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Abstract 

Under-expanded hydrogen jet has characteristic shock structure immediately downstream of the nozzle 

exit. The shock structure depends on the ratio pEX/pA, i.e. the ratio of nozzle exit to ambient pressure, and the 

distributions of velocity and concentration in an under-expanded hydrogen jet depend on characteristics of the 

shock structure. Therefore, the shock structure should affect the blow-off behaviour of under-expanded 

hydrogen jet flame. Since this issue has not been investigated in detail, this study aims to close this knowledge 

gap. The effect of changes in shock structure on lift-off length and blow-off conditions for non-premixed 

turbulent hydrogen free jet flame has been experimentally investigated. The shock structure was varied by 

using three types of nozzles: convergent, straight and divergent nozzles. Inlet diameters of nozzles change from 

0.31 to 1.04 mm and outlet diameters from 0.34 to 1.7 mm. The static pressure and the ratio of cross-section 

area at the nozzle inlet to that at the outlet were varying parameters in this study. Hydrogen was horizontally 

spouted through a nozzle to atmosphere. The maximum static pressure in a nozzle was 13.2 MPa. The 

experiments revealed that when the hydrogen jet had sequential shock cell structures, which occurred in the 

range of pEX/pA smaller than 2.45, a higher mass flow rate of hydrogen was needed for the stabilization of a jet 

flame than that for pEX/pA larger than 2.45 and that when closed to the ideal expansion (pEX/ pA =1), the mass 

flow rate for stable flame became maximum. In addition, it was observed that the lift-off length of stable flames 

followed with sequential shock cell structures were almost the same when the minimum cross-section area of 

used nozzles was constant. However, when hydrogen jet had a shock structure with single Mach disk, the 

lift-off lengths and the minimum mass flow rate required for the stable jet flame were decreasing with the 

decrease of the cross-sectional area ratio of the nozzle exit to inlet. 
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Highlights: 

Hydrogen release tests at pressures up to 13 MPa were conducted. 

Three types of nozzle were used: convergent, straight and divergent. 

Relationship between shock structure and blow-off characteristics was examined. 

Jet flame with multiple diamond shock structure require higher mass flow rate. 

Blow-off is controlled by position of stoichiometric contour and flame base. 
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1. Introduction 

Use of hydrogen from renewable sources is a pathway to achieve low carbon society targets, because 

only water could be exhausted when hydrogen is used as an energy carrier [1]. Therefore, the effective use of 

hydrogen would be indispensable for building the sustainable society [2,3]. Generally, hydrogen is stored under 

high pressure because under atmospheric pressure it has low volumetric energy density. The pressure in 

composite vessels is very high and can reach 90 MPa for fuel cell vehicles. If hydrogen is released under such 

high pressure and ignited, a non-premixed turbulent flame of under-expanded jet can be established. The 

studies on under-expanded jet flames were performed to establish safety evaluation criteria [4-12]. Takeno et al. 

carried out experiments under unprecedentedly high static pressure of 80 MPa and revealed that the static 

pressure required for stable jet flames changes with nozzle diameter, and the jet flame length was expressed as 

a function of nozzle diameter and static pressure [7-12]. The authors have experimentally examined the 

relationship between the static pressure and the blow-off conditions and explained the blow-off phenomenon 

for hydrogen non-premixed turbulent flame originating from under-expanded jet for the case of single Mach 

disk [13]. However, the experiments in above-mentioned studies were performed using only straight nozzles of 

constant diameter. Non-premixed hydrogen flames in jets spouted through tapered nozzles whose cross-section 

area increases or decreases have not been investigated up to now. 

The shocks structure generated near the nozzle exit was investigated experimentally and numerically 

[14-17]. According to review by Franquet et al. [18], the changes in the shocks structure are governed by the 

ratio p0/pA, where p0 is the static pressure, and pA is the atmospheric pressure, or by the ratio pEX/pA, where pEX is 

the pressure at the nozzle exit, and can be classified as follows. Moderately under-expanded jets, which have 

oblique shock waves from a lip of the nozzle exit toward the nozzle axis and its reflected shock waves, are 

generated in the pressure range 1.1 ≲ pEX/pA ≲ 3. Under-expanded jets in the range 2 ≲ pEX/pA ≲ 4 consist of a 

barrel shock starting at the nozzle lip and Mach disk. At pressure ratios 4 ≲ pEX/pA, jets have single Mach disk 

and they are called highly under-expanded jets. The change in shocks structure due to change of pEX/pA ratio is 

thought to give different distribution of spouted gas concentration and velocity field. Thus, the shocks structure 

could affect the lift-off length and the conditions required for stable non-premixed jet flames. 

