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Synopsis

Modelling could be characterised as one of the core activities in secondary math-
ematics education in Austria. However, when learning and teaching mathemat-
ics, mathematical modelling is mostly used to apply and deepen mathematical
knowledge and competencies. Our educational case study aims to explore how
mathematical modelling, using real objects and high-quality mathematical tech-
nologies, could be utilised to acquire mathematical knowledge and competencies,
and how learners could creatively use their existing knowledge. To discover the
potential of mathematical modelling using real objects and high-quality mathe-
matical technologies to acquire mathematical knowledge and competencies, and
to stimulate learners’ creativity, first, we combined cognitive and creative spi-
rals and mathematical modelling cycles. Then, in an explorative case study,
we tested this combination of cognitive and creative spirals and mathematical
modelling cycles in a Viennese secondary school and in mathematics teacher
education in Austria. Applying the combination of cognitive and creative spi-
rals and mathematical modelling cycles, we discovered that collaboration among
learners, sharing technological knowledge and skills of learners determine whether
knowledge can be acquired in mathematical modelling.
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1. Introduction

“There are as many definitions of mathematical modelling as there are au-
thors writing about it [...]” [1]. This quote demonstrates clearly that mathe-
matical modelling is both a fashionable and nebulous buzzword in mathemat-
ics education. Although there are many varying descriptions of mathematical
modelling, most descriptions have in common that mathematical modelling
is interpreted as reactive in an educational context. Reactive mathematical
modelling means that there is a real problem or fact which is then described
by learners using familiar mathematical concepts. The responsive character
of modelling is also evident from the fact that mathematical modelling and
application often form a seemingly inseparable symbiosis. For example, this
symbiosis can be found in the first sentence of the introduction by Kaiser,
Lederich & Rau [16]: “The relevance of promoting applications and math-
ematical modelling in schools is widely accepted.”, in the introduction by
Blum [1]:

“Now, as a basis for the following parts, I shall give some prag-
matic working definitions which have been widely accepted in
mathematics education in recent years (see the survey article by
Blum and Niss, 1991). Let me quote the well-known simple model
of applied mathematical problem-solving.”

or in the first sentences of Niss [26]:

“A major reason why mathematics is the world’s single largest ed-
ucational subject is the fact that mathematics is applied in a mul-
titude of different ways in a huge variety of extra-mathematical
subjects, fields and practice areas. Every time mathematics is
used to deal with issues, problems, situations and contexts in
domains outside of mathematics, mathematical models and mod-
elling are necessarily involved, [...]”.

However, our idea of mathematical modelling is that both are possible: that
mathematical competencies are applied and that such mathematical compe-
tencies are acquired or deepened. Depending on the age of learners and levels
of mathematical competenciesassociated with it, acquiring new mathemat-
ical concepts and competencies, and applying and deepening mathematical
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concepts and competencies should be central. The questions which we have
addressed while preparing and conducting our explorative modelling experi-
ment were:

(a) How can learners acquire new mathematical knowledge and competen-
cies through mathematical modelling? and

(b) How can learners use increased mathematical knowledge and compe-
tencies in modelling throughout their educational careers?

In our paper, we define the distinction between knowledge and competencies
to the extent that knowledge could be described as a more passive element,
and competencies could be described as a more active element. According to
Bloom’s taxonomy and the revision of Bloom’s taxonomy by Krathwohl [21],
in this paper, we locate knowledge in the knowledge dimensions “Factual”
and “Conceptual” as well as in the process dimensions “Remember” and
“Understand”. Competencies can be assigned in the knowledge dimensions to
the areas “Procedural” and “Metacognitive”, and in the process dimensions
“Apply” or higher.

To investigate these questions, we have focused our modelling experiment on
creating and investigating physical models of real objects with the help of
higher-quality educational technologies. In this context, the term “higher-
quality educational technologies” refers to mathematical software applica-
tions (in our case GeoGebra) on the one hand and Internet-based infor-
mation databases on the other. The reason why we utilised higher-quality
mathematical software products, such as GeoGebra, in our modelling exper-
iment is that, on the one hand, few innovations such as new technologies
have influenced western societies and thus also schools and educational in-
stitutions in recent years so much as technologies and digitalisation [31].
On the other hand, according to Ferchhoff [12], young adults can no longer
envisage a decent life without technologies. Since authenticity also means
that learning processes are linked to reality and because technologies are a
central element of students’ realities, to realise authentic mathematical mod-
elling, using modern technologies could be inevitable [35]. Another reason
for including higher quality mathematical software products into our case
study is that utilising higher-quality mathematical software products has
become an obligatory part of secondary mathematics education and math-
ematics teacher education in Austria. The mathematics curriculum of the
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lower secondary level [A] indicates that secondary students should learn to
use technologies, and that students should use calculators and computers
for problem-solving, research and experimental learning. The mathematics
curriculum of the upper secondary level [B] emphasises that technologies
should be used when students should acquire new knowledge in all areas of
mathematics. Besides, using mathematical software products has become
mandatory at the standardised written school-leaving examination recently.
Following the curriculum of the mathematics teacher education in Austria
[C], one of the main learning outcomes of mathematics teacher education is
that pre-service mathematics teachers learn to use subject-specific software
for corresponding mathematical problems. Furthermore, the curriculum of
the mathematics teacher education highlights that pre-service mathematics
teachers have to learn to use dynamic and didactic geometry software as well
as CAS (Computer Algebra Systems).

To investigate how learners can develop mathematical knowledge and com-
petencies through modelling and how learners can develop their enhanced
mathematical knowledge and competencies in modelling throughout their
educational careers, we have developed a technology-enhanced learning envi-
ronment that combines real objects and mathematical modelling. In our ex-
plorative educational case study, we utilised this technology-enhanced learn-
ing environment following a horizontal temporal approach. Using the learn-
ing environment following a horizontal temporal approach means that dif-
ferent groups of learners with different progress in their educational careers
where investigating mathematics in such learning environments at the same
time. In our educational case study, the different groups of learners of differ-
ent progress in educational careers consisted of 9th grade secondary school
students, 4th term mathematics teacher students and 6th term mathemat-
ics teacher students. For two reasons, a horizontal and not a longitudinal
temporal approach was feasible to examine our research questions. On the
one hand, there is no class or cohort at a secondary school in which all
students decide to become mathematics teachers after their secondary ed-
ucation. Thus, collecting the points would only be possible backwards in
time, which is not a scientifically appropriate approach. On the other hand,
a longitudinal temporal study from grade 9 at a secondary school until the
end of teacher education would last from 9 to 10 years. If this long period
is compared with the rapid development of educational software, it could
be assumed that the technological framework conditions would change sev-
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eral times fundamentally. Consequently, the learning products developed by
learners in such an educational case study would reflect the development of
the educational software used rather than the development of mathematical
modelling competencies. For this reason, we have decided to conduct our
case study at one time and simultaneously involving mathematics learners
from different educational levels into our case study. By conducting our case
study at one point in time, it should be possible to focus on the mathemat-
ical competencies and how mathematics learners from different educational
levels use their mathematical competencies and not on the development of
the educational software used.

