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Response to Steven Colbert:

Spicing Up the Exposition of Differential Equations

via Engaging with Relevant History of Algebra

Isaac Elishakoff

Department of Ocean and Mechanical Engineering, Department of Mathematical
Sciences, Florida Atlntic University, USA

elishako@fau.edu

Synopsis

This paper deals with some problems that can be incorporated in the exposition
of ordinary differential equations in courses on Differential Equations and System
Dynamics or Intermediate Strength of Materials, with a view to promote more
interest and excitement by the attendees, both students and lecturers.

1. Introduction

One can safely say that our popular culture does not glorify science and
engineering. Here is a quote from the “satirical bestseller” (in the words
of Wikipedia) by American comedian Stephen Colbert, who is the host of
CBS’s The Late Show with Stephen Colbert.

“Let’s try a little experiment. Look at this equation:

x =
−b±

√
b2 − 4ac

2a
.

What you are feeling right now, is your body rejecting an idea
that is trying to make you learn it. Don’t fight the confusion.
That’s just your mind scabbing over in a desperate attempt to
protect you from that unnatural commingling of numbers and
letters up there. You can’t add it, and you can’t read it. Useless.”
[9, page 120]
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324 Spicing up the Exposition of Differential Equations

Here is another quote from the Colbert Report [10]:

“I have said it before: equations are devil’s sentences. The worst
one is that quadratic equation, an infernal salad of numbers, let-
ters, and symbols.”

Naturally (at least we hope so) Colbert was joking. But a reader of his book,
or the viewer of his show, may think (as many do) that 90% of every joke is
truth (or truthiness—a term ingeniously coined by Colbert himself).

In these circumstances, mathematics education needs to be spiced up, so that
students will recognize that this discipline is not merely a necessary evil but
a vibrant, exciting and fascinating subject.

One means of eliminating boredom and apathy is presentation of mathemat-
ics in its historical context. In the words of the immortal German poet-
scientist-thinker Johann Wolfgang von Goethe (1749-1832), “the history of
science is science itself” [18]. Indeed, according to Morin’s Limerick [29],

The skill to do math on a page
Has declined to the point of outrage.
Equations quadratica
Are solved on a Math’matica,
And on birthdays we don’t know our age.

According to Moritz [30], in his Presidential Address to the British Associ-
ation for the Advancement of Science in 1890, J.W.L. Glaisher (1848-1928)
maintained that “no subject loses more than mathematics by any attempt
to disassociate it from its history.”1

What is the purpose of introducing the elements of history into the class-
room? As Man-Keung Siu writes, “using the history of mathematics in the
classroom does not necessarily make students obtain higher scores in the sub-
ject overnight, but it can make learning mathematics a meaningful and lively
experience, so that (hopefully) learning will come easier and will go deeper”
[32].

1 Here we should also note the distinction made by Ivor Grattan-Guinness [19, 20]
between history from our heritage in the context of the mathematics of the past.
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It appears also that learning about mistakes made by great mathematicians
makes us part of a vast human chain; if a famous mathematician made mis-
takes, then I (the student may think) am not hopeless! And history abounds
with such mistakes over the centuries. I’m thinking of how algebraists of
older times often ignored the negative solutions to quadratic equations.

Here we ought to remark that calling the work of mathematicians of the past
mistakes or errors might not always be optimal. It is for example perfectly
correct to neglect the negative root of a quadratic equation if you are solving
for money or length, and calling it a mistake simply removes the equation
from context. Of course, in the context of differential equations, the negative
root(s) cannot be neglected.

This is what the English mathematician, Francis Maseres (1731-1824), a
Fellow of the Royal Society, had to say about negative numbers in his 1759
book

“They [negative roots] serve only, as far as I am able to judge, to
puzzle the whole doctrine of equations, and to render obscure and
mysterious things that are in their own nature exceedingly plain
and simple. . . It was to be wished therefore that negative roots
had never been admitted into algebra and were again discarded
from it.” [27]

According to Klein, “apparently Euler, too, was still not clear about com-
plex numbers. . . He also made mistakes with the complex numbers. In his
Algebra [of 1770] he writes: “

√
−1
√

4 =
√

4 = 2 because
√
a
√
b =
√
ab” [25,

page 143]. Klein continues: “Though he calls complex numbers impossible
numbers, Euler says they are useful.”