In the present paper, lift-off lengths and blow-off conditions for expanded hydrogen jet flames were 

experimentally investigated, and distributions of velocities and hydrogen concentration in unignited hydrogen 

jets were numerically examined. The variation of the shock structure downstream of the nozzle exit was 

provided by change of pressure in the stagnation point and the exit from the nozzle. The pressure at the nozzle 

exit was changed by using divergent or convergent nozzles whose cross-section area linearly increased or 

decreased in the nozzle axis direction. The relationship between conditions for the sustained jet flame and the 

shock structure is discussed, and a qualitative model of blow-off for expanded hydrogen jet flame is proposed. 

 

2. Experimental setup and conditions 

Figure 1 shows a schematic of an experimental setup and an optical measurement system. 

High-pressurized hydrogen jet was released horizontally by blowdown from a reservoir with maximum 

pressure of 13.2 MPa. Spouted hydrogen jets were ignited by a pilot natural gas non-premixed flame set at 700 

mm downstream of the nozzle exit. This flame was removed after the jet flame was stabilised. The spouting 

pressure was adjusted by the valve and measured by a piezo-electric pressure sensor (TP-AR, TEAC) installed 

between valve and nozzle and the pressure data was collected by 10 kHz digital recorder. Since the maximum 



hydrogen velocity inside hydrogen piping from valve to nozzle was less than several centimetres per second, 

the measured static pressure was estimated to coincide with the stagnation pressure in the chamber of nozzle. 

Table 1 shows the identification and parameters of three types of nozzle, i.e. measured diameters at the 

nozzle inlet, dIN, and exit, dEX, cross-section areas at inlet, AIN, and exit, AEX, as well as their ratio AEX/AIN. Three 

straight, six divergent and one convergent nozzle were used in this study, and their cross-section drawings are 

shown in Figure 2. For the divergent and convergent nozzles, the minimum diameter of nozzle throat dthr was 

almost the same about 0.5 mm to provide the same hydrogen flow rate. 

Light source of the optical system for taking schlieren images was Nd:YVO4 laser (G50-B, kato koken) 

with a wave length of 532 nm, a maximum output of 50 mW. A parallel beam of the light for the schlieren 

imaging was prepared using two concave mirrors with its diameter of 150 mm and focal length of 1500 mm 

(CM series, kato koken). Laser beam of 0.5 mm diameter was expanded through the spatial filter located at the 

focal point of first concave mirror. A knife edge was installed at the focal point of second concave mirror, and 

cut the focus point in perpendicular to the hydrogen flow direction. Schlieren images were taken by a 

high-speed camera (UX100, Photron) at 2000 fps and exposure time of 12.5 μs through camera lens (focal 

length =200 mm, Nikon). 

 

3. Experimental results and discussion 

Figure 3 shows a typical schlieren images of hydrogen turbulent non-premixed jet flames obtained in this 

study at the static pressure of around 8 MPa with different cross-section area ratio, AEX/AIN, and the three kinds 

of nozzle. Hydrogen mass flow rate, m, was practically the same in the range of 0.93-1.03 g/s, which was 

calculated from the static pressures and cross-section areas, AEX and AIN, assumption an isentropic expansion. 

The lift-off length Hfb was defined as the length from the nozzle exit to the time-averaged position of the flame 

base. For ratios AEX/AIN < 3.78, the value of Hfb increased with the increase of AEX/AIN . However, for AEX/AIN  

3.78, the values of Hfb were almost constant regardless of AEX/AIN. 

In order to clearly show the shock wave structure, enlarged images near the nozzle exit were shown in 

Figure 3 (right column), where pressure ratio, pEX/pA, which is the ratio of nozzle exit pressure, pEX, to the 

ambient pressure, pA, are also shown. A shock wave structure consisting of a barrel shock and single Mach disk 

was observed for ratios AEX/AIN  1.62. For ratios AEX/AIN > 1 the nozzle exit pressure pEX decreases as AEX/AIN 

increases, and a series of shocks (diamond structure) can be seen in images for AEX/AIN  3.78. The value of 

pEX/pA was almost unity as shown in the image for AEX/AIN = 6.44 (d0.5-1.30), and an over-expanded jet can be 

seen in the image for pEX/pA < 1 (d0.5-1.65). The observed variation of shock structure with AEX/AIN and pEX/pA 

agrees quantitatively with conclusions of previous study [18]. 

