptor is presented 
in the following sub-section.  

1) Histogram Feature: The histogram feature of the grey 
level image is defined by the state-of-the-art histogram-
based feature, the histogram feature used in work, including 
(i) Mean, (ii) Variance, (iii) Skewness, (iv) Kurtosis, (v) 
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Energy, (vi) Entropy. Each feature can be defined using the 
equation (1) to (7) respectively. 

• Mean: is the average of feature i in the grey level of 
the image. Mean can be defined as the following 
equation  

  � = ∑ ��(�)
��   (1) 

Where P(i) refers to the probability distribution of bin i, 
which P(i) can be defined as: 

  �(�) = �(�)
�  (2) 

• M is the block number, and H(i) is the histogram 
function 

• Variance: refers to the measuring of the histogram 
width that measures the deviation of grey levels from 
the Mean 

 �� = ∑ (� − �)�
�� �(�) (3) 

where �� is the variance and � is the mean. 
 

• Skewness: is used for measuring the degree of 
histogram asymmetry around the Mean 

 ���� = 
�� ∑ (� − �)�
�� �(�) (4) 

where σ refers to the standard deviation, which is the 
square root of the variance presented in equation (3). 

• Kurtosis:   refers to the histogram sharpness 
measuring 

 �������� = 
� ∑ (� − �)!
�� �(�) (5) 

• Energy: is applied for describing the estimation of 
information in an image 

 "#��$% = ∑ [�(�)]�
��  (6) 

• Entropy:   is used for randomness measure and takes 
low values for smooth images 

 "#���(% = − ∑ �(�)
�� )�$�[ �(�)] (7) 
2) Local Binary Pattern: Local Binary Pattern (LBP) 

[42] is applied to label the pixel. LBP operator compares the 
intensity value of the center pixel with the surrounding 
neighborhoods. The output is the binary number. The basic 
LBP is operated illustrated in Figure 4 below.  

 

 
Fig. 4 LBP Operator 

 
In addition, LBP at pixel (xc, yc) can be calculated by the 

equation below: 

 +,�-,/(01 , %1) = ∑ 2(�3 − �1-�-�4 ) ⥂⥂⥂⥂ 2-  (8) 

where: P is the pixels, R is a radius of the circle, ic and ip are 
the grave-level values of the center point in the pixel P, S(x) 
is a function which is represented following equation. 

 2(0) = 71 �9 ⥂ 0 ≥ 0 ⥂⥂⥂⥂⥂⥂0 �9 ⥂ 0 < 0  (9) 
3) Completed Local Binary Pattern: In CLBP, a local 

region is defined by a center pixel with a local difference 
sign-magnitude transform (LDSMT) [12]. This research 
study is focused on LDSMT, which breaks down the local 
structure of images in two elements: (i) the difference signs 
(CLBP_S), and (ii) the difference magnitudes (CLBP_M). 
The implementation of CLBP_S and CLBP_M are displayed 
in Figure 5.  

 

 
Fig. 5 CLBP Operator 

4) Rotated Local Binary Pattern: Rotated LBP (RLBP) 
[43], sometimes called Dominant Rotated LBP (DRLBP) [44] 
is a rotation technique on LBP around the center pixel. 
When the reference is in the circular neighborhood token by 
dominant direction, then the weights are assigned with 
reference to the dominant direction. Figure 6 shows the 
implementation of RLBP.    

 

 
Fig. 6 RLBP Operator 

 
The RLBP is defined by the equation: 

 >+,�-,/ = ∑ 2($3 − $1-�-�4 ) ⥂⥂⥂⥂ 2?@A(-�B,-) (10) 
where mod refers to the operation of modulus, gp indicates 
the index of the neighbor pixel, gc indicates the index of the 
center pixel, D is the dominant direction (D) in a 
neighborhood that can be written as the equation (11): 

C = D�$ED0 | $3 − $1|. ⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂⥂, ( ∈(0,1, . . . , � − 1)  (11) 
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5) Rotated Local Binary Pattern : LBPri is the invariant 
rotation feature which is based on LBP. With reference to 
LBP operator, 2P different output values are the production 
of LBP. In other words, the 2P different binary patterns that 
could be defined by the P pixels in the neighbor set. In the 
research study presented we have applied LBPri to each pixel 
with 8 neighbors, LBPri with 8 bin is defined by Equation 12: 

 

 +,�(0, %) = ∑ 2(�3 − �IJ-�4 , %) ⥂⥂⥂⥂ 2- (12) 