In 1770, Euler (1707–1783) wrote that the operation of subtracting a negative
quantity, say, −b (where b > 0) was just like adding b, due to the fact that
“canceling a debt signifies the same as giving a gift” [13]. This latter quote
sometimes helps students master certain rules.

Mastering of the notion of complex numbers posed a major challenge for
scientists. This is what Euler had to say:

“The square roots of negative numbers are neither zero, nor less
than zero, nor greater than zero. Then it is clear that the square
roots of negative numbers cannot be included among the possible



326 Spicing up the Exposition of Differential Equations

[real] numbers. Consequently, we must say that these are impos-
sible numbers. And this circumstance leads us to the concept of
such numbers, which by their nature are impossible, and ordinar-
ily are called imaginary or fancied numbers, because they exist
only in the imagination.”

Analogously, Stephen Fletcher Hewson remarked, “[a]t one level, it is difficult
to visualize in what way imaginary numbers are ‘less’ than real numbers” [22,
page 31].

Such quotes speak to students’ hearts. They feel that if they do understand,
then this is because the stand on the shoulders of giants who, not unlike
themselves, made mistakes.

Indeed, as Clifford Truesdell emphasized, “Now a mathematician has a match-
less advantage over general scientists, historians, politicians, and exponents
of other professions: He can be wrong. A fortiori, he can also be right” [38,
page 140].

2. Connecting ODEs to Al-Khowârizmi’s Quadratic

Consider the quadratic equation treated by Mohammad ibn Mûsâ Al-
Khowârizmi (circa 780–850 Common Era) [3, 6]

r2 + 10r = 39. (1)

As David Burton writes, “this equation reappears frequently in later Arab
and Christian texts, running ‘like a thread of gold through the algebras of
several centuries” [7]. In Al-Khowârizmi’s original text the problem reads
as follows: “One square and ten roots of the same amount to thirty-nine
dirhems ; that is to say, what must be the square which, when increased
by ten of its roots, amounts to thirty-nine?” [12] John Derbyshire adds:
“Dirhem was a unit of money. Al-Khowârizmi uses it to refer to what we
nowadays call the constant term.” [12]

Al-Khowârizmi provided a geometric solution of this quadratic. He found
one root

r = 3, (2)

but was unaware of another root, namely,

r2 = −13. (3)
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One ought not engage in excessive criticism, as it were, of Al-Khowârizmi. In-
deed, John Stillwell, commenting on Eq. (1) notes: “Euclid and al-Khwārizmı̄
did not admit negative lengths, so the solution of x = −13 to x2 + 10x = 39
does not appear. This is quite natural, since geometry admits only positive
lengths” [34, page 52]. Likewise, as Derbyshire remarks, “Negative numbers,
along with zero, have not yet been discovered” [12, page 29].

The associated ordinary differential equation reads

ÿ + 10ẏ = 39y. (4)

Substitution of
y(t) = Cert (5)

leads to the characteristic equation of the above Eq. (1). The solution reads

y(t) = C1e
3t + C2e

−13t. (6)

The constants of integration are found by satisfying initial conditions. Stu-
dents appreciate the fact that whereas al-Khwārizmı̄ was happy with finding
only one root (since the negative root did not make sense to him, “you can’t
have a negative number of apples’, for example) to solve the differential
equation and to be able to satisfy the initial conditions, both roots of the
quadratic are needed.

When explaining the substitution (5), I quote the following limerick listed in
David Morin’s collection [29]:

This is our method, essential,
For equations we solve, differential.
It gets the job done,
And it’s even quite fun.
We just try a routine exponential.