Figure 4 shows the relationship between Hfb and AEX /AIN for stable jet flames when using the minimum 

diameter of nozzle throat, dthr, in the narrow range 0.51-0.53 mm, so that the relationship between hydrogen 

mass flow rate and static pressure was determined regardless of the nozzle throat type. Hydrogen mass flow 

rate was in the range 0.40  m  1.48 g/s depending on the static pressure of hydrogen, and resulted in the 

scatter of Hfb in Figure 4. For ratios AEX/AIN>3.78, the values of Hfb for the same AEX /AIN were almost constant 

regardless of the mass flow rate, and the values of Hfb for AEX/AIN < 3.78 tended to decrease with the decrease 

in AEX/AIN. When AEX/AIN ~ 3.78, jet flames were stable in the range of 0.69  m  1.48 g/s (equivalent to1.67  

pEX/pA  3.59), accompanied with sequential shock cell structures shown in Figure 3. Such jet is shown in the 

image of d0.5-1.00 and is classified as the highly under-expanded jet which occurs in the range of 2 ≲ pEX/pA ≲ 



4 [18]. For AEX/AIN  3.78 the value of Hfb was almost constant independent of AEX/AIN. This result shows that 

the value of Hfb for all three types of observed in experiments jets (highly under-expanded jet, expanded jet 

and over-expanded jet), which occur at pressure ratio pEX/pA ≲ 2.45, can be expected to be constant. In addition, 

for pressure ratio pEX/pA > 2.45, the value of Hfb in highly under-expanded jets accompanied with a barrel 

shock and single Mach disk can be expected to decrease with the increase of pEX/pA because the decrease in AEX 

/AIN causes the increase in pEX/pA. Accordingly, the lift-off length Hfb depends on the kind of shock structure 

just downstream the nozzle exit. 

Figure 5 shows the conditions for existence of stable hydrogen jet flame and flame blow-off. It is 

presented in the coordinates “mass flow rate” and “ratio AEX /AIN” for nozzles 0.51  dthr  0.53 mm. This figure 

shows that a minimum mass flow rate for the stable jet flame exists, and that the minimum value increases with 

the increase of AEX/AIN and reaches extreme at 5≲ AEX/AIN ≲ 7, where the flow is close to the ideal expansion 

(pEX/pA ~1). For region AEX/AIN ≲ 4, which is classified as the region of highly under-expanded jets, the 

minimum mass flow rate for stable flame decreased as the value of AEX/AIN decreased. For AEX/AIN ≳ 7, where 

the jet is over-expanded, the shock wave just out of the nozzle exit is a compression wave as shown in Figure 3, 

and the minimum mass flow rate decreases as AEX/AIN increases. 

 

4. Numerical study 

4.1 Model details 

The effects of shock structure on velocity and hydrogen concentrations distributions were numerically 

studied by carrying out steady state simulations in two-dimensional axisymmetric formulation. The 

computational domain and enlarged image in the vicinity of nozzle outlet are shown in Figure 6. Simulated 

nozzle dimensions are given in Table 2. The sizes of simulated nozzles were determined corresponding to the 

experimental conditions with maximum deviation within 0.01 mm. The computational domain width was 210 

mm and height 100 mm. The grids had square shape, and the mesh size near the nozzle axis was set finer. The 

minimum grid dimension was 30 μm, and the number of control volumes in a grid was about 25,000. The grid 

convergence value of 30 μm could be determined by the following procedure that the mesh sizes were 

repeatedly decreased half and half, and then the simulated results were compared with those with the previous 

mesh sizes. Boundary conditions in the simulation are shown in Table 3. 

Governing equations of mass, momentum, energy and chemical species transport equations were solved 

using ANSYS Fluent 16.2 as computational engine. The RNG k-ε model [19] was used as a turbulent model, 

where the model constant C1ε was changed from default value 1.42 to 1.64. The value of 1.64 was selected so 

that the simulated hydrogen mass fraction distribution along the nozzle axis could be corresponded with the 

distribution estimated by the empirical equation by Li et al. [20]. In Figure 7, Yhcl is the hydrogen mass fraction, 

z is the distance from nozzle exit along nozzle axis, and d* is defined as dEX (ρEX /ρ∞)0.5, where ρEX is gas density 

at nozzle exit, ρ∞ is surrounding gas density. The value of ρEX was calculated using the under-expanded jet 

theory [21]. As shown in Figure 7, the empirical relationship between hydrogen mass fraction and 

non-dimensional distance could be well reproduced when value 1.64 is used to the model constant C1ε. 