6) Local Binary Pattern Histogram Fourier : Local 
Binary Pattern Histogram Fourier or LBP-HF descriptor 
considers as a rotation-invariant technique on image texture 
that depends on LBPs uniform. The LBP-HF can be defined 
by the first computation of a non-invariant from LBP 
histogram over the whole region of images, and then 
invariant features rotate from the histogram which was 
constructed. LBP-HF is generally used for static features 
which used Fast Fourier Transform (FFT) to calculate global 
features from uniform LBP histogram instead of calculating 
invariant at each pixel independently. This makes the LBPri 

feature set a subset of LBP-HF. Figure 7 shows the 
implementation of LBP-HF. 

 
Fig. 7 LBP-HF operator for rotation invariant image description 

 
With respect to Figure 7,  
If α=45◦, local binary pattern  

00000010 ⇒ 00000100  
00000100 ⇒ 00001000,...,  
11111000 ⇒ 11110001,...,  

Similarity if α = K * 45◦, as a consequence, the pattern have 
to be circularly rotated with k steps. 

7) Local Configuration Pattern  : Local Configuration 
Pattern or LCP is an image rotation invariant texture 
description technique. LCP decomposes the information 
architecture of an image in two states: (i) microscopic 
configuration (MiC) and (ii) local structural information. The 
information consists of image configuration and pixel-wise 
interaction relationships [45]. While local structure 
information is directly related to the basic functionality of 
LBP, MiC is used for exploring microscopic configuration 
information. The local structure concept implementation is 
shown in Figure 8. 

 
Fig. 8 LCP Operator 

From Figure 8, it pictured that Figures 8(a) and 8(b) are 
considered to be of the same pattern type as LBP, but with 
the implementation of LBP with local invariant information. 

The patterns illustrated in Figures 8(a) and 8(b) are 
different, while the patterns are presented in Figures 8(b) and 
8(c) are of the same pattern type due to the same value of 
variance. In contrast, Figures 8(b) and 8(c) are distinct in 
terms of MiC, which MiC based on textural properties. 
Microscopic configuration information is defined as the 
modelling of microscopic configuration as expressed in 
Equation 13. 

 "(D4, . . . , D-�) = |$1 − ∑ D�-���4 $�| (13) 
where gc and gi are intensity center pixel values and 
neighboring pixels; ai (i=0,...,P-1) refers to the weighting 
parameters associated with gi ; E(a0,...,aP-1) refers to the 
reconstruction error regarding model parameters of ai 

8) Local Ternary Pattern : The Local Ternary Pattern 
(LTP) is based on improving the basic functionality of LBP, 
which is the analysis of the central pixel im that tends to be 
sensitive to noise particularly. With respect to LBP operator 
presented in Equation 8, s(x) contained two values. On the 
contrary, LTP can be calculated in gray-level in a zone of 
width ± t. Thus s(x) of LBP is replaced by 3-valued function 
st(u,im,t) as bellow. 

 

 2(0) = M1 � ≤ �? − � ⥂⥂⥂⥂⥂⥂0 |� − �?| < �−1 � ≥ �? + �  (14) 
9) Haralick Feature : Haralick feature is measured from 

the Gray-Level Co-occurrence Matrix (GLCM) that is the 
ordinary way to describe image texture. Haralick feature has 
been divided into 14 features which are calculated from the 
statistic of the basic GLCM functionality including. 

• Angular Second Moment (ASM) is used to find the 
local uniformity of the grey levels. 

 P2Q = ∑ ∑ (�(�, R)�ST� )S��  (15) 

• Contrast is a measure grey level variation between the 
neighbor reference pixel and reference pixel. 

 U�#��D�� = ∑ #� ∑ ∑ �(�, R)ST�S�� , |� − R| = #S���  (16) 
• Correlation is used to show the linear dependency of 

gray level values in the co-occurrence matrix: 

 U����)D���# = ∑ ∑ (�T)-(�,T) �VWVXYZ[\Y][\ �W�X  (17) 
• Variance is the square root value of a grey level 

variants between the reference pixel and its neighbor 
measurement 

 �� = ∑ ∑ (� − �)��(�, R)ST�S��  (18) 
• Inverse Different Moment (IDM) is the same concept 

to the inverse difference feature, but with lower 
weights for elements that are further from the diagonal. 

 ^CQ = ∑ ∑ 
_(��T)`ST�S�� �(�, R) (19) 
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• Sum Average is the average of normalized grey tone of 
an image in the spatial domain. 