One has to emphasize to the students that without recognizing negative
numbers as full-fledged members of the number family, we would be unable to
solve equation (4). This mathematical democracy or full equality of positive
and negative numbers allows us to achieve our goal of solving differential
equations. Indeed, according to Whitehead (as quoted by Arcavi et al [2]),
“the idea of positive and negative numbers has been practically the most
successful of mathematical subtleties.”
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As homework, students can be offered the following ODEs:

2ÿ + 10ẏ = 48y (7)

and
1

2
ÿ + tẏ = 28y. (8)

The associated characteristic equations are

2r2 + 10r = 48 (9)

and
1

2
r2 + 5r = 28. (10)

Al-Khowârizmi dealt with these types of equations in Chapter 4 of his book,
where “in each case only the positive answer is given” (Boyer [5]). In Chapter
6 he deals with the equation

3r + 4 = r2, (11)

and Boyer [5] notes that “again only one root is given, for the other is nega-
tive.” Students can be asked to solve the associated ODE:

3ẏ + 4y = ÿ. (12)

The following quote, by Richard Courant and Herbert Robbins may come
in handy when making a substitution given in Eq (5): “The natural expo-
nential function is identical with its derivative. This is the source of all the
properties of the exponential function and the basic reason for its importance
in applications” [11].

3. Connecting ODEs to Bombelli’s Quadratic

Consider the quadratic equation attributed to Rafael Bombelli (1526–1572)

r2 + 12 = 8r. (13)

Apparently he was not familiar with the general solution

r1,2 =
−b±

√
b2 − 4ac

2a
(14)
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of the quadratic
ar2 + br + c = 0. (15)

If a student drops the minus sign in front of b in Eq. (14), as it happens not
rarely, I give them a previously typed page with:

A young boy was filled with elation
Trying to solve a quadratic equation
But he only wrote “b”
(dropped the negative, see?)
And henceforth was merely frustration.

Bombelli was able to solve his equation in a neat manner. He rewrote it as

r2 − 8r + 12 = 0. (16)

Completing the square,
(r − 4)2 = 4, (17)

and so r = 2.

He then rewrote Eq. (17) as follows

(4− r)2 = 4, (18)

and obtained
r = 6. (19)

Thus, he derived two possible roots,

r1 = 2, r2 = 6. (20)

The associated governing differential equation reads

ÿ + 12y = 8ẏ (21)

since substitution in Eq. (5) leads to the characteristic equation (13) for r.
Thus, the general solution of Eq. (21) reads

y = C1e
2t + C2e

6t (22)

with constants of integration C1 and C2 found by satisfying initial conditions,
say

y(0) = α, ẏ(0) = β, (23)

where α and β are arbitrary constants.
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4. Connecting Second Order ODEs to Gerolamo Cardano’s Quadratic

Consider the following problem: “The perimeter of a rectangle equals 20,
its area equals 21; find its sides. Then construct an ODE such that its
characteristic equation is the same as the quadratic equation arising in the
determination of the sides of the rectangle.”

Denoting the sides q and r, we have the following equations

2(q + r) = 20 (24)

qr = 21. (25)

Since
q = 10 = r, (26)

Eq. 25 becomes
r2 − 10r + 21 = 0 (27)

with roots
r1 = 3, r2 = 7. (28)

The associated ODE is
ÿ − 10ẏ + 21y = 0 (29)

with the characteristic equation the same as Eq. (27). The solution reads

y(t) = C1e
3t + C2e

7t (30)

with constants C1 and C2 likewise determined by satisfying initial conditions.

One can modify this problem by replacing the area by some generic value A.
Then Eq. (27) is replaced by

r2 − 10r + A = 0 (31)

with roots
r1 = 5 +

√
25− A, r2 = 5−

√
25− A. (32)

If A is less than 25, the roots are distinct and positive. The associated ODE

ÿ − 10ẏ + Ay = 0 (33)
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has a solution
y(t) = C1e

(5+
√
25−A)t + C2e

(5−
√
25−A)t. (34)

For A = 25 the roots are equal: r1 = r2 = 5. For A > 25 they become
complex.

If we now pose the following problem:

“The perimeter of a rectangle equals 20, the area equals 30; find
the sides of the rectangle.”

Eq. (31) must be replaced by

r2 − 10r + 30 = 0 (35)

with roots
r1,2 = 5± i

√
5. (36)

The associated differential equation reads:

ÿ − 10ẏ + 30y = 0. (37)

The characteristic equation is obtained by the substitution in Eq. (5) and is
the same as Eq. (35). Hence the solution reads

y(t) = C1e
(5+i

√
5)t + C2e

(5−i
√
5)t

or
y(t) = e5t

[
C1e

it
√
5 + C2e

−it
√
t
]
. (38)

Here, Euler’s famous equation

eit = cos(t) + i sin(t) (39)

comes in handy to arrive at the final general equation

y(t) = e5t
[
D1 cos(

√
5t) +D2 sin(

√
5t)

]
. (40)

With initial conditions, say,

y(0) = 1, ÿ(0) = 0 (41)
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the solution becomes

y(t) = e5t
[
cos(
√

5t)− sin(
√

5t)
]
. (42)

Students respond with interest to the quote by Kasner and Newman:

“There is a famous formula—perhaps the most compact and fa-
mous of all formulas—developed by Euler. . . :

eiπ + 1 = 0.