 

4.2 Calculated results 

Typical results of density distributions for the static pressure in nozzle of 8 MPa (m=0.98 g/s) are shown 

in Figure 8. The single Mach disk exists for 0.25  AEX /AIN  1.69, and densities along the nozzle axis were 



changed rapidly adjacent to the nozzle exit. The distance LMD from the nozzle exit to the Mach disk for the 

straight nozzle of dIN=dEX=0.5 mm is 2.82 mm. This is just by 0.9 mm longer than value calculated with the 

empirical equation, LMD/dEX = 0.62 ( pEX/pA )0.51 [18]. Densities along nozzle axis for AEX/AIN ≳ 4 repeated 

increasing and decreasing downstream creating so-called diamond shock structures. Figure 9 shows the scalar 

of velocity vector along the nozzle axis for different ratios AEX/AIN. Jets for AEX/AIN ≲ 1.69 have one Mach disk 

at position 2.80-2.85 mm downstream of the nozzle exit, where the scalar of velocity rapidly decreased to 

approximately 500 m/s. Then, the velocity gradually increased and had a peak of 1200-1700 m/s. On the other 

hand, jets for AEX/AIN ≳ 4 have multiple shock diamond structures and maintain its higher velocity of 2000-2500 

m/s for over z=20 mm, and then the velocity monotonically decreases downstream. 

 

5. Blow-off model for high-pressurized hydrogen jet flames 

In the previous study for very highly under-expanded hydrogen jet with straight nozzle, the blow-off 

limit could be arranged only with the flow rate of spouted hydrogen, regardless of the static pressure in nozzle 

or the throat diameter of nozzle [7, 8, 13]. On the other hand, it is shown in Figure 5 that the required minimum 

hydrogen flow rate for the flame stabilization depends upon AEX/AIN or the structure of shock downstream of 

nozzle exit. An attempt would be made to interpret it by considering the distributions of velocity and 

concentration. 

Figure 10 shows the value of vphi1, which is the velocity at an intersection point between the 

stoichiometric contour of hydrogen concentration in the jet and line at z=70 mm perpendicular to the nozzle 

axis. The value z=70 mm means the distance Hfb from the nozzle exit to the flame base for AEX/AIN ≳ 4 as 

shown in Figure 3. The value of vphi1 increases as AEX /AIN increases and becomes almost constant at AEX/AIN ≳ 4. 

The variation of Hfb for AEX /AIN ≲ 4 could be explained when considering flame base position as the one where 

flow velocity is equal to flame propagation velocity [22], and in the assumption that the stable flame base 

position lies at the stoichiometric contour [4]. In other words, the velocities on the stoichiometric contour for 

AEX/AIN ≲ 4 were obviously lower than those for AEX/AIN ≳ 4 at the same position (z=70 mm) in z-direction. 

Therefore, the flow velocity for AEX/AIN ≲ 4 could be balanced with the turbulent burning velocity farther 

upstream than cases with AEX/AIN ≳ 4. Consequently, as shown in Figures 3 and 4, the value of Hfb for AEX/AIN 

≲ 4 could be smaller. 

The criterion required for stable non-premixed flames in subsonic jets was formulated as Hw > Hfb [23], 

where Hw is the distance from the nozzle exit to the intersection of two lines, one being the jet axis and another 

being perpendicular line from the jet axis to the maximum radial location of the stoichiometric contour. The 

value of Hw could be estimated from an actual nozzle diameter, spouted and ambient gas densities by using the 

equations proposed by Birch et al. [24] and was validated in the literature [23]. It was reported that 

characteristics of under-expanded jets could be predicted using the notional nozzle theory proposed by Molkov 

et al. [25, 26]. The values of Hw calculated by the notional nozzle diameter are shown in Figure 11 [13]. This 

figure demonstrates that the values of Hw depends little on AEX/AIN but depend on the static pressure, and that 

Hw can be determined by hydrogen flow rate regardless of nozzle types or shock structures. As the static 

pressure in nozzle increases, the hydrogen flow rate and Hw increase. 