We have chosen a case study approach in our research because this research
method is appropriate for investigating learners’ solution processes and meth-
ods in mathematics learning and has a long tradition in mathematical ed-
ucational research [7]. A typical element of case studies is that researchers
investigate a limited system of real people in real situations in which specific
interventions are performed [8]. The limited system of our case study was
formed by the lessons and the learners who should create real objects and
then investigate them in technology-enhanced learning environments. Fur-
thermore, our case study can be characterised as an explorative case study,
since one goal of our study is to generate hypotheses regarding the devel-
opment of mathematical modelling competencies of mathematics learners in
the course of educational careers [36].

2. Mathematical modelling in school contexts

As our explorative educational case study intends to discover how learners
could develop new mathematical knowledge and competencies through math-
ematical modelling and how learners could develop their enhanced mathe-
matical knowledge and competencies throughout their educational careers in
technology-enhanced learning environments, which combine real models and
mathematical modelling, mathematical modelling in learning settings forms
an essential part of our theoretical framework. Carreira & Baioa [6] sum-
marise that it is often pseudorealistic real problems in textbooks or other
learning materials that should trigger mathematical modelling. Pseudore-
alistic problems as learning triggers could cause that mathematical models
based on them are pseudorealistic as well. However, it should be empha-
sised that using pseudorealistic problems in mathematical modelling is not
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a negative approach. Especially if learners use new mathematical concepts
for mathematical modelling for the first time, it could be useful if pseudo-
realistic problems form the educational framework. The composition of the
educational framework based on pseudorealistic problems could be justified
by the assumption that otherwise, students could get overwhelmed by the
first application attempts of new concepts. But, only discovering and learn-
ing mathematics based on real problems could lead to real mathematical
models. In this context, real mathematical models are those mathematical
models which are based on real objects (see Figure 1). These real objects
have not been simplified, as would be the case with pseudorealistic objects
and associated pseudorealistic problems.

Figure 1: left: real model of a bridge and right: model of a pseudorealistic
door arch Source right: Malle et al., 2017: 164.

According to Heck [13], it could be real problems and associated real math-
ematical models that enable learners to learn like real scientists—even in an
educational context. Learning and researching like real scientists are also
associated with learning by doing closely. Learning by doing in mathemati-
cal modelling also indicates a processual nature of mathematical modelling.
The processual character of mathematical modelling suggests that mathe-
matical modelling is an essential method of experimental science. Therefore,
Kertil & Gurel [19] propose considering mathematical modelling as a pos-
sible bridge to integrated STEM education, in which physical tools play an
essential role. Physical, real and digital tools, problems or objects from re-
ality and thus connecting STE and M could also be a key to authenticity in
mathematical modelling, which will be explained in more detail in the next
section. In mathematical modelling, vital aspects are (A) physical modelling
by learners and (B) numerical analysis and understanding of everyday arte-
facts. By physical modelling of real objects by learners, we understand in our
case study that learners create a scaled-down and simplified model of an ob-
ject. In this context of modelling, physical means that the scaled-down and
simplified model of an object is tangible and not merely a virtual construct
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(see Figure 1, left). To facilitate modelling, analysis and understanding of
everyday artefacts, we have considered using GeoGebra in our modelling ex-
periment. In our case study, we opted for GeoGebra as the mathematical
software framework because GeoGebra was developed for teaching and learn-
ing mathematics, and GeoGebra interactively combines algebra and 2D and
3D geometry [15]. Another reason for choosing GeoGebra in our case study
was that Zulnaidi, Oktavika, and Hidayat [37] were able to demonstrate the
positive effect of GeoGebra on students’ mathematical learning outcomes.
Specifically for the modelling aspects our case study it was important that
GeoGebra could facilitate developing mathematical assumptions, and that
GeoGebra could make it easier for students to test and verify their mathe-
matical assumptions.

2.1. Authenticity in mathematical modelling

As real models, mathematical modelling and utilising high-quality educa-
tional software are essential pillars of our explorative case study, authenticity
in mathematical modelling is also a key aspect of our research. If an object
or physical model is a copy of reality that faithfully simulates reality, then,
according to Vos [35], objects or physical models could increase authenticity
in learning. In our paper, by authentic models, we mean those models which
are simulations or copies of reality containing the properties and genuineness
of the real objects. Vos [35] summarises that authentic models or authen-
ticity in mathematics learning could link the learning process with reality,
make the learning process more relevant and the activities associated with
the learning process more meaningful and important to learners. In addition
to authenticity, when dealing with complex problems, such as mathematical
modelling of real objects, it should be considered that planning and imple-
mentation cannot be achieved temporally separated. If such a separation is
made, mathematics education runs the risk of being formalised too much and
of nipping creative solutions and approaches in the bud. So, lab-like learning
environments could be helpful to facilitate creative solutions and approaches
to the mathematical modelling of real objects. To provide learners with lab-
like learning environments in our case study, learners were provided with
sufficient time and physical space and were free to move back and forth
between the stages of research, construction and investigation of the bridge.
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Additionally, when researching, building or investigating the bridges, learners
were enabled to use those analogue or digital tools which met their needs and
which learners considered to be best suited.

According to Noss & Hoyles [28] and Noss, Healy & Hoyles [29], utilising
geometric software, computer algebra systems, or graphics calculators could
contribute to learning environments becoming laboratories in which learners
could discover mathematics creatively and experimentally. In our paper we
use Torrance’s definition of creativity: creativity is “a process of becoming
sensitive to problems, deficiencies, gaps in knowledge, missing elements [...]
identifying the difficulty; searching for solutions, making guesses, or formu-
lating hypotheses about the deficiencies: testing and retesting these hypothe-
ses and possibly modifying and retesting them; and finally communicating
the results” [34, page 6]. According to Torrance [34], it is fluency, flexibil-
ity, originality and elaboration, which could characterise students’ creative
process. In our educational experiment, we opted for Torrance’s definition
because this definition of creativity focuses on problem-solving, formulating
and testing hypotheses, and communicating the results. This interpretation
of creativity fits with our explorative educational experiment, as learners are
supposed to solve problems (building a model of a bridge and mathemati-
cally investigating the model of the bridge), formulate and test hypotheses
(selecting functions to model a bridge and then adjusting the function), and
share their results in an electronic portfolio with other learners.

Especially in formulating and testing hypotheses in mathematical modelling
of real objects, using technologies was important in our explorative case
study. Also Borba, Meneghetti & Hermini [3] and Borba & Bovo [4] were
able to illustrate in their studies concerning relationships between mod-
elling, graphical computing and interdisciplinarity that an experimental-
with-calculator approach could be vital for curve or function fitting. Con-
cerning learning and teaching mathematics in general and learning and teach-
ing mathematics in technology-enhanced learning environments in particular,
curve or function fitting is considered a subset of mathematical modelling
[22]. Since in our explorative educational case study the mathematical mod-
elling of real objects in technology-enhanced learning environments could
not be fully investigated and analysed, we have focused our study on the de-
velopment of learners’ competencies in the area of curve or function fitting.
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According to this focus, it follows that in our study and our paper, mathe-
matical modelling refers almost exclusively to curve or function fitting.

Hereby, it should be considered that according to Doerr and Lesh [10], it is
the case that competent individuals not only do things differently but also
see, interpret or conceptualise things differently. These differences also apply
to modelling or modelling perspectives in mathematics education in the 21st
century when modern technologies are involved. Associated to that, Kane-
matsu & Barry [18] emphasise that productive and creative thinkers like
Einstein or Darwin consider all different ways of solving problems. In our
research, considering all different ways of solving problems means that learn-
ers should be facilitated by the technology-enhanced learning environment,
classmates and the teacher when building and investigating the bridge.

The aim of our experiment was not to identify the Einstein or Darwin of the
21st century among mathematics learners, but to discover how many different
mathematical modelling approaches are available to learners in the course of
their educational careers and which solutions are applied by learners in math-
ematical modelling of a physical and thus complex object. In this context,
we have assumed that the number of modelling approaches available to and
applied by students in the 21st century depends on students’ mathematical
competencies, students’ technological competencies, students’ competencies
to acquire information and their ability to combine these competencies.

2.2. Mathematical modelling as a creative activity

Combining mathematical competencies, technological competencies and com-
petencies to acquire information to solve real problems and to create learn-
ing artefacts could be described as a creative process. To investigate a de-
velopment of available and utilised approaches in mathematical modelling
while conducting such complex and creative tasks, we have used ideas of a
cognitive and creative spiral. To incorporate the potential significance of
utilising modern educational technologies when learning mathematics into
our research, we have also considered Buchberger’s spiral [5]. By combin-
ing these three spirals, it should be facilitated to consider students’ math-
ematical, technological, and information acquisition competencies as well
as students’ skills to combine these three competencies when students de-
velop mathematical modelling competencies. Ebert [11] summarises cre-
ative thinking as a multidimensional phenomenon of cognitive functions.
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In this context, problem-solving, flexibility or originality are described as cre-
ative activities. According to Sternberg [32], creative thinking could be sub-
sumed as a complex interplay of intelligence, intellectual style and personal-
ity. Furthermore, Torrance [33], Mayer [25] and DeVito [9] mention problem-
solving in their definitions of creative thinking explicitly. Also, Mayer [25]
offers an equally problem-solving oriented description of creative thinking,
as Mayer [25] described creative thinking as a cognitive activity that should
lead to new results or solutions of a problem.

Consequently, we assume that creative thinking and problem-solving have a
common basis, and we see problem-solving as a part of cognitive process-
ing. Similar to other scientists from the field of education (e.g. [14, 30]), we
also adopted basic structures of the knowledge spiral [27] when developing
our mathematical modelling spiral. By considering the knowledge spiral in
our mathematical modelling spiral, the importance of interacting commu-
nities and learning in social structures should be emphasised. Considering
utilising technologies when modelling, Kovács [20] elaborates that accord-
ing to Buchberger’s workflow or creativity spiral [5], a continuous workflow
could be achieved based on computational results and conjectures based on
them. Building on these conjectures, new algorithms are usually clarified
by programming—in our case, using educational technologies—which is es-
pecially true in our digital era. Applying such algorithms should lead to
new computational results, and the spiral continues with further inventions
or conjectures. To provide a continuous workflow for as many students as
possible and as combining creative thinking, problem solving and using tech-
nologies could be characterised as challenging, we decided that in our case
study, students should work in small groups and thus support and motivate
each other.

2.3. Merging creative spirals and modelling spirals

There is a multitude of descriptions and visualisations of mathematical mod-
elling processes. What most of these descriptions and visualisations have
in common is that mathematical modelling leads to connections and links
between the real world and mathematics. A synthesis of the real world and
mathematics in modelling descriptions is established usually by a linear se-
quence of a real situation, real model, mathematical model, and numerical
results. In recent decades, mathematics education research has often focused
on mathematical work, i.e. the transition from a mathematical model to
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mathematical results (e.g. [2, 17]). In our mathematical education experi-
ment, we have concentrated on mathematising, i.e. the transition from the
real model to the mathematical model.

Figure 2: Real object, real model, and mathematical model of a Da Vinci
Bridge. Source left: https://previews.123rf.com/images/andreykr/

andreykr1506/andreykr150600112/41007685-mathematische-br%C3%

BCcke-am-queens-college-in-cambridge-gro%C3%9Fbritannien.jpg

[27 Nov 2019]

Through our educational experiment, we aimed to investigate how mathe-
matising competencies of mathematics learners develop in the course of their
educational careers. To represent this development of mathematization com-
petencies graphically, we interpret mathematising in our model (see Figure
3) as part of a spiral and not as part of a circle. The basis or XY-plane of
our mathematising spiral is essential components of the modelling circle of
Blum & Leiss [2].

We assume that higher competencies in the field of mathematising could be
achieved in the course of learners’ educational development or progress. In
our paper, we understand educational development as the progress of learn-
ers in their educational careers and, along with higher grades, learners are
familiarised with more complex mathematical concepts and develop higher
competencies. These higher competencies in mathematising should also make
it possible to develop higher-quality and more complex mathematical mod-
els. In our view, learners’ mathematising competencies depend on learners’
mathematical knowledge and competencies, and their creativity. Mathemat-
ical knowledge in a mathematising process depends on mathematical edu-
cational knowledge (acquired in schools or universities) and competencies in
using knowledge sources (acquired through formal or non-formal education).
The creativity of learners—in our case, the competencies to create something
or to develop creative strategies of solutions for a posed question—is vital
in our model, as creative competencies are needed to apply mathematical
knowledge and competencies to physical models using modern educational
technologies. The more mathematical knowledge and competencies, as well

https://previews.123rf.com/images/andreykr/andreykr1506/andreykr150600112/41007685- mathematische-br%C3%BCcke-am-queens-college-in-cambridge-gro%C3%9Fbritannien.jpg
https://previews.123rf.com/images/andreykr/andreykr1506/andreykr150600112/41007685- mathematische-br%C3%BCcke-am-queens-college-in-cambridge-gro%C3%9Fbritannien.jpg
https://previews.123rf.com/images/andreykr/andreykr1506/andreykr150600112/41007685- mathematische-br%C3%BCcke-am-queens-college-in-cambridge-gro%C3%9Fbritannien.jpg
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Figure 3: Mathematising Spiral (top) and The modelling cycle from Blum
and Leiss [2] as the basis-cycle for the Mathematising Spiral.

as creativity of learners and, above all, a link between these two areas, is
available, the higher the value of mathematical models (from red to purple
to green) should be achievable. Utilising modern educational technologies
should enable students to test their models or artefacts in real-time and
adapt them if necessary. This real-time feedback through using technologies
should also have a positive effect on students’ workflow and thus on students’
mathematising competencies.
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In order to explore the potential applicability of our Mathematising Spi-
ral, we have designed our educational experiment to be as open as formal
learning settings allow and involve learners who are at different stages of
their educational careers. As open as formal learning settings allow means
that the researchers have made few regulations according to the curricula
or course descriptions in which our educational experiment was conducted.
Involving learners at different levels in their educational careers means in our
educational case study that secondary school students from the 9th grade,
mathematics teacher students from the 4th term and mathematics teacher
students from the 6th term were involved.

3. Description of tasks and issues

To explore how students could acquire new mathematical knowledge and
competencies by mathematical modelling, if our Mathematising Spiral could
be applicable in formal learning settings, and thus how learners could use
their increased mathematical knowledge and competencies in mathemati-
cal modelling throughout their education, we conducted an explorative case
study with secondary school students and mathematics teacher students. Our
experiment was conducted with secondary school students in the 9th grade
as well as with mathematics teacher students in the 4th and 6th term. We
choose secondary school students in the 9th grade as well as the mathematics
teacher students in the 4th and 6th term because: (A) secondary school stu-
dents in the 9th grade should already have knowledge about linear, quadratic
and piecewise-defined functions according to the curriculum, (B) mathemat-
ics teacher students in the 4th term should have attended mathematical
basic courses and (C) mathematics teacher students in the 6th term should
have completed mathematical basic courses as well as computer and school
practical courses. This selection of participants in our modelling experiment
enabled us to investigate different groups with different mathematical com-
petencies (9th grade secondary school students versus mathematics teacher
students) and different technological competencies (4th term mathematics
teacher students versus 6th term mathematics teacher students). In the
modelling experiment and based on the developed mathematical models and
artefacts of the learners, it should then be possible to examine how different
formal competencies as well as non-formal competencies, such as creativity
or information acquisition skills, could affect the values of the mathematical
models (see Figure 3) of the different groups of learners.
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According to the level of education, secondary school students were aged from
14 to 16 and mathematics teacher students were in their early twenties. In
terms of gender distribution, female dominance could be observed in all three
groups. Among mathematics teacher students, slightly more than half were
female and among secondary school students, more than three quarters were
female. Both the secondary school and the teacher training university are
located in the city centre of large Austrian cities. Due to the location of the
secondary school, it could be concluded that the majority of secondary school
students have an urban and high socio-cultural background. The high socio-
cultural background of the students of our case study can be explained by the
circumstance that the residential area in the Austrian city centres is the most
expensive residential area and therefore, a high socio-cultural background
prevails in this region. Since the most crucial factor in secondary school
enrolment procedures in Austria is the students’ proximity to school, it is
assumed that many students come from the city centre and thus from a region
with a high socio-cultural background. The site of the teacher education
university does not allow any conclusions to be drawn about students’ urban
or rural background. No conclusion on an urban or rural background of
students based on the location of teacher education university can be justified
by the fact that all teacher education universities in Austria are located
in provincial capitals or the metropolitan area of provincial capitals. By
this concentration of teacher education universities in provincial capitals, it
results that all future teachers have to commute to these places for their
education—regardless of whether students come from urban or rural areas.

Learners’ tasks and activities of learners could be divided into three phases
in our educational experiment. In all three phases of our educational ex-
periment, learners should investigate mathematical or da Vinci bridges. A
mathematical or da Vinci bridge is an arch construction consisting of rigid
components. These components stake each other by cleverly interlocking and
braiding the components; therefore, no nails, screws or adhesives are needed
to build a mathematical or da Vinci bridge (see Figure 1).

First, secondary school students and mathematics teacher students should
research what lies behind the term “mathematical bridge” or “da Vinci
bridge” as well as which characteristics and peculiarities mathematical or
da Vinci bridges possess. To explore the peculiarities of mathematical or
da Vinci bridges, learners should conduct Internet research. It was required
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to perform an Internet search to discover the peculiarities of mathematical
bridges, since neither secondary school students’ nor mathematics teacher
students’ learning materials contain information about mathematical or da
Vinci bridges. To obtain more detailed information about mathematical or
da Vinci bridges and to have more confidence when doing Internet research,
secondary school students were encouraged to conduct internet research in
small groups. The mathematics teacher students were free to do internet
research in small groups or individually. For internet research, both sec-
ondary school students and mathematics teacher students could use school’s
or university’s computers or carry out internet research on their own devices.

In a next step, learners should also discover how to build such a bridge and
secondary school students should create a shopping list to build a mathemat-
ical or da Vinci bridge themselves. After purchasing building materials for
the bridges, physical bridges were constructed with these building materials.
While building mathematical or da Vinci bridges, secondary school students
formed small groups (2 to 4 learners). Not only did secondary school students
support each other within a group, but there was also cross-group support
when building physical bridges. Secondary school students were given a two-
lesson period (100 minutes) to create mathematical or da Vinci bridges and
secondary school students could use the attic of the school. The attic of
the school was chosen as the learning environment so that each group would
have enough space and school furniture would not make it difficult to build
bridges. Building the model of a mathematical bridge was not an explicit
mathematical process, but the discussions and loud thinking of the learners
indicated that building the bridges were activities in which the learners im-
plicitly used mathematical thinking and arguing. For example, a group of
learners argued or wanted to know from us, the instructors, whether their
assumption is correct that if the bridge is built flatter and the individual ele-
ments of the bridge are at a greater angle to each other, the bridge becomes
more stable.

Mathematics teacher students were provided with the same building mate-
rials as secondary school students. Mathematics teacher students could use
a university teaching lab to build the bridge, or they could spread out in
university corridors to build the bridges.

Finally, when learners finished constructing mathematical or da Vinci bridges,
learners were encouraged to take several photos of these bridges. Learners
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were informed that these photos would be used to examine their bridges
mathematically afterwards—i.e. mathematising of the bridge. When exam-
ining physical models of the bridges mathematically, secondary school stu-
dents and mathematics teacher students were instructed to utilise functions
for the mathematical model. The framework that learners should use func-
tions when modelling bridges was chosen by the researchers to provide learn-
ers with a first orientation and preventing learners from getting lost. Since
our educational experiment was carried out in formal educational settings, it
was also necessary to provide links to the curriculum or course descriptions;
i.e. making restrictions, such as that functions should be used. Despite pre-
tending to use functions in modelling, learners should have enough freedom in
our case study to develop and use creativity as described above (see Section
2.2). Since there were no further restrictions for students when modelling the
bridges, this freedom for learners should have a positive effect on flexibility
and originality when students are solving the given problem. In mathematical
investigations of bridges, secondary school students and mathematics teacher
students used GeoGebra, a dynamic geometry program. The mathematical
investigation should not lead to one correct mathematical model, but sec-
ondary school students and mathematics teacher students were encouraged
to model their physical bridge mathematically in various ways. Encouraging
learners to model their bridges in a variety of ways should prevent learners
from trying desperately to find the right solution. Instead, this approach
should encourage learners discovering new results and solutions to a given
problem, which would correspond to the description of creativity according
to Mayer [25].To develop as many mathematical models as possible, sec-
ondary school students and mathematics teacher students could use both
their learning materials and the internet as reference tools.

In our explorative educational case study, we investigated learners when ex-
amining real objects or problems and mathematical modelling in a technology-
enhanced learning environment, since the Austrian mathematics curriculum
[A, B] also requires generals or supra-disciplinary competencies that need
to be taught and learned. Among other things, these generals or supra-
disciplinary competencies include that learners have to deal with real-world
issues and questions or that learners should use new technologies to solve
problems and tasks. In order to explore the potential of implementing these
generals or supra-disciplinary competencies in the teaching and learning of
mathematics, we have decided to focus our exploratory educational case
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study on the mathematical modelling of self-built bridges in technology-
enhanced learning environments.

This tripartite division of tasks and activities of learners was undertaken
to stimulate (a) non-formal or non-curriculum competencies (phase 1 and
phase 2), (b) creative competencies (phase 2 and phase 3), and mathemat-
ical competencies (phase 3). Stimulating these three competency areas in
mathematical modelling of real objects by different groups of learners with
different competencies should also enable making conclusions about which
competency areas could have a high impact on the values of mathematical
models.

4. Results

When examining mathematical models of secondary school students and
mathematics teacher students, we were able to deduce three groups of mod-
els:

(a) Mathematical models based on the secondary curriculum up to the 9th
grade

(b) Mathematical models based on the upper secondary curriculum

(c) Mathematical models based on mathematical concepts which are not
covered in secondary education.

These three groups of mathematical models were developed by compar-
ing corresponding mathematical models when learners finished investigating
mathematical or da Vinci bridges. To be able to compare mathematical
models, secondary school students and mathematics teacher students sent
us the mathematical models of their mathematical or da Vinci bridges. In
identifying differences or similarities between different mathematical models
of the bridges, the secondary mathematics curriculum formed the basis; see
Table 1.

To reduce possible prejudices when comparing and grouping mathematical
models, all mathematical models were anonymised before grouping. After all
mathematical models could be assigned to a group, the complexity of math-
ematical models of particular examples of the groups was assessed. When
assessing mathematical models, the mathematics curriculum of secondary
school was the yardsticks. By comparing groups of mathematical models, it
could be possible to derive the above groups of models.
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Table 1: Mathematical frameworks and concepts for grouping the models.
Source [A, B].

In the next section, individual groups of mathematical models are presented,
and concrete examples of respective groups of mathematical models are pro-
vided.

4.1. Mathematical models based on the secondary curriculum up to the 9th
grade

Those mathematical models that were created using secondary curri-
culum content up to the 9th grade were polynomial functions and piecewise-
defined functions. A closer look at these functions in terms of learners’
mathematical backgrounds indicated that models of 9th-grade secondary
school students and 4th-term mathematics teacher students do not differ.
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Both 9th-grade secondary school students and 4th-term mathematics teacher
students used only second-degree polynomial functions (see Figure 4) to
model mathematical bridges.

Figure 4: Second-degree polynomial models of 4th-term students and 9th-
grade pupils.

The 6th-term mathematics teacher students utilised second-degree polyno-
mial functions as well, but also used fourth, sixth and eighth- degree polyno-
mial functions (see Figure 5) to model mathematical bridges. The reason why
9th-grade secondary school students chose second-degree polynomial func-
tions only could be because the curriculum and textbooks of the 9th grade
pay much attention to such functions. Higher-grade functions are treated—if
at all—only marginally in the 9th grade. It could be why 4th-term mathe-
matics teacher students utilised second-degree polynomial functions merely
because they have not yet completed a computer internship. A group of 4th-
term mathematics teacher students wanted to use a sixth-degree polynomial
function to model a bridge. In this modelling attempt, students started to
use sliders for parameters of the function. When the 4th-term mathemat-
ics teacher students realised that this approach was very laborious and that
parameter values had to be changed in opposite directions, they dropped
this approach and began to search for a new way of modelling the bridge.
When 6th-term mathematics teacher students utilised highergrade polyno-
mial functions to model a mathematical bridge, students set a number of
points on the image of the bridge corresponding to the degree of the func-
tion. Then, students applied technologies to deduce the functional term of the
mathematical model based on the set of points (see Figure 5). Therefore, dif-
ferent competencies of 4th-term mathematics teacher students and 6th-term
mathematics teacher students concerning utilising educational technologies
could explain most significant differences between 4th-term and 6th-term
mathematics teacher students’ mathematical models.
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Figure 5: Fourth- and eighth-degree polynomial models of 6th-term students.

In the mathematical modelling based on piecewise-defined functions, 9th-
grade secondary school students’ and 4th- term mathematics teacher stu-
dents’ models were limited to linear functions. In contrast, 6th-term math-
ematics teacher students also utilised non-linear functions (see Figure 6)
when describing mathematical bridges using piecewise-defined functions. It
was not surprising that 9th-grade secondary school students applied linear
piecewise-defined functions only when utilising piecewise-defined functions.
Using linear piecewise-defined functions could be explained by the fact that
principles of piecewise-defined functions are superficially treated in the 9th
grade and linear functions are almost always applied in these treatments.
What was more remarkable is that 4th-term mathematics teacher students
used linear piecewise defined functions only. A difference between linear
piecewise-defined functions of 4th-term mathematics teacher students and
nonlinear piecewise-defined functions of 6th-term mathematics teacher stu-
dents could be explained by an increase of technological competencies or to
be more precise in the further development of techno-mathematical compe-
tencies of 6th-term mathematics teacher students. By the term technomath-
ematical competencies, we understand in our paper learners’ abilities to use
technological tools and mathematical software to solve mathematical tasks.



Robert Weinhandl & Zsolt Lavicza 285

Figure 6: Piecewise-defined functions by 4th-term mathematics teacher stu-
dents, 9th-grade secondary students and 6th-term mathematics teacher stu-
dents.

These competencies could be particularly critical when modelling
the bridge with piecewise-defined non-linear functions. On the one hand,
developing a piecewise-defined non-linear model of the bridge with paper
and pencil could be described as very laborious. Too laborious approaches
in modelling the bridge could lead to learners dropping a chosen approach
and thus limiting creativity in modelling. On the other hand, develop-
ing a piecewise-defined non-linear model of the bridge could be seen as a
simple task, if learners have sufficient techno-mathematical competencies.
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GeoGebra’s spline command enables plotting higher-degree piecewise-defined
functions through a list of points (see Figure 6). Consequently, techno-
mathematical competencies could be seen as boosters for creativity in the
mathematical modelling process because Ebert [11] describes creative think-
ing as a multidimensional phenomenon of cognitive functions and Sternberg
[32] defines creative thinking as a complex interplay of intelligence. Concern-
ing the piecewise-defined functions for modelling the bridge, mathematical
intelligence and technological intelligence interact. Corresponding to math-
ematical intelligence, learners have recognised that non-linear piecewisede-
fined functions lead to a better mathematical model of the bridge than linear
piecewise-defined functions. However, this knowledge could only be utilised
by those groups which already had sufficient technological intelligence to
achieve this with the help of mathematical software.

In the argumentations of 6th-term mathematics teacher students regard-
ing higher-grade polynomial functions as well as non-linear piecewise-defined
functions, it was interesting that students thought and argued beyond the
actual task. Thinking and arguing beyond the task became apparent since
6th-term mathematics teacher students stated, that, in reality, an abrupt
transition from a flat road to a bridge is not desirable. To avoid an abrupt
transition, 6th-term mathematics teacher students tried to model the bridge
in such a way that “the bridge goes up slowly at the beginning and then
faster”. Verifying a mathematical model of a bridge against reality or ratio-
nality could be an essential sign of a learning process when mathematically
examining the bridges. However, when trying to avoid an abrupt transition,
only one of 6th-term mathematics teacher students groups argued that the
curvature of the function had to be taken into account. The other groups of
6th-term mathematics teacher students tried to solve this problem by trial
and error approaches. Also, with mathematical argumentations, a trial and
error approach was chosen by some 6th-term mathematics teacher students
groups. For example, it was stated that (only) the value of the leading co-
efficient is essential or that it has to be a complete polynomial function of
higher degree. By the term “complete polynomial function”, the students
meant (following the German technical terminology) the following function:

f(x) = an · xn + an−1 · xn−1 + · · ·+ a1 · x1 + a0 · · ·x0; n ∈ N, ai 6= 0.
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4.2. Mathematical models based on the upper secondary curriculum

Models of the bridge which were based on mathematical concepts of the
upper secondary curriculum were applied only by 4th-term and 6th-term
mathematics teacher students. These models used conic sections, trigono-
metric functions and the Gaussian bell curve. Interestingly, when utilising
conic sections to model mathematical bridges, all groups of mathematics
teacher students used equations (see Figure 7), but not functions.

Figure 7: Using conic sections to model a mathematical bridge.

Using equations, not functions, could be grounded in the fact that if conic
sections were used to model mathematical bridges, GeoGebra would render
the conic section as an equation. Even after lecturers re-emphasised the task
(i.e., that functions should be applied), only three groups of mathematics
teacher students were able to convert equations into functions. The circum-
stance that only three groups of mathematics teacher students were able
to convert conic equations into functions could be related to the situation
that these types of tasks are only performed in the 11th grade of secondary
schools and are then only superficially dealt with in mathematics teacher ed-
ucation (only if one chooses corresponding courses in area of “school math-
ematics”). It was interesting to note that only one group of mathematics
teacher students knew that GeoGebra itself could perform this operation.
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The other groups used paper and pencil to express equations in functional
forms. In these manual operations, transforming an ellipse equation into a
function, caused apparent problems for mathematics teacher students. These
problems when transforming equations into functional terms could lead to
conclude that using technologies when learning mathematics in secondary
schools and universities could contribute to declining manual mathematical
competencies of learners. However, this assumption would have to be ex-
amined separately and in greater depth in future work. Declining manual
mathematical competencies of learners could contribute to concluding that a
well-chosen combination of manual operations, argumentations and utilising
technologies could be purposeful for learning mathematics.

Using trigonometric functions to model mathematical bridges has been done
in most groups. In this context, approaches of two 4th-term mathematics
teacher students groups were interesting: These two groups each wanted
to adopt a sine function to the image of the built bridge by stretching
and/or compressing the axes. Since stretching or compressing of the axes
also caused that the inserted image was distorted accordingly, an alternative
approach was sought, while retaining the “stretching or compressing of the
axes approach”. One alternative was to stretch or compress the axes first
and then insert the image. When this approach was equally unsuccessful,
one group obtained assistance from other groups—the second group stopped
using trigonometric modelling. When lecturers informed both groups that
stretching or compressing the axes would not change the actual function,
students could not follow this argument or these remarks.

Only one 6th-term mathematics teacher student group thought of using the
Gaussian bell curve to model the mathematical bridge (Figure 8). However,
as it was difficult for the group to adapt the Gaussian bell curve to the im-
age of the mathematical bridge and as students did not know immediately

Figure 8: Gaussian bell curve as a model of a mathematical bridge.
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how and which parameters were to be changed, this approach was quickly
rejected.

4.3. Mathematical models based on mathematical concepts which are not cov-
ered in secondary education

The models which were based on mathematical concepts that are not cov-
ered in secondary education were catenary lines (see Figure 9) and Fourier
series (see Figure 10). What was interesting about these mathematical mod-
els, which contain mathematical concepts that are dealt with at university
level, was that these models were used by 6th-term mathematics teacher
students (catenary line and Fournier series) and 9th-term secondary school
students (catenary lines), and in seeking these mathematical models, neither
the software used nor the lecturers have guided the learners.

Figure 9: Using catenaries to model bridges by 6th-term students and 9th-
grade pupils.
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Figure 10: Utilising Fournier series for modelling bridges by 6th-term stu-
dents.

At this point, it should be emphasised that when applying mathematical con-
cepts to modelling, 9th-grade secondary school students were required to be
able to explain the mathematics behind the model. By explaining the math-
ematics behind the respective models, it should be averted that students just
copied functions, which are found on the internet, into a dynamic geometry
program. The joint collection of pupil information on catenary lines (see
Figure 11) indicated that pupils were working in-depth on the underlying
mathematical concepts, even if this was not yet the subject matter of the
9th-grade secondary curriculum.

Figure 11: Joint collection of 9th-grade secondary students’ information on
catenary lines.

Discovering how learners could acquire new mathematical knowledge and
competencies through mathematical modelling, how learners could use in-
creased mathematical knowledge and competencies in modelling throughout



Robert Weinhandl & Zsolt Lavicza 291

their educational careers and how or if our Mathematising Spiral is feasible
for mathematical modelling in formal learning settings were the goals of our
explorative educational case study.

When investigating how learners could acquire new mathematical knowledge
and competencies through mathematical modelling, it turned out that work-
ing in groups, no fear of making mistakes and increased technological skills
could be decisive elements for this.

However, when learners developed new mathematical knowledge and compe-
tencies through mathematical modelling, it was not the elements considered
individually but the interaction of these three elements. The interaction of
these three elements should be understood in such a way that, on the one
hand, working and learning in groups led to a reduction of the potential
fear of individual group members of making mistakes. On the other hand,
working together increased the technological skills of group members. Both
a high level of technical skill and little or no fear of making mistakes were
important for learners when new hypotheses (i.e., functions) were used to
model the bridge mathematically.

Our case study indicated that even more critical than the learners’ mathemat-
ical knowledge was their technological knowledge or skills when mathematical
modelling in a technology-enhanced learning environment. The importance
of learners’ technological knowledge or skills was demonstrated by the cir-
cumstance that the most mathematically complex models were developed
by 6th term mathematics teacher students and 9th grade secondary school
students. Both 6th term mathematics teacher students and 9th grade sec-
ondary school students could be characterised as groups with high knowledge
and competencies in the field of using mathematical educational technolo-
gies. High knowledge and competencies in the field of using mathematical
education technologies could be justified by the circumstance that 6th term
mathematics teacher students had a course on using mathematical education
technologies before our case study. Concerning 9th grade secondary school
students, using mathematical education technologies is a vital element of the
curriculum and the regulations of the written school-leaving examination.
These requirements also result in using technologies being a central element
of current secondary mathematics teaching. This increase in knowledge and
competencies in utilising mathematical education technologies from 9th grade
secondary school students compared to 4th term mathematics teacher stu-
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dents led to some groups of 9th grade secondary school students developing
mathematically more complex models than 4th term mathematics teacher
students.

Regarding the applicability of Mathematising Spiral, our explorative case
study indicated that when mathematising real models or problems in a
technology-enhanced learning environment, the creativity and technological
competencies of learners are crucial. Creativity and the technological compe-
tencies of learners as decisive factors when mathematising could be justified
by the circumstance that the mathematical models based on the most so-
phisticated mathematical concepts were developed by learners who had high
skills in using mathematical technologies.

5. Discussion and Conclusions

Our explorative educational case study focused on discovering how learners
could acquire new mathematical knowledge and competencies through math-
ematical modelling, how learners could use increased mathematical knowl-
edge and competencies in modelling throughout their educational careers and
how or if our Mathematising Spiral is feasible for mathematical modelling in
formal learning settings.

To investigate these questions, we have developed a technology-enhanced
learning environment which combines physical or real models and mathe-
matical modelling. This learning environment has been made available to
9th grade secondary school students, 4th term mathematics teacher stu-
dents and 6th term mathematics teacher students. Our results are based
on the learning products and the mathematical concepts behind these learn-
ing products of the different groups of learners. Combining real objects
and mathematical modelling in our technology-enhanced learning environ-
ment led to mathematical models of physical or real models being linked
to reality. Thus, according to Vos [35], our learning environment could
be characterised as an authentic learning environment. In this context, it
was interesting to note that for two groups of learners (6th term math-
ematics teacher students) this authenticity or connection of the learning
environment to reality led to an extension of the learning task. The ex-
tension of the learning task was such that the learners not only tried to
create a mathematical model of a real object, but two groups of learners
also required their mathematical model to be feasible or applicable in reality.
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This claim that the mathematical model should also correspond to the re-
quirements of reality could be demonstrated by the circumstance that the
6th term mathematics teacher students wanted to prevent an abrupt tran-
sition in the mathematical model. Extending the task and connecting the
mathematical model with the requirements of reality could also be an indi-
cator that the authenticity in our technologyenhanced learning environment
in which physical or real models and mathematical models were combined
could trigger or facilitate discovery-based or inquiry-based learning, which
would be material for new research.

Another interesting aspect of our explorative case study was the way learners
utilised educational technologies when working on the tasks. According to
Noss & Hoyles [28] and Noss, Healy & Hoyles [29], using educational technolo-
gies should contribute to making learning environments have laboratory-like
characteristics. Our educational case study indicated that using educational
technologies and integrating authenticity into the learning environment could
further lead to a learning environment having laboratory-like characteristics.
The circumstance that learners switched between mathematical modelling
and real objects could justify the reinforcement of the laboratory-like proper-
ties of learning environments by combining authenticity and utilising educa-
tional technologies. This switching between mathematical modelling and the
real object occurred, especially when the pictures of the real object were not
suitable for mathematical modelling using educational technologies. Learn-
ers then returned to the real object and created a new picture of the real
object. This new picture of the real object could be interpreted as a new or
additional sample, which would then be the subject of further investigations
(i.e., mathematical modelling).

One goal of the technology enhancement of learning environments in our
research was to facilitate learners to adjust their mathematical models to
real objects or pictures of real objects. This adjustment of mathematical
models to real objects or pictures of real objects could be interpreted as a
further development of the experimental-with-calculator approach in curve or
function fitting by Borba, Meneghetti & Hermini [3] and Borba & Bovo [4].
However, our explorative educational case study took place almost twenty
years after the research of Borba, Meneghetti & Hermini [3] and Borba &
Bovo [4] and thus we were able to integrate high-quality technologies as cal-
culators into the research design. These high-quality technologies and the
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increased confidence of today’s learners in using high-quality technologies
could contribute to the conclusion that an experimental-with-dynamic ge-
ometry system approach could be even better suited for curve or function
fitting than an experimental-with-calculator approach.

6. Impacts on teaching and learning, and limitations

Learners’ written feedback that was received after each unit of our mod-
elling experiment and the joy of learners to be observed during work phases
could be interpreted as most learners involved in the modelling experiment
enjoyed discovering mathematics following an approach which combines real-
world models and technology-enhanced learning. The key to motivation was
probably both: hands-on experiences and an explorative discovery of math-
ematics in our modelling experiment.

The hands-on experiences of the modelling experiment were highlighted as
very positive in the written feedback by learners from all three groups. Re-
curring patterns of learner responses were that learning was enjoyable and
that mathematics was filled with meaning and life. This joy in working
hands-on could also be observed in the participation of the learners dur-
ing the units. It was interesting that especially the 6th-term mathematics
teacher students and the 9th-grade secondary school students were very en-
thusiastic that they could work independently when learning. Working in-
dependently when learning means that concrete solutions were not required
and that learning paths was not prescribed. Independent work could be
recognised both during construction phases of the bridge and during the
modelling and examination of the bridge. Working independently during
construction means that different groups of learners had implemented dif-
ferent construction plans for a mathematical bridge. In the mathemati-
cal modelling and investigation of the bridge, independence was demon-
strated by different groups applying different mathematical concepts to char-
acterise the bridge. These representations indicated that 6th-term mathe-
matics teacher students mainly used mathematical concepts they had learned
during their secondary and university education. In the beginning, the 9th-
grade secondary school students also applied the mathematical concepts
known to them for modelling and describing the bridge. However, after
some time, 9th-grade secondary school students left the known terrain and
searched for further possibilities to characterise and investigate the bridge.



Robert Weinhandl & Zsolt Lavicza 295

In this further research for mathematical concepts, pupils formed groups of
two to four learners. The ideas discovered here were shared by student groups
with their classmates and thus also examined and deepened more closely. A
joint work within and between secondary student groups was evident in the
technological implementation of the mathematical concepts. Concerning the
question of whether new mathematical concepts could be developed through
mathematical modelling of physical objects by learners, it turned out that
this issue could be confirmed for 9th-grade secondary students. Particularly
during a follow-up investigation of mathematical concepts used in mathemat-
ical modelling, it became evident that 9th-grade secondary school students
were intensively concerned with new mathematical concepts (see Figure 9).
The 9th-grade secondary school students were able to explain correctly and
comprehensibly concepts of the limit of mathematical sequences or funda-
mental principles of complex numbers. Since these mathematical concepts
are treated according to the secondary curriculum after a 9th grade, mathe-
matical modelling could also be used to discover new mathematical concepts
by students actively.

It was also noticeable that in mathematical models of the 4th-term math-
ematics teacher students, only content of the secondary school curriculum
was used. The 4th-term mathematics teacher students neither applied newly
learned mathematical concepts (at university) to mathematical models of the
bridge during their studies nor searched for an alternative and higher-value
modelling possibilities.

Potential limitations of the results of our case study should be made, espe-
cially concerning secondary education. The limitations of the results concern-
ing secondary education could be justified by the circumstance that the sec-
ondary school of our case study is located in the centre of Vienna and that the
proximity to residential areas in Austria is an essential factor in the secondary
schools’ enrolment process. According to these enrolment processes circum-
stances, it could be assumed that many of the secondary school students in
our case study live close to the centre and therefore have a high socioeco-
nomic status and that education has a high priority in these families. The
socioeconomically high status, as well as the high value of education, should
have a positive effect on the availability of a multitude of high-quality tech-
nologies in the families of secondary school students and thus have a positive
effect on the familiarity of secondary students using high-quality technologies.
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The potentially high value of education in the families of secondary school
students should also have a positive effect on the curiosity and motivation of
secondary school students in our explorative case study. In future research,
it could be interesting to examine how the learning environment of our case
study affects less privileged students and to what extent the results of our
present study need to be adapted or changed.
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