 2�EPa��D$� = ∑ ��S�� �I_b(�) 21 
• Sum Variance refers to the variance of normalized 

grey tone of image in the spatial domain 

 2�EcD��D#d� = ∑ (� − 9e�S�� )��I_b(�) (21) 

• Sum Entropy (f8) is a measure of randomness within 
an image 

 2�E"#���(% = ∑�S�� �I_b(�) )�$ �I_b (�) (22) 

• Entropy refers to the indication of the complexity 
within an image 

 "#���(% = − ∑ ∑ �(�, R) )�$[ �(�, R)]ST�S��  (23) 

• Different variance is an image variation in a 
normalized co-occurrence matrix 

 C�99���#d�cD��D#d� = ∑S�� ���I�b(�) (24) 

• Different entropy is an indication of the amount of 
randomness in an image 

C�99���#d�"#���(% = − ∑S�� �I�b(�) )�$[ �I�b(�)]  (25) 

• Information Measure of Correlation 1 (IMC1) is 
estimated using two different measures 

 ^QU1 = �fg��fg
?hI(�f,�g) (26) 

where HXY is the value of Entropy; HX and HY are the 
entropy of Px and Py 

 ijk1 = − ∑ ∑ST�S�� �(�, R) )�$( �I(�)�b(R) (27) 

• Information Measure of Correlation 2 (IMC2) 

 ^QU2 = l1 − �0([ − 2(ijk2 − ijk)] (28) 
where  

 ijk = − ∑ ∑ST�S�� �(�, R) )�$( � (�, R)), (29) 

 ijk1 = − ∑ ∑ST�S�� �I(�)�b(R) )�$( �I(�)�b(R) (30) 

• Maximum Correlation Coefficient (MCC) 

 QUU = m∑ -(�,n)-(T,n)
-W(�)-X(T)Sn�  (31) 

10) Gabor Filter Feature : Gabor filter is another texture 
extraction technique which is used to analyze texture for 
specific local regions of images with the specific frequency 
and specific direction. Gabor filter is in fact part of the 2D 
Gabor filter bank that comprises different elements for 
example frequencies, orientations, and smooth parameters of 
Gaussian envelope. In addition, Gabor filter bank of pixel (x, 
y) can be obtained by the Equation 30 below. 

 o(0, %) ≡ ��(WqWr)`
`sẀ �(XqXr)`

`sX̀ �T(tWrI_tXrb) (32) 

where ωx0 and ωy0 are the center frequency of x and y 
direction. σx and σy are the Gaussian function standard 
deviation along x and y direction. 

E. Feature Selection   

In order to get good feature vectors that can be applied to 
classification process, the feature selection is proposed. 
Feature selection is one of the major processes in this 
research work as it involves the selection of useful features 
in order to reduce the data dimensionality for the 
classification process. There are five different feature 
selection methods used in this work: (i) Correlation-based 
Feature Selection (CFS), (ii) Chi-Square, (iii) Information 
Gain, (iv) Gain Ratio, and (v) Relief. Each feature selection 
technique is described in the following sub-sections. 

1) Correlation-based Feature Selection: Correlation-
based Feature Selection or CFS is a well-known feature 
selection method that uses a search of a heuristic for 
evaluating the worth of subsets of features. In other words, 
CFS is used to calculate subsets for the evaluation of 
features with the following of the basic hypothesis which are 
based on the heuristic that “Good feature subsets contain 
features highly correlated with the classification, yet 
uncorrelated to each other” [46], [47]. In addition, in CFS, it 
is applied Symmetric Uncertainty, which is the technique 
used to reduce the redundancy of a feature. The Symmetric 
Uncertainty, which applies to two nominal attributes A and 
B is given by the equation shown below. 

 u(P, ,) = 2 �(v)_�(w)��(v,w)
�(v)_�(w)  (33) 

where H stands for the entropy function. H(A, B) stands for 
the joint entropy of A and B. The value of symmetric 
uncertainty can start from 0 till 1. With respect to Equation 
32, CFS can be defined as: 

 Ux2 = 2 ∑ y(vZ,z)YZ[\
m∑ ∑ y(v],vZ)YZ[\Y][\

 (34) 

where C refers to the class of feature; (Ai, Aj) stand for a pair 
of attributes in the features set. 