For the nozzles with the same dthr , when the static pressure or mass flow rate is the same, the values of 

Hw change little regardless of the type of shock structure, while the value of Hfb having the structure of Mach 

disk is clearly smaller than Hfb’ whose shock structure is sequential shock cell type, as shown in Figures 3 and 



4, because the value of velocity vphi1 in Figure 10 increases as the increase of AEX/AIN and becomes constant for 

AEX/AIN ≳ 4. This means that the velocity and concentration fields are not linearly linked each other, due to the 

variations of shock structure. The cases where the flame is stabilized and stable regardless of a type of shock 

structure seem to have the relationship of Hw> Hfb’ >Hfb shown in Figure 12(a). If the static pressure or mass 

flow rate gradually decreases, Hw decreases while both of Hfb and Hfb’ don’t change essentially as shown in 

Figure 4. In this case, the relationship of Hfb’ > Hw >Hfb shown in Figure 12(b) can hold, and the flame with 

sequential shock cells will blow-off, while the flame with one Mach disk will be still stabilized. If the static 

pressure or mass flow rate decreases further, the relationship of Hfb’ >Hfb> Hw is realized and the flame will 

blow-off regardless of a type of shock structure. This shows qualitatively that minimum static pressure or mass 

flow rate required for stable flames in the high-pressurized hydrogen jet with sequential shock cell structures 

should be higher, as shown in Figure 5. 

 

Conclusions 

The change of cross-section area ratio AEX/AIN changes the shock structure downstream the nozzle exit 

even the static pressure in the nozzle is kept the same, where the ratio pEX/pA, i.e. the ratio of nozzle exit to 

ambient pressure changes in conjunction. The flame lift-off length Hfb and the blow-off condition of the 

turbulent non-premixed flame for high-pressure hydrogen jets are experimentally examined, with AEX/AIN =0.23 

−11.2 (minimum throat diameter is constant at 0.5 mm) and hydrogen flow rate= 0.3−1.48 g/s being 

parameters.  

It is shown that when ratio AEX/AIN is the same, Hfb for stable flames slightly depends on the static 

pressure. For AEX/AIN < 3.78 (pEX/pA > 2.45), a single barrel shock and Mach disk could be observed at the 

nozzle exit, and Hfb increases with the increase of AEX/AIN. On the other hand, for AEX/AIN  3.78 (pEX/pA  2.45), 

the sequential shock cell (diamond) structures is observed and Hfb was almost constant regardless of AEX/AIN, 

and a higher mass flow rate of hydrogen was needed for the stabilization of jet flames. Moreover, when the 

flow in the nozzle was close to ideal expansion (AEX/AIN = 6 ~ 7, pEX/pA = 0.9 ~ 1.1), the mass flow rate for 

existence of stable flame became maximum. 

The numerical simulation at static pressure of 8 MPa demonstrated that hydrogen jets with AEX/AIN ≳ 4 

have the sequential shock cell (diamond) structure, and the velocity at the intersection point between the 

stoichiometric contour and the line perpendicular to the nozzle axis at 70 mm downstream from the nozzle exit 

is almost the same. Hydrogen jets with AEX/AIN ≲ 4 have single Mach disk and the velocity at the same point 

decreased with the decrease of AEX/AIN. This qualitatively explains the experimental result that the value of Hfb 

for AEX/AIN < 3.78 (pEX/pA > 2.45) decreases with the decrease of AEX/AIN. 

The mass flow rate required for the existence of stable flame is almost the same for AEX/AIN  3.78 and 

the required flow rate for AEX/AIN < 3.78 decreases with the decrease of AEX/AIN. This observation could be 

qualitatively explained by considering the condition for stabilization of jet flame Hw>Hfb regardless of the 

shock structures, where Hw is the distance from the nozzle axis to the maximum radius point on the 

stoichiometric contour. 
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Captions to figures 

Figure 1. Schematic diagram of experimental set up. 

Figure 2. Cross-section drawings of three types of nozzles. 

Figure 3. Schlieren images of turbulent non-premixed jet flames with different ratio of the exit cross-section 

area of nozzle to the inlet cross-section area, AEX /AIN, with the hydrogen mass flow rates kept almost 

constant. The right figures are the enlarged schlieren images focused on the shock structures near the 

nozzle exit. 

Figure 4. Dependence of lift-off length Hfb on AEX /AIN. 

Figure 5. Conditions for hydrogen flame stabilization (○), and blow-off (×). 

Figure 6. Computational domain and enlarged image near the nozzle exit. 

Figure 7. Change in the reciprocal of H2 mass fraction Yhcl along the non-dimensional jet axis with changing 

RNG k-ε turbulence model coefficient C1ε. 

