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Abstract

We describe the development of web-based software that facilitates large-scale, crowdsourced
image extraction and annotation within image-heavy corpora that are of interest to the digital
humanities. An application of this software is then detailed and evaluated through a case study
where it was deployed within Amazon Mechanical Turk to extract and annotate faces from the
archives of Time  magazine. Annotation labels included categories such as age, gender, and
race that were subsequently used to train machine learning models. The systemization of our
crowdsourced data collection and worker quality verification procedures are detailed within this
case study. We outline a data verification methodology that used validation images and required
only two annotations per image to produce high-fidelity data that has comparable results to
methods using five annotations per image. Finally, we provide instructions for customizing our
software  to  meet  the  needs  for  other  studies,  with  the  goal  of  offering  this  resource  to
researchers undertaking the analysis of objects within other image-heavy archives.

1. Introduction

The amount of multimedia data available is steadily increasing [James 2014], which has led to many instances where it

is desirable to identify and annotate objects located within an image. Examples include the detection of features from

outdoor cameras [Hipp et al. 2013] [Hipp et al. 2015] and the classification of animal species [Welinder and Perona

2010] [Caltech-UCSD Birds 200 2018]. Machine learning and other quantitative methodologies can be used to identify

objects  within  images (see [LeCun et  al.  2015]  for  an  example),  but  their  complexity  and the  requirement  for  an

optimized training set often limit the use of these approaches. A viable alternative is crowdsourcing, the process of

enlisting untrained individuals to perform computationally intensive tasks, which has been extensively used in a variety

of projects [Kuang et al. 2015] [Manovich et al. 2016] [Yu et al. 2013] [Tomnod 2018] [Clickworkers 2018]. Amazon’s

Mechanical Turk (AMT) service for crowdsourcing work is popular with many researchers across disciplines and allows

requesters to post tasks, and matches these tasks with anonymous workers who complete them.

Our specific interest is in identifying and labeling images of faces from the Time magazine archive to gain historical

insight on American cultural trends. Collecting such a data set requires a two-step process: 1) identify all faces within

the corpus and 2) annotate each face according to standardized protocols for feature designation. In this paper, we

detail the development of a web-based image-cropping and annotation software for performing these tasks, and we

describe our rigorous verification methods for both the cropping and the annotation. Notably, we developed a verification

procedure that required only two annotations per image to produce high-fidelity data. The data collected using the

methods described here was then used to train an object detector and image classifier machine learning models.

Our methods are illustrated through a case study where the software was used to crop and label human faces from an

archive of Time magazine. While our web-based interface is platform-independent, it was administered as an external

survey link on AMT. The design process, details of our data collection methods, and instructions for others to customize

the software to crop alternative objects from other archives are all described. The software and methodology described
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here has been used for our own digital humanities project [Jofre et al. 2020a] [Jofre et al. 2020b], and we believe it may

be useful to other researchers.

2. Motivation and Background

This work was motivated by an interest in using large, image-heavy corpora, in particular periodical archives, to gain

insights into cultural  history.  Interpreting large cultural  corpora requires both quantitative methods drawn from data

science and qualitative methods drawn from technology, cultural,  and social studies. From this perspective, we are

interested in questions concerning what the faces in a magazine archive could reveal about the larger, historical context

of  a  publication,  questions  such as how gender/race/age representation  have changed over  time,  and how these

correlate with the magazine’s text and with broader cultural trends.

The archive  under  consideration for  our  case study consists  of  approximately  4,500 issues from Time  magazine,

ranging from 1923 through 2014. The corpus comprises approximately 500,000 .jpg files, with each page of each issue,

including the cover, representing one file. We selected Time magazine for a number of reasons. First, while there are a

few existing studies of this corpus (see [de Souza 2014] and [Manovich and Douglass 2009]), there is certainly more

work to be done on the visual aspects of the archive by moving beyond the cover images and text. Second, Time has

been a mainstay publication in the United States for nearly a century, and in that period has witnessed vast cultural,

political, and technological changes. Third, it has a relatively well documented corporate history (see [Prendergast and

Colvin 1986]), which allows us to examine the internal context of the production of the magazine vis-à-vis its external

context like wars, political movements, changes in fashion, and so on. Finally, the Time corpus is widely held in library

collections in the United States, and available online through The Vault at https://time.com/vault/.

The data we collected using the crowdsourcing methods described in this paper has been published as a dataset in the

Journal of Cultural Analytics [Jofre et al. 2020a], available for use to all researchers in the digital humanities. We used

the crowdsourced data to train an algorithm to extract all the images of faces from our Time magazine archive and

classify their gender. The high-granularity of the automatically generated data allowed us to undertake a detailed study

on gender representation in Time magazine [Jofre et al. 2020b].

Previous studies have successfully used crowdsourcing to achieve goals similar to ours. For instance, when examining

features of traffic intersections, the correlation between crowdsourced results and experts was 0.86 for vehicles, 0.90 for

pedestrians, and 0.49 for cyclists [Hipp et al. 2013]. Similarly, when assessing 99 Flickr images for the presence of 53

features, the correlation between crowdsourced results and expert raters was 0.92 [Nowak and Rüger 2010]. In both of

these studies, crowdsourced labels were derived by averaging the labels produced by multiple individuals. While these

correlations are encouraging, there are known challenges associated with crowdsourcing. Occasionally, crowdsource

workers have been shown to arbitrarily select answers or give vague responses in an effort to complete jobs more

quickly [Downs et al. 2010]. This behavior can be reduced by adding verifiable qualification questions, often called

honeypots, to crowdsourcing procedures [Kittur et al. 2008]. Furthermore, the demographics of crowdsource workers

are typically skewed towards low income workers from India and the United States, who tend to be young and female

[Casey  et  al.  2017].  Our  data  collection  crowdsourcing  methods  are  mindful  of  concerns  about  the  potential  of

inadvertently  exploiting  low-visibility  and/or  vulnerable  populations  and  intentionally  aim  to  provide  reasonable

compensation (for further discussion of these issues, see [Irani 2015]).

While  there  are  many  other  solutions  for  researchers  seeking  to  perform  image  extraction  and  annotation  via

crowdsourcing, we believe that our software fills a unique niche for humanities researchers who want to have full control

of the data collection and quality controls. Most solutions are geared towards machine learning researchers and provide

these  services  as  a  bundle,  where  the  client  receives  the  requested  clean  data.  These  include  LabelBox

(https://labelbox.com/product/platform),  LionBridge  (https://lionbridge.ai/services/image-annotation/),  Hive

(https://thehive.ai/),  Figure  Eight  (https://www.figure-eight.com/),  and  Appen  (https://appen.com/).  Such  black-box

solutions are not suitable for the humanities, where we must be mindful of who is doing the tagging. Our software allows

the researcher to track individual workers to examine their effect on the data. Furthermore, it is platform-independent,

allowing it  to be deployed on any crowdsourcing site.  We are aware of one other standalone image cropping and

tagging  software  package,  labelImg  (https://github.com/tzutalin/labelImg),  but  it  is  not  web-based,  which  limits  its

deployment.
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The software package and methodology we developed are intentionally flexible, both in the corpora they can analyze

and in the crowdsourcing platform on which they can be deployed. For the former, our motivation was to allow our tools

to be used with a variety of sources, such as the Look Magazine archive, hosted by the Library of Congress [Look

Magazine 2012]. For the latter, we did not want to exclusively link the project to AMT because we want the option of

using other crowdsourcing platforms.

3. Development and Deployment of Interface

3.1 Determination of Image Features to Be Assessed

In preliminary work, project leaders identified the following nine facial features of interest: 1.) Gender, classified as Male,

Female or Unknown; 2.) Race, classified according to current U.S. census categories as American Indian, Asian, Black,

Pacific Islander, White, or Unknown; 3.) Emotion, classified according to Ekman’s six basic emotions as Anger, Disgust,

Fear, Happy, Sad, or Surprise (Ekman and Friesen 1986); 4.) Racial Stereotype, classified as Yes or No; 5.) Magazine

Context,  classified  as  Advertisement,  Cover,  or  Feature  Story;  6.)  Image  Type,  classified  as  Photograph  versus

Illustration; 7.) Image Color, classified as Color or Black & White; 8.) Multiple Faces in the Image, classified as Yes or

No; and 9.) Image Quality, classified as Good, Fair, or Poor.

One issue from each of the ten decades spanned by the data (1920s-2010s) was selected at random and analyzed by

student research assistants. The student coders proceeded through all pages in an issue (range: 50-160), identified

faces, and annotated the features according to the above categories. Throughout this process, coders were asked to

keep track of anomalous faces that were not easily classified, a process that was extremely valuable in refining our

procedures. For example, due to the presence of animal faces and masks, the operational definition of a classifiable

face was changed to human faces where at least one eye and clear facial features are present. Single color images

required the Image Color classification levels to be changed to Color versus Monochrome and an “Author” category was

added to Magazine Context. There was little agreement among raters concerning the presence of stereotypes and facial

emotions, so these categories were eliminated. The emotion variable was replaced by a binary Smile variable and a

Face Angle variable (whether the face is in profile or facing the viewer). Furthermore, most of the Unknown labels for

the Race and Gender categories were assigned to babies or young children, so a binary Adult variable was also added.

The final list of facial features is provided in Table 1.

With the updated feature list established, three coders reviewed a single issue and annotated the 185 faces that were

identified by all three individuals when reviewing the issue. To assess interrater reliability (IRR), Cohen’s kappa ( ) was

calculated for each facial category.  values between 0.60 and 0.75 are typically interpreted as representing good

agreement while  > 0.75 characterizes excellent agreement. The average  was 0.809 and all values were above

0.721 with the exception of image quality, with  0.363. These values are summarized in Table 1. This IRR exercise

revealed that,  when reviewing the coder  data for  pages with  multiple  faces,  it  was challenging to  make interrater

comparisons since it was often difficult to determine which exact face corresponded with a given set of labels. This led

to a major revision in our protocol where, rather than having individuals annotate faces and store the results as they

reviewed pages, they would first crop each face, so that each set of assigned labels could be associated with a specific

cropped face.
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Variable Name Classification Options Cohen’s 

Adult Yes or No 0.771

Face Angle Profile or Straight 0.819

Gender Female, Male, or Unknown 0.932

Image Color Color or Monochrome 0.985

Image Quality Good, Fair, or Poor 0.363

Image Type Photo or Illustration 0.928

Context Advertisement, Cover Page, or Feature Story 0.974

Multiface Yes or No 0.869

Race American Indian, Asian, Black, Pacific Islander, White, or Unknown* 0.721

Smile Yes or No 0.731

Table 1. Classification features and categories used for annotating facial images along with κ, quantifying the
interrater reliability among three raters  over 185 faces  from the same magazine issue. *  Denotes  that this
category was classified according to the current U.S. Census [About Race 2018]

3.2 Deployment of Web-Based Application

To scale up data collection, we created a web-based form in PHP, coupled to an SQL database, that could be deployed

within crowdsourcing platforms to perform the two tasks required to obtain the data of interest. In Task 1, a magazine

page was presented, and participants were instructed to crop any faces that are present; in Task 2, participants were

instructed to categorize the faces identified in Task 1 according to the specifications in Table 1. The data collection

protocol was to first complete Task 1 (cropping) on all our selected pages before moving on to the annotation phase,

which  allowed  cropping  errors  to  be  eliminated  before  sending  the  extracted  images  for  annotation.  Task  1  was

separated from Task 2 so that crowdsource workers would only have to be trained for and perform one scope of work.

While  the  data-collection  interface  is  platform-independent  and  can  be  used  to  directly  collect  data,  we  found  it

beneficial to use AMT to recruit participants and manage payments. “Jobs” (or human interface tasks (HITs) in AMT

vernacular) were deployed in AMT as a survey link. For Task 1, each job consisted of reviewing 50 pages and cropping

all of the observed faces within each page. AMT workers were paid $5 USD (all payment rates cited here are in USD)

for each completed job, which was based on the time it took student coders to complete similarly-sized jobs (30-40

minutes) with a goal of paying between $8-$10/hour, above U.S. federal minimum wage [Silberman et al. 2018]. For

Task 2 jobs, AMT workers were required to categorize 25 to 50 faces, each of which was previously cropped from a

page in  Task 1.  Student  coders  spent  10-15 minutes to complete jobs consisting of  50 faces on our  context-free

interface (discussed in  section  3.4.1)  and  15-20 minutes  on  jobs  consisting  of  25  faces  on our  default  interface;

therefore, AMT workers were paid $2.25 for these jobs. Once an assigned job was completed, the software generated a

completion code that workers entered into AMT to receive payment. Using this code as an identifier, we were able to

verify the quality of the work (see sections 3.3 and 3.4 for details) and process payments. For borderline or questionable

work quality, we intentionally erred towards payment and only withheld payment for the most extreme circumstances.

Each job also included an optional demographic survey, which will inform future studies exploring relationships between

demographics and face annotation outcomes. All procedures were approved by the SUNY Polytechnic Internal Review

Board.

3.3 Description of Task 1 (Cropping) Interface

In this task, workers were presented with a job consisting of 50 images, 47 of which were randomly-selected magazine

pages and three of which were validation pages. On each assigned page, AMT workers were asked to crop a rectangle

around individual faces by clicking and dragging from one corner of a rectangle to the opposite corner. (See Figure 1). If

there was more than one face on the page, workers selected an option to remain on the page and continue cropping.

Once all the faces were cropped, or if there were no faces on the page, workers selected an option to move onto the

next page in their job. We observed that workers often abandoned an assigned job after the first few pages, resulting

incomplete jobs within our system. To eliminate these jobs, a script was created that ran in the background to look for

pages that had been assigned within a job that had been inactive (i.e. no faces cropped) for more than 2 hours. Any
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data collected from these jobs was deleted and the pages within them were made available for a new job assignment.

Figure 1. The cropping interface. Left: page as first presented to worker. Middle: worker selects face to crop.
Right: Faces  that have already been selected and submitted are covered up to help workers  keep track of
cropped faces.

Within each job, 3 of the 50 pages that the workers analyzed were validation pages, whose inclusion was meant to help

detect workers that attempted to quickly receive payment by repeatedly indicating that there were no faces on each

page, regardless of content. These pages were selected randomly from a database which contains a list of magazine

pages and the known number of faces on each page, as determined by trained project personnel.  These are our

“ground-truth” faces. Worker quality was assessed by comparing the number of cropped faces on these pages to the

known number of faces. Workers’ validation page was flagged if they cropped more than one face on a validation page

with only 1 face or cropped  1 face beyond the known number of faces on pages with > 1 face. When determining if

payment should be provided, workers with 2 or 3 flags were subject to additional review while payment was immediately

processed for all others.

DHQ: Digital Humanities Quarterly: Crowdsourcing Image Extraction a... http://www.digitalhumanities.org/dhq/vol/14/2/000469/000469.html
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Figure 2. Screenshot of a page within our in-house review interface. Selections cropped by workers are outlined
with a red rectangle.

To facilitate the further inspection of AMT workers with a high number of flags, an easy-to-use, in-house review interface

was built (Figure 2). On a single webpage, this interface displayed all of the magazine pages assigned to any worker,

along with frames around the image areas that the worker selected for cropping. Using this interface, project personnel

were able to rapidly scroll through the pages, inspect the work, and make note of pages with mistaken crops or faces

left uncropped. If a worker had errors on more than half of their pages, then payment was not provided and all pages in

their job were re-analyzed. We paid all other workers but used our revision process to identify pages with egregious

errors, which were returned to the pool to have their analysis redone.

3.4 Description of Task 2 (Annotating)

In this task, workers were presented with a job consisting of either 25 or 50 images of faces, and were asked to enter

appropriate tags for  each face.  The faces were randomly selected from the images that  were cropped in Task 1.

Procedures similar  to  those outlined in  Task 1  were  used to  simultaneously  manage multiple  jobs,  ensure  that  a

sufficient number of images are available to populate each job, and cancel jobs that have timed out. For each face in a

job, workers classified facial features according to the categories in Table 1 with an additional “not a face” option that

served  as  a  quality  check  for  the  collection  of  cropped  faces.  To  maximize  task  efficiency,  the  options  for  each

classification were presented as clickable radio buttons, rather than as drop-down menus. As in Task 1, once the job

was completed, the workers were given a randomly-generated completion code that  was used to secure payment

through the AMT platform.

In a similar process to Task 1, each job contained 3 validation faces, also known as ground-truth faces, each of which

was consistently labeled the same by three student coders over all categories. To create a flagging system, we focused

on the three categories that had the highest rates of agreement in our preliminary data collection: gender, image color,
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and image type. Magazine context had the second-highest interrater reliability, but as will be discussed in section 3.4.1,

our software was configured to assess this feature in two different ways so it could not be used for validation. When the

classifications matched the known values for a given validation image, the flag value was set to zero. Each mismatch

contributed a value of 1 to the flag, with a maximum of 3. Images with large flag values were subject to further scrutiny.

For the cases where an AMT worker had mismatches with the validation images, it was not possible to build a succinct

visual inspection tool for all  images as was done in Task 1 since category selections cannot easily be represented

visually. Furthermore, there is a degree of subjectivity and ambiguity in certain categories, such as the presence of a

smile, so we chose not to develop explicit criteria for processing AMT payments and all workers were paid. To navigate

the potential for erroneous data and/or ambiguous categories, we obtained multiple annotations for each face, which

were aggregated to obtain a crowdsourced label. As will  be described in a subsequent section, we had each face

annotated  twice  and  resolved  inconsistencies  by  choosing  the  label  associated  with  the  worker  who  was  most

consistent with other workers over all annotated faces, and who had the lowest number of flags.

3.4.1 Examination of variations in the interface

We also took this opportunity to examine how variations in the interface affected annotation results (see Figure 3). In

particular, we were curious about whether faces taken out of context were more likely to be erroneously labeled. For

example, a closely cropped face may not include gender cues, such as hair and clothing. To address this question, we

developed two different annotation interfaces. In the context-free version, we show only a cropped face to workers, who

then determine the characteristics. Because there is no context around the face, the magazine context (ad, feature,

cover, etc.) and multi-face (whether the face being tagged is accompanied by other faces) categories were required to

be determined in Task 1 while workers did the cropping. In the second (default) version of the task, workers see the full

page with a rectangle around the face of interest when labeling the face and workers answer questions about the face

as well as about the context around it. We default to this later version of the interface since we were able to automate

Task 1 (see section 5.2), requiring the context annotations to be assigned in Task 2. We found that, despite there being

only two additional questions in the default version of the interface compared to the context-free version, it took almost

twice as long to complete the labeling tasks, which is why AMT jobs consisted of 25 rather than 50 faces with the default

version.

Figure 3. Left: The context-free version of the interface shows workers only the face to be annotated. Right: The
default version of the interface shows the full page with the face in question outlined in green.

4. Software Evaluation: Case Study with Magazine Archive
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A case study was performed using a subset of our magazine archive consisting of one July issue selected from every

year between 1961 and 1991, which corresponds with our historic period of interest. Additionally, each of the one-per-

decade issues that the student coders manually labeled during our preliminary studies were used as a second data set.

The first data set was denoted as 30YR (it spans 30 years) while the second was called OPD (as we selected One

issue Per Decade). After being cropped, both the 30YR and OPD data were each labeled by two distinct AMT workers.

4.1 Summary of AMT Accuracy

A total of 87 AMT workers cropped 3,722 total pages in Task 1. Due to various glitches that were discovered during

deployment and eventually rectified, certain jobs contained less than 50 pages with the average being 47.18 pages per

job. The average time to complete a job was 47 minutes. Three validation pages were randomly included within each

job to address concerns about individuals incorrectly indicating there were no faces on a given page. However, this

behavior was not widely observed, as less than 5% of all validation pages were characterized as having no faces. More

common errors appear to have been cropping only a fraction of the faces present on a given page or including many

faces within a single crop. For example, 20.0% of validation pages with 3 or more ground truth faces were characterized

as having only 1 face. The cropping error rate was significantly reduced when workers were required to acknowledge

that they read our instructions before beginning the job. Overall, for 72.8% of validation pages, the number of faces

identified by the AMT workers agreed with known number of faces. For an additional 7.6% of validation pages, AMT

workers  cropped more faces  than  the  known number.  It  is  likely  that  these cases  represent  genuine attempts  at

completing the task, where the known faces along with additional small, poor quality faces were cropped. Processes

were implemented to eliminate poor quality faces (see section 4.3). Therefore, the cropping accuracy should consider

true positives to be those validation pages where the number of cropped faces either matched or exceeded the ground

truth, which led to an effective accuracy of 80.4%. Each page was verified with our inspection interface described above

and crop errors were corrected before proceeding to Task 2.

In Task 2, a total of 342 workers annotated 9,369 faces. One AMT assignment consisted of either 25 or 50 faces,

depending  on  whether  the  default  or  context-free  interface  was  being  used.  Technical  glitches,  which  were  later

corrected, occasionally caused the number of faces in a job to slightly vary. The average time to complete a job was 30

minutes using the context-free interface, with a job consisting of 50 faces, and 25 minutes using the default interface

with a job consisting of 25 faces. Table 2 illustrates the consistency of image annotations with the known labels of the

validation images. With the exception of image quality, the accuracy for each category was above 87%.

Photo Color Angle Quality Gender Race Smile Adult

0.96 0.93 0.88 0.48 0.94 0.88 0.89 0.99

Table 2. Proportion of images where AMT worker’s label matched the known validation image label in Task 2.
Results are not provided for Magazine Context or Multi face since these categories were assessed in Task 1
when the context-free interface was used.

4.2 Comparison of Default versus Context-Free Interface for Task 2

As described in  section 3.4.1,  Task 2 was deployed with  two different  interfaces.  In  the default  case,  faces were

presented in the context of the original page they were cropped from, while in the context-free case, the face alone was

presented. To investigate whether the interfaces affected the labeling task, we used the default interface for both rounds

of OPD labeling, but varied the interface for the 30YR data, as shown in Table 3. We then examined the consistency of

labels over these two cases.

Round 1 Round 2

OPD Default Interface Default Interface

30YR Context-free interface Default interface

Table 3. Deployment of Task 2 over various interfaces.

For each of the 10 labeled features, the proportion of images where the ratings agreed was calculated for both the
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30YR and OPD data sets. The results are illustrated in Table 4. According to  analyses, the differences between the

proportion of matches was significant for 5 of the 10 features with the largest differences being between magazine

context and image quality. This is to be expected since the two different interfaces used for the 30YR data primarily

differed in ways that can be expected to affect these features. There were relatively large differences in image quality

based on the presence of  context,  with  54.1% and 9.6% of  faces labeled as good and poor  quality,  respectively,

compared to 3.4% and 20.5% of images labeled good and poor, respectively, for the context-free design. It is possible

that the presence of context increased the readability of the face.

Interestingly, the correspondence in magazine context was larger across different interfaces in the 30YR data than

across the consistent interfaces in the OPD data. The observed statistically significant differences may be due to the

large sample size, which is bolstered by effect sizes (Cohen’s f)  that are well  below 0.1 in every case; typically, a

moderate effect is considered 0.3. As a result, we conclude that the differences in annotation quality according to the

interface design are relatively small.

Multiface Color Context Photo Angle

30YR 0.68 0.90 0.69 0.92 0.79

OPD 0.74 0.88 0.60 0.91 0.78

p 0.004* 0.11 <0.001* 0.48 0.47

effect 0.04 0.02 0.06 0.01 0.01

Gender Race Adult Smile Quality

30YR 0.90 0.71 0.93 0.81 0.45

OPD 0.89 0.77 0.97 0.82 0.53

p 0.18 0.002* 0.001* 0.72 <0.001*

effect 0.02 0.05 0.05 0.005 0.05

Table 4. Proportion of ratings agreeing for both 30YR and OPD data with  analysis p-values and effect sizes
(Cohen’s f) for the differences in proportions provided. * indicates a p-value < 0.05.

4.3 Effect of Image Quality

We next explored the effect of image quality on the consistency between raters. Each image was classified as having

Satisfactory Quality  (SQ) if  both raters scored its quality as either  good or fair,  or  Non-Satisfactory Quality (NSQ)

otherwise. Approximately 27% of the observations were classified as NSQ. The proportion of matches for each feature

was then calculated separately for both the SQ and NSQ cases. The results are illustrated in Table 5. For 6 of the 10

features,  analyses indicated that the concordance between raters was significantly different for SQ and NSQ images.

The effect sizes (Cohen’s f) were larger than when comparing 30YR to OPD images with the adult and image quality

features approaching a moderate effect.
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Multi-face Color Context Photo Angle

SQ 0.68 0.90 0.68 0.94 0.81

NSQ 0.71 0.89 0.68 0.85 0.75

p 0.11 0.11 0.60 <0.001* <0.0001*

effect 0.02 0.02 0.008 0.14 0.06

Gender Race Adult Smile Quality

SQ 0.94 0.75 0.97 0.82 0.56

NSQ 0.81 0.64 0.85 0.81 0.21

p <0.001* <0.001* <0.001* 0.52 <0.001*

effect 0.18 0.11 0.21 0.01 0.31

Table  5.  Proportion of  ratings  agreeing for  both SQ and NSQ data  analysis  p-values  and effect  sizes
(Cohen’s f) for the differences in proportions provided. * indicates a p-value < 0.05.

The results in Table 5 indicate that it may be advantageous to eliminate NSQ data from subsequent analyses. Before

doing so, it is important to determine if this will introduce a bias. Due to changes in printing technology and subject

matter over the 90+ years spanned by the data, there is the potential for image quality to differ by time. This possibility

was assessed by separately calculating the frequency of SQ and NSQ images in each issue. A  analysis was then

performed, which indicated that there was no significant difference between the SQ and NSQ frequency distributions.

Therefore, eliminating the NSQ images will not introduce temporal bias.

4.4 Aggregation of Multiple Image Labels

Each face was annotated twice, each time by distinct AMT workers.  While the majority of  labels (~ 80%) were in

agreement, we required a methodology to resolve disagreements between labels in order to have a definitive value for

each annotation. When crowdsourcing data, this is often achieved by having multiple individuals rate a given image and

then using a majority rules approach for each feature [Hipp et al. 2013] [Hipp et al. 2015] [Nowak and Rüger 2010].

However, this approach can be resource intensive. More targeted approaches have been developed that implement an

expectation-maximization algorithm to determine the most likely label for a given object in order to ultimately determine

a score for the quality of each work [Dawid and Skene 1979] [Wang et al. 2011] [Organisciak et al. 2012] [Welinder and

Perona 2010] [Whitehill et al. 2009]. Lower-performing workers can then be filtered out of the rating system. We aimed

to emulate such approaches, but with a simplified procedure that functions over only two coders per image. Our strategy

was to calculate a proficiency score for each of the raters and to resolve inconsistencies by selecting the response

recorded by the individual with the better proficiency score. Proficiency scores were determined for each worker by

examining their validation images and calculating the fraction of annotations matched between the worker’s input and

the ground truth. A proficiency score of 1 is a perfect score. The average proficiency score ( ) was 0.87 with a standard

deviation (SD) of 0.09. An alternate way to calculate the proficiency score was by considering all of the images tagged

by a given rater and computing the average fraction of image features that matched the images’ other raters. The

average proficiency score with this convention was  = 0.81 with SD = 0.06.

Flag Sum 0 1 2 3

Mean Proficiency (All Rated Image) 0.82 0.80 0.78 0.64

Mean Proficiency (Validation Images) 0.90 0.85 0.77 0.76

Table 6. Mean proficiency score stratified by the sum of flag values over all validation images.

Table 6 compares our two methods of calculating the proficiency score with the flagging system for image annotations.

The sum of the flags for each participant was calculated and proficiency scores were stratified by these values. As

shown in Table 6, lower proficiency scores were associated with larger flag values, which indicates that our flagging

system provides a reasonably good indicator of worker proficiency. An ANOVA test indicated that the differences in

proficiency score values among the flag values were significant (p<0.001) for both varieties of the proficiency score.
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4.5 Validation of Proficiency Score

Prior to deploying the proficiency score methodology to resolve annotation inconsistencies throughout the entire corpus,

it was necessary to determine the consistency of this methodology with the more established majority-rules procedure.

To assess this, a subset of 1,000 SQ images were selected from the corpus at random and then submitted to AMT for

three additional annotations (i.e., five total annotations). The annotation label selected most frequently was selected for

this image with ties between annotation labels (< 1% of all annotations) chosen at random. Table 7 summarizes the

proportion of faces for which the annotation labels in the five-rater consensus and proficiency score (using the all rated

images option) matched. These results indicate that the proficiency scoring procedure is sufficiently accurate to allow

future iterations of this system to proceed with only two raters per image, which will allow for a more resource-efficient

project.

Photo Color Angle Quality Gender Race Smile Adult Context Multiface

0.97 0.97 0.92 0.74 0.97 0.93 0.91 0.99 0.90 0.85

Table 7. Proportion of images where the five-rater consensus and proficiency score labels matched, stratified by
annotation category.

5. Software Applications

5.1 Applying Software to Other Data Sets

While this software was built for our specific purpose of cropping and annotating faces from Time magazine, we were

mindful about its generalizability and developed it with the hope that it could serve as a useful tool for other researchers

with  other  corpora.  To  this  end,  the  code  is  hosted  on  GitHub  (https://github.com/Culture-Analytics-Research-

Group/Data-Collection) and is written so that both tasks (image cropping and annotation) are easily generalized, and the

annotation variables are straightforward to modify. Instructions for modifying this software to a different archive, along

with detailed instructions on how to use the software, are provided in the Appendix.

As a demonstration of this flexibility, we hosted a proof-of-concept workshop in December 2018 demonstrating the use

of our tool on selected pages from the GQ Magazine corpus [Jofre et al. 2018]. Prior to the workshop, we used our

trained face detector to identify and crop faces from these pages, and the workshop demonstrated Task 2 (annotating

the selected images) to explore trends in facial hair.

The cropping part of the software (Task 1) is particularly easy to adapt for cropping other objects. In our own research,

we are currently using the cropping part of the software to extract the advertisements from the corpus. The software is

also  being used to  identify  measures  of  neighborhood distress  (graffiti,  abandoned vehicles,  etc.)  in  a  study  that

examines the role of environmental factors in promoting physical activity.

5.2 Task Automation

Our case-study data has provided us with a corpus-specific training set that we have used to train a RetinaNet detector

[Lin et al. 2017] [Lin et al. 2018] to automatically identify and extract the rest of the faces from the archive [Jofre et al.

2020a] [Jofre et  al.  2020b].  Our case-study data set  of  1,958 pages with  4739 face annotations and 1708 pages

containing zero faces was used to train the detector. The detector was trained for twenty epochs, since training for more

resulted in overfitting and poor generalization in face detection across different historical eras. After running the detector

on every page from the archive over 400 thousand facial images were extracted, using a threshold of 50% certainty.

When we increased the accuracy threshold to 90%, we were able to extract over 327 thousand faces with very high

accuracy.  In comparison,  our first  attempts at  automated extraction with OpenCV yielded only 117 thousand facial

images from the entire corpus, and 5% of these were false positive (i.e. not actually faces). Compared to OpenCV, the

trained RetinaNet detector was able to extract more faces, particularly those with a profile orientation, and those that

were illustrated instead of photographed.

We have also trained classifiers to automatically label the gender of the face by fine-tuning a pre-trained VGG Face

CNN Descriptor network [Parkhi et al. 2015] [Malli et al. 2018] with our crowd-sourced data. From the initial set of data
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described here, 3,274 faces were male, and only 1,131 were female, which skewed our results on the first run. To

expand the training set, we employed a bootstrapping technique to acquire additional, more balanced, training data and

thus improve our classifier. The model trained on the AMT data was used to classify all 327,322 faces from the archive.

From these faces, we randomly selected images and manually verified the classification results. These new images plus

the AMT data yielded a new dataset of 17,698 faces for the second round of training, with roughly equal male/female

representation. This yielded a 95% accuracy [Jofre et al. 2020a] [Jofre et al. 2020b].

5.3 Visualizing Annotation Results

We created an additional piece of software, also available on our Github page (https://github.com/Culture-Analytics-

Research-Group/Metadata-Analysis  ),  that  pulls  the  data  directly  from  the  database  where  the  crowdsourced

annotations are stored and creates visual  summaries of  image annotations versus time.  The user  can select  any

annotation category and easily generate a chart of the selection as a function of time, aggregated by year or by month.

In addition, the tool allows users to select subsets of categories. The example in Figure 4 shows the percentage of

women’s faces out of the subset of faces identified in the context of advertisements. This tool is intended for preliminary

analysis that allows researchers to quickly identify temporal trends and patterns.

Figure 4. Screenshot showing the percentage of faces that are tagged female out of faces that are tagged as
being within advertisements.

5.4 Digital humanities studies

The data we collected with these methods have allowed us to generate more data via machine learning, and has

allowed us to ask the following questions [Jofre et al. 2020a]. How has the importance of the image of the face changed

over time? How has gender representation changed over time? How does gender representation correlate with the

magazine’s  text  and  with  the  historical  context?  How has  race  representation  changed  over  time?  How has  the

representation of children changed over time? How does race and/or age correlate with the magazine’s text and with the

historical context? What types of faces are more likely to be smiling? In what context (ads or news) do certain types of

faces tend to appear, and how does this change over time? What types of faces are more likely to be presented as

individualized portraits?
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In our own work, we used the data collected through this method (as well as the automatically-extracted data that this

work made possible) to examine how the percentage of female faces found in Time magazine between the 1940s and

1990s correlates with changing attitudes towards women. We found that the percentage of images of women’s faces

peaks during eras when women have been more active in public life, and wanes in eras of backlash against women’s

rights. The changes in the representation of women in the magazine over time tracked closely not only with the overall

historical context,  but also with the internal policies of the publication, and with a close reading of the magazine’s

content. We believe that this finding is particularly relevant in our contemporary post-literate world in which people

absorb culture primarily through images [Jofre et al. 2020b].

6. Discussion and Future work

6.1 Observations

We were successful in building and deploying software to manage the crowdsourced extraction and labeling of features

from an image-heavy corpus. While the software is generalizable, we focused on an application where faces were

required to be extracted and labeled from Time magazine. The accuracy for both Task 1 and Task 2 were in line with

those seen for other studies that have used crowdsourcing for similar tasks [Hipp et al. 2013] [Hipp et al. 2015] [Nowak

and Rüger 2010]. In contrast to these other studies that required multiple workers for each image, our method only

requires two individuals to annotate each image to gain results with a similar accuracy.

Our  case-study  results  show that  the  differences  between  labeling  performed  on  context-free  versus  context-rich

interfaces were small. However, there was a notable difference when we instead compared images that were tagged as

“good” quality with images tagged as “poor” quality, an effect likely due to challenges in reading poor quality figures.

This indicates that  there is  value in  requiring workers to  evaluate image quality,  as it  allows us to flag potentially

ambiguous annotations. Interestingly, faces that were viewed in the context of a full image were less likely to be labeled

as having poor quality compared to faces that were viewed in the context-free interface. It seems that context increases

the  readability  of  the  face  in  question,  which  makes  our  default  interface  advantageous.  On  the  other  hand,  a

disadvantage of the default interface is that it takes nearly twice as long to label a single face compared to the context-

free interface. While the default interface contains two additional features to be assessed, we speculate that providing a

full image rather than a cropped image adds a significant cognitive load to the task. We anecdotally note that personnel

who tested both interfaces observed that the default interface felt “less tedious” than the context-free interface: viewing

pages from vintage magazines was “more entertaining” than viewing decontextualized images of faces. In the end, we

likely will opt for the default interface in our future studies. This is in part because we have been able to fully automate

image extraction, but also because the context-rich environment seems to increase the readability of the selected face.

An image of a face alone loses the rich contextual information of the complete page in which it appeared.

Using the methods described in this case study, we successfully collected data that was 1) used to train an object

detector and an image classifier, 2) published and made accessible to other digital humanities researchers [Jofre et al.

2020a], and 3) used to undertake a study on gender representation in Time magazine [Jofre et al. 2020b].

6.2 Advantages of a Standalone Application

While AMT offers multiple options, including developer tools and a sandbox, for creating image cropping and tagging

interfaces,  we  chose  to  build  our  own  web-based  application  for  several  reasons.  For  one,  this  allows  complete

customizability, which was beneficial as we tweaked our approach in response to preliminary data. Also, this web-form

enables us to collect data in a manner that is independent of any service providers, which allows us to use different

services without compromising our methods. In this work, we used AMT to provide a proof-of-principle, but we plan to

deploy this system on other crowdsourcing platforms. The stand-alone interface also opens the possibility of collecting

data with volunteer crowdsourcing, as has been done in projects from the New York City Public Library [NYPL Map

Warper 2018] [NYPL Labs 2018] [All Hands on Deck 2018]. The biggest challenge in using volunteers is generating

sufficient interest to collect a significant amount of data. We may have to consider methods of gamifying the tasks to

make them more appealing, and our hope is that once our results are presented publicly, people may become interested

in participating in the project. Lastly, a standalone application can be shared with other researchers and adapted to

different types of projects in a way that is not possible with platform-specific approaches.
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6.3 Limitations

From a humanistic perspective, there is a limitation in using only visual data to classify race and gender. In the case of

gender, our data doesn’t distinguish between someone who identifies as a woman (or man) and someone who presents

as female (or male),  and the automatic classification trained on this data assumes that  gender is binary, which is

problematic.  Human coders, who see the context of the page can mitigate this problem by labeling the gender as

‘unknown’, which accounted for 6% of the faces. However, upon closer inspection, we found that none of these were

actually gender non-binary adult individuals: many were not faces at all (errors in the face extraction), many were very

small low resolution images that were hard to read, some were non-gendered cartoon illustrations (a face drawn onto an

object, for example), and some were infants or small children. So, while problematic, the assumption of a binary gender

may be suitable for examining certain mainstream 20th century publications such as Time magazine. In the case of

race, we found its classification was difficult because race categories are somewhat arbitrary, and because the concept

of race is highly context-dependent.  Census categories have changed significantly over  the past century and they

continue to  be contentious.  In  our  experience with  human coders,  we found that  the  race of  a  face is  often  not

recognized unless it is embedded within a stereotyped setting, and that when the face was not white, coders tended to

disagree on race more than with other categories.

A second, more practical, limitation is that this software requires that the user have some familiarity with PHP and with

managing SQL databases. Our goal was to make a useful tool for researchers, rather than a polished commercial

product. Researchers using this software need to have someone on their team with basic programming experience. The

tradeoff, however, is that this software allows researchers to have full control of the data collection and quality controls.

6.4 Long term project goals

Our next  steps are to  continue using this  crowdsourced data  we collected to  automate the classification of  other

categories, and to undertake a close examination of the context in which faces appear, particularly advertisements. To

this end, we are using our software to crowdsource the extraction of all advertisements from selected issues of the

corpus. These will be used to train an algorithm that will  extract all the advertisements from the corpus. Using this

advertising data in conjunction with our face data will allow us to undertake a study on trends in advertising in this

particular media outlet.

The ultimate goal of this project is to create web-based interactive visualizations of the data we extract from our Time

magazine archive, and of the results of our analysis. We hope to provide insights into how depictions of faces have

changed over time and what such changes in visual representation can tell us about the intersection of politics, culture,

race, gender, and class over time. We hope that the online resource we create will be of interest to researchers and

students of  media and cultural  history,  as well  as  to  the general  public.  Our visualization approach is  inspired by

Manovich’s Selfie-city and Photo-trails work [Manovich et al. 2016] [Douglass et al. 2011] [Hochman et al. 2016], and by

his team’s use of direct visualization [Crockett 2016], which is an effective way to engage broad audiences into complex

corpuses.  We also  draw inspiration from Robots  Reading Vogue [King and Leonard  2016]  and  Neural  Neighbors

[Leonard and Duhaime 2018], which are projects based in the Yale University library system. Most recently, we have

been using and modifying software from Yale’s DH lab, PixPlot [Duhaime 2018], to sort the images with unsupervised

clustering.

In addition to gaining insights from our corpus and making these publicly accessible, we also aim to develop novel

methodologies for the visual analytics of large, image-based data sets that can be applied to a variety of projects and

shared with other researchers.

Acknowledgements

We would like to acknowledge Michael Reale for his help with automating image extraction and tagging. We would also

like to acknowledge generous research support from our institutions, SUNY Polytechnic and Chapman University, for

the  start-up  funding  that  made  this  research  possible.  Finally,  we  acknowledge  IPAM  at  UCLA  for  bringing  this

collaboration together at the Culture Analytics Long Program and for equipping us with the tools to undertake this

research.

DHQ: Digital Humanities Quarterly: Crowdsourcing Image Extraction a... http://www.digitalhumanities.org/dhq/vol/14/2/000469/000469.html

14 of 22



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Appendix: Using and modifying the software

Part 1: Details About the Code

This is a web interface for gathering data from images on a large scale. Users should serve it  with accompanying

writable SQL databases. We provide the accompanying database structures here and on Github, along with the code.

This web-based interface facilitates gathering data from images: it allows users to crop a selection from a larger image

and to input information about the crop. In our case, we are selecting faces out of images from a magazine archive, but

with some minor edits this code can be used to select anything else from an image archive (cars, trains, signs, etc.).

This web interface is platform independent. Users only need a link to access it.

The code itself has three different data gathering surveys that are part of it.

The first survey allows participants to select and save a cropped portion of an image. The survey contains multiple

pages (in our case 50), and the participant has to select and submit all  the faces from each page. To access the

cropping survey use the link “survey.php?load=crop”.

For the crop, we used https://github.com/odyniec/imgareaselect “imgareaselect” by Michal Wojciechowski.

The second survey allows users to classify the already cropped images from a selection of categories. To access the

cropping survey use the link “survey.php?load=tag”.

The third survey is simply a demographics survey that allows users to enter their  demographic information, and is

presented at the end of each of the previous two surveys.

The code of this survey is split into 4 different files instructions.php, survey.php, post.php, and functions.php.

instructions.php is a landing page that presents the user with instructions for the current survey either the cropping

survey or the classify survey. The survey and instructions that will be presented are determined by the GET variable

load in the URL. If load=crop the crop instructions are presented if load=tag then the classifying survey is presented.

Users must select that they have read the instructions in order to move onto the survey.

survey.php is the main interface of the survey that the user interacts with.

If the job is to crop images, the url “survey.php?load=crop” should be used. The image to be cropped is presented and

users are asked if the object to be cropped is present (faces in the case of the original purpose) in the image. If the

object is present users can crop it be clicking and dragging over the object in the image. If multiple objects are present

users may select that there are more objects (faces) on the page. Any previous cropped objects will be covered when

cropping another object. If it is not present users may simply select that the object is not there and move to the next

image.

If the job is classifying images that were previously cropped, the url “survey.php?load=tag” should be used. The user is

presented the image from which an object of interest was cropped, with the cropped portion highlighted along with

questions about the classification of the object.

Each job within the survey has a total number of images to be done at one time that can be set along with three check

points  that  can  be  set  (in  functions.php).  The  check  points  present  the  user  with  ground  truth  pages  where  the

classification or number of objects cropped is already known in order to check whether a user has properly completed

the survey. These variables can be set in functions.php.

post.php handles all submission of data to the data base after a user has hit the submit button. If the job was cropping,

data is submitted to the database and the selected portion is cropped and saved to a folder on the server. If the job was

classifying, data is just submitted to the database. If a user has completed a check page then information on the page is

placed in an array to later be checked and entered at the end of the survey. If the user has reached the end of the

survey and filled out the demographics information then the demographics data and check data is submitted and a

completion code is generated. If a user has no activity for 2 hours and then tries to submit data post.php will cause the
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session to timeout.

functions.php contains all the functions that are used in the survey and is included in both survey.php and post.php

functions.php Overview

$job — php $_GET variable that indicates whether the job I for cropping or tagging so that the proper page is loaded.

Obtained from the url, for example, in the url “survey.php?load=crop” $job=crop.

$batch_size — variable controlling the number of images per job

$check — array variable that contains when ground truth images will be shown in the job

$face_total — variable for cropping that keeps track of the number of objects cropped from a specific image

$file_array — holds image file names to have a group number added at the end of each job

$check_data1, $check_data2, $check_data3 — holds data submitted by users on each of the three ground truth images

db_connect()  — returns a mysqli_connection object  for  connecting to  the database, set  $servername, $username,

$password, and $database you wish to connect to

select($job, $batch_size, $connection) — selects images one at a time as long as there is enough images available for

another job, otherwise users are presented with a message that requests are currently at capacity. This function also

marks pages as being worked on in the database and adds a timestamp for clearing data on a job that was never

finished. The file name of the image is returned

check_select($job, $connection) — similar to select, except it selects ground truth images from their tables.

parse_filename($job, $filename) — parses information from the file name of the image. If the job is cropping, then this

information is used to create the path that cropped images will be stored in. If the job is classifying, then this information

is used to determine the path of  the original  image. The parsed data is  stored in the $file_data array to later  be

displayed and submitted to the database. This function is based on the file name scheme of the images originally used

with this code.

display($job, $file_data) — handles what is displayed for the user depending what the job is. Inputs for the survey

questions are printed out as radio buttons

hidden($job, $batch_current, $filename, $file_data, $file_array, $check_data1, $check_data2, $check_data3) — prints

out the hidden inputs for each job mainly the data parsed from the filename. If the job is cropping the hidden inputs

containing information for cropping the data is printed out.

post_hidden() — prints out hidden inputs for post.php that need to be sent back to survey.php

crop_image() — handles the cropping of images for the crop job and accounts for offset of different window resolutions

and sizes.

post_variables($job) — sets the variables in post that will be submitted to the database for each job along with variables

needed for post functions

submit($job, $connection) — submits data to the database for each job and marks images as no longer being worked

on. If the job is cropping and no object was cropped then no data is submitted. If the job was cropping and the page was

a ground truth page a temporary entry is mad in a table so that covering previously cropped objects on pages with

multiple objects will work properly.

final_submit($job, $connection) — submits the demographics information to the database. A group number is generated

by selecting the highest group number from the database group tables for each job and adding one.

This group number is assigned to each image that was part of the job. It is also inserted into the check table for each job

along with possible flags raised from the information in the check arrays and a randomly generated code that will be
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presented to the user. This code is for admins to manage payment via Amazon Mechanical Turk.

demographic($job, $file_array, $check_data1, $check_data2, $check_data3)- displays the form and the inputs for users

to enter their demographic information

coverfaces($job, $connection, $filename, $file_data) —

If the job is set to “crop”,  covers previously cropped objects (faces) on images where multiple objects need to be

cropped, by selecting previously submitted x and y coordinates from the database. If the image is a ground truth image

then it selects from the temporary entry in the table for crop checks. If the job is set to “tag”, this function is used to find

the coordinates and draw the rectangle around the object to be classified.

Part 2: The Data Tables

Below is the “pages” table structure — Used for the cropping task.

Column Description

“page_file” File name of magazine page image

“faces” Total number of faces on that page (starts out as null until page is analyzed)

“group_num” Identifies a completed job. This cell is null until a job is completed, when the job is completed,
all the pages that belonged to that job are marked with this group number. This number is
unique and increments each time a job is completed.

“working” flags whether that particular page is being worked on by another worker.

“timestamp” which marks the date/time a page is displayed. If a page was displayed more than 2 hours ago
and does not have an associated “group number”, then any data collected on that page is
cleared, timestamp is marked null, and the page is made available again for selection.

Table 8. 

Below is the “crop_groups” table structure — Used to track workers in cropping task.

Column Description

“group_num” Job identifier

“flag1” Results from “ground-truth” comparisons.

“flag2”

“flag3”

“code” Unique completion code. Randomly generated by our software, to be entered into mechanical
turk.

Table 9. 

Below is the “ground_truth_crops” table structure. This is the ground truth table that is used for the cropping task.

Column Description

“file” File name of the image

“nfaces” Number of faces on this image

“working” Marks whether the file is currently being used

“timestamp” Marks time that file was displayed. Resets after 1 hour.

Table 10. 

Below is the “tag_groups” table structure – Used to track workers in tagging task.
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Column Description

“tag_group” Job identifier

“flag1” Results from “ground-truth” comparisons.

“flag2”

“flag3”

“code” Unique completion code. Randomly generated by our software, to be entered into mechanical
turk.

Table 11. 

Below is the “data” table structure — this is the table that contains the collected data. Year, month, day, page, image,

and coordinates are populated during the cropping task. The rest of the columns are populated in the tagging task.

Column Description

“year” These identify the source image, which is labeled by issue date and page number.

“month”

“day”

“page”

“multiface” Is there more than one person in the image (yes/no)?

“category” Is the image part of a feature story, an ad, or the cover page?

“color” Is the image in color or monochrome?

“photo” Is the face a photograph or an illustration?

“angle” Is the face in profile or looking straight ahead?

“gender” Is the face male or female (or other)?

“race” What is the race of the face? (select from 5 census categories: White, Black, Asian, American
Indian, Pacific Islander)

“adult” Is it an adult or a child?

“smile” Is the face smiling?

“quality” What is the image quality like? (Good — face is clearly visible, Fair — face is small or slightly
blurry, Poor — face is barely visible, Discard — this is not a human face)

“image” the name of the cropped image that is saved in the data folder on the back end.

“x1” These are the diagonal corner coordinates of the cropped selection.

“y1”

“x2”

“y2”

“tag_group” tracks completed tagging jobs. This cell is null until a job is completed, when the job is
completed, all the crops that belonged to that job are marked with this group number. This
number is unique and increments each time a job is completed.

“working” , “working” flags whether that crop is currently being tagged by another worker

“timestamp” , and “timestamp” marks the date/time an object is displayed for tagging. If an image was
displayed more than 2 hours ago and does not have an associated “tag_group”, then any data
collected on that crop is cleared and the crop is made available again for selection.

Table 12. 

The “ground_truth” table has the same structure as the data table — This is the ground truth table for the tagging task.

The “crop_check” table stores the year, month, day, page, and coordinates of the ground truth pages that the user

crops. This keeps track of the objects cropped out of the “ground truth” pages. It is used to cover objects that a user has

already cropped from a single page when multiple objects are present,  and it  is used to calculate the flags in the

“crop_groups” table. Once the job is finished and the flags are calculated, the entries in this table are deleted.

“tag_check” table structure (this table records workers’ entries on the validation pages)
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Column Description

“tag_group” Job identifier

“multiface” Is there more than one person in the image (yes/no)?

“category” Is the image part of a feature story, an ad, or the cover page?

“color” Is the image in color or monochrome?

“photo” Is the face a photograph or an illustration?

“angle” Is the face in profile or looking straight ahead?

“gender” Is the face male or female (or other)?

“race” What is the race of the face? (select from 5 census categories: White, Black, Asian, American
Indian, Pacific Islander)

“adult” Is it an adult or a child?

“smile” Is the face smiling?

“image” The validation image used

Table 13. 

Part 3: Instructions for Modifying the Software for Use in Other Studies

While this software was built for our specific purpose of cropping and annotating faces from a specific periodical archive,

we were mindful about its generalizability and developed it with the hope that it could serve as a useful tool for other

researchers. We share our code and database structure on GitHub with this intent. The code is written so that the

cropping job is easily generalized and the annotation variables are easy to modify.

The most straightforward application of this software is for researchers interested in cropping and annotating objects

from other magazine archives. To use our application, the archive needs to be stored as a collection of .jpg images

named using the following convention: YYYY-MM-DD page X.jpg (where YYYY is the year, MM is the month, DD is the

day, X is the page number). We share the database structure so that users can easily configure it from their server.

Users can change column names (and corresponding variable names in the code) as needed.

The key part of the code consists of four php files: instructions.php is a landing page in case users want to present

workers with instructions at the beginning of a task, survey.php contains the interface the worker interacts with, post.php

handles all the submission of data to the database, and functions.php contains all the functions used in survey.php and

post.php. The user will have to modify these files, depending on the application. At a minimum, the user will need to edit

the db_connect() function in the functions.php file with their own server configurations.

To use the cropping task, users should list the images they want analyzed in the page_file column in the pages data

table and serve the ‘survey.php?load=crop’ URL to display the cropping task. (A link to the demo will be included here if

this paper is accepted, after anonymity is lifted.) In the function.php file, users can adjust the number of pages that

comprise a job, the number of validation images per job, and the location of the validation images (2nd image seen, 5th

image seen, etc.). The validation images are drawn from the ground_truth_crop table, which the user must populate.

When a worker crops a face with this interface, a copy of the cropped image is stored on the backend and the data table

is populated with information about this face. The user must specify the name and path of the folder where the cropped

images will be stored: this is done in the crop_image function in functions.php. The information stored in the data table

is the year, month, day, and page number, parsed from the source image name; the coordinates of the crop; and the

name of the cropped image. If users need to have a different file naming convention and need their source image

names parsed differently, they can modify the parse_filename() function in the functions.php file. The total number of

crops made per page is stored in the faces column of the pages table. If the user is cropping an object other than a

face, the names of variables, data columns, and the descriptors on the frontend can be changed to more appropriate

terms.

To display the annotation task, users should serve the “survey.php?load=tag” URL. (a demo page can be viewed here:

https://magazineproject.org/TIMEvault/survey.php?load=tag  .)  To  use  the  tagging  task,  the  data  table  should  be

populated with the source image identifiers (year, month, day, and page) and with the coordinates of the crop. If the user
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wants to use the context-free version of the interface, they will only need to provide the name of the cropped image in

the data table and modify the source image in the “content-div” html element in the survey.php file.

If users want to annotate features that are different from the ones we listed, the names of the data columns can be

changed, as well as the corresponding variable names in the functions post_variables(), submit(), and display(), which

are in the functions.php file. Data columns and corresponding variables can be added or removed as needed.
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