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You can get a certain vision of life where everything is seen to be
a complex pattern of rhythm. Dances. The human dance, the flower
dance, the bee dance, the giraffe dance. [...] And that’s what all
this is: it’s jazz, you see? This is a big jazz, this world. And what
it’s trying to do is to see how jazzed up it can get, how far out this
play of rhythm can go.
Alan Watts, from The World as Self
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ABSTRACT

Striatal oscillatory activity associated with movement, reward, and decision-making

is observed in several interacting frequency bands. Rodent striatal local field po-

tential recordings show dopamine- and reward-dependent transitions between a

’spontaneous’ state involving β (15-30 Hz) and low γ (40-60 Hz) and a ’dopaminer-

gic’ state involving θ (4-8 Hz) and high γ (60-100 Hz) activity. The mechanisms un-

derlying these rhythmic dynamics and their functional consequences are not well

understood. In this thesis, I construct a biophysical model of striatal microcircuits

that comprehensively describes the generation and interaction of these rhythms as

well as their modulation by dopamine and rhythmic inputs, and test its predictions

using human electroencephalography (EEG) data.

Chapter 1 describes the striatal model and its dopaminergic modulation. Build-

ing on previous work suggesting striatal projection neuron (SPN) networks can

generate β oscillations, I construct a model network of striatal fast-spiking in-
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terneurons (FSIs) capable of generating δ/θ (2-6 Hz) and γ rhythms. This FSI

network produces low γ oscillations under low (simulated) dopaminergic tone,

and high γ activity nested within a δ/θ oscillation under high dopaminergic tone.

In a combined model under high dopaminergic tone SPN network β oscillations

are interrupted by δ/θ-periodic bursts of γ-frequency FSI inhibition. This high

dopamine-induced periodic inhibition may enable switching between β-rhythmic

SPN cell assemblies representing motor programs, suggesting that dopamine facil-

itates movement in part by allowing for rapid, periodic changes in motor program

execution.

Chapter 2 describes the model’s response to square-wave periodic cortical in-

puts. Comparing models with and without FSIs reveals that the FSI network:

(i) prevents the SPN network’s generation of phase-locked beta oscillations in re-

sponse to beta’s harmonic frequencies, ensuring fidelity of transmission of cortical

beta rhythms; and (ii) limits or entrains SPN activity in response to certain gamma

frequency inputs.

Chapter 3 describes an analysis of phase-amplitude coupling at cortical elec-

trodes in human EEG data during a reward task. The alternating rhythms pre-

dicted by the model appear in response to positive feedback. While the origins

of these rhythms remain unclear, if they represent striatal signals, they provide a

direct link between human behavior and striatal cellular function.
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CHAPTER 1

Introduction

Oscillations in the striatum are correlated with voluntary movement, reward, and

decision-making in healthy individuals, while disruptions of these rhythms are

biomarkers of mental and neurological disorders (Jenkinson et al. (2013); DeCoteau

et al. (2007); Tort et al. (2008)). In particular, beta band oscillations (8-30 Hz) are cor-

related with bradykinesia in Parkinsons disease, and accordingly, treatment with

dopaminergic (DAergic) drugs or deep brain stimulation decreases beta power

(Brown (2007)). Gamma band oscillations (40-80 Hz) have the inverse association

with movement: they are diminished in Parkinsons disease, while their power in-

creases during motor initiation and during hyperkinesia due to an overabundance

of DA (Jenkinson et al. (2013)). Though oscillations in the striatum have been stud-

ied for decades, little is known about the mechanisms of their generation, which

leads to confusion about the role they play in normal function, and the role dis-

rupted rhythmicity plays in striatal dysfunction. Understanding the generative

mechanisms of individual oscillations and their interactions will lend critical in-

sight into their functional roles in striatal circuits, and may provide avenues for

restoring striatal function in pathology via the modulation of rhythmic dynamics.

In this thesis, I aim to detail the network mechanisms underlying the gener-

ation and functional interaction of striatal rhythms. A critical barrier to under-

standing the mechanisms and functional significance of striatal oscillations is the

complexity of the underlying neuronal networks, whose dynamics cannot be fully

understood through the exclusive use of experimental techniques. Striatal net-

works are composed of thousands of neurons having dozens of neuronal sub-

types, the understanding of which necessitates more than a purely experimen-



2

tal approach. Experimental studies of biological networks are greatly aided by

computational modeling. Therefore, I use a biophysical model of striatal neurons

with Hodgkin-Huxley-type conductances to explore the origins and interactions of

rhythms. The advantage of these models is that each parameter in the model cor-

responds to a physical property of cells, allowing findings to be translated directly

between experiments and simulations. Additionally, biophysical models ensure

that the timescales underlying oscillatory cellular behavior are accurately repre-

sented, while at the same time maintaining computational tractability for simula-

tions on the order of hundreds of cells.

The striatum is the primary target of cortical input in the basal ganglia and is

responsible for using cortical input to inform the selection of motor plans down-

stream. 95 percent of striatal neurons are striatal projection neurons (SPNs), which

receive input from sensorimotor cortex as well as DA from both the substantia ni-

gra and the ventral tegmental area. Half of these SPNs express D1 DA receptors

and project to substantia nigra via the motor-facilitating ’direct pathway’, while

the other half express D2 DA receptors and project to globus pallidus via the

motor-inhibiting ’indirect pathway’ (Wall et al. (2013)). The striatum has no ob-

vious laminar structural organization, leading many to hypothesize that the SPNs

are functionally organized by interneurons (Tepper et al. (2004)).

I chose to focus on parvalbumin-positive, fast-spiking interneurons (FSIs). FSIs

are GABAergic, comprise 1 percent of striatal neurons, and fire at 10-20 Hz in

the awake brain (Koós & Tepper (1999)). They receive a wide range of cortical

input, suggesting a role in information integration. The FSI population forms a

subnetwork connected with both gap junctions and GABAergic synapses (Berke

(2011)), with unidirectional feedforward projections to the network of SPNs (Tep-



3

per et al. (2008)). While SPNs form weak GABAergic connections with each other,

the strength of FSI inhibitory synapses onto SPNs is around six times stronger

(Tepper et al. (2010)), giving FSIs powerful modulatory control over SPNs. Inhi-

bition of FSIs causes dyskinesias, while deficits in the FSI network are associated

with Tourettes syndrome in humans, suggesting that FSIs play an important role

in motor control (Gittis et al. (2011); Kalanithi et al. (2005)).

The beta rhythm (8-30 Hz) may be the best studied striatal oscillation; it is

most commonly known for being abnormally powerful in Parkinsons, but is also

associated with healthy movement cessation (Feingold et al. (2015)). However,

the striatum shows a wide variety of oscillatory behavior in intracellular and lo-

cal field potential (LFP) recordings. Striatal gamma oscillations (40-80 Hz) have

been associated with arousal and voluntary movement across species (Jenkinson

et al. (2013)). Specifically, a 50 Hz (’low’) gamma and an 80 Hz (’high’) gamma

have been shown to have different temporal patterns during goal-oriented be-

havior and reward (van der Meer & Redish (2009)). Striatal theta oscillations are

observed during salient task points such as initiation, completion, and decision-

making (DeCoteau et al. (2007); Tort et al. (2008)) as well as during attentive wake-

fulness (Lepski et al. (2012). Local field potential recordings in striatum suggest

that these rhythms are related; LFPs show frequent spontaneous transitions be-

tween one state involving beta (20 Hz) and low-gamma (50 Hz), and another state

involving theta (8 Hz) and high-gamma (80 Hz). This latter state is also associated

with increased DAergic tone (Berke (2009)). Beta has been observed in 100 millisec-

ond packets in healthy striatum, suggesting that epochs of beta rhythmic activity

are confined to time windows contained within a single theta cycle (Feingold et al.

(2015)).
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I simulated FSIs using a cortical FSI model from (Golomb et al. (2007)), which

was successfully adapted to striatal electrophysiological data by Sciamanna and

Wilson (Sciamanna & Wilson (2011)). This model utilizes the typical Hodgkin-

Huxley (spiking) currents as well as a fast-activating slowly-inactivating (D-type)

potassium current. This D-type current gives the cell a region of bistability be-

tween a quiescent steady state and a periodic high-frequency (>40 Hz) spiking

state. The slow inactivation timescale of the D-type current (on the order of 200

ms) causes the cell to move between these states at a theta frequency (5-10 Hz).

This causes the cells to exhibit intermittent spiking, known as bursting or stutter-

ing. The intraburst spiking frequency is in the gamma range (due to the timescale

imposed by the spiking potassium current). Thus, a model FSI receiving tonic

input exhibits theta-modulated gamma rhythmic spiking. This dual rhythmicity

underlies the theta and gamma oscillations observed in the FSI network model.

I simulated 50 FSIs connected stochastically by both electrical and chemi-

cal (GABAergic) synapses, and found that this network produces either a theta-

modulated high gamma rhythm or a persistent low gamma rhythm, depending on

the level of (simulated) DAergic drive. The theta rhythm is generated in individ-

ual model FSIs by the mechanism explained in the previous section. The gamma

rhythm is an interneuronal network gamma (ING) rhythm: in a purely inhibitory

network, mutual inhibition synchronizes cell spiking (Whittington et al. (2000)),

while gap junction connectivity increases the robustness of ING rhythms (Kopell

& Ermentrout (2004)). I modeled the striatal DA level by simulating the known im-

pacts of DA on striatal fast-spiking interneurons: increased excitation, decreased

synaptic inhibition, and increased gap junction conductance (Bracci et al. (2002);

Onn & Grace (1999)). DA increased the power, frequency, and robustness of the
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FSI network gamma. I also found that simulated high DAergic tone was necessary

for the FSI network to produce a theta-modulated gamma; under low DA condi-

tions, it produced a persistent gamma.

In order to understand the impact of the oscillations generated by my model on

the output of striatum to the rest of basal ganglia, it was necessary to model stri-

atal projection neurons (SPNs), as they are the only output neurons of the striatum.

SPNs are connected in a mutually inhibitory GABAergic network and receive in-

put from but do not project to FSIs (Tepper et al. (2004)). Our group has previously

modeled the D2 SPN network using Hodgkin-Huxley-type neurons expressing a

non-inactivating slow M-type potassium current (McCarthy et al. (2011)). Interac-

tion between the membrane M-current and the synaptic GABAa current promotes

post-inhibitory rebound spiking of SPNs at beta frequency. Expanding the FSI

network model by connecting it to a previously established SPN network model

(McCarthy et al. (2011)) showed that FSI gamma activity can interrupt ongoing

SPN beta oscillations in simulated high DA conditions, so that theta modulation

of FSI gamma activity produces alternating epochs of gamma and beta rhyth-

micity within each theta cycle. Our model provides a theoretical framework for

the idea that the striatal LFP state characterized by the theta high gamma state

is related to striatal ’go’ signals, and that dopamine encourages motor program

switching. The results from our model provide insight into how cortical input be-

comes a motor decision and how FSIs can suppress or enhance motor production.

This model allows us to identify which ionic mechanisms and neuromodulators in

which cells could be targeted in future studies of motor disorders and generates

several testable predictions about striatal function.

Striatal networks are comprised of thousands of neurons having dozens of neu-
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ronal subtypes, the understanding of which necessities more than a purely exper-

imental approach. Experimental studies of biological networks are greatly aided

by computational modeling. Neural circuits can exhibit a broad range of behav-

iors depending on their location in the space of possible parameters; only compu-

tational modeling can describe the volumes of behaviorally delimited parameter

spaces and thereby characterize the full capabilities of a neural system. Further-

more, a model network allows more direct observation of the cellular mechanisms

generating this behavior more directly than is possible in vivo. Therefore, bio-

physical modeling is essential for constraining hypothesis space and generating

predictions that can be verified experimentally.

All simulations were run on the MATLAB-based programming platform Dy-

naSim, a framework specifically designed by the Kopell group for efficiently devel-

oping, running and analyzing large systems of coupled ordinary differential equa-

tions, and evaluating their dynamics over large regions of parameter space (Sher-

fey et al. (2018)). This allows direct assessment of the robustness of the model and

its sensitivity to background noise, which is key to determining whether such oscil-

lations could be maintained in a biological system, and whether multiple variable

ranges could lead to the same set of behaviors observed in vivo. The advantage of

biophysical models is that each parameter in the model corresponds to a physical

property of cells, allowing findings to be translated directly between experiments

and simulations. Additionally, biophysical models ensure that the timescales un-

derlying oscillatory cellular behavior are accurately represented, while at the same

time maintaining computationally tractability for simulations on the order of hun-

dreds of cells. Through our models, we can discover whether modification of sev-

eral different parameters could lead to a similar outcome in network activity, illu-
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minating alternative avenues both for disease genesis and for treatment.