Figure 8. Simulation results of density contour near the nozzle exit, with the static pressure and mass flow rate 

set at 8 MPa and 0.98 g/s, respectively. 

Figure 9. Simulation results of velocity distribution along the jet axis, where the calculation conditions 

correspond to those of Figure 8. 

Figure 10. Simulation results of velocity vphi1 at the intersection point between the stoichiometric contour and 

z=70mm line perpendicular to the jet axis. 

Figure 11. Relationship between Hw and AEX/AIN with the variation of static pressure in nozzle, where the  

Figure 12. Schematic illustrations on the relationship between Hfb and Hw and qualitative model for blow-off 

or stable flame. 

 

 

Caption to tables 

Table 1. Types and dimensions of used nozzles. 

Table 2. Nozzle dimensions in numerical simulations. 

Table 3. Boundary conditions of simulations. 

 

 

 

  



 

 

Figure 1. Schematic diagram of experimental set up. 

 

 

 

 

 

Figure 2. Cross-section drawings of three types of nozzles. 

 

  



 

Table 1. Types and dimensions of used nozzles. 

 

Nozzle type Abbreviation 
INLET EXIT 

AEX /AIN 
dIN [mm] AIN [mm2] dEX [mm] AEX [mm2] 

Straight 

d0.3 0.31 0.08 0.34 0.09 1.20 

d0.5 0.51 0.20 0.53 0.22 1.09 

d0.7 0.73 0.41 0.75 0.44 1.06 

Divergent 

d0.5-0.65 0.52 0.21 0.66 0.34 1.62 

d0.5-0.80 0.53 0.22 0.81 0.52 2.40 

d0.5-1.00 0.52 0.21 1.01 0.79 3.78 

d0.5-1.30 0.52 0.21 1.32 1.36 6.44 

d0.5-1.60 0.52 0.22 1.64 2.10 9.73 

d0.5-1.65 0.51 0.20 1.70 2.28 11.2 

Convergent d1.00-0.5 1.04 0.85 0.50 0.19 0.23 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schlieren images of turbulent non-premixed jet flames with different ratio of the exit cross-section 

area of nozzle to the inlet cross-section area, AEX /AIN, with the hydrogen mass flow rates kept almost constant. 

The right figures are the enlarged schlieren images focused on the shock structures near the nozzle exit. 
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Figure 4. Dependence of lift-off length Hfb on AEX /AIN. 

 

 

 

 

 

Figure 5. Conditions for hydrogen flame stabilization (○), and blow-off (×). 

  



 

Figure 6. Computational domain and enlarged image near the nozzle exit. 

 

 

 

Table 2. Nozzle dimensions in numerical simulations. 

Nozzle type dIN [mm] dEX [mm] AEX /AIN 

Straight 0.50 0.50 1.00 

Divergent 

0.50 0.65 1.69 

0.50 0.80 2.56 

0.50 1.00 4.00 

0.50 1.16 5.38 

0.50 1.30 6.76 

0.50 1.50 9.00 

0.50 1.65 10.9 

Convergent 1.00 0.50 0.25 

 

 

Table 3. Boundary conditions of simulations. 

 H2 inlet Surrounding 

Temperature [K] 300 300 

Absolute pressure 

[MPa] 
3 to 10 0.1 

Composition 

(Mass fraction)  

1 H2 0.23 O2 

0.77 N2 



 

Figure 7. Change in the reciprocal of H2 mass fraction Yhcl along the non-dimensional jet axis with changing 

RNG k-ε turbulence model coefficient C1ε. 

 

 

Figure 8. Simulation results of density contour near the nozzle exit, with the static pressure and mass flow rate 

set at 8 MPa and 0.98 g/s, respectively. 



 

Figure 9. Simulation results of velocity distribution along the jet axis, where the calculation conditions 

correspond to those of Figure 8. 

 

 

 

 

Figure 10. Simulation results of velocity vphi1 at the intersection point between the stoichiometric contour and 

z=70mm line perpendicular to the jet axis. 

  



 

Figure 11. Relationship between Hw and AEX/AIN with the variation of static pressure in nozzle, where the 

minimum throat diameter is constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Schematic illustrations on the relationship between Hfb and Hw and qualitative model for blow-off 

or stable flame. 

  

(a) Stable flame condition 

(b) Blow-off condition 
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  =pEX/pA : the ratio of nozzle exit to ambient pressure 


