
Journal of Humanistic Mathematics Journal of Humanistic Mathematics

Volume 11 | Issue 1 January 2021

Computational Thinking in Mathematics and Computer Science: Computational Thinking in Mathematics and Computer Science:

What Programming Does to Your Head What Programming Does to Your Head

Al Cuoco
Education Development Center

E. Paul Goldenberg
Education Development Center

Follow this and additional works at: https://scholarship.claremont.edu/jhm

 Part of the Computer Sciences Commons, Education Commons, and the Number Theory Commons

Recommended Citation Recommended Citation
Cuoco, A. and Goldenberg, E. "Computational Thinking in Mathematics and Computer Science: What
Programming Does to Your Head," Journal of Humanistic Mathematics, Volume 11 Issue 1 (January
2021), pages 346-363. DOI: 10.5642/jhummath.202101.17 . Available at:
https://scholarship.claremont.edu/jhm/vol11/iss1/17

©2021 by the authors. This work is licensed under a Creative Commons License.
JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and
published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/

The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds
professional ethical guidelines. However the views and opinions expressed in each published manuscript belong
exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for
them. See https://scholarship.claremont.edu/jhm/policies.html for more information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/387586019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.claremont.edu/jhm
https://scholarship.claremont.edu/jhm/vol11
https://scholarship.claremont.edu/jhm/vol11/iss1
https://scholarship.claremont.edu/jhm/vol11/iss1
https://scholarship.claremont.edu/jhm/vol11/iss1/17
https://scholarship.claremont.edu/jhm/vol11/iss1/17
https://scholarship.claremont.edu/jhm?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol11%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol11%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol11%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/183?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol11%2Fiss1%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/jhm/policies.html

Computational Thinking in Mathematics and Computer Science: What Computational Thinking in Mathematics and Computer Science: What
Programming Does to Your Head Programming Does to Your Head

Cover Page Footnote Cover Page Footnote
Supported by NSF Grant #1441075, The Beauty and Joy of Computing.

This work is available in Journal of Humanistic Mathematics: https://scholarship.claremont.edu/jhm/vol11/iss1/17

https://scholarship.claremont.edu/jhm/vol11/iss1/17

Computational Thinking

in Mathematics and Computer Science:

What Programming Does to Your Head

Al Cuoco

Education Development Center, Waltham, Massachusetts, USA

acuoco@edc.org

E. Paul Goldenberg

Education Development Center, Waltham, Massachusetts, USA
EPGoldenberg@edc.org

Synopsis

How you think about a phenomenon certainly influences how you create a pro-
gram to model it. The main point of this essay is that the influence goes both
ways: creating programs influences how you think. The programs we are talk-
ing about are not just the ones we write for a computer. Programs can be
implemented on a computer or with physical devices or in your mind. The imple-
mentation can bring your ideas to life. Often, though, the implementation and
the ideas develop in tandem, each acting as a mirror on the other. We describe
an example of how programming and mathematics come together to inform and
shape our interpretation of a classical result in mathematics: Euclid’s algorithm
that finds the greatest common divisor of two integers.

How you think about a phenomenon certainly influences how you create a
program to model it. The main point of this essay is that the influence goes
both ways: creating programs influences how you think.

The programs we are talking about are not just the ones we write for a
computer. Programs can be implemented on a computer or with physical
devices or in your mind. The implementation can bring your ideas to life.

Journal of Humanistic Mathematics Volume 11 Number 1 (January 2021)

http://scholarship.claremont.edu/jhm/

Al Cuoco and E. Paul Goldenberg 347

Often, though, the implementation and the ideas develop in tandem, each
acting as a mirror on the other.

This is not a new thesis. Researchers have studied how the use of “artifacts”
is shaped by and shapes the user (see [6, 7, 5, 1, 3], for example). In what
follows we’ll give some examples that show how our own thinking is co-formed
by the habit of working in a functional programming language.

First, a caveat: Most real programing languages, including the ones we’ve
used, support all kinds of thinking. But we are using a small subset of the
features of these modern languages, one where there’s no data mutation, no
iteration, and no variable assignment. Programs are models of mathematical
functions that pass values around to each other, and the values can be any
kind of data, including functions themselves. These languages are all in the
Lisp tradition; here we use Snap!, the language used in our Beauty and Joy
of Computing curriculum (an AP CS Principles course available at https:

//bjc.edc.org).