2) Chi-Square (χ2): In the literature, one way to 
measure the dependency between a feature and a class is by 
using Chi-Square (χ2) feature selection [48]. In the 
implementation of Chi-Square (χ2), the features are ranked 
from the most to less useful. ChiSquare (χ2) is defined by the 
function shown below. 

 {� = ∑ ∑ (|]Z�}]Z)`
}]Z

~T�1��  (35) 

where Oij refers to the observed frequency. Eij refers to the 
expected frequency. 

3) Information Gain: Information Gain or IG calculates 
the information in bits for the prediction of the class if the 
information available refers to the presence of a feature and 
correlative with class distribution [49]. IG is applied to select 
the test attribute at each node. In other words, IG is a feature 
evaluation method which is based on entropy [50]. For 
example, the IG of a feature t that give a relation to the 
collection of aspects A is written in Equation 35. 

^o(P, �) 

= "#���(%(P) − ∑ |v�|
|v�|�∈�h����(�) "#���(%(P�) (36) 
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where Values(t) represents the set of all feature t possible 
values; Av represents the subset of S with aspects of class v 
connected to feature t; At represents the set of all aspects 
belonging to feature t; |· | refers to the cardinality of a set. 

4) Gain Ratio: Gain Ratio (GR) is the update or correction 
of Information Gain (IG). Information Gain is used in a 
decision tree to select the test attribute at each node [51]. 
Hence, the implementation of GR to reduce IG bias while 
choosing an attribute by taking the number and size of 
branches. GR of an attribute (attr) is defined in the equation 
below: 

 o>(D���) = �h�
(h��~)
}
�~@3b(h��~) (37) 

5) Relief: The final feature selection technique considered 
in this research refers to relief, which is a weight-based 
algorithm where the relevant features are the ones that have 
a better distinction between the classes [52]. Relief works by 
taking a dataset with n instances of p features which belong 
to two known classes, each feature of the dataset is scaled to 
the interval [0 1]. Relief will be repeated m times. It starts 
with a p-long weight vector (W) of zeros. In other words, 
relief can compute two feature weights: (i) the near-hit score 
and (ii) the near-miss score, which is based on nearest 
instances in the neighborhood. At each repetition of m times, 
the algorithm selects the feature vector (X) which belongs to 
a random instance, and the feature vectors of that instance 
closest to X from each class. In other words, the ‘Near-hit’ 
refer to the closest same class of the instance, while the 
‘Near-miss refers to the closest different-class of instance. 
After m iterations are finished, the algorithm divides each 
element of the weight feature vector by m. The creation of 
relevance vector is accrued. Thus, the features are selected if 
their relevance is greater than a threshold T. 

F. Classification 

The classification is used to identify to which class (OA 
or non-OA) a new knee X-ray image belongs based on a 
previously developed classification model. The classification 
algorithms adopted in this research are (i) Decision Tree 
(C4.5), (ii) Binary Split Tree, (iii) Average One-Dependence 
Estimators (AODE), (iv) Bayesian Network (BN), (v) Naïve 
Bayes Classifier, (vi) Support Vector Machine (SVM), (vii) 
Logistic Regression, (viii) Sequential Minimal Optimization 
(SMO), and (ix) Backpropagation. Each classification 
algorithm is described in sub-sections as follow.  

1) Decision Tree : Decision tree learning (C4.5) is a 
well-known learning algorithm used in machine learning 
[53]. A classification decision tree comprises of the 
following parts: (i) root node, (ii) internal nodes, and (iii) 
leaf nodes. The root node is the main root or parent node and 
has no incoming edges. Internal nodes are used to test on an 
attribute, and the branch defines the output of the test. The 
leaf nodes, which represent the classes, are the nodes that are 
at the bottom of the tree and that have no outgoing edges.  

2) Binary Split Tree: The binary split tree is the tree in 
which each node of the tree comprises only two values 
(binary 0-1). The split tree is designed for storing statistic 
datasets with skewed frequency distributions. The split tree 
is of the type of decision tree while each node of a decision 

tree can have multiple values. The split value of the split tree 
is applied for further search in the tree when the key value is 
not meet to the search value. 

3) Average One-Dependence Estimators (AODE): 
Average One-Dependence Estimators (AODE) is a 
probabilistic classification learning technique which 
improves the Naïve Bayesian classifier [54] by addressing 
the problem of attribute-independence. For instance, in the 
class y, which has a set of features x1,..., xn, AODE can be 
used to find the probability of each class y by using the 
following equation: 

�∧ (%|0, … , 0
) 

 = ∑ -∧(b,I])]:\�]��∧�(W])�� ∏ -∧(I]|b ,I])YZ[\
∑X′∈� ∑ -∧(b′,I])]:\�]��∧�(W])�� ∏ -∧(I]|b′ ,I])YZ[\

 (38) 

where P� is represented an estimate of P; F has represented 
the frequency; m has represented a user specified minimum 
frequency. 