Our model of theta and gamma production by FSIs suggests important func-

tional implications, especially regarding switching from one motor program to an-

other. The model in Chapter 2 can be considered as a model of a striatal popula-

tion to which cortex is not providing informative input: a population that is not

’selected’ by cortex to take part in motor activity, a population that is in a ’listen-

ing’ state awaiting cortical input, or a population taking part in a learned behavior

that can be executed without cortical input. However, cortical input is probably

essential in determining which SPNs and FSIs take part in network oscillatory ac-

tivity. This study was originally inspired by Hjorth et al. (2009), who found that

gap junctions allow fast-spiking striatal interneurons to act as detectors of corre-

lated input. As such, this system is of interest in models of decision making and

integration of information from cortex. The output from cortex to striatum has sev-

eral dimensions along which information can be structurally encoded. The Hjorth

et al. (2009) study focuses on synchrony in terms of the network geometry of in-

put, i.e. the correlation between simultaneous input at different synapses onto the

same network of cells; however, information structure can also be encoded tempo-

rally. If the FSIs play a role in organizing the response of the SPNs to cortical input,

changing the properties of the simulated input may prove informative in terms of

how this organization might take place.

In Chapter 3, in order to determine how the FSI and SPN network integrates

patterns of cortical input, I investigate how the model network responds to differ-

ent input frequencies. In vivo, cortical input to striatum is often oscillatory. For in-

stance, the motor cortex projecting to striatum produces both theta and gamma os-

cillations; striatal theta oscillations are phase-coupled to cortical theta, and gamma
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oscillation amplitude is coupled to local theta in both areas (von Nicolai et al.

(2014)). The FSIs of the striatum preferentially entrain to gamma frequency input

from cortex, a property which the other cell types in striatum do not share (Schulz

et al. (2011); Beatty et al. (2015)). I hypothesized that incorporating synchronicity

in cortical input into this model will allow an understanding of how the striatum

transforms different varieties of cortical input into different dynamical states and

help inform what role these dynamical states may play in motor decision making.

To test this, I added rhythmic input to the striatal model and observed the impact

of this input on striatal FSI and SPN activity. Since the SPN and FSI networks re-

ceive similar cortical input, I also expected the SPN network to entrain to cortical

rhythms in a frequency-dependent manner.

The results of providing rhythmic input to my model suggest that the inhibitory

actions of FSIs on SPNs mediate specificity in the striatal response to different fre-

quencies of input. Using square wave inputs of various frequencies, I found that

the FSIs prevent the SPNs from generating phase-locked beta oscillations in re-

sponse to input frequencies outside the beta band, ensuring fidelity of transmis-

sion of cortical beta rhythms. Without FSIs, the SPN subnetwork can phase lock

to a broad range of frequencies, but also produces beta oscillations in response to

input frequencies outside of the beta band. When FSIs are present in either low

or high dopamine conditions, the beta power produced by the SPN subnetwork

in response to non-beta frequencies is dramatically reduced, while transduction of

frequencies in the beta range remains intact. Therefore, suppression of beta reso-

nance to input outside of the beta range could be an essential function of the striatal

FSI network; one combined role of striatal FSIs and SPNs may be to act as a band

pass filter on cortical input such that only beta oscillations can reliably produce a



9

beta in response.

The second major result presented in Chapter 3 is that certain gamma input

frequencies can cause the FSIs to limit or entrain SPN activity. In the high DA

condition, specific frequencies of gamma input can cause the FSI network to fire

continuously, causing SPNs to entrain to gamma frequencies to which they would

otherwise produce a beta in response. This allows FSI gamma to be induced during

an arbitrary phase of the ongoing theta oscillation and to last for an indefinitely

long or short amount of time, perhaps constituting an override signal sent during

times of highly motivated behavior when rapid changes in strategy are needed.

This is especially notable in that the SPN subnetwork will not otherwise produce

a high gamma as output, suggesting a specific role for fast-spiking interneurons in

the striatal microcircuit in vivo. Therefore, cortical gamma input to both cell types

combined with dopaminergic tone constitutes a unique network mechanism by

which striatum is able to transmit gamma oscillations to downstream basal ganglia

structures, a behavior otherwise not permitted by the model network. Overall,

the model network behavior has significant possible functional implications and

suggests several hypotheses regarding the role of FSIs in routing cortical input

through striatum.

In Chapter 4, I explore whether the network behavior predicted by my model

would be detectable in noninvasive electroencephalogram (EEG) recordings. I did

not have access to data recorded directly from human striatum, but there is evi-

dence that striatal activity can be detected via EEG during reward learning (Foti

et al. (2015); Mas-Herrero et al. (2015); Andreou et al. (2017)). If my model holds

true in humans, 3 Hz-nested beta activity might be detectable in human electro-

physiological recordings during a probabilistic reward learning task, as peak stri-
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atal dopaminergic tone should occur when an unexpected reward is given. Via ex-

ploratory data analysis of a human EEG dataset recorded during a reward learn-

ing task, I determined that the alternating rhythms predicted by my model can

be detected by phase-amplitude coupling at cortical electrodes. Within the first

500 milliseconds after subjects were told their answer was correct, amplitude at

all beta and gamma frequencies showed increased modulation by the phase of a

3-5 Hz rhythm. Although these findings are consistent with my striatal model-

ing prediction, it is unclear whether these signals actually originate in striatum.

If dopaminergic activity in striatum does produce a signal that can be detected

noninvasively, this would greatly facilitate investigation of the predictions of my

model and allow for studies directly linking human behavior with striatal cellular

function.

The model described here could lend itself to many possible future studies. In

particular, the effect of simulated acetylcholine on this circuit would be of great

interest, since the DA depleted Parkinsonian state results in an excess of cholin-

ergic tone (Ikarashi et al. (1997)). It is important to identify the contribution of

the cholinergic system to network pathology in order to identify appropriate ther-

apeutic targets. Similarly, future studies could propose an experiment involving

adding pharmaceutical manipulations or deep brain stimulation to the proposed

model in order to examine potential therapeutic mechanisms. Additionally, the

proposed model could be expanded to include other striatal interneuron types, in

particular cholinergic cells or somatostatin neurons, in order to examine the impact

of these cell types upon oscillatory behavior and motor computation. It would also

be feasible to utilize the output of this model in simulating downstream impacts of

striatum on basal ganglia or thalamus. Finally, while the proposed model is meant
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to simulate an awake state, it could be modified to describe striatal behavior char-

acteristic of sleep, which would be of use in studies of memory consolidation and

motor inhibition.
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CHAPTER 2

A biophysical model of striatal microcircuits suggests gamma and beta

oscillations interleaved at delta/theta frequencies mediate periodicity in motor

control

2.1 INTRODUCTION

As the largest structure of the basal ganglia network, the striatum is essential to

motor function and decision making. It is the primary target of dopaminergic

(DAergic) neurons in the brain, and its activity is strongly modulated by DAergic

tone. Disorders of the DA and motor systems, such as Parkinson’s, Huntington’s,

Tourette’s, and many others, result in abnormal network activity within striatum

(Gittis & Kreitzer (2013); Brown & Williams (2005); Ghiglieri et al. (2012); Rothe

et al. (2015); Naze et al. (2018); Miller et al. (2011); Cepeda et al. (2013); Leckman

et al. (2010); Vinner et al. (2017)). Rhythmic activity is observed in both striatal

spiking and local field potential, and oscillations in the striatum are correlated with

voluntary movement, reward, and decision-making in healthy individuals (Berke

(2009); Stenner et al. (2016); Doñamayor et al. (2012); Cohen et al. (2009); Kalenscher

et al. (2010); van der Meer et al. (2011); Feingold et al. (2015); Khanna & Carmena

(2017); Masimore et al. (2005)), while disruptions of these rhythms are biomarkers

of mental and neurological disorders (Gittis & Kreitzer (2013); Jenkinson & Brown

(2011); Jenkinson et al. (2013); Brown & Williams (2005); Brown (2007); Alberico

et al. (2017); Alam et al. (2014); Belić et al. (2016); Little & Brown (2014); Tinkhauser

et al. (2017); West et al. (2018)). However, the mechanisms of these oscillations, and

their role in motor behavior and its dysfunctions, remain poorly understood.

The current study focuses on the oscillatory bands frequently observed in stri-
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atal local field potential: δ (1-3 Hz), θ (4-7 Hz), β (8-30 Hz), low γ (50-60 Hz), and

high γ (70-80 Hz) (Berke (2009); López-Azcárate et al. (2013); Feingold et al. (2015)).

Power in these bands consistently correlates with responses to task parameters in-

cluding motor initiation, decision making, and reward (Berke (2009); Jenkinson

et al. (2013); Stenner et al. (2016); Doñamayor et al. (2012)). Power in the β band

is elevated in Parkinson’s disease and correlates with the severity of bradykinesia

(Brown & Williams (2005)), while striatal γ is associated with the initiation and

vigor of movement(Jenkinson et al. (2013); Masimore et al. (2005)). In the healthy

basal ganglia, β and γ activity are inversely correlated and differentially modu-

lated by slower basal ganglia rhythmic activity, suggesting that the balance of these

distinct oscillatory dynamics is important to healthy motor function (Feingold et al.

(2015)). In rat striatum in vivo, spontaneous β and low γ oscillations transition to θ

and high γ dynamics upon reward receipt and with administration of DA agonist

drugs(Berke (2009)); similarly, in rat caudate and putamen, DAergic agonists pro-

duce robust low-frequency modulation of high γ amplitude (López-Azcárate et al.

(2013)).

In this paper, we propose a biophysical model of striatal microcircuits that com-

prehensively describes the generation and interaction of these rhythms, as well

as their modulation by DA. Our simulations capture the dynamics of networks

of striatal fast-spiking interneurons (FSIs) and striatal projection neurons (SPNs),

using biophysical Hodgkin-Huxley type models. Our model consists of three in-

terconnected populations of single or double compartment Hodgkin-Huxley neu-

rons: a feedforward network of FSIs, and two networks of SPNs (the D1 receptor-

expressing “direct pathway" subnetwork and the D2 receptor-expressing “indirect

pathway" subnetwork). SPNs, responsible for the output of the striatum, make
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up 95% of striatal neurons in rodents (Koos et al. (2004)). SPN firing is regulated

by relatively small populations of striatal interneurons, including fast spiking in-

terneurons (FSIs), which strongly inhibit SPNs. Our model FSIs exhibit a D-type

potassium current (Golomb et al. (2007)), and our model SPNs exhibit an M-type

potassium current (Shen (2005)). Both cell types are modulated by DAergic tone:

FSIs express the excitatory D1 DA receptor(Bracci et al. (2002)), while two distinct

subpopulations of SPNs express exclusively the D1 or the inhibitory D2 receptor

subtype. We modeled both SPN subpopulations, with high simulated DAergic

tone increasing and decreasing D1 and D2 SPN excitability, respectively. To model

DA effects on the FSI network, we simulated three experimentally observed ef-

fects: increased excitability due to depolarization (Bracci et al. (2002)), increased

gap junction conductance(Onn & Grace (1994), and decreased conductance of in-

hibitory synapses(Bracci et al. (2002)). Both gap junctions and inhibition are known

to play a role in the generation of rhythmic activity (Sherman & Rinzel (1992);

Wang & Rinzel (1992); Van Vreeswijk et al. (1994); Whittington et al. (1995); White

et al. (1998); Skinner et al. (1999); Whittington et al. (2000); Lewis & Rinzel (2000);

Traub et al. (2001); Bem & Rinzel (2004); Mancilla et al. (2007)).

Our previous experimental and modeling work suggests that striatal SPN net-

works can produce a β (15-25 Hz) oscillation locally (McCarthy et al. (2011)). Our

current model demonstrates that FSI networks can produce δ/θ, low γ, and high

γ oscillations. A fast-activating, slow-inactivating potassium current (the D-type

current) allows FSIs to produce γ and δ/θ rhythms in isolation, and network in-

teractions make these rhythms, otherwise highly susceptible to noise, robust. In

our simulations, DA induces a switch between two FSI network states: a low DA

state exhibiting persistent low γ rhythmicity, and a high DA state in which a δ/θ
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oscillation modulates high γ activity. As a result of FSI inhibition of SPNs, DA

induces a switch in striatal dynamics, between a low DA state in which low γ and

β rhythms coexist, and a high DA state in which bursts of FSI-mediated high γ

and SPN-mediated β rhythms alternate, nested within (and appearing at opposite

phases of) an FSI-mediated δ/θ rhythm. Thus, our model generates a hypothesis as

to how observed relationships between DA and rhythmicity impact the function of

the motor system. Namely, DA appears to encourage or permit periodic motor pro-

gram switching, allowing the emergence of an FSI-mediated δ/θ-nested γ rhythm,

which in turn breaks up the “stay" signal mediated by SPN β rhythms(Engel &

Fries (2010)).