Example: Unstacking a recurrence

Recursive thinking has been used for a long time. One of the earliest uses of
recursion in arithmetic surely has to be Euclid’s formulation of an algorithm
(now named after him) to compute the greatest common divisor for two
non-negative integers. If a and b are such numbers, their greatest common
divisor, gcd(a, b) is, as the name suggests, the largest integer that is a factor
of both a and b. So, for example, the gcd(124, 1028) is 4.

Greek mathematicians used a process called antanairesis, a free translation
of which is “back and forth subtraction” when they realized that one conse-
quence of the arithmetic structure of the integers is that

if a < b, then gcd(a, b) = gcd(b− a, a)

If, as in the case of gcd(124, 1028), one such subtraction leaves the first
argument to gcd greater than the second (that is, b − a > a), no matter,
because gcd(b−a, a) = gcd(a, b−a) so we can just subtract that smaller value
again, gradually whittling the larger of the two original numbers down until
the result is less than the smaller of the two original values. That repeated
subtraction is division, and the result we’re keeping is the remainder.

https://bjc.edc.org
https://bjc.edc.org

348 What Programming Does to Your Head

A Story From AC

I (AC) first came to understand this process for executing Euclid’s algorithm
through the way it’s typically developed in algebra and number theory: write
out all the divisions and use the fact that the remainders decrease, and hence
eventually vanish. Written out in general, the details look onerous. For
gcd(a, b), it looks like this:

Set b = r0 and a = r1, so that the equation b = qa + r reads
r0 = q1a + r2. There are integers qi and positive integers ri such
that

b = r0 = q1a + r2, r2 < a

a = r1 = q2r2 + r3, r3 < r2

r2 = q3r3 + r4, r4 < r3
...

...

rn−3 = qn−2rn−2 + rn−1, rn−1 < rn−2

rn−2 = qn−1rn−1 + rn, rn < rn−1

rn−1 = qnrn

This is one of the more tame versions, taken from [4]. It’s not as bad as
it looks, especially if you try it with numbers, say, 124 and 1028. It is
presented as an iterative sequence of steps, but if you do this, you get the
feeling that it’s “always the same.” Sure, the numbers change, but the steps
are the same—the division, the swapping of quotients and remainders—and
the rhythm builds as you work it through.

For me, it stayed that way for years—a general feeling that the equations
above described a machine, one that could be run on any pair of integers to
produce their gcd.

That machine became real when one of my high school students introduced
me to Logo. I was immediately drawn to the feature of the language that
allows you to build computational models of recursively defined mathematical
functions. This seemed miraculous to me, and it gave me the inspiration to
express the essence of the “general feeling” I had about processes like the
one above as recursively defined computer programs. That is, the essence of

Al Cuoco and E. Paul Goldenberg 349

Euclid’s algorithm is that

gcd(a, b) = gcd(b mod a, a).

This one concise statement captures what the algorithm does and expresses
what it does as a statement about a function. It captures the essence of
the iterative process expressed in the entire seven-line, two-column set of
symbols above. By showing gcd(a, b) defined in terms of the gcd of two
smaller numbers, it even clarifies how the process can end when one of the
numbers vanishes. Getting a computer to execute it requires telling the
computer when that “final step” has been reached, and that’s all:

Figure 1: Euclid’s Algorithm, expressed in Snap!

Expressed in conventional notation, this becomes

gcd(a, b) =

{
b if a = 0

gcd(b mod a, a) if a > 0

Our colleague Brian Harvey recently talked about “the most beautiful piece
of code.” Code is an articulation of the thinking that created it; if the
thinking is elegant, and the computer language supports that thinking, then
the elegance of the thinking is what makes the code beautiful.

I can’t remember which idea came to me first—the computer program or the
realization that Euclid’s algorithm can be viewed as an inductively defined
function of two variables. Most likely, the two ideas developed in tandem,
with refinements of one helping to refine the other. But I’m certain of one
thing:

The insight that Euclid’s algorithm can be expressed as a recur-
sively defined function co-evolved from my attempts to model it
as a recursively defined computer program.

350 What Programming Does to Your Head

The elegant one-line recursive function idea that summarizes the many-step
iterative process shown above was not in the books at that time. It’s not an
exaggeration to say that my early book on algebra and number theory [2]
was built from the thinking that went into this.