It appeals equally to the mystic, the scientist, the philosopher,
the mathematician” [23].

Indeed, why in the world are the five most celebrated numbers, 0, 1, e, i, and
π so neatly connected? Is there some mysterious unity in the universe?

Regarding Euler’s above formula, this is what Eli Maor, author of highly
popular books had to say:

“Now this is the supreme act of mathematical chutzpha [audac-
ity], for in all our definitions of the function ex, the variable x has
always represented a real number. To replace it with an imagi-
nary number is to play with meaningless symbols, but Euler had
enough faith in his formulas to make the meaningless meaningful”
[26].

Indeed, to paraphrase an anonymous author, eit is a complex quantity just
like life: it has both real and imaginary components!

The homework can include the following differential equations:

ÿ − 12ẏ + 37y = 74, y(0) = 0, ẏ(0) = 1

ÿ − 14ẏ + 50y = 200, y(0) = 1, ẏ(0) = 0

ÿ − 18ẏ + 82y = 164, y(0) = 1, ẏ(0) = 1

ÿ − 20ẏ + 101y = 505, y(0) = 0, ẏ(0) = 1

ÿ − 40ẏ + 401y = 802, y(0) = 1, ẏ(0) = 0

ÿ − 13ẏ + 43.25y = 87, y(0) = 2, ẏ(0) = 5 (43)
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with solutions (respectively)

y(t) = 2− e6t(2 cos(t) + 13 sin(t))

y(t) = 4− e7t(−3 cos(t) + 21 sin(t))

y(t) = 2− e9t(− cos(t) + 10 sin(t))

y(t) = 5− e10t(−5 cos(t) + 5 sin(t))

y(t) = 2− e20t(− cos(t) + 20 sin(t))

y(t) = 2 + 5e6.5t5 sin(6.5t)) (44)

Consider now a specific problem treated by Girolamo Cardano (1501–1576
Common Era), in his 1545 book Ars Magna (The Great Art) [8]: “The perime-
ter of a rectangle equals 20, the area equals 40; find the sides of the rectangle.”
The associated ODE reads:

ÿ − 10ẏ + 40y = 0 (45)

whose characteristic equation

r2 − 10r + 40 = 0 (46)

was treated by Cardano (not in context of the differential equations!) He
derived two roots

r1 = 5 +
√
−15, r2 = 5−

√
−15 (47)

calling the problem itself “manifestly impossible” and “useless”, because of
negative numbers under the root sign. The interested reader can consult
the entertaining book by Barry Mazur with telling title, Imagining Numbers:
Particularly the Square Root of Minus Fifteen [28].

As we see, complex numbers are the tool that enables us to solve an ordinary
differential equation of second order with its characteristic equation possess-
ing the negative discriminant It should be noted that when discussing the
“discriminant” in class, we seek alternative terms such as “distinguisher” or
“demarker,” since to many students (and professors!) mathematical “dis-
crimination” is as intolerable as the real-life one.

As homework, one can assign the problem

ÿ + 12y = 6ẏ (48)
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whose characteristic equation

r2 + 12r = 6r (49)

was likewise dealt with by Cardano, who again referred to the roots “ficta”
or fiction [33].

Students see clearly that what seemed “impossible” to great Cardano is now
quite possible and straightforward for them.

On one occasion I led a discussion on the following statement by Grilly:

““Do imaginary numbers exist or not?” This was a question
chewed over by philosophers as they focused on the word “imag-
inary.” For mathematicians, the existence of imaginary numbers
is not an issue. They are as much part of everyday life as 5 or
π or a pie. They are irrelevant to shopping, but ask any aircraft
designer or electrical engineer and you will find they are vitally
important” [17, page 32].