2.2 RESULTS

2.2.1 Single model FSIs produce delta/theta-nested gamma rhythms whose

power and frequency is modulated by excitation

We modified a previous single-compartment striatal FSI model(Sciamanna & Wil-

son (2011)) by adding a dendritic compartment (shown to be an important deter-

minant of gap-junction mediated synchrony (Rinzel (2003); Lewis & Rinzel (2004);

Zahid & Skinner (2009); Schwemmer & Lewis (2014))) and increasing the conduc-

tance of the D-type K current to 6 mS/cm2. Previous work showed that two char-

acteristic attributes of FSI activity in vitro, stuttering and γ resonance (defined as

a minimal tonic firing rate in the γ frequency range), are dependent on the D-

current(Golomb et al. (2007); Sciamanna & Wilson (2011)). Our modified FSI model

successfully reproduced these dynamics as well as revealing other dynamical be-

haviors (Fig. 2.1).

With increasing levels of tonic applied current (Iapp), our model FSI transitions
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from quiescence to (periodic) bursting to periodic spiking. The bursting regime, of

particular interest in this work, is dependent on the level of tonic excitation and,

centrally, the D-current conductance (Fig. 2.1). FSI spiking frequency increases

with tonic drive (Figure 2.1A). As shown previously(Sciamanna & Wilson (2011)),

the FSI model’s γ-rhythmic intraburst spiking arises from its minimum firing rate,

which is also set by the D-current conductance. When this conductance is zero, the

model has no minimum firing rate; firing rate is a continuous function of Iapp with a

minimum firing rate of zero (Fig. 2.1B). As the D-current conductance is increased,

the firing rate below which the cell will not fire also increases. Therefore, our choice

of D-current (gd = 6, resulting in a minimum firing rate around 40 Hz) reflects not

only our interest in the bursting regime, but also our desire to match experimental

observations of striatal γ frequency (Berke (2009); Sciamanna & Wilson (2011)).

The frequency of bursting depends on the decay time constant of the D-type

potassium current (τD); in the absence of noise, it is in the δ frequency range for

physiologically relevant τD (<∼200 ms, Figure 2.1C). Note that τD changes the

inter-burst interval without changing the timing of spikes within a burst. With

lower levels of D-current (as used in previous FSI models (Golomb et al. (2007);

Sciamanna & Wilson (2011); Corbit et al. (2016)), bursting is aperiodic. For suffi-

ciently large D-current conductance, FSI bursting occurs for a broad range of ap-

plied currents (Iapp over 5 µA/cm2, Fig. 2.1D,E). Since simulated DA acts on our FSI

model by increasing tonic excitation, DA causes an increase in model FSI spiking

from low γ rhythmicity to high γ rhythmicity. Below, we demonstrate that the FSI

γ is determined by this single-cell rhythmicity and is mostly independent of the

timescale of inhibitory synapses.

In addition to increasing with tonic excitation, burst frequency increases to δ/θ
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frequencies when the input includes small amounts of noise (Fig. 2.2A,B), which

decrease the interburst interval. However, noise of sufficient amplitude abolishes

rhythmic bursting altogether (at least in single cells, Fig. 2.2C).

In summary, a single model FSI displays low-frequency-nested γ oscillations,

dependent on the D-type current, under a wide range of tonic excitation levels.

Both low frequency power and γ frequency increase with tonic excitation. While

noise increases the frequency of the slower rhythm from δ to θ, it also diminishes

the power of this rhythm in the single cell. Below we demonstrate that all of these

effects are also present in a network of FSIs, with a key difference: the network δ/θ

rhythm is robust to noise.

2.2.2 FSI networks produce DA-dependent delta/theta and gamma rhythms

To determine if γ and δ/θ oscillations persist in networks of connected FSIs, and

how DA could modulate these network dynamics, we simulated a network of 50

model FSIs connected randomly by both inhibitory synapses (connection probabil-

ity 0.58 (Gittis et al. (2010))) and gap junctions (connection probability 0.3 (Hjorth

et al. (2009))). We also implemented three experimentally observed effects of DA

on FSI networks: increased tonic excitation of individual FSIs (Bracci et al. (2002)),

increased gap junction conductance between FSIs (Onn & Grace (1994)), and de-

creased inhibitory conductance between FSIs (Bracci et al. (2002)) (see Methods).

We used the sum of all synaptic inputs within the network as a surrogate measure

for simulated local field potential (LFP); this measure is hereafter referred to as

“surrogate LFP".

Unlike in single cells, FSI network δ/θ rhythmicity is dependent on sufficient

levels of tonic excitation: at low levels of tonic input (Iapp <∼ 1µA/cm2), the FSIs
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do not attain enough synchrony for a strong network δ/θ (Fig. 2.3Ai). As in sin-

gle cells, FSI network δ/θ power increases with tonic input strength (Fig. 2.3Ai).

Sufficiently strong gap junction coupling is also a requirement for the FSI network

to attain sufficient synchrony to produce δ/θ rhythmicity (Fig. 2.3Bi). Gap junc-

tions function to protect the FSI network δ/θ rhythm from the effects of noise (as

in (Skinner et al. (1999); Sherman et al. (1988))); the δ/θ oscillation in the network

is far more robust to noise than the same oscillation in a single cell (S1 Fig.). Fi-

nally, inhibitory synaptic interactions between FSIs have a desynchronizing effect

that interferes with network δ/θ, and increasing inhibitory conductance within the

FSI network decreases power in the δ/θ band (Fig. 2.3Ci). FSI network γ power

and frequency both increase with tonic input strength (Fig. 2.3Aii), and, like the

network δ/θ, the network γ rhythm is dependent on sufficient gap junction con-

ductance and is disrupted by inhibition (Fig. 2.3B & C, ii). Both network rhythms

are robust to a wide range of heterogeneity in applied current and conductances

(S2 Fig.).

To explore whether the γ rhythms observed in the FSI network are generated

by inhibitory interactions, we examined the dependence of γ frequency on the

time constant of GABAA inhibition, as the characteristic frequency of canonical in-

terneuron network γ (ING) has been shown to depend on this time constant(Wang

& Buzsáki (1996); White et al. (1998); Chow et al. (1998); Whittington et al. (2000)).

The frequency of the γ rhythm produced under low DA conditions decreased with

increases in the GABAA time constant (Fig. 2.3D), suggesting this rhythm is ING-

like. However, the γ produced under high DA conditions had a frequency that

was not highly dependent on the inhibitory time constant, suggesting that this γ

rhythm is mechanistically different from previous ING models, being generated
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by synchronous γ frequency bursts in individual cells, as opposed to inhibitory

interactions.

In order to explore FSI network dynamics that might be observed during nor-

mal fluctuations in DA during goal-directed tasks (Schultz et al. (1997)), we simu-

lated FSI network activity under two conditions, simulated low (or baseline) and

high DAergic tone (Fig. 2.4A). Parameter values for low and high DA were cho-

sen so as to best demonstrate qualitative differences in network behaviors while

maintaining physiologically realistic behavior on the cellular level (see Methods).

During simulated low DAergic tone, characterized by low levels of FSI tonic ex-

citation and gap junction conductance, and high levels of inhibitory conductance,

the network produces a persistent low frequency γ oscillation (∼ 60 Hz) in the sur-

rogate LFP (Fig. 2.4Bi-Di). The raster plot of FSI spike times (Fig. 2.4Eii) shows

that individual FSIs exhibit sparse spiking in the low DA state. Although individ-

ual FSIs exhibit periodic spike doublets or bursts (γ-paced and entrained to the

network γ) that recur at δ/θ frequency, the timing of these bursts is independent

(Fig. 2.4Di, Ei). Therefore, while δ/θ power is present at the level of individual

FSIs, there is not sufficient synchrony for it to appear in the network; while the

voltages of individual cells show power in the δ/θ band, a power spectrum of the

surrogate LFP does not (Fig. 2.4Di).

During simulated high DAergic tone, characterized by high levels of tonic exci-

tation and gap junction conductance and low levels of inhibitory conductance, net-

work activity is much more structured: a strong 80 Hz γ rhythm, phase-modulated

by a 3 Hz δ/θ rhythm, is evident in both the surrogate LFP and network raster plots

(Fig. 2.4Bii-Eii, right). In this state, active FSIs spike at the same phase of both δ/θ

and γ, producing dual (and nested) network rhythms.
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2.2.3 SPN networks generate DA-dependent beta oscillations

Previous work by our group on the striatal origin of pathological oscillations in

Parkinson’s disease found that robust β oscillations can emerge from inhibitory

interactions in model networks of SPNs (McCarthy et al. (2011)). The interaction

of synaptic GABAA currents and intrinsic M-currents promotes population oscil-

lations in the β frequency range; their β timescale is promoted by the M-current,

which allows rebound excitation at ∼50 ms in response to synaptic inhibition. Ex-

citation of SPNs increases β power and frequency (see Methods). With this pre-

vious striatal SPN network model, we explored the transition from a healthy to a

parkinsonian state with pathologically low levels of striatal DA (McCarthy et al.

(2011)). Here, to explore the generation of β rhythmicity during normal fluctu-

ations in DAergic tone, we simulated two independent networks of 100 D1 re-

ceptor expressing (“direct pathway") SPNs and 100 D2 receptor expressing (“in-

direct pathway") SPNs. Model SPNs are single compartment neurons expressing

the Hodgkin-Huxley spiking currents and the M-type potassium current, intercon-

nected all-to-all by weak inhibitory GABAA synapses (i.e., connection probability

1). We simulated the effects of DA on model D1 and D2 SPNs by increasing and

decreasing their levels of tonic excitation, respectively. (Whether DA generates a

positive or negative applied current was the only difference between D1 and D2

expressing SPNs in our model; see Methods and Fig. 2.5A. For further explana-

tions of parameter choices and discussion of simplifications made while modeling

the network, see the “Caveats and limitations" section of the Discussion.) In the

absence of FSI input, neither population was sufficiently excited to exhibit spon-

taneous spiking under low DA conditions (Fig. 2.5i). Subthreshold low-β oscilla-

tions are present in the mean voltage of the non-firing SPN networks due to the
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timescale of the M-type potassium current (McCarthy et al. (2011)). Under high

DA conditions, D1 SPNs exhibited persistent high-β rhythmicity at ∼20 Hz (Fig.

2.5ii) due to the increase in applied current.

2.2.4 FSI network gamma and delta/theta oscillations rhythmically modulate

SPN network beta oscillations only in high DA state

To understand the interactions between FSI and SPN networks, and between β, γ,

and δ/θ rhythms, we simulated a combined FSI-SPN striatal microcircuit, in which

50 model FSIs randomly connect to two independent networks of 100 SPNs, one

each consisting of D1 and D2 SPNs (connection probability from FSIs to D1 or D2

SPNs of 0.375 (Corbit et al. (2016))). FSIs were interconnected by gap junctions and

inhibitory synapses (connection probability 0.3 and 0.58 respectively). D1 and D2

SPNs were connected by all-to-all inhibitory synapses (connection probability 1)

within but not across populations. There were no connections from SPNs back to

FSIs (Koós & Tepper (1999)).

During simulated baseline DAergic tone, we modeled D1 and D2 SPNs as being

equally excitable, with equal firing rates matching in vivo observations (Berke et al.

(2009)) while under the influence of FSI inhibition. The presence of FSIs is sufficient

for the SPNs to fire in the low dopamine state (Fig. 2.6i); this paradoxical excitatory

effect of GABAergic input arises because SPNs can be excited via post-inhibitory

rebound, as demonstrated in previous work (McCarthy et al. (2011)). Both SPN

networks produce a low-β rhythm (15 Hz), while the FSI network produces a low

γ (60 Hz, Fig. 2.6i & 2.7i). The SPN subnetwork does not entrain to the FSI γ. The

generation of low γ and β rhythms matches observations of striatal rhythmicity in

resting healthy animals in vivo (Berke (2009)). Our model suggests that these γ and
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β rhythms are independently generated by FSI and SPN networks, respectively.

During simulated high DAergic tone, an FSI-mediated high γ (∼80 Hz) and an

SPN-mediated β (∼15-20 Hz) are observed during opposite phases of an ongoing

FSI network δ/θ rhythm (Fig. 2.6ii & 2.7ii). During the peak of the δ/θ, the incom-

ing γ frequency input from the FSIs silences the SPNs. When the FSIs are silent

during the δ/θ trough, both D1 and D2 SPN populations are sufficiently excited

to produce a β rhythm. Thus, while the SPNs cannot entrain to the γ frequency

of FSI inhibition, they are modulated by the FSI-generated δ/θ rhythm. Due to

the differences in excitability under high DAergic tone, the D1 SPN subpopulation

produces a higher frequency β (∼20 Hz) than does the less excitable D2 subpopu-

lation, which produces a low β (∼15 Hz). Preliminary data suggest that the SPN

network is more sensitive to input in the high DA condition, when the ongoing β

rhythm is periodically disrupted by the FSI-induced δ/θ (S3 Fig.).