———o———0———o———

So, we have two models of Euclid’s algorithm, each expressed as a function
of two variables:

• The mathematical function defined by

gcd(a, b) =

{
b if a = 0

gcd(b mod a, a) if a > 0

• The computer program expressed as

Carefully playing with the program and its structure can lead to results that
seem to drop out of the sky in many number theory books. For example,
the teachers with whom we work like to “play computer” and arrange the
execution of gcd(124, 1028) like this:

124 1028

0

–16

4–32

3616

2–108

124

3

36

–992

8

4 16

Al Cuoco and E. Paul Goldenberg 351

Another feature of computational thinking is to look at the form of algo-
rithms, rather than their output, seeking some kind of regularity in the ex-
ecution of the operations. This habit develops with experience, learning to
see the value in “stepping back” to see if you are performimg the same op-
erations, over and over, independent from the inputs to those operations.
It’s all about rhythm, and, as in music, the rhythm is an ingredient in the
elegance of a program. For example,

Imagine that one of the authors spilled his wine (a 2010 Barbera) over the
other author’s calculation:

124 1028

0

–16

4–32

3616

2–108

124

3

36

–992

8

4 16

1028

0

–16

4–32

3616

2–108

124

3

36

–992

8

4 16

Figure 2: A clumsy author

What’s left is the calculation of gcd(36, 124). So gcd(36, 124) is also 4. And
more spills show that each pair in the sequence produces a smaller version of
the same calculation. The fact that you can pick up the calculation at any
step makes the recursive call in Euclid’s algorithm come alive.

Another example: The last non-zero remainder is 4, so 4 = gcd(124, 1028).
It seems as if we should be able to unstack all this, starting with 4, winding
our way all the way up to the top. The habit of looking for such things is yet
another aspect of computational thinking: the habit of analyzing computa-
tions to see what stories they have to tell. Let’s look at this idea in more
detail.

Well, start at the bottom—look at that next-to-last division that produces 4.
It says that 4 is the remainder when 36 is divided by 16. More precisely,

352 What Programming Does to Your Head

it says that
4 = 36− 2 · 16

But now 16 plays the same role in the next-up division that 4 plays here:

16 = 124− 3 · 36

As Van Morrison said so well [8], it’s too late to stop now. We can unstack
the whole thing like this:

4 = 36 – 2 . 16

= 36 – 2 . (124 – 3 . 36)

= –2 . 124 + 7 . 36

= – 2 . 124 + 7 . (1028 – 8 . 124)

= 7 . 1028 – 58 . 124

124 1028

0

–16

4–32

3616

2–108

124

3

36

–992

8

4 16

And look: we’ve written 4 as a linear combination of 124 and 1028. That
is, we can express 4 as something times 124 plus something else times 1028.
And there’s nothing special about 124 and 1028—it will always be possible
to write gcd(a, b) as a linear combination of a and b.

But “it will always be possible” is too wimpy. Computational thinking de-
mands we ask how one can write gcd(a, b) as a linear combination of a and
b. That is, there must be a way to find the numbers to multiply a and b by.
These numbers will depend on a and b, so there must be two new functions
of a and b—let’s call them s and t—so that

s(a, b) a + t(a, b) b = gcd(a, b)

For example,

s(124, 1028) = −58 and t(124, 1028) = 7

It would be worth it here to stop reading and work out a few more examples.
Then try to build computational models of s and t. We do that next, but
don’t look until you try it for yourself

Al Cuoco and E. Paul Goldenberg 353

Here we go. . .

We’re on a hunt for the functions s and t. A function is determined by its
values and its domain. The domain for both is the set of integers. The
values? It would be great to have an explicit algorithm that describes how s
and t produce their outputs. A recursive definition seems like the most likely
candidate because of how Euclid’s algorithm works1. And the search for a
recurrence usually starts with a careful analysis of numericals.

Let’s start with another numerical example, just for variety. The very pretty
calculation of gcd(216, 3162) is depicted in Figure 3.

14

216

)
3162

3024 1

138

)
216

138 1

78

)
138

78 1

60

)
78

60 3

18

)
60

54 3

6

)
18

18

0

Figure 3: Another Example

A mental image like the one in Figure 2 on page 251 shows that each pair in

1It turns out that there’s more than one definition that works. Stay tuned.