4) Bayesian Network: Bayesian Network (BN) or 
Probabilistic Networks (PNs) is a graphical probability 
model used for reasoning and decision making in uncertainty 
[55]. In other words, the Bayesian network is considered as 
the directed acyclic graph (DAG), and each node n ∈ N of 
BN stand for a domain variable or dataset attribute. In 
addition, the Bayesian network highly depends on the Bayes 
rule. The Bayes’ rule can be written as follows: Assume Ai 
attribute where i= 1,...,n and take value ai where i= 1,...,n 

Assume C as class label attribute and U=(a1,..., an) as 
unclassified test instance. U will be classified into class C 
based on Bayes rule is represented as: 

 �(U|u) = D�$ED0 � (U)�(u|U) (39) 

5) Naïve Bayes Classifier: Naïve Bayes consider one of 
the most well-known Bayesian techniques; it uses a simple 
probabilistic classifier with reference to the implementation 
of Bayes’ theorem combined with strong or naive 
independence assumptions [56]. In the related work of Naïve 
Bayes learning classifier, it has been assumed that all the 
attributes in the same class have been considered as 
independently given a class label. With respect to Bayes rule, 
the Naïve Bayes classifier has been modified as the equation 
below: 

 �(U|u) = D�$ED0 � (U) ∏ �(P�|U)S��  (40) 

6) Support Vector Machine: Support Vector Machine or 
SVM is a popular linear classifier that has been widely used 
for the classification task. The objective of SVM is to 
separate instances of two classes in the most optimal way by 
constructing an N-dimensional hyperplane between two 
training sample classes in the feature set [57]. SVM 
classifiers are grouped into two sections: (i) linear and (ii) 
non-linear. They are explained in the following sub-sub-
sections. 

• Linear Classification: In the context of linear 
classification, the SVM can be divided into two types 
of classification: (i) linearly separable case, and (ii) 
non-linearly separable case. In the linearly separable 
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case, SVM with the training data xi, yi, yi ∈-1,+1, i = 
1,...,n can be defined as shown in the equation below. 

70� . � + � ≥ +1; %� = +10� . � + � ≥ −1; %� = −1  (41) 

• Non-Linear Classification:  
In the case of non-linear classification, the SVM equation 

can be written as: 

 9(0) = ∑ ��%��(0� , 0) + �
���  (42) 

where ns refers to the number of support vector. α is non-
negative Lagrange multipliers; P(x, y) is Polynomial of 
degree m: k(x,y)=(x.y+1)m 

7) Logistic Regression: Logistic regression is a well-
known statistical regression model and it is based on 
ordinary regression [58]. In this research work, the logistic 
regression has been applied to the dependent variable. The 
purpose of logistic regression is to discover the best fitting 
model for evaluating the relationship between a set of 
independent variables (predictor) and the dichotomous 
characteristic of interest (Outcome variable). Logistic 
regression provides the formula to predict a logit 
transformation of the probability as the Equation 42, where p 
is the probability of presence of the characteristic of interest. 

 logit(p) = b0 + b1X1+ b2X2+ b3X3…+… bkXk (43) 

8) Sequential Minimal Optimization: Sequential 
Minimal Optimization or SMO is the improvement from 
SVM to find the solution of the quadratic programming (QP) 
optimization problem, which happens during the SVM 
training [59]. In order to get the solution from the SVM QP 
problem, SMO decomposes SVM QP problem into QP sub-
problems then solves the smallest possible optimization 
problem which involves two Lagrange multipliers, at each 
step. By applying Lagrangian, the QP problem can be 
transformed into a dual where the objective function Ψ 
consider as solely dependent on a set of Lagrange multiplier 
αi. The equation of Lagrange is presented in Equation 44.
  

E�# ⥂ ⥂ � ⥂⥂⥂⥂ (�⃗) 

 = ∑ ��S�� − 
� ∑ ���T�,T %�%T0�0T (44) 

9) Backpropagation Neural Network: The 
backpropagation algorithm is widely known and considered 
as neural networks model for a gradient calculation which is 
required in the calculation of the weight to be used in the 
network [60]. In the Neural Network (NN) has three layers: 
(i) input layer, (ii) hidden layer and (ii) output layer. 
Backpropagation is used to train in neural for learning. In 
other words, in the case of learning in NN, backpropagation 
is commonly applied by the gradient descent optimization 
algorithm in order to adjust the weight of neurons by 
measuring the gradient of the loss function. This method is 
sometimes known as backward propagation of errors 
because the error is measured at the output layer and 
distributed back through the network layers.  

In other words, the backpropagation neural network 
known as the Multilayer Perceptions grouped neurons into 
layers. For the input layer and output, layer are represented 

by the first layer and the last layer respectively. The hidden 
layers are the remaining layers of the network. The back 
propagation neural network is illustrated in Figure 9. 

 

 

Fig. 9 Backpropagation Neural Network 

III.  RESULT AND DISCUSSION   

In this section, the evaluation of the OA screening 
considered as the study proposed approach is illustrated. 
While 7,272 experiments were handled with respect to the 
proposed approach, only the most significant results obtained 
are presented. The study evaluation handled by considering a 
case study with 131 digital medical X-ray imageries taken in 
Postero-Anterior (PA) position. The dataset comprised: (i) X 
control (normal) and (ii) Y OA images. TenFold Cross-
Validation (TCV) was implemented in the study. The 
evaluation measures used were: (i) Area Under the Receiver 
Operating Characteristic Curve (AUC), (ii) Accuracy (AC), 
(iii) Sensitivity (SN), (iv) Specificity (SP), (v) Precision (PR), 
and (vi) F-Measure (FM). The overall aim of the study 
evaluation was to prove some evidence that the OA be able 
to detected by applying the proposed framework. Finally, 
there are four groups of experiments were handled with the 
objectives of comparing and selecting the best results for the 
following criteria: 

• Region of Interest (RoI) is the set of the experiments 
conducted in order to investigate the most appropriate 
RoI. 

• Texture descriptor is the set of the experiment 
performed to find the most appropriate texture 
descriptor method.  

• Feature selection technique is the collection of the 
experiments conducted to identify the most 
appropriate feature selection technique.  

• Classification algorithm is the collection of the 
experiments performed in order to get the most 
appropriate classification learning algorithm.  

The comparison and results for each area of interest are 
presented in the following sub-sections. 

A. Region of Interest (RoI)  

This sub-section discusses the evaluation conducted to 
compare the best result of applying different four RoIs:          
(i) Medial Femur (MF), (ii) Lateral Femur (LF), (iii) Medial 
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Tibia (MT) and (iv) Lateral Tibia (LT). In the research 
experiment, LBP descriptor was applied with CFS feature 
selection (LBP and CFS feature selection were used because 
the reports in Sub-section B and Sub-section C, had revealed 
that this was appropriate texture descriptor and feature 
selection, respectively) and a Bayesian Network classifier 
method as these had been found to work well in the context 
of OA detection (see Sub-section D). The best performance 
of each RoI is shown in Table 1 below (best result indicated 
in bold font with respect to AUC values): 

TABLE I 
REGION OF INTEREST RESULTS 

RoI AUC AC SN SP PR FM 

MF 0.884 0.794 0.794 0.792 0.794 0.794 

LF 0.912 0.832 0.832 0.832 0.832 0.832 

MT 0.895 0.802 0.802 0.802 0.802 0.802 

LT 0.883 0.809 0.809 0.809 0.809 0.809 

From Table 1, it can be concluded that Literal Femur (LF) 
is the most appropriate one amount of four RoIs of texture 
analysis for OA detection which came with the best value of 
AUC of 0.912, while the second-highest appropriate RoI 
went to Medial Femur (MF) with the AUC value of 0.895. It 
should be suggested that Lateral Femur is first selecting an 
area for texture analysis of OA detection. 

B. Texture Descriptor  

The evaluation conducted to identify the best algorithm 
for feature extraction (Texture Descriptor) of the sub-image 
are presented in this sub-section. Ten feature extraction 
algorithms were considered: (i) histogram feature, (ii) Local 
Binary Pattern, (iii) Completed LBP, (iv) Rotated Local 
Binary Pattern, (v) Local Binary Pattern Rotation Invariant, 
(vi) Local Binary Pattern Histogram Fourier, (vii) Local 
Ternary Pattern, (vii) Local Configuration Pattern, (ix) 
Haralick feature, and (x) Gabor filter feature descriptor. For 
the experiment used to compare these 10 algorithms the LF 
RoI was used as this had been found to produce the best 
result (presented in the previous sub-section). Again CFS 
feature selection was adopted together with Bayesian 
Network classifier for the same reason as before. The best 
performance of each texture descriptor is illustrated in Table 
2 below. 

TABLE II   
TEXTURE DESCRIPTOR RESULTS 

Texture 
Descriptor AUC AC SN SP PR FM 

Histogram 0.757 0.695 0.695 0.690 0.695 0.693 

LBP 0.912 0.832 0.832 0.832 0.832 0.832 

CLBP 0.882 0.763 0.763 0.762 0.763 0.763 

RLBP 0.895 0.809 0.809 0.810 0.810 0.809 

LBPri 0.812 0.771 0.771 0.771 0.771 0.771 

LBP-HF 0.773 0.710 0.710 0.717 0.710 0.709 

LTP 0.816 0.756 0.756 0.761 0.763 0.755 

LCP 0.783 0.725 0.725 0.724 0.725 0.725 

Haralick 0.695 0.664 0.664 0.670 0.672 0.662 

Gabor 0.883 0.786 0.786 0.786 0.786 0.786 

From Table 2, it can be observed that Local Binary 
Pattern (LBP) is considered as the best texture descriptor for 
OA detection work combine with LF RoI can produce the 
best AUC value of 0.91. For the second-best texture 
descriptor performance went to Rotated Local binary Pattern 
(RLPB) which one of the extension techniques from LBP, 
the best result of RLBP produced the second-highest of 
ACU value of 0.895 in case of texture analysis of OA 
detection amount of four RoIs. Based on Table II, it can be 
suggested that LBP is the first choice for using in OA 
detection and the second choice went to RBLP. On the other 
hands, Haralick feature produced the lowest result of AUC 
compare to other texture descriptors. It can be suggested that 
Haralick is the last choice in this case. 

C. Feature Selection Technique  

In this sub-section, the evaluation conducted to determine 
the best mechanism for dimension reduction of the feature 
vector of each sub-images is described. Five algorithms of 
feature selection were applied: (i) Correlation-based Feature 
Selection (CFS), (ii) Chi-Squared, (iii) information gain,    
(iv) Gain Ration, and (v) Relief feature selection. In the 
experiments used to observe these five mechanisms the LF 
RoI and the LBP descriptor were used as this had been found 
to produce the best result was presented in the previous sub-
sections (Sub-section A and B). Again the implementation of 
Bayesian Network classifier for the same reason as before. 
The best performance of each feature selection mechanism is 
presented in Table 3 below: 

TABLE III 
FEATURE SELECTION TECHNIQUE BEST RESULTS 

Feature 
Selection AUC AC SN SP PR FM 

CFS 0.912 0.832 0.832 0.832 0.832 0.832 

χ2 0.699 0.687 0.687 0.687 0.687 0.687 

GR 0.709 0.687 0.687 0.687 0.687 0.687 

IG 0.699 0.687 0.687 0.687 0.687 0.687 

Relief 0.699 0.679 0.679 0.674 0.681 0.677 

 
In Table 3, Correlation Based Feature selection (CFS) is 

the best Texture selectors which applied with LF and LBP to 
produce the highest value of AUC at 0.912. Gain ration is 
the second best of texture selector which can produce the 
value of AUC at 0.709. On the contrary, Chi-squared, 
Information gain and relief produced the same value of AUC 
with the value of 0.699. In term of AUC value, it can be 
suggested that CFS is the first texture selector for knee OA 
detection applied with LF RoI and LBP texture analysis 
technique. 

D. Learning Algorithm  

The reports on the evaluation conducted to analyze the 
best mechanism for generation classifier of learning methods 
is presented in this sub-section. Nine algorithms of learning 
methods were considered for the experiment: (i) Decision 
Tree, (ii) Binary Split Tree, (iii) Average One-Dependence 
Estimators, (iv) Bayesian Network, (v) Naïve Bayes, (vi) 
Support Vector Machine, (vii) Logistic regression, (vii) 
Sequential Minimal optimization, and (ix) Back Propagation 
Neural Network. For the experiments used to compare these 
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nine mechanisms the LF RoI and the LBP descriptor were 
used as this and applied with CFS feature selection had been 
found to produce the best result was presented in the 
previous sub-sections (Sub-section A, B and C). The best 
performance of each learning algorithm is illustrated in 
Table 4. 

TABLE IV 
LEARNING ALGORITHM BEST RESULTS 

Learning 
Algorithm AUC AC SN SP PR FM 

Decision 
Tree 

0.757 0.779 0.779 0.780 0.780 0.779 

Binary Split 
Tree 

0.766 0.740 0.740 0.736 0.742 0.739 

AODE 0.896 0.809 0.809 0.804 0.809 0.809 
Bayesian 
Network 0.912 0.832 0.832 0.832 0.832 0.832 

Naïve 
Bayes 

0.903 0.817 0.817 0.816 0.817 0.817 

SVM 0.715 0.718 0.718 0.711 0.720 0.715 
Logistic 

Regresion 
0.904 0.840 0.840 0.844 0.847 0.839 

SMO 0.771 0.771 0.771 0.771 0.771 0.771 
Neural 

Network 
0.851 0.771 0.771 0.770 0.771 0.771 

 
From Table 4, it shows that Bayesian Network is the best 

learning method that can produce the highest value of AUC 
with the value of 0.912, while the second-best learning 
method went to Logistic regression with the AUC value of 
0.904. In contrast, support vector machine is the lowest 
learning method for selection in case of OA detection due to 
the production of AUC value of 0.715 that considered as the 
lowest AUC value amount of learning methods applied in 
the study. In short, it should be suggested that the applying 
of Bayesian network to LF RI, LBP texture descriptor, and 
CFS feature selection approach produced the highest AUC 
value of 0.912. 

IV  CONCLUSION 

The framework of early detection of OA by applying 
image processing and classification techniques to human 
knee X-ray imagery was presented. The detection was 
applied with the difference of four sub-images: (i) Lateral 
Femur (LF), (ii) Lateral Tibia (LT), (iii) Medial Femur (MF), 
and (iv) Medial Tibia (MT). In addition, in order to carry out 
a more comprehensive research study, ten types of texture 
descriptors were applied to the sub-imagery of X-ray images, 
for example (i) Histogram feature, (ii) Local Binary Pattern 
(LBP), (iii) Completed LBP (CLBP), (iv) Rotated LBP 
(RLBP), (v) LBP Histogram Fourier (LBPHF), (vi) LBP 
Rotation Invariant (LBPri), (vii) Gabor, (viii) Haralick, (ix) 
Local Configuration Pattern (LCP), and (x) Local Ternary 
Pattern (LTP). The implementation of feature selection was 
presented to reduce the dimension and space of the features 
from each feature descriptor. For the feature selection 
technique, the research study applied five well-known 
techniques: (i) Correlation-based Feature Selection (CFS), (ii) 
Chi-square, (iii) Gain Ratio, (iv) Information Gain, and (v) 
Relief. The last part of the study focused on the 
implementation of nine machine learning classification 
algorithms: (i) Decision Tree (C4.5), (ii) Decision with 
binary tree, (iii) Average One-Dependence Estimators 

(AODE), (iv) Bayesian Network, (v) Naïve Bayesian 
Classifier, (vi) Support Vector Machine (SVM), (vii) 
Logistic Regression, (viii) Sequential Minimal Optimization 
(SMO), and (ix) the Backpropagation algorithm. The 
classification results of the research were evaluated by six 
different evaluation measures: (i) Area Under the Receiver 
Operating Characteristic Curve (AUC), (ii) Accuracy (AC), 
(iii) Sensitivity (SN), (iv) Specificity (SP), (v) Precision (PR), 
and (vi) F-Measure (FM). 

The best classification result obtained had an AUC value 
at 0.912. With the best result of the research study presented, 
four main interesting aspects can be listed as follow : 
• Regarding the amount of four sub-imagery of knee 

image, the Lateral Femur (LF) produce a better 
performance of classification in terms of the 
implementation of LBP with Bayesian Network.  

• In the implementation of the ten texture descriptors, 
only LBP produced the AUC value at 0.912, which was 
the highest value recorded in the study.  

• The best performance of feature selection for 
classification was recorded by CFS with five well-
known feature selection techniques. – The most 
efficient learning algorithm for classification was 
performed by Bayesian Network.  

• The highest AUC value of 0.912 was recorded by the 
implementation of 4 parameters: (i) Lateral Femur sub-
image, (ii) LBP descriptor, (iii) CFS feature selector, 
and (iv) Bayesian Network algorithm. 

Future work considered includes using a larger dataset 
and implementing Convolutional Neural Network (CNN), 
which is a small branch of Deep Learning that can remove 
the feature selection process for learning OA/Normal 
classification imagery. 
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