Sometimes, if time is left before the end of the class, I ask students if a
complex coefficient polynomial can have real roots. They appreciate to know,
that the polynomial equation:

r3 − 2(1 + i)r2 + (1 + 4i)r − 2i = 0

has 3 roots, 1, 1, 2i, two of which are real. Students are assigned homework
to find other polynomial equations of this sort. Most of them succeed in the
assignment.

Sometimes students ask if the qualifier “imaginary” is appropriate since it
frightens them. I bring a prepared quote by Carl Friedrich Gauss (1777–
1855): “That this subject [imaginary numbers] has hitherto been surrounded
by mysterious obscurity, is to be attributed largely to an ill-adapted notation.
If for instance, +1, −1,

√
−1 had been called direct, inverse and lateral units,

instead of positive, negative, and imaginary (or even impossible), such an
obscurity would have been out of the question.”

After some discussion students usually do not accept the suggestion by Gauss,
and prefer the term “imaginary numbers” because of some attractive mys-
tique involved in numbers being “imaginary” and thus invoking their imagi-
nation. In fact, according to great physicist Albert Einstein, “Imagination is
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more important than knowledge,” or “Logic will get you from A to B — imag-
ination will take you everywhere.” In words of the French ruler Napoleon
Bonaparte, “the human race is governed by imagination.”

5. A Problem of Diophantus and Its Extension to ODEs

Consider the following problem by Diophantus of Alexandria (circa 200–
284 Common Era) in his Book 6: “Given a right triangle with area A and
perimeter P , find it’s legs.”

Denoting the legs q and r respectively, we have the following set of equations:

qr/2 = A (50)

q + r +
√
q2 + r2 = P (51)

or √
q2 + r2 = P − q − r. (52)

Squaring this expression, and cancelling identical terms on both sides we
have

P 2 − 2Pq − 2Pr + 2qr = 0 (53)

and substituting

q =
2A

r
(54)

we have the quadratic equation

2Pr2 − (4A+ P 2)r + 4PA = 0 (55)

with the leg r satisfiying

r =
4A+ P 2 ±

√
(4A+ P 2)2 − 32P 2A

4P
. (56)

For
A = 6, P = 12 (57)

we have the quadratic equation

24r2 + 168r + 288 = 0 (58)
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with roots
r = 3, q = 4 (59)

resulting in an Egyptian triangle, with sides 3, 4 and 5 (Pythagorean triplet).
For

A = 7, P = 14 (60)

we have
28r2 − 224r + 392 = 0 (61)

with legs
r = 4−

√
2 ≈ 2.59, q = 4 +

√
2 ≈ 5.41 (62)

and for
A = 30, P = 30 (63)

we get
60r2 − 1020r + 3600 = 0 (64)

with roots
r1 = 5, r2 = 12 (65)

the hypotenuse being r3 =
√

52 + 122 = 13, numbers 5, 12 and 13 forming
another Pythagorean triplet.

In the case considered by Diophantus

A = 7, P = 12 (66)

the quadratic equation becomes

24r2 − 172r + 336 = 0 (67)

and the legs become
43±

√
−167

12
(68)

which signifies that such a triangle does not exist.

Diophantus, in the words of Smith “stated that Eq. (67) cannot be solved
unless the square of half the coefficient of r diminished by 24×336 is a square,
not otherwise seeming to note that this equation has complex roots” [33].

It appears that we cannot negatively judge Diophantus for stating that equa-
tion 4x+ 20 = 4 is “absurd.”

In Nahin’s words,
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“six hundred years later (circa 850 Common Era) “the Hindu
mathematician Mahavlracarya wrote on this issue, but then only
to declare what Heron and Diophantus had practiced so long
before: ‘The square of a positive as well as of a negative (quan-
tity) is positive; and the square roots of those (square quantities)
are positive and negative. As in the nature of things a negative
(quantity) is not a square (quantity), it has therefore no square
root.’ More centuries would elapse before opinion would change”
[31].

The ODEs associated with equations (58), (61) and (64) read respectively:

24ÿ + 168ẏ + 288y = 0

28ÿ − 224ẏ + 392y = 0

60ÿ − 1020ẏ + 3600y = 0 (69)

with the following solutions:

y(t) = C1e
3t + C2e

4t

y(t) = C1e
(4−
√
2)t + C2e

(4+
√
2)t

y(t) = e(42/12)t
[
C1 cos(

√
167t) + C2 sin(

√
167t)

]
. (70)

6. Homework: A Problem That is a Cousin of That by Heron of
Alexandria

In the words of Smith, “the first trace of the square root of a negative num-
ber to be found in. . . work is the Stereometria of Heron of Alexandria
(circa 50 Common Era), where

√
81− 144 is taken to be

√
144− 81” [33].

It should be remembered that when we criticize Heron or Diophantus or
others in the context of negative numbers, “only positive rational answers
were admitted, and Diophantus felt satisfied when he had found a single so-
lution” [7, page 225]. Moreover, “the idea of negative numbers was familiar
to Chinese authors well before its acceptance in Europe during the fifteenth
century” [7, page 262].

Interestingly, students respond with excitement when I state that it is easy
to construct a differential equation whose characteristic roots lead to Heron’s
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result. In particular, the following problem can be assigned

ÿ + 9ẏ + 36y = 0 (71)

whose characteristic equation

r2 + 9r + 36 = 0 (72)

has the roots

r1,2 =
−9±

√
81− 144

2
. (73)

Nahin quotes in this regard Wooster Woodruff Beman, who in his 1897 lecture
stated:

“Instead of the square root of 81−144 required by the formula, he
[Heron] takes the square root of 144−81. . . , i.e. replaces

√
−1 by

1, and fails to observe that the problem as stated is impossible.
Whether this mistake was due to Heron or to the ignorance of
some copyist cannot be determined” [31].

If and when students make an analogous mistake, they are in a good company,
committing the mistake of famous Greek Mathematician Heron. The fact
that students make this mistake 2,000 year after Heron lived is not that
important.

Somehow this fact consoles them as it were, and spurs them to do better.
They do not feel lonely in making the mistake.

“Don’t worry,” I tell a student, “if Heron of Alexandria was “allowed” to
make a mistake, you are entitled to make it too. The difference is that you
can correct it, and try to avoid it in the future!”

7. Connection with Fibonacci’s Equation

Leonardo of Pisa, better known by his other name, Fibonacci (“son of Bonac-
cio”) lived between circa 1170 and 1250. In his treatise entitled Flos (mean-
ing “blossom” or “flower”) he deals with a problem posed at a mathematical
disputation that took place in the presence of the Emperor Frederick II. It
reads as follows:

r3 + 2r2 + 10r = 20. (74)

Fibonacci gave one of the solutions to the equation, namely 1.3688081075 . . ..

As Burton notes:
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“This was a remarkable estimate of the only real root of the cu-
bic equation, correct to nine decimal places; and it was the most
accurate European approximation to an irrational root of an al-
gebraic equation that would exist for the next 300 years. But we
are not told how the result was found. Although Fibonacci never
revealed his sources, the possibility cannot be excluded that he
had learned the solution in his travels. The same problem ap-
pears in the algebra of the great Persian poet and mathematician
Omar Khayyam (circa 1050–1130 Common Era), where it was
solved geometrically by intersecting a circle and a parabola.” [7,
page 285]

The associated ODE reads

...
y + 2ÿ + 10ẏ = 20y. (75)

Substitution (5) leads to characteristic equation (74).

The following ODEs can be assigned for homework:

...
y + 3ÿ = 5y (76)

and ...
y + 6ÿ + 8ẏ = 1000y (77)

whose characteristic equations are respectively,

r3 + 3r2 = 5 (78)

and
r3 + 6r2 + 8r = 1000 (79)

Solutions of the latter cubic equations were posed in 1530 by Niccolo Tartaglia
(1500–1557) to a friend.

8. Connecting Higher Order ODEs to Bhâskara and Mahâv̄ıtra

Consider the following fourth-order ODE

...
y − 2ÿ − 400ẏ = 9999y (80)
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with associated initial conditions

y(0) = α, ẏ(0) = β, ÿ(0) = γ,
...
y (0) = δ (81)

where α, β, γ, and δ are arbitrary constants. Familiar substitution (Eq. 5)
leads to the characteristic equation

r4 − 2r2 − 400r = 9999. (82)

The solution of this quartic was derived by Bhâskara (1114–1185 Common
Era) and Mahâv̄ıtra in the following interesting way. They added the term
4r2 + 400r + 1 to both left and right parts of the characteristic equation to
get

r4 + 2r2 + 1 = 4r2 + 400r + 10000 (83)

or
(r2 + 1)2 = (2r + 100)2 (84)

which they reduced to
r2 + 1 = 2r + 100 (85)

or
r2 − 2r − 99 = 0 (86)

and obtained
r1 = 11 (87)

discarding, as was then automatically done, the negative root

r2 = 1−
√

1 + 99 = −9 (88)

However, a quartic equation (84) has four roots. Eq. (85) should actually
read

r2 + 1 = ±(2r + 100). (89)

The Indian mathematicians confined their treatment to the “plus” alter-
native, overlooking the fact that two other roots must be found from the
“minus”:

r2 + 1 = −(2r + 100) (90)

or
r2 + 2r + 101 = 0 (91)
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with roots
r = −1±

√
1− 101 = −1± 10i. (92)

Hence the solution of Eq. (80) is written as

xy(t) = C1e
11t + C2e

−9t + C3e
−t cos(

√
10t) + C4e

−t sin(
√

10t). (93)

subject to the initial conditions in Eq. (81). Here it appears instructive to
quote Steven Strogatz [35] (see also Strogatz [36]):

“For more than 2,500 years, mathematicians have been obsessed
with solving for x. The story of their struggle to find the “roots”—
the solutions—of increasingly complicated equations is one of the
great epics in the history of human thought. And yet, through it
all, there’s been an irritant, a nagging little thing that won’t go
away: the solutions often involve square roots of negative num-
bers. Such solutions were long derided as “sophistic” or “ficti-
tious” because they seemed nonsensical on their face. Until the
1700s or so, mathematicians believed that square roots of nega-
tive numbers simply couldn’t exist.”

9. Discussion

It might be advisable to introduce some of the historical examples in this
paper into the classroom. According to Blanco and Ginovart [4] “Fauvel [14]
distinguishes between using the history of mathematics within the teaching
of mathematics, and teaching the history of mathematics as a subject.” Our
objective is the former. G. Hepple in 1893 set the conditions (see Fauvel [14]):

1. The history of mathematics should be strictly auxiliary and subordinate
to mathematical teaching.

2. Only those portions should be dealt with which are of real assistance
to the learner.

3. It is not to be made a subject of examination.

The words “subordinate” and “auxiliary” above are almost derogatory; we
do not subscribe to such a hierarchy in disciplinary values. In this study we
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view mathematics of the past as our common heritage, in the terminology of
Grattan-Guiness [19, 20] (see also Fried [16]) and value its serious study for
its own sake. However when teaching mathematics, the history coming into
the classroom is often supportive rather than central.

Building on the mistakes, confusions, and frustrations of mathematicians
“sensitizes” both students and teachers, as it were, to borrow the term used
by Arcavi: “Another potential benefit of using history of mathematics lies in
sensitizing the teacher to possible difficulties of students’ understanding; it
may indeed yield clues on how to respond and help the student over them.
History can provide a feeling, for example, for how standards of rigor evolved”
[1]. (See also [39, 15, 24]).

During recent semesters I taught the courses System Dynamics, Vibration
Analysis and Synthesis, and Intermediate Strength of Materials to engineer-
ing students with a Differential Equations prerequisite. During the first les-
son of System Dynamics I conduct a simple test to check the knowledge
that was retained from Differential Equations. It turned out that most never
got the subject: only one or two students could solve simple differential
equations. I continuously try to develop various materials to cure the math-
ematical state of the students who possibly “suffered as a result of dull and
uninspired teaching,” in order students to put possibly “unhappy memories
behind them” [37]. Preliminary results of incorporating mathematics of the
past as a heritage appear to be extremely encouraging. Indeed, in words of
Reuben Hersh, “Young learners of mathematics share a common experience
with the greatest creators of mathematics: “hitting a wall,” meaning, first
frustration, then struggle, and finally, enlightenment and elation” [21].

Acknowledgements. The author wishes to express gratitude to the re-
viewers for their helpful comments, as well as to the editors for constructive
suggestions and discussions.
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