354 What Programming Does to Your Head

the sequence

(216, 3162)→ (138, 216)→ (78, 138)→ (60, 78)

→ (18, 60)→ (6, 18)→ (0, 6)

has the same gcd, a fact that was already implicit in Euclid and that is made
explicit in the Snap! program in Figure 1. We can exploit this insight to
build computational models for the functions s and t:

1. Express each of the remainders in terms of the division that produced
it. For example, 3162 ÷ 216 yields a quotient of 14 and remainder of
138, so

138 = 3162− 14 · 216

And in general:
138 = 3162− 14 · 216

78 = 216− 1 · 138

60 = 138− 1 · 78

18 = 78− 1 · 60

6 = 60− 3 · 18

2. Now, start with the last equation, and inductively back-substitute, sim-
plifying at each step:

6 = − 3 · 18 + 60

= − 3(78 − 1 · 60) + 60 = 4 · 60 − 3 · 78

= 4(138 − 1 · 78) − 3 · 78 = − 7 · 78 + 4 · 138

= − 7(216 − 1 · 138) + 4 · 138 = 11 · 138 − 7 · 216

= 11(3162 − 14 · 216) − 7 · 216 = − 161 · 216 + 11 · 3162

3. So, the calculation unstacks (adding two more steps for completeness)
as

6 = 0 · 0 + 1 · 6

= 1 · 6 + 0 · 18

= − 3 · 18 + 1 · 60

= 4 · 60 − 3 · 78

= − 7 · 78 + 4 · 138

= 11 · 138 − 7 · 216

= − 161 · 216 + 11 · 3162

These two steps don’t appear

explicitly in the calculation above

but follow the pattern back to its

 logical root.

These five steps

appear explicitly

in the calculation

above.

Al Cuoco and E. Paul Goldenberg 355

We find that 6 = −161 · 216 + 11 · 3162. Notice the rhythm. And there’s
more: Notice that 6 is not only a combination of 216 and 3126, it is also a
combination of 18 and 60, of 60 and 78, of 78 and 138, and of 138 and 216.
Notice also that the pairs

(18, 60) (60, 78) (78, 138) (138, 216) (216, 3162)

are just the quotients and remainders in the calculation pictured in Figure 3.

Shoe-horning a gut instinct into a precise formulation is another useful habit
in computational (and mathematical) thinking. Saying, precisely, what you
mean helps you understand what you mean. This is certainly possible in
mathematical notation alone. But—especially for those who are less con-
stantly immersed in and fluent with mathematical notation—this is one of
the main benefits of programming. So, let’s look more carefully at this whole
process. Suppose that, using long division, we find an integer q (the quotient
when b is divided by a) so that

b = qa + mod(b, a)

To streamline the notation, let r = mod(b, a), so that

b = qa + r and 0 ≤ r < a

This is just algebraic notation for what fourth graders learn about checking a
division problem. If you’ve divided b by a, and gotten q as the quotient and
r as the remainder, then, to check it, multiply a by q, add r, and you should
get b; oh, and by the way, the remainder must be less than the number you
divide by.

Then the calculation for finding gcd(a, b) starts out like this:

(a, b) −→ (r, a) −→ · · ·

Suppose that d = gcd(a, b), so that d = gcd(r, a) (Euclid, again). As in the
calculation with 216 and 3162, take the coefficients for r and a—these are
just the values for s and t at r and a—and “lift” them to coefficients for
a and b. That is, if we suppose we’ve already found s(r, a) and t(r, a), we
can use that result to derive s(a, b) and t(a, b). This “make believe” habit is
another useful piece of computational thinking, the analogue of how lemmas
are used in mathematics. Here’s how that would work. We know that

d = s(r, a)r + t(r, a)a

356 What Programming Does to Your Head

and we have supposed that we know these values of s and t. So, since
r = b− aq, we know that

d = s(r, a)(b− aq) + t(r, a)a

= (t(r, a)− q s(r, a)) a + s(r, a) b

= (something)× a + (something else)× b

Bingo. We can take
s(a, b) = t(r, a)− q s(r, a)

and
t(a, b) = s(r, a)

This pair of functional equations is very unusual: s is defined in terms of t,
and t is defined in terms of s. Yes, the arguments decrease, but still, this is
not a structure that is commonly seen. . . .

The pair can be expressed like this:

s(a, b) =

{
some base case

t(r, a)− q s(r, a) otherwise

t(a, b) =

{
some other base case

s(r, a) otherwise

where q is the quotient when b is divided by a—that is the floor of b
a
.

Ah. . . a can’t be 0. So, maybe something like this will work:

s(a, b) =

{
some base case if a = 0

t(r, a)− q s(r, a) otherwise

t(a, b) =

{
some other base case if a = 0

s(r, a) otherwise

Oh, but if a = 0, there’s an easy choice for s(0, b) and t(0, b) because
gcd(0, b) = b and b = 0 · 0 + 1 · b. Maybe, then, this:

s(a, b) =

{
0 if a = 0

t(r, a)− q s(r, a) otherwise
and t(a, b) =

{
1 if a = 0

s(r, a) otherwise

Snap! is a perfect tool for this kind of investigation; it provides a medium for
an almost direct translation of the mathematical definitions, as in Figure 4.

Al Cuoco and E. Paul Goldenberg 357

0

Figure 4: Computational models for s and t

This should make your head hurt—a double recursion. But if we take the
models out for a spin. . .

As one of our colleagues likes to say, Holy Moly! It works, just as it’s supposed
to work. It took some time and paper to convince ourselves that this was
destined to work—it’s all in the careful mathematics, careful coding, and
powerful medium.

Sit back in delight and watch this work—over and over with many different
examples, some designed to trick it. It gives back the ideas used to create
it. We came up with this model through an analysis of the recursive form
of Euclid’s algorithm. And, the fact that we had been using Logo, Scheme,
and Snap! in certain ways was an essential ingredient into the inspiration for
and creation of these functions.

358 What Programming Does to Your Head

The programs give back

An old friend and longtime mathematics teacher, Angelo DiDomenico, used
to paraphrase a quote by D’Alembert saying: “Mathematics is generous. It
gives back to you more than you ask.” The same is true about programs.
Analyzing what we have just created gives new insights into results, results
that may have been known before but that take on new impact because they
emerge from computation.

There was some arbitrariness in our definition of the functions s and t. On
page 256, we said, “Oh, but if a = 0, there’s an easy choice for s(0, b) and
t(0, b) because gcd(0, b) = b and b = 0 · 0 + 1 · b.” And that led to two
programs, pictured in Figure 4.

But, if you think about it, if a = 0, it doesn’t matter what the coefficient of
a is

gcd(0, b) = anything · 0 + 1 · b,

(another application of looking at the structure of an algorithm). So, we can
change the base case for s to anything we want, and it should still work.
Returning to gcd(124, 1028), suppose, for example, that you edit the code
for s to make s(0, b) = 6 (instead of 0) and keep the rest the same:

6

0

Figure 5: Change the base case to output 6

Al Cuoco and E. Paul Goldenberg 359

Let’s see:

Holy Moly. It works again. We tried several other choices for s(0, a), and, of
course, they all worked. We wondered if there’s a closed form—an explicit
formula—for s(a, b) and t(a, b) in terms of the base cases. That is, if s(0, a)
is, say, x, what would s(a, b) and t(a, b) in terms of x?

One computational habit is to start from examples—try different values for
s(0, a), organizing the data in a regular way. In that tradition, here’s table
for several values of s(0, a), looking to see how it depends on a:

a s(0, a)
0 −58
1 199
2 456
3 713
4 970
5 1227

The usual habit (after you’ve done this kind of thing for some years) is to
look at first differences:

a s(0, a) ∆
0 −58 257
1 199 257
2 456 257
3 713 257
4 970 257
5 1227

So, it seems (with overwhelming evidence) that a linear function fits the
table:

s(0, a) = −58 + 257a

Something’s going on.

360 What Programming Does to Your Head

Someday, Snap! will have a built-in CAS. Until then, we fired up a trusty
CAS (the TI nspire), seeing what it has to say:

Yup—it works. Now for the fun part. Replace s(0, a) with a “placeholder”
x:

And now. . .

Oh, this deserves another Holy Moly!. Look:

(257x− 58)124 + (7− 31x)1028 = 4

And the “reason” behind this is that

257 · 124 = 31 · 1028

So, the coefficients are adjusted (by our trusty CAS) so that the adjustments
cancel out.

This whole exercise is so very pleasing. Seeing mathematical phenomena
come alive like this reinforces our longstanding feeling that mathematics is
real and open to experiment.

Al Cuoco and E. Paul Goldenberg 361

What is to be learned from this?

These results are in all the number theory books. Sometimes they are mo-
tivated (as in [4], we hope). But here, they emerge from what Hoyles and
colleagues call “instrumental genesis”—this back and forth between your
head and your tools.

Much of the literature about computational thinking focuses one direction:
the implementation of ideas. This, by itself, is a reason enough to infuse
computational media into mathematics education at all levels. In addition
to modeling, simulations, and data mining, there are benefits to the “bread
and butter” areas of algebra and geometry.

• Conventional mathematical notation on paper sits there, correct or in-
correct, until it is reenacted in the writer’s mind. And it must be reen-
acted, not only to catch possible errors, but also to continue and extend
a correct line of thought. It takes work to read and understand—even
regular prose takes work to read and understand—and depending on
all sorts of other factors including time, distraction, and experience,
that can become a filter that limits who does the reading and who does
not. Writing

gcd(a, b) =

{
b if a = 0

gcd(b mod a, a) if a > 0
as

also takes effort, but is now possible, and the effort to do so is repaid.
For one thing, the computer notation is runnable. We can detect errors
in it by running it on cases we know easily, whereas detecting an error
in the conventional notation requires either knowing what it should say,
or carefully working through multi-step calculations.

• For another thing, the building blocks of the computer notation can be
played with independently, starting with a very inelegant formulation
and working toward the algorithm over time.

362 What Programming Does to Your Head

Figure 6: Building up from regularity in calculations

• We also get a surprise. The initial claim that if a < b, then gcd(a, b) =
gcd(b− a, a) specifies that a must be less than b (so that the repeated
subtraction doesn’t blow up).

Figure 7: It doesn’t care

By looking at that last line and figuring out what it does, we can explain
why the program (and therefore, the algorithm) doesn’t actually care
which of a and b is greater.

Figure 8: The last line

• And, finally, though the kind of experimentation that leads to this
formulation can—and historically did—get “run” in one’s head, many
people who don’t start out with that agility and focus can learn to do
that, even in their heads, when the first steps require less patience and
writing and rereading and reenactment. The act of building a runnable
algorithm rather than describing one that one can only imagine running
is a plausible help—and, in our experience, a practical and observable
help—allowing students to internalize the way of thinking and, later,
run those imagined algorithms internally.

Runnable notation, modularity, analysis of outputs, and experimentation are
all crucial parts of the story.

Al Cuoco and E. Paul Goldenberg 363

But there’s another equally important part, one that doesn’t get enough play.
It’s the argument that we make in this paper: the claim on page 247 that
the “arrows go both ways”—creating programs influences and is influenced
by how you think.

Acknowledgments. This work is partially supported by NSF Grant #1441075,
The Beauty and Joy of Computing.

References

[1] Michèle Artigue, “Learning Mathematics in a CAS Environment: The
Genesis of a Reflection about Instrumentation and the Dialectics be-
tween Technical and Conceptual Work”, International Journal of Com-
puters for Mathematical Learning, Volume 7 (2002), pages 245-274.

[2] Al Cuoco, Investigations in Algebra, MIT Press, Cambridge MA, 1990.

[3] Al Cuoco, “Thoughts on Reading Artigue’s “Learning Mathematics in
a CAS Environment”, International Journal of Computers for Mathe-
matical Learning, Volume 7 (2002), pages 293-299.

[4] Al Cuoco and Joseph J. Rotman, Learning Modern Algebra, MAA
Press, Washington DC, 2013.

[5] Celia Hoyles and Richard Noss and Phillip Kent, “On the Integration
of Digital Technologies into Mathematics Classrooms”, International
Journal of Computers in Mathematics Learning. Volume 9 (2004),
pages 309-326.

[6] Luc Trouche, “Managing the Complexity of Human/Machine Interac-
tion in a Computer Based Learning Environment: Guiding Student’s
Process Command through Instrumental Orchestrations”, Plenary pre-
sentation at the Third Computer Algebra in Mathematics Education
Symposium, Reims, France, June 2003.

[7] Pierre Vérillon and Pierre Rabardel, “Cognition and Artefacts: a con-
tribution to the study of thought in relation to instrumented activity”,
European Journal of Psychology of Education, Volume 10, pages 77-
101.

[8] Wikipedia contributors, “Into the Mystic”, Wikipedia, The Free En-
cyclopedia; available at https://en.wikipedia.org/wiki/Into_the_
Mystic, last accessed on January 28, 2021.

https://en.wikipedia.org/wiki/Into_the_Mystic
https://en.wikipedia.org/wiki/Into_the_Mystic

	Computational Thinking in Mathematics and Computer Science: What Programming Does to Your Head
	Recommended Citation

	Computational Thinking in Mathematics and Computer Science: What Programming Does to Your Head
	Cover Page Footnote

	Computational Thinking in Mathematics and Computer Science: What Programming Does to Your Head