2.3 DISCUSSION

Our model suggests that DAergic tone can produce a transition between two dy-

namical states in striatal GABAergic networks. In the baseline DAergic tone state,

ongoing low γ (55-60 Hz) and β (∼15 Hz) oscillations are generated by striatal FSI

and SPN networks, respectively (Fig. 2.7i). In the high DAergic tone state, packets

of FSI-mediated high γ (∼80 Hz) and SPN-mediated β (10-20 Hz) rhythms alter-

nate at δ/θ (∼3 Hz) frequency (Fig. 2.7ii). Our results make predictions about the

generation of striatal rhythms, have implications for the role of FSIs in regulat-

ing the activity of SPNs, and suggest an underlying mechanism for the temporal

dynamics of motor program selection and maintenance (Fig. 2.7D).
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2.3.1 Mechanisms of gamma and delta / theta oscillations in single FSIs

Prior work has shown γ oscillations in striatal FSIs arising from an interaction

between the spiking currents and the spike frequency adaptation caused by the

potassium D-current, which produces a minimum FSI firing rate in the γ range

(Sciamanna & Wilson (2011); Bracci et al. (2003)). The frequency of the FSI γ de-

pends on excitatory drive to the FSIs, which in our model leads to the modulation

of γ frequency by DA, a phenomenon also observed in striatal γ oscillations in vivo

(van der Meer et al. (2010); van der Meer & Redish (2009); Catanese et al. (2016);

Kalenscher et al. (2010)).

Prior work has also suggested that the D-current is responsible for the bursting

or stuttering behavior of FSIs, in which brief periods of high frequency activity are

interspersed with periods of quiescence (Golomb et al. (2007)). However, regu-

larity in these periods of quiescence has not been previously observed. Thus, the

present study is novel in its prediction of the generation of low-frequency rhythms

by FSIs, dependent on high levels of D-current conductance; FSIs have previously

been characterized solely as generators of γ oscillations. In our model, the D-

current is activated by burst spiking, e.g., at γ frequency, and hyperpolarizes the

cell for roughly a δ/θ period due to its long time constant of inactivation. Though

the δ rhythm produced by individual cells decreases in frequency in response to

excitatory drive (Fig. 2.1D), the frequency of the resulting δ/θ oscillation in the net-

work has a minimum around 3 Hz (Fig. 2.3i). This lower bound on δ/θ frequency

in the network is likely a result of gap-junction induced synchrony driving burst

frequency higher than in the individual cell while maintaining robustness to noise.

Notably, this study is also a novel demonstration of the generation of both δ/θ and

γ oscillations by a single membrane current.
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2.3.2 Mechanisms of gamma and delta/theta oscillations in FSI networks

Our model FSI network produces qualitatively different dynamics at high and

baseline levels of simulated DA. Under high dopaminergic tone, the FSI network

produces high γ band (80 Hz) oscillations modulated by a δ/θ (∼ 3 Hz) oscillation,

while under low dopaminergic tone the FSI network produces low γ band (60 Hz)

oscillations alone (Fig. 2.4). While both δ/θ and γ are present at the level of indi-

vidual cells under all dopaminergic conditions, only in the high DA condition is

bursting sufficiently synchronized that δ/θ power is present in the network. The

presence of δ/θ at the network level can be attributed to the higher level of gap

junction conductance in the high DA condition (Fig. 2.3Bi).

The ability of gap junctions to generate synchrony is well established in compu-

tational and experimental work (Sherman & Rinzel (1992); Lewis & Rinzel (2000);

Rinzel (2003); Bem & Rinzel (2004); Sherman et al. (1988); Munro & Börgers (2010);

Hjorth et al. (2009); Lau et al. (2010); Mancilla et al. (2007); Traub et al. (2001); Zahid

& Skinner (2009)). Previous models from other groups suggest that gap junctions

can enable synchronous bursting in interneurons, by aligning the burst envelopes,

as in our model (Skinner et al. (1999)). While a shunting effect of low conductance

gap junctions can inhibit spiking (Hjorth et al. (2009)), gap junctions with high

enough conductances have an excitatory effect, promoting network synchrony

(Munro & Börgers (2010); Traub et al. (2001)). Previous work has also shown the

importance of gap junction connectivity in stabilizing network γ oscillations in sil-

ico (Sherman & Rinzel (1992); Lewis & Rinzel (2000); Börgers et al. (2012)), as well

as network γ and δ/θ oscillations in inhibitory networks in vitro and in silico con-

taining noise or heterogeneity (Traub et al. (2001)). Striatal FSIs in vivo are highly

connected by gap junctions as well as inhibitory synapses(Fukuda (2009)), similar
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to the networks of inhibitory interneurons that produce ING rhythms (Whittington

et al. (2000)). Unlike ING, however, our FSI network γ is independent of GABAer-

gic synapses: inhibitory conductance has only a small impact on γ frequency, and

γ power is highest when inhibitory synapses are removed (Figure 3C). In slice, the

γ resonance of striatal FSIs is dependent on gap junctions but not on GABA (Russo

et al. (2013)), suggesting that our model is an accurate representation of striatal FSI

γ.

It is important to note that, while our model is conceived as a representation of

the striatal microcircuit, physiologically similar FSI networks are present in cortex

(Golomb et al. (2007)); therefore, the mechanisms described here may contribute to

the generation of δ/θ-modulated γ oscillations in cortex as well.

2.3.3 Support for striatal rhythm generation

Our model provides mechanistic explanations for all four oscillatory bands ob-

served in ventral striatum in vivo (δ/θ, β, low γ, and high γ) (Berke (2011)). Previ-

ous modeling and experiments suggest β can be generated by striatal SPNs (Mc-

Carthy et al. (2011); Kondabolu et al. (2016); Pittman-Polletta et al. (2018)). Our

results suggest that FSIs generate striatal γ, and that motor- and reward-related

increases in γ power reflect increased striatal FSI activity.

There is evidence to support the existence of a locally generated striatal γ os-

cillation that is not volume conducted and that responds to local DAergic tone

(Popescu et al. (2009); West et al. (2018)). The FSIs of the striatum are the most

likely candidate generator of this rhythm: they are unique among striatal cell types

in preferentially entraining to periodic input (from each other and from cortex) at

γ frequencies (Surmeier et al. (2011); Schulz et al. (2011); Belić et al. (2017); Mancilla
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et al. (2007); Naze et al. (2018)). Different populations of striatal FSIs in vivo entrain

to different γ frequencies, and FSIs entrained to higher frequencies are also more

entrained to cortical input (Berke (2011); van der Meer et al. (2010); van der Meer &

Redish (2009); Catanese et al. (2016); Kalenscher et al. (2010)). It is likely that differ-

ent subpopulations of FSIs selectively entrain to specific γ frequencies, determined

by physiological and contextual, including neuromodulatory (e.g., DAergic), fac-

tors.

Experimental evidence also supports striatal FSI involvement in a DA-

modulated δ or θ rhythm. FSIs phase lock to spontaneous striatal LFP oscillations

at δ (Hernandez (2014); Sharott et al. (2009); Alberico et al. (2017)) and θ (Sharott

et al. (2012); Berke et al. (2009); Garas et al. (2016); Lalla et al. (2017)) as well as γ

frequencies. In vivo, striatal δ and θ power are modulated by task-related phenom-

ena such as choice points and motor execution, as well as by reward and reward

expectation, suggesting responsiveness in both frequency bands to DA (known

to phasically increase in response to reward cues) (DeCoteau et al. (2007); Gruber

et al. (2009); Emmons et al. (2016); Doñamayor et al. (2012); Lepski et al. (2012);

Kimchi et al. (2009)). θ has also been shown to modulate the response of SPNs to

reward (van der Meer et al. (2011)).

The slow rhythm generated by our model network is on the boundary between

the δ and θ frequency bands, and as such it is difficult to determine for which

of the two bands our model has more substantial implications. However, many

electrophysiological studies of striatum find a low frequency rhythm in this inter-

mediate 3 to 5 Hz range (Dejean et al. (2011); Stenner et al. (2015); López-Azcárate

et al. (2013)). While rodent electrophysiology suggests that δ is more prevalent

in the striatum of the resting animal and θ is stronger during high DAergic tone
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(Leung & Yim (1993); von Nicolai et al. (2014)), human studies suggest that DAer-

gic reward signals are associated with increased power in the δ band in nucleus

accumbens and that θ power (which originates in cortex) is associated with the

decreased DA signal following an unexpected loss (Foti et al. (2015); Bernat et al.

(2015)). The frequency of this slow rhythm may be determined by entrainment to

rhythmic cortical input, or by different subpopulations of cells responding to dif-

ferent components of the dopamine signal (e.g. tonic versus phasic, anticipatory

vs consummatory, etc.).

The β oscillations produced by our model network vary in frequency. Dur-

ing simulated baseline DAergic tone, the β frequency in both SPN subnetworks is

closer to 15 Hz, while during high DAergic tone, the β frequency produced by the

D1 SPN subnetwork approaches 20 Hz, without a change in the frequency gen-

erated by the D2 SPN subnetwork (Fig 2.5,2.6). This behavior is not unexpected,

as our previous modeling work suggested that the frequency of the β generated

by SPN networks is sensitive to excitatory drive (McCarthy et al. (2011)), which

is the difference between the cell subtypes in this model. Experimental evidence

also supports the association of low-β but not high-β frequencies with the indirect

(D2-expressing) pathway of the basal ganglia (Oswal et al. (2016)). Corticostriatal

models constructed by our group that include connectivity differences between

D1 SPNs and D2 SPNs suggest that these differences in β frequency may be an es-

sential component of how cortical input is routed to the direct versus the indirect

pathway during decision making (Ardid et al. (2019)).
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2.3.4 Rhythmicity in striatal dynamics and movement

In vivo , striatal β power has a well established negative correlation with DA and

locomotion in both health and disease, while striatal γ power has a positive corre-

lation with both (Doñamayor et al. (2012); Brown & Williams (2005); Stenner et al.

(2016); Tan et al. (2016); Jenkinson & Brown (2011); Jenkinson et al. (2013)). β oscil-

lations in the basal ganglia are thought to provide a “stay" or “status quo" signal

that supports maintenance of the currently active motor program (Engel & Fries

(2010)), and they are causally implicated in motor slowing and cessation (Brown

(2007); Khanna & Carmena (2017); Lemos et al. (2016); Feingold et al. (2015); Tan

et al. (2016); Little & Brown (2014)).

In our simulations of high DAergic tone, FSI spiking at high γ frequencies δ/θ-

periodically inhibits SPN-generated β oscillations, permitting SPN β only during

the 150-200 millisecond δ/θ trough corresponding to the FSIs’ interburst interval.

We hypothesize that these periodic gaps between SPN β packets are necessary to

terminate ongoing motor programs and initiate new motor programs, both repre-

sented by active SPN cell assemblies. During the δ/θ trough, all SPN cell assem-

blies are simultaneously released from inhibition and viable to compete once again

to determine the current motor program, with incoming input from cortex influ-

encing this competition. Under this interpretation, our results predict that striatal

networks oscillate between a “stay" or “program on" state marked by SPN β os-

cillations, and a “switch" or “program off" state marked by FSI high γ oscillations,

and that the δ/θ period limits the speed of sequential motor program execution

(Fig. 2.7D). Accordingly, the SPN network responds more specifically to input

when the FSI-induced δ/θ is periodically disrupting the intrinsic SPN β rhythm

(S3 Fig.). Associations formed between sets of SPNs receiving similar input persist
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during an ongoing β oscillation, but these associations are broken by FSI-mediated

rhythmic inhibition. This inhibitory disruption thereby allows SPNs to flexibly re-

spond to new input, which would otherwise be unable to override the coordinated

activity of pre-existing cell assemblies.

In support of this hypothesis, striatal representations of behavioral “sylla-

bles" combined to create motor programs are active for a maximum of ∼200 ms

(Markowitz et al. (2018)), and the velocity of continuous motion is modulated in-

termittently at a θ frequency (∼6-9 Hz) (Gross et al. (2002)). In healthy animals,

the duration of β bursts has an upper limit of ∼120 ms, about half a θ cycle (Fein-

gold et al. (2015)), in agreement with our prediction that β activity is δ/θ phase-

modulated. Striatal γ has also been observed in transient (∼150 ms) bursts that are

associated with the initiation and vigor of movement (Masimore et al. (2005)). Ad-

ditionally, other biophysically constrained computational models have suggested

that SPN assemblies fire in sequential coherent episodes for durations of several

hundred milliseconds, on the timescale of one or several δ/θ cycles (Humphries

et al. (2009)). Overall, evidence supports the hypothesis that β and γ oscillations

in striatum in vivo, and therefore the motor states they encode, are activated on

δ/θ-periodic timescales.

Furthermore, β and γ power are anticorrelated in EEG and corticostriatal LFP

(Jenkinson et al. (2013); López-Azcárate et al. (2013); Zhang et al. (2016)), in agree-

ment with our model’s prediction that these rhythms are coupled to opposite

phases of ongoing δ/θ rhythms. FSI and SPN firing are inversely correlated in

vivo, entrained to θ, and they are active during opposite phases of θ, as observed in

our model (Howe et al. (2011); Thorn & Graybiel (2014); Berke et al. (2004); Sharott

et al. (2012); Berke et al. (2009)). δ/θ-γ cross-frequency coupling is observed in
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striatum and increases during reward, when DAergic tone is expected to be high

(von Nicolai et al. (2014); Dzirasa et al. (2010); Cohen et al. (2009); Tort et al. (2008);

López-Azcárate et al. (2013)). Our model suggests that these cross-frequency re-

lationships occur in part due to FSI inhibition of SPNs. Though FSIs are smaller

in number, FSI-SPN synapses have a much stronger effect than SPN-SPN connec-

tions, with each FSI inhibiting many SPNs (Tepper et al. (2008); Koós & Tepper

(1999)).

During baseline DAergic tone in our model, FSIs produce an ongoing low γ

that does not effectively suppress SPN β activity (produced sporadically in both

D1 and D2 SPN networks), and thus does not facilitate the switching of the active

SPN assembly. Thus, our model suggests that at baseline levels of DA, switching

between SPN assembles may be more dependent on cortical inputs or downstream

basal ganglia circuit computations. Although the function of FSI low γ input in

SPN dynamics is unclear, it may facilitate striatal responsivity to cortical low γ

input, which occurs in an afferent- and task-specific manner (Berke (2011)). SPNs

do not entrain to γ in our model, suggesting that γ oscillations are not transmitted

to downstream basal ganglia structures.

In contrast, both the β and δ/θ rhythms in our model entrain SPN networks

and may be relayed to other basal ganglia structures. Intriguingly, alternation

between β and γ on a δ/θ timescale has been observed in the globus pallidus in

vivo, and DAergic tone modulates these oscillations and their interactions (Dejean

et al. (2011); López-Azcárate et al. (2013)). Thus, the mechanisms proposed in our

model may also play a role in the oscillatory dynamics of other basal ganglia struc-

tures, through a combination of rhythm propagation and local rhythm generation

by similar circuits. Similar pauses in FSI activity, allowing transient SPN disinhi-
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bition and production of β oscillations, occur in a recent computational model of

the striatal-GPe network (Corbit et al. (2016)), also based on an earlier model of

stuttering FSIs (Golomb et al. (2007)). In contrast to this work, we emphasize the

mechanisms producing β and the coordination of β and γ by δ/θ, not addressed

previously (Corbit et al. (2016)).

2.3.5 Implications for disease

In Parkinson’s disease, which is characterized by motor deficits and chronic DA

depletion, β power is correlated with the severity of bradykinesia (Brown &

Williams (2005)). Parkinsonian β may be generated by striatal D2 SPNs (McCarthy

et al. (2011); Kondabolu et al. (2016); Pittman-Polletta et al. (2018)). Parkinsonian

conditions also produce high cholinergic tone (Ikarashi et al. (1997)), known to de-

crease the conductance of GABAergic FSI-SPN synapses (Koós & Tepper (2002)).

Thus, the failure of the FSI inhibition-mediated motor program switching de-

scribed above may play a role in the motor deficits observed in Parkinson’s: if DA

is low, and FSIs are unable to inhibit either D1 or D2 SPNs, δ/θ modulation of SPN

β rhythmicity will be supplanted by ongoing D2 β rhythmicity, impairing motor

initiation by reducing the possibility of motor program switching in the Parkinso-

nian striatum. Supporting this hypothesis, the β frequency generated by D2 SPNs

in our model is substantially lower than that generated by the D1 SPN subnetwork

in the high DA condition (Fig. 2.6). Experimental work suggests that parkinsonian

β is specifically a low (<20 Hz) β, and that treatment by L-DOPA or deep brain

stimulation specifically reduces power in the low β band without affecting high β

power (West et al. (2016); Hohlefeld et al. (2014); Oswal et al. (2016)). Our model

suggests that this distinction in β frequency bands is at least in part due to dif-
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ferences in excitatory drive between subtypes of SPNs expressing different DA

receptors.

In hyperkinetic motor disorders, γ and θ rhythms are potentiated: mouse mod-

els of Huntington’s disease (HD) displays unusually high δ/θ and γ band striatal

LFP power (Naze et al. (2018); Miller et al. (2011); Ghiglieri et al. (2012)); and L-

DOPA-induced hyperkinetic dyskinesia is also characterized by increased high γ

and δ/θ power and reduced β power in the striatal LFP (Alberico et al. (2017);

Alam et al. (2014); Gittis & Kreitzer (2013)). As these rhythms are tied to FSI acti-

vation in our model, we suggest that hyperkinetic disorders may result from stri-

atal FSI hyperfunction. Consistent with this hypothesis, in HD model animals, FSI

to SPN connectivity is increased, and SPNs respond more strongly to FSI stimula-

tion (Cepeda et al. (2013)). Computational modeling suggests that FSI-generated γ

more readily entrains to δ-frequency input during HD (Naze et al. (2018)).

However, hypofunction of striatal FSI networks can also lead to hyperkinetic

disorders, including Tourette’s syndrome, dystonia, and dyskinesias (Gittis et al.

(2011); Reiner et al. (2013); Rothe et al. (2015); Vinner et al. (2017); Gittis & Kreitzer

(2013); Leckman et al. (2010); Xu et al. (2016)). Dystonia, which as a disorder of in-

voluntary muscle activation is considered hyperkinetic, can also be characterized

by rigidity and freezing due to activation of antagonistic muscles. Indeed, dystonia

may be the consequence of an increase in SPN firing rate due to D2 receptor dys-

function (Sciamanna et al. (2009)). Our model suggests that FSI hypofunction may

contribute to dystonia by resulting in excessive SPN β rhythmicity and decreased

probability of motor program switching. A reduction in θ-γ cross frequency cou-

pling has been reported in L-DOPA-induced dyskinesia, suggesting that a chronic

hyperkinetic high-DA state may also abolish the FSI-generated δ/θ-coupled γ pro-
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duced here, possibly by pushing the FSI out of its bursting regime and into a tonic

spiking mode (Belić et al. (2016)). These findings underscore the importance of bal-

anced FSI inhibition of SPNs, exemplified by the periodic suppression observed in

our model, which we suggest enables the flexible striatal network activity that al-

lows for smooth, purposeful movements.

2.3.6 Caveats and limitations

Little experimental evidence on the striatal FSI D-current conductance exists. The

level of D-current conductance we’ve chosen leads to γ frequencies and FSI fir-

ing rates that are more in line with experimental observations than with previ-

ous models; this level of D-current also produces δ/θ rhythmicity in FSI networks.

Our parameter choices result in a model exhibiting a transition between “low DA"

and “high DA" dynamic states that matches experimental observations and has

powerful functional interpretations. Validating our results will require further ex-

perimental investigation of the D-current in striatal FSIs. Interestingly, DA has

been shown to downregulate D-current conductance in prefrontal cortical FSIs

(Gorelova et al. (2002)). If striatal FSIs exhibited a similar DA-dependent D-current

downregulation, our simulations suggest that the transition between high and low

DA states could be different from that described in the current study. The existence

and functional interpretations of other dynamic transitions are beyond the scope

of this paper.

In general, many DA-dependent changes in striatal neurophysiology have been

observed. For the sake of simplicity, most of these have been left out of our model-

ing. For example, D1 and D2 SPNs respond differently to adenosine (Schiffmann

et al. (2007)) and peptide release (Buxton et al. (2017)), but we did not consider
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these significant factors in the production of striatal β oscillations. While the na-

ture of the changes induced by DA in our network is based on a review of the

literature, the actual values chosen are assumptions of the model. Details on the

rationale behind each specific value are given in the Methods section.

We also omitted inhibitory connections between D1 and D2 SPN populations.

The connectivity from D1 to D2 SPNs is very sparse (6 percent). Connections from

D2 to D1 SPNs are more prevalent, but it seems unlikely that these projections

would qualitatively alter our results: during the baseline state, the D1 and D2

SPNs are identical; during the high DA state, SPN inhibition tends to increase SPN

β rhythmicity and spiking.

In our model the number of FSIs is small, so every FSI participates on every θ

cycle; in vivo, the participation of multiple FSI populations is likely coordinated by

cortex. Coordinated FSI activity has proven hard to observe over long periods in

vivo (Berke (2008); Kalenscher et al. (2010)). However, FSIs form local functional

circuits (Kulik et al. (2018)), and in vivo, striatal FSI assemblies exhibit transient

gap-junction dependent synchronization (Lau et al. (2010)), possibly resulting from

brief bouts of correlated cortical or homogeneous DAergic input. Furthermore, dif-

ferent subpopulations of FSIs have strong preferences for projecting to either D1 or

D2 SPNs, as opposed to the overlapping projections modeled in our current study,

and these distinct populations respond differently to cortical oscillations (Garas

et al. (2016)). Thus, local γ synchrony may exist in small striatal subnetworks and

be amplified by DA or cortical input via the differential recruitment of multiple FSI

subpopulations.

Compounding the issues of unrealistic population size, the ratio of FSIs to SPNs

in our model is much higher than data from rodent striatum suggest. 20 % of the



35

cells in our model network are FSIs, while FSIs comprise only about 0.7-1% of cells

in rodent striatum (Tepper (2008)). Unfortunately, it would be computationally

intractable to reproduce the network dynamics of the present model at a ratio of 50

or 100 SPNs per FSI. However, in humans the proportional number of FSIs is much

higher; interneurons may account for as many as 25% of human striatal neurons

(Graveland et al. (1985)). We have attempted to structure our model such that each

SPN receives a realistic number of incoming connections from FSIs (mean 18.75 in

our model, based on a range of 4 to 27 (Koos et al. (2004))), and such that these

synapses are of realistic strengths. Therefore, it is reasonable to predict that the

qualitative dynamics of FSI to SPN inhibition in our model would be similar even

if the number of SPNs present were much higher.

Finally, cortical input to both FSIs and SPNs was simulated as Poisson noise.

In a sense, we simulated a model of striatum to which cortex is not providing in-

formative input. It could be the case that this is a population that is not “selected"

by cortex to take part in motor activity, a population that is in a “listening" state

awaiting cortical input, or a population taking part in a learned behavior that can

be executed without cortical input. However, cortical input is probably essential

in determining which SPNs and FSIs take part in network oscillatory activity. If

the FSIs play a role in organizing the response of the SPNs to cortical input, chang-

ing the properties of the simulated input may prove informative in terms of how

this organization might take place. In particular, cortical inputs may be more cor-

related within certain FSI subpopulations than others. Previous modeling work

has shown that networks of striatal FSIs can detect correlated input (Hjorth et al.

(2009)), a property that may play an important computational role in striatal func-

tion. Additionally, we can expect that input from cortex has oscillatory proper-
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ties of its own. Exploring these complexities is an important direction for future

research into the role of striatal GABAergic networks and rhythmic dynamics in

motor behavior.

2.4 MATERIALS AND METHODS

All neurons (FSIs and SPNs) are modeled using conductance-based models with

Hodgkin-Huxley-type dynamics. SPNs are modeled with a single compartment

and FSIs have two compartments to represent the soma and a dendrite. The tem-

poral voltage change of each neuron is described by (Eqn. 2.1):

cm
dV

dt
= −

∑
Imemb −

∑
Isyn + Iapp (2.1)

Membrane voltage (V ) has units of mV . Currents have units of µA/cm2. The

specific membrane capacitance (cm) is 1 mF/cm2 for all FSIs and SPNs. Each model

neuron has intrinsic membrane currents (Imemb) and networks of neurons include

synaptic currents (Isyn). The applied current term (Iapp) represents background

excitation to an individual neuron and is the sum of a constant and a noise term.

All membrane currents have Hodgkin-Huxley-type conductances formulated

as:

I = ḡ(mnhk)(V − Eion) (2.2)

Each current in Eqn.2.2 has a constant maximal conductance (ḡ) and a constant

reversal potential (Eion). The activation (m) and inactivation (h) gating variables

have nth and kth order kinetics, where n, k ≥ 0. The dynamics of each gating vari-

able evolves according to the kinetic equation (written here for the gating variable
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m):

dm

dt
=

m∞ −m

τm
(2.3)

The steady-state functions (m∞) and the time constant of decay (τm) can be

formulated using the rate functions for opening (αm) and closing (βm) of the ionic

channel by using the equations:

m∞ = αm/(αm + βm)

τm = 1/(αm + βm).

The specific functions and constants for different cell types are given below.

2.4.1 Striatal fast spiking interneurons

Striatal fast spiking interneurons (FSIs) were modeled as in Golomb et al., 2007

(Golomb et al. (2007)), using two compartments. The voltage in the somatic com-

partment (V ) and in the dendrite (Vd) evolve according to:

cm
dV

dt
= −INa − IK − IL − ID − Isyn + Ids (2.4)

cm
dVd

dt
= −INa − IK − IL − ID − Isyn + Iext + Isd (2.5)

Background excitation is represented by the term Iext, which is formulated as

the sum of a tonic, DA dependent current and Poisson input. The units of Iext are

in µA/cm2. The tonic, DA dependent current is discussed below. Each FSI receives

independent, excitatory Poisson input with a rate of 2000 inputs per second.
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The synaptic current (Isyn) is the sum of GABAA currents and electrical con-

nections between FSIs (formulated below). The FSI membrane currents (Imemb)

consisted of a fast sodium current (INa), a fast potassium current (Ik), a leak cur-

rent (IL), and a potassium D-current (ID). The formulations of these currents were

taken from previous models of striatal FSIs. (Sciamanna & Wilson (2011); Golomb

et al. (2007)) Ids represents the current from the dendritic compartment to the so-

matic compartment and Isd represents the current from the somatic compartment

to the dendritic compartment.

The maximal sodium conductance is ḡNa = 112 mS/cm2 and the sodium rever-

sal potential is ENa = 50 mV.The sodium current has three activation gates (n = 3)

and one inactivation gate (k = 1). The steady state functions for the sodium cur-

rent activation (m) and inactivation (h) variables and their time constants (τm and

τh, respectively) are described by:

m∞ =
1

1 + exp [−(V + 24)/11.5]
(2.6)

h∞ =
1

1 + exp [(V + 58.3)/6.7]
(2.7)

τh = 0.5 +
14

1 + exp [(V + 60)/12]
(2.8)

The maximal conductance for the fast potassium channel is ḡK= 225 mS/cm2

and the reversal potential for potassium is EK = -90 mV. The fast potassium chan-

nel has no inactivation gates but has four activation gates described by its steady

state function (n∞) and time constant (τn):

n∞ =
1

1 + exp [−(V + 12.4)/6.8]
(2.9)
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τn = (0.087 +
11.4

1 + exp [(V + 14.6)/8.6]
)(0.087 +

11.4

1 + exp [−(V − 1.3)/18.7]
) (2.10)

The leak current (IL) has no gating variables. The maximal leak channel con-

ductance is gL=0.25 mS/cm2 and the leak channel reversal potential is EL = -70

mV.

The fast-activating, slowly inactivating potassium D-current (ID) is described

mathematically as in Golomb et al, 2007 (Golomb et al. (2007)) and has one activa-

tion (a) and one inactivation (b) gate. The steady state functions for the activation

and inactivation gates are formulated as:

a∞ =
1

1 + exp [−(V + 50)/20]
(2.11)

b∞ =
1

1 + exp [(V + 70)/6]
(2.12)

The time constant of the decay is 2 ms (τa) for the activation gate and 150 ms (τb)

for the inactivation gate. The maximal conductance of the D-current is 6 mS/cm2.

All conductances in the dendritic compartment of the FSIs are 1/10 the strength

of those in the somatic compartment. The somatic and dendritic compartment of

each cell are connected bidirectionally with a compartmental conductance of 0.5

mS/cm2. This electrical coupling is formulated as:

Isd = 0.5(Vsoma − V dend) (2.13)

Ids = 0.5(Vdend − V soma) (2.14)

where Isd is the current from the somatic compartment to the dendritic com-
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partment and Ids is the current from the dendritic compartment to the somatic

compartment.

2.4.2 Striatal spiny projection neurons

Spiny projection neurons were modeled with four membrane currents: a fast

sodium current (INa), a fast potassium current (Ik), a leak current (IL), and an M-

current (Im) (Shen (2005)). We do not model SPN up and down states which are

not prevalent in the awake state of striatum (Mahon et al. (2006)), the state being

modeled, and therefore we do not include the Kir current in our model, which is

active during the SPN down state.

The sum of all excitatory inputs from the cortex and thalamus and inhibitory

inputs from striatal interneurons is introduced into the model using a background

excitation term (Iapp). Iapp is the sum of a constant term and a Gaussian noise term.

The Gaussian noise has mean zero, standard deviation one and an amplitude of

4
√
δt where δt is the time step of integration. D1 and D2 SPNs were distinguished

only by the value of tonic term of Iapp when DA levels were high. DA is excitatory

to D1 receptors and inhibitory to D2 receptors (Taverna et al. (2008)). Thus, we

modeled D1 and D2 SPNs as having the same tonic Iapp at baseline DAergic tone

state with Iapp = 1.19 µA/cm2. To model the high DA state, let the tonic term of Iapp

= 1.29 µA/cm2 for the D1 SPNs and Iapp= 1.09 µA/cm2 for the D2 SPNs.

The rate functions for the sodium current activation (m) and inactivation (h)

variables are formulated as:

αm =
0.32(V + 54)

1− exp [−(V + 54)/4]
(2.15)
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βm =
0.28(V + 27)

exp [(V + 27)/5]− 1
(2.16)

αh = 0.128 exp [−(V + 50)/18] (2.17)

βh =
4

1 + exp [−(V + 27)/5]
(2.18)

The maximal conductance of the sodium current is ḡNa = 100 mS/cm2. The

sodium reversal potential is ENa = 50 mV. The sodium current has three activation

gates (n = 3) and only one inactivation gate (k = 1).

The fast potassium current (IK) has four activation gates (n = 4) and no in-

activation gates (k = 0). The rate functions of the activation gate are described

by:

αm =
0.032(V + 52)

1− exp [−(V + 52)/5]
(2.19)

βm = 0.5 exp [−(V + 57)/40] (2.20)

The maximal fast potassium channel conductance is ḡK=80 mS/cm2. The rever-

sal potential for potassium is EK= -100 mV.

The leak current (IL) has no gating variables (n = 0, k = 0). The maximal

conductance of the leak channel is gL = 0.1 mS/cm2. The leak channel reversal

potential is EL = -67 mV.

The M-current has one activation gate (n = 1) and no inactivation gate (k = 0).

The rate functions for the M-current activation gate are described by:

αm =
Qs10

−4(V + 30)

1− exp [−(V + 30)/9]
(2.21)

βm = − Qs10
−4(V + 30)

1− exp [(V + 30)/9]
(2.22)
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We use a Q10 factor of 2.3 to scale the rate functions of the M-current since

the original formulation of these kinetics described dynamics at 23 ◦C (Mainen &

Sejnowski (1996)). Thus, for a normal body temperature of 37 ◦C, the M-current

rate equations are scaled by Qs, which is formulated as:

Qs = Q
(37 ◦C−23 ◦C)/10
10 = 3.209 (2.23)

The maximal M-current conductance is ḡm=1.29 mS/cm2.

2.4.3 Synaptic connectivity and networks

Networks of FSIs contained 50 neurons. For networks that additionally had SPNs,

we modeled 100 D1 SPNs and 100 D2 SPNs. The model synaptic GABAA current

(IGABAA) is formulated as in McCarthy et al., 2011 (McCarthy et al. (2011)) and is

the only synaptic connection between SPNs and from FSIs to SPNs. The GABAA

current has a single activation gate dependent on the pre-synaptic voltage.

IGABAA = ḡiisi(V − Ei) (2.24)

The maximal GABAA conductance between FSIs is ḡii = 0.1 mS/cm2. Conduc-

tances from FSIs to SPNs and between SPNs (but not between FSIs) were normal-

ized to the number of SPNs in the target network. Therefore, the maximal GABAA

conductance from FSIs to SPNs is ḡii = 0.6/100 = 0.006 mS/cm2 and between SPNs

was ḡii = 0.1/100 = 0.001 mS/cm2. These values are consistent with FSI to SPN

inhibition being approximately six times stronger than inhibition between SPNs

(Koos et al. (2004)).

The gating variable for inhibitory GABAA synaptic transmission is represented
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by si. For the jth neuron (FSI or SPN) in the network:

sj =
N∑
k=1

Sikij (2.25)

The variable Sikij describes the kinetics of the gating variable from the kth pre-

synaptic neuron to the jth post-synaptic neuron. This variable evolves in time

according to:

dSikij

dt
= gGABAA(Vk)(1− Sikij)−

Sikij

τi
(2.26)

The GABAA time constant of decay (τi) is set to 13 ms for SPN to SPN connec-

tions (Taverna et al. (2008)) as well as for FSI to FSI connections and FSI to SPN

connections (Hjorth et al. (2009)) The GABAA current reversal potential (Ei) for

both FSIs and SPNs is set to -80 mV. The rate functions for the open state of the

GABAA receptor (gGABAA(Vk)) for SPN to SPN transmission is described by:

gGABAA(Vk) = 2(1 + tanh(
Vk

4
)) (2.27)

The rate functions for the open state of the GABAA receptor (gGABAA(Vk)) for FSI

to FSI and FSI to SPN transmission is:

gGABAA(Vk) =
1

τr
(1 + tanh(

Vk

10
)) (2.28)

The value of τr is 0.25 ms. FSIs were additionally connected by dendritic elec-

trical connections. The electrical coupling for dendritic compartment i is denoted

as Ielec, has units in µA/cm2 and is formulated as:
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Ielec = gGJ(V dj − V di) (2.29)

The value of the gap junction conductance gGJ depended on DA level (see be-

low). Within the 50-cell FSI network, each pair of FSIs had an independent 30 per-

cent chance of a dendro-dendritic gap junction chosen from a uniform random dis-

tribution (Hjorth et al. (2009)), and an independent 58 percent chance of a somato-

somatic inhibitory synapse also chosen from a uniform distribution (Gittis et al.

(2010)). SPNs are connected with each other in a mutually inhibitory GABAergic

network (Tepper et al. (2004)). We modeled all to all connectivity of inhibitory

synapses from any SPN to any SPN of the same receptor subtype, as in (McCarthy

et al. (2011)). Probability of connection from any given FSI to any given MSN was

37.5 percent, chosen from a uniform random distribution (Corbit et al. (2016); Gittis

et al. (2010)).

2.4.4 Dopamine

DA impacts both connectivity and excitability in the model networks. DAergic

tone was simulated as having five components: direct excitation of FSIs (Bracci

et al. (2002)), increased gap junction conductance between FSIs (Onn & Grace

(1994)), decreased inhibitory conductance between FSIs (Bracci et al. (2002)), in-

creased excitation to D1 SPNs, and decreased excitation to D2 SPNs. DA-induced

changes to SPN excitation were discussed above. Excitation to FSIs was modeled

as the sum of a tonic, DA dependent input current (Iapp) and a noise term. DA did

not change the noise term in either SPNs or FSIs. The baseline DAergic tone state

was modeled in FSIs using Iapp = 7 µA/cm2, gGJ = 0.15 mS/cm2 and the GABAA
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conductance between FSIs was gii = 0.1 mS/cm2. The high DA state was modeled

in FSIs using Iapp = 14 µA/cm2, gGJ = 0.3 mS/cm2 and gii = 0.005 mS/cm2. The

synaptic conductances were chosen so as to be within an order of magnitude of

physiological estimates (0.05 mS/cm2 for gGABAA
(Corbit et al. (2016); Gittis et al.

(2010)); 0.2 mS/cm2 for gGJ (Galarreta & Hestrin (2002))). The inhibitory conduc-

tance for the high DAergic tone state was chosen to be the lowest value possible in

this range; the inhibitory conductance for the low DAergic tone state was chosen

to be the highest value that would still reliably allow oscillatory behavior in the

network. The value of gGJ in the low DAergic condition was then chosen to be

the lowest value that was permissive of oscillatory behavior, and the value in the

high DAergic condition was chosen to be twice that. Finally, the values of Iapp were

chosen in order to correspond to physiologically realistic firing rates (a minimum

of 5 and a maximum of 30 Hz; see (Berke et al. (2004); Berke (2008))).

2.4.5 Local field potential

The local field potential (LFP) was calculated as the sum of all synaptic currents

in all cells. Stationarity of the network appears in the raster plots after about 500

ms. To eliminate transients due to initial conditions, our LFP is evaluated only

after 1,000 ms of simulated time. We estimated the power spectral density of the

simulated LFP using the multitaper method. (Bokil et al. (2007)).

2.4.6 Simulations

All simulations were run on the MATLAB-based programming platform DynaSim,

a framework for efficiently developing, running and analyzing large systems of
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coupled ordinary differential equations, and evaluating their dynamics over large

regions of parameter space (Sherfey et al. (2018)). DynaSim is open-source and

all models have been made publicly available using this platform. All differential

equations were integrated using a fourth-order Runge-Kutta algorithm with time

step was .01 ms. Plotting and analysis were performed with inbuilt and custom

MATLAB (version 2017b) code.
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2.5 FIGURES AND TABLES

Figure 2.1: Behavior of single model FSI over a range of applied
currents and D-current conductances.

(A) i. A single model FSI with low tonic excitation (Iapp = 8µA/cm2) spikes at
a low γ frequency nested in slow bursting, while a single model FSI with high
tonic excitation (Iapp = 20µA/cm2) spikes at a high γ nested in slow bursting. ii.
Power spectral density of voltage traces in (A)i, comparing low and high levels
of tonic excitation. Power spectra are derived using Thomsons multitaper power
spectral density (PSD) estimate (MATLAB function pmtm). (B) Plot of the minimal
firing rate within a burst of a single model FSI with zero and nonzero D current
conductance gD. Note that the cell does not fire below 40 Hz when the D-current
is present. (C) Plot of the maximal inter-burst (δ) frequency and intraburst (γ)
firing rate of a single model FSI as τD, the time constant of inactivation of the D
current, is increased. (D) Three-dimensional false-color plot demonstrating the
dependence of the bursting regime on gd and Iapp. (E) Three-dimensional false-
color plot demonstrating the dependence of firing rate on gd and Iapp.
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Figure 2.2: Applied noise determines interburst and intraburst fre-
quency of FSI spiking.

(A) i. Single model FSI with tonic excitation (7 µA/cm2) and weak Poisson noise
(λ = 500) spikes at γ nested in δ/θ, while a single model FSI with tonic excitation
(7 µA/cm2) and strong Poisson noise (λ = 7000) has limited low-frequency con-
tent. ii. Power spectral density of voltage traces in (A)i, comparing low and high
levels of noise. The solid line represents the mean value over 20 simulations per
point. Shading represents standard deviation from these means. Power spectra are
derived using Thomsons multitaper power spectral density (PSD) estimate (MAT-
LAB function pmtm). (B) Plot of the inter-burst frequency and power of a single
model FSI as Poisson noise of varying rates is applied. (C) Plot of the inter-burst
frequency and power of a single model FSI as Poisson noise of varying amplitudes
is applied. For B and C Iapp = 7 µA/cm2.
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Figure 2.3: FSI network rhythms change with background excita-
tion and synaptic strength.

Power and frequency of δ/θ and γ rhythms in FSI network mean voltage as a func-
tion of (A) tonic input current, (B) gap junction conductance, and (C) GABAA con-
ductance. The parameters not being varied in plots A-C are held at the high DA
values (Iapp = 14 µA/cm2, gGJ = 0.3 mS/cm2, gsyn = 0.005 mS/cm2, τgaba = 13 ms.
The solid line represents the mean value over 10 simulations per point. Shading
represents standard deviation from these means. Power spectra are derived using
Thomsons multitaper power spectral density (PSD) estimate (MATLAB function
pmtm). (D) Gamma frequency as a function of GABAa synaptic time constant and
level of dopamine. High DA values are as previously stated; low DA values are
Iapp = 7 µA/cm2, gGJ = 0.15 mS/cm2, gsyn = 0.1 mS/cm2.
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Figure 2.4: FSI network activity and rhythms are altered by DA.
(A) Schematics showing the effects of dopamine on the FSI network during the
baseline (i) and high (ii) DAergic tone conditions. (B) Sum of synaptic currents
(surrogate LFP) for the FSI network in the two conditions. (C) Spectrograms of
(B). (D) Solid line: Power spectral density of summed FSI synaptic currents (sur-
rogate LFP), averaged over 20 simulations. Dashed line: Average power spectral
density of each individual FSI voltage trace in the network, averaged over 20 sim-
ulations. Shading represents standard deviation from the mean. (E) Raster plots
of FSI network activity at multisecond and subsecond timescales (red bars indicate
time limits of lower raster plot).
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Figure 2.5: Baseline SPN activity is characterized by β oscillations
only in the D1 subnetwork under high DA conditions.

(A) Schematics depicting the baseline (i) and high DAergic tone (ii) conditions in an
isolated SPN-only network. (B) Mean voltages for the D1 and D2 SPN populations
in the two conditions. (C) Spectrograms of mean voltage for the D1 subpopulation
(upper) and D2 subpopulation (lower). (D) Power spectral density of D1 and D2
population activity, averaged over 20 simulations. Shading represents standard
deviation from the mean. Power spectra are derived using Thomsons multitaper
power spectral density (PSD) estimate (MATLAB function pmtm). (E) Raster plots
of SPN population activity.
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Figure 2.6: FSIs paradoxically excite and pattern SPN network ac-
tivity.

(A) Schematics showing modulation during the baseline (i) and high (ii) DAergic
tone conditions in a combined FSI-SPN network. (B) Mean voltages for the D1 and
D2 SPN populations in the two conditions. (C) Spectrograms of mean voltage for
the D1 subpopulation (upper) and D2 subpopulation (lower). (D) Power spectral
density of D1 and D2 population activity, averaged over 20 simulations. Shading
represents standard deviation from the mean. Power spectra are derived using
Thomsons multitaper power spectral density (PSD) estimate (MATLAB function
pmtm). (E) Raster plots of SPN population activity.
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Figure 2.7: In the high DA state, packets of FSI γ and SPN β alter-
nate at a δ/θ timescale.

(A) LFP surrogates (summed synaptic currents) for baseline (i) and high (ii) DAer-
gic tone conditions. (B) Spectrograms of LFP surrogates. (C) Wavelet-filtered β and
γ oscillations from the population activity in (A). (D) Schematic of oscillatory ac-
tivity during baseline and high DAergic tone conditions, with proposed functional
impact on ensemble activity.
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S1 Fig. Low frequency oscillations are more robust to noise in the
high dopamine FSI network than in a single FSI.

(A) Plot of normalized low frequency (<10 Hz) power of the voltage of a single
model FSI (blue) and the summed voltages of the high DA FSI network (red) as
Poisson noise of varying rate is applied. Each cell in the network receives the same
amount of noise that the isolated cell receives. Iapp = 14 µA/cm2 for all simulations;
in the high DA FSI network, ggap = 0.3 mS/cm2, gsyn = 0.005 mS/cm2. The solid
line represents the mean value over 10 simulations per point. Shading represents
standard deviation from these means. Power spectra are derived using Thomsons
multitaper power spectral density (PSD) estimate (MATLAB function pmtm). (B)
Plot of normalized low frequency (<10 Hz) power of the voltage of a single model
FSI and the summed voltages of the high DA FSI network as Poisson noise of
varying amplitude is applied.
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S2 Fig. FSI network rhythms are robust to noise and heterogeneity.
Power and frequency of δ/θ and γ rhythms in FSI network mean voltage as a func-
tion of (A) noise frequency, (B) noise amplitude, (C) heterogeneity in leak current
conductance, (D) heterogeneity in potassium D current conductance, and (E) het-
erogeneity in applied current. For heterogeneity values, 0 represents completely
uniform values and 1 represents a level of heterogeneity where values vary be-
tween zero and twice the default value. Default leak current conductance is 0.25
mS/cm2 and default D current conductance is 6 mS/cm2; default applied current is
7 mA/cm2 for low DA and 14 mA/cm2 for high DA. The parameters not being var-
ied in plots A-C are held at either the high DA values (solid lines, Iapp = 14 µA/cm2,
ggap = 0.3 mS/cm2, gsyn = 0.005 mS/cm2) or the low DA values (dotted lines, Iapp = 7
µA/cm2, ggap = 0.15 mS/cm2, gsyn = 0.1 mS/cm2), according to the legend. The solid
line represents the mean value over 10 simulations per point. Shading represents
standard deviation from these means. Power spectra are derived using Thomsons
multitaper power spectral density (PSD) estimate (MATLAB function pmtm).
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S3 Fig. SPN assemblies are more readily formed in response to
new input when FSIs are imposing a δ/θ rhythm that disrupts prior
activity.

(A) Example raster plot of the D1 SPN subnetwork receiving δ/θ frequency FSI in-
put while being subjected to input during high DAergic tone: An excitatory 20 mil-
lisecond pulse of input is provided to cells 50-100 (assembly 1) at t = 1680 ms and
a later excitatory pulse of input is provided to cells 25-75 (assembly 2) at t = 2080
ms. Assembly 1 is active for several β cycles after the first input, causing rebound
spiking at antiphase of the cells not in assembly 1 (as in McCarthy 2011 (McCarthy
et al. (2011))), but becomes inactive during the δ/θ peak beginning around t = 1800
ms. Assembly 2 can then respond with a high degree of coherence shortly after
the second input. (B) Example raster plot of the isolated D1 SPN subnetwork (not
receiving any FSI input) being subjected to the input during high DAergic tone.
The same two excitatory pulses are provided. Assembly 1 and its antiphase activ-
ity begin firing similarly to the example in (A), but since there is no δ/θ input, the
β-rhythm firing of assembly 1 persists indefinitely. Input to assembly 2 is thereby
unable to generate a specific response, and the coherence of assembly 1 persists
even after the second input. (C) Plot showing history-independence of SPN re-
sponses when FSIs are present. Regardless of the phase at which input is given,
the maximal response of SPNs in any given cell assembly occurs at a preferred δ/θ
phase around -2 radians, erasing the information of when the input arrived. When
FSIs are not present, there is no theta rhythm in the network, and the response of
the cells to input is more random.
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CHAPTER 3

Oscillatory input to the model striatal network

3.1 INTRODUCTION

In chapter 1, input to the striatum was modeled as white noise. However, the stria-

tum receives input from diverse regions of cortex, and presumably all of these in-

puts contain information that may be encoded as frequency content. Electrophysi-

ological recordings of corticostriatal pathways have found coherence between cor-

tex and striatum at frequencies including delta, theta, beta and gamma (Sharott

et al. (2012); von Nicolai et al. (2014); Catanese et al. (2016); Naze et al. (2018)).

Given the importance of resonance in neural networks (Sherfey et al. (2018); Ardid

et al. (2019)), It is likely that inputs to striatum elicit frequency-specific responses

depending on the resonance properties of the target cells and networks. These re-

sponses in turn may impact the oscillatory output of the striatal network. Much

work has been done on the response of striatum to the oscillations, especially beta,

that cycle through the cortico-striato-basal-ganglia-thalamic loop (Stein & Bar-Gad

(2013); Brittain & Brown (2014); Womelsdorf et al. (2010)). However, because of

the cyclical nature of this circuit, it is difficult to tell which rhythms originate in

striatum, which are a result of resonance to input, and which are merely volume

conducted.

In the previous chapter, I demonstrated that the striatal microcircuit can be

a local generator of oscillations at a wide array of frequencies, several of which

(namely theta and beta) are presumed to be conducted downstream to the rest

of the basal ganglia by striatal projection neurons. However, this does not give

us any information as to whether these rhythms can be enhanced or suppressed
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by oscillatory input, or even whether the striatal network has a broader range of

rhythms it could produce via entrainment to externally imposed oscillations. In

order to begin to address these questions, I provided colored input signals to my

model network in the form of square waves, and analyzed the responses to this

input in terms of firing rate and pattern as well as phase locking. By doing so, I

can begin to use my model to make predictions about how the striatal microcircuit

processes cortical oscillations. Specifically, I am interested in addressing the role

of fast-spiking interneurons in input processing; therefore, the end goal of this

chapter is to compare the response to oscillatory input of an SPN network without

FSI input to the behavior of the full FSI-SPN model network.

It should be noted that the results presented in this chapter are preliminary, and

require substantial further investigation in order to truly make realistic predictions

about the behavior of the striatal network in vivo; for instance, multiple iterations

of each simulation would need to be performed in order to statistically test the

hypotheses presented here. Despite this, the results of the simulations performed

in this chapter suggest a number of interesting response properties of the striatal

circuit that may shed light on how cortical input can impose different functional

states on striatal processing.

The FSI subnetwork has a dopamine-dependent response to input frequencies

in the gamma range. Dopamine in the FSI subnetwork is modeled as increasing

excitability, decreasing lateral inhibition, and increasing gap junction conductance;

the only impact of dopamine on SPNs in the model network is increasing D1 SPN

excitability and decreasing D2 SPN excitability. In the low dopamine condition,

the FSI network sparsely phase-locks to gamma input but does not increase in

firing rate, whereas in the high dopamine condition, input at gamma frequencies
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causes both firing rate and bursting rate of the FSIs to increase. These FSI network

responses have a downstream impact on the behavior of the SPN subnetwork.

Without FSIs, the SPN subnetwork can phase lock to a broad range of frequencies,

but also produces beta oscillations in response to input frequencies outside of the

beta band. When FSIs are present in either low or high dopamine conditions, the

beta power and spiking resonance produced by the SPN subnetwork in response

to non-beta frequencies is dramatically reduced, while beta transduction remains

intact. In addition, in the high DA condition, specific frequencies of gamma input

can cause the FSI network to fire continuously, causing SPNs to entrain to gamma

frequencies to which they would otherwise produce a beta in response. These

properties have implications for the role of FSIs in routing cortical input through

striatum.

3.2 METHODS

The cellular models and network structure are identical to that described in (Char-

tove et al. (2020)); the only difference in this chapter is that, in addition to the input

already present in the model as described, every cell is given an additional input

in the form of a square wave. This wave is nonzero and its duty cycle is 1/4, i.e.

1/4 of the time, the cell is receiving an additional current, 3/4 of the time, the cell is

receiving no additional current. This square wave is modeled as continuous but its

rise time is under 1 ms. The amplitude of the square wave ranges from 0.2 nA to 1

µA. The input to the SPNs is always half as strong as the input to the FSIs in order

to account for the fact that cortical synapses are much more dense on FSIs than

SPNs (Owen et al. (2018)). Dopamine in the SPN subnetwork is modeled simply

as excitation level the same way it was in Chapter 2; in the low/baseline dopamine
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condition, all SPNs receive a tonic excitatory current of 1.19 µA, while in the high

DA condition, D1 SPNs receive 1.29 µA while D2 SPNs receive 1.09 µA. For an

explanation of how dopamine is modeled in the FSI subnetwork, see Chapter 2.

Phase locking value (PLV) was assessed using the method described in (Lachaux

et al. (1999)). Briefly, the PLV ranges from 0, indicating random relationships be-

tween input phase and spiking, to 1, indicating spiking only at a specific phase of

input. In order to assess this value, the square wave input is first converted to an

equivalent sinusoid using a wavelet filter. For each spike occurring in the network,

we take the angle of the Hilbert transform of this wavelet at the spike time (defined

as when the voltage of the cell crosses 0) to be the instantaneous phase of the input.

We then quantify the randomness in phase as the sum of e(i ∗ ϕ) (where ϕ is the

stimulus phase) for all spikes. Normalizing this sum to the [0, 1] range gives us the

PLV.

3.3 RESULTS

3.3.1 FSI network results: low DA

In the low DA condition, the model FSI network sparsely locks to gamma frequen-

cies in a manner that does not impact population firing rate. In general, sufficiently

powerful square wave input at a given frequency causes a peak at that frequency

in the power spectrum of FSI network level spiking (Figure 1A). However, this

peak is not driven by individual cells spiking at the input frequency. Rather, the

network as a whole displays sparse entrainment without any increase in firing rate

at any particular input frequency or input strength (Figure 1B, C). This lack of vari-

ation in firing rate, even in response to high amplitude input, may be a result of

strong lateral inhibition in the FSI network in the low DA state; see discussion.
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Note however that the overall network firing rate in the low DA condition has a

wide variance due to noise (between 2 and 14 Hz in the set of simulations shown

here), making it difficult to draw conclusions without performing statistical anal-

ysis.

Despite the lack of impact of input on firing rate, average network PLV is high

in response to inputs at the ’baseline’ gamma frequency of the network, i.e. the

frequency at which there would be a peak in the power spectrum were the network

given input that contains no frequency content, as in Chapter 2. Maximum PLV is

centered at this value, but the stronger the input, the broader the range of values

the low dopamine network phase locks to. At an input strength of 0.2 mV, PLV

is maximized at 58 Hz with a value around 0.6 and tapers off quickly above and

below that frequency, while square wave inputs of 1 mV strength generate PLVs

above 0.8 for all frequencies between 45 and 70 Hz, and above 0 for all frequencies

1-100 Hz (Figure 1D). There does not appear to be a relationship between network

firing rate and PLV.

Sufficiently strong inputs in the 50-60 Hz range can generate a small amount

of power in the network at 1 Hz. Figure 1E depicts the frequency below 10 Hz

which has the highest power in the spectral density of the surrogate LFP of the

network; this frequency is usually apparently random, but specific gamma input

frequencies seem to cause it to tend towards 1 Hz. Figure 1F depicts the phase

locking value of the network as a whole to the network frequencies (not the input

frequency) identified in 2D. When given 50-60 Hz input, network phase locking to

1 Hz can be as high as 0.4. This is notable for several reasons. First, PLVs to input

frequencies below 10 Hz are low (Figure 1D). Second, in the low DA condition, the

FSI network does not have a delta or theta peak present in the power spectrum
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when given noise input or input frequencies other than 50-60 Hz. This suggests

that, despite the fact that in chapter 2 the low DA FSI network produces network

frequencies only in the gamma range, there is a potential mechanism by which

cortical input can generate a striatal delta rhythm in the low DA state.

3.3.2 FSI network results: high DA

By contrast, in the high DA condition, firing rate is increased by entrainment to

sufficiently strong input at the baseline gamma frequency of the network (Figure

2A, B). (The ’baseline frequency’ of the network is, as before, defined as the fre-

quency the network produces when given only noise as input.) Average firing rate

is maximized at 40 Hz when square wave input between 70 and 75 Hz is applied.

Note that despite this increase in firing rate, cells in the network do not appear

to ever attain the one-to-one entrainment to input pulses that characterize the re-

sponse of individual cells to square wave input; this is because they are quiescent

during half of the delta/theta cycle, so they can entrain only during the bursting

phase of theta (Figure 2C). Firing rates are also slightly higher at subharmonics of

the preferred network gamma, with small, broad peaks in firing rate centered at 35

and 17 Hz (Figure 2B).

Entrainment range is narrower in the high dopamine condition than in the low

DA condition; in the high DA condition, PLVs are nonzero only between 55 and

95 Hz, as well as a narrow band of high PLV at 3 Hz (Figure 2D). However, in

both high and low dopamine conditions, PLV is highest in response to inputs at

the baseline gamma frequency of the network, and the high PLV range is wider

with stronger input. The input generating maximal PLV overlaps with the input

generating maximal firing rate, although maximal PLV (around 0.9) is attained at
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a slightly wider range of frequencies and input strengths than maximal firing rate.

Unlike firing rate, PLV is not higher at subharmonics of the network gamma.

The high DA network produces some amount of delta/theta power to any of

the input strengths and frequencies tested, but unlike in Chapter 2, this frequency

is not always 3 Hz. The frequency of the theta output is responsive to gamma

input. Despite the high PLV at 3 Hz, presumably due to the high DA network

also having a baseline 3 Hz frequency, there is no increase in firing rate when in-

put is given at 3 Hz (Figure 2B, E). However, inputs between 60-70 Hz, just under

the frequencies that maximize firing rate and PLV, cause low frequency activity to

speed up from 3 Hz to upwards of 10 Hz (Figure 2A, F, G, I). This is notable in

that, given noise as input, neither input strength nor network structure change

this frequency; it is determined solely by the inactivation time constant of the

D-current (as shown in Chapter 2). The frequencies that cause this behavior are

below the baseline gamma frequency, which is locked at around 75 Hz for these

parameters, and is still expressed in the networks spiking in addition to the input

frequency and the elevated-frequency theta (Figure 2I). Other input frequencies at

sufficient strengths, particularly the subharmonic at 30-35 Hz but including most

of the gamma range, can cause the network frequency to speed up to 4 or 5 Hz

(Figure 2 G; color indicates peak frequency).

The increased frequency of the theta is accompanied by a reduction in theta

power (Figure 2A). The FSI network as a whole in the high DA condition displays

some degree of phase locking to the baseline low frequency of the network over

a large range of parameter space, with PLVs around 0.8 (Figure 2H; color indi-

cates PLV). However, the same input frequencies (60-70 Hz) that cause this low

frequency to become faster also cause network level PLV to the low frequency to
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drop to around 0.4, indicating that these faster frequencies do not have as consis-

tent a degree of participation as the typical low network frequencies. Sufficiently

strong inputs between 60-70 Hz actually causes the FSI network to fire continu-

ously at gamma, abolishing the low frequency content entirely (Figure 2J); this is

discussed in the final section of the results.

3.3.3 SPN network results (without FSIs)

The SPN-only network entrains to a range of frequencies, centered at the beta band,

that is determined by excitation level; above this, the network goes quiet if insuf-

ficiently excited, or produces a beta oscillation if sufficiently excited (Figure 3A).

Figure 3 shows the differences in behavior between an isolated network of SPNs

at a baseline state of excitation (the ’low dopamine’ state of my model), and the

behaviors of the D1 and D2 subnetworks in simulated high DAergic tone. Note

that the ’low DA’ state does not differentiate between D1 SPNs and D2 SPNs as

they have equal levels of excitation in this condition and are therefore functionally

identical. The extent of the range of frequencies the SPN network produces as out-

put is determined both by input strength and by background excitation; the upper

bound on this entrainment is in the low gamma range (30-40 Hz) for the parameter

range tested (see Figure 3A). What happens at stimulation frequencies higher than

this range depends on background excitation.

If background excitation is lower than 1.2 µA (which is true for D2 SPNs in the

high dopamine condition; see Methods), for input strengths below 0.4 µA, the net-

work entrains to input below a certain frequency and becomes silent above that

frequency (Figure 3A iii; Table 1A). Note that in order to better show this differ-

ence, Figure 3A shows the output frequencies of the network at input strengths of
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0.2 µA. If excitation is high (as is the case for D1 SPNs in the high DA condition

and all SPNs in the network in the low dopamine condition; see Methods), the

network generates its baseline beta frequency (i.e. its oscillatory response to noise)

in response to inputs higher than it can entrain to (Figure 3A i, ii; Table 1Biii, Ciii).

(See Sherfey et al. (2018) for examples of a similar phenomenon.) Input strength

contributes to this excitation level; at input strengths above 0.4 µA, the D2 SPNs

produce a beta in response to high gamma input as well (Table 2 B iii, iv). The

baseline beta frequency of the network is affected by input strength, but not by

input frequency (Figure 3A). For each input strength and background excitation

level, there is an input frequency that maximizes SPN firing rate. Firing rate is

dependent on input frequency; the frequency at which maximal firing rate occurs

is in the 20-40 Hz range, dependent on background excitation and input strength

(Figure 3B). The network entrains well to the frequency maximizing firing rate

(compare high firing rate areas marked in yellow in Figure 3B to the same region

of Figure 3C). However, the frequency maximizing firing rate is a distinct, higher

frequency than the baseline beta frequency of the network (which can be identified

as the response to high gamma input in Figure 3A i and ii). Providing input at the

baseline beta induces phase locking, but does not increase firing rate, as the cells

are already firing at that frequency.

The SPN network has high PLVs in response to most inputs, including harmon-

ics of beta ; low PLVs can occur in response to low frequencies in a highly excited

network, or to very high gamma frequencies that are not a multiple of the intrinsic

beta (Figure 3C). Phase locking values in the SPN network are close to 1 for a broad

range of frequencies. The stronger the input, the broader the range of frequencies

generating high PLVs. However, frequencies above a certain value (generally in
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the high gamma range) produce PLVs near zero, with the exception of frequen-

cies that are harmonics of the baseline beta oscillation, which show up as small

regions of high PLVs in Figure 3C. The precise location of these regions varies by

input strength because input strength changes the baseline beta oscillation of the

network. Columns ii, iii, and iv of Table 1 show responses of the SPN subnetwork

to 15, 43, and 45 Hz input respectively. 15 Hz is at or close to the baseline beta fre-

quency of the network, so the network entrains well to this frequency. Because 43

Hz is outside of the range of beta/low gamma frequencies with high PLV for these

parameters, the network shows poor entrainment to this frequency and produces

a beta oscillation that is not locked to the input. However, because 45 Hz is a har-

monic of 15 Hz, the network will produce a beta oscillation entrained specifically

to 45 Hz input.

If background excitation is high, PLV at low frequencies is substantially lower

than it would be if background excitation were low, but still well above zero (Fig-

ure 3C iii); this may be due to the fact that the baseline beta is being expressed

in the network, limiting the ability to lock to frequencies below it. (Table 1, C

i) Stronger input causes better phase locking at the lowest frequencies, but also

raises the network beta and therefore increases the threshold at which PLV near 1

can be achieved (Figure 3C iii). PLV is also slightly lower at input frequencies im-

mediately above the input frequency maximizing firing rate, presumably because

cells are unable to fire fast enough to maintain strong entrainment.

3.3.4 Combined FSI-SPN network results

There are two obvious impacts of adding FSI input to the SPN network in either

the low or high dopamine condition. First, the beta output of the SPN network
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in response to receiving input in the gamma range is greatly reduced in power

(Figure 4A). Second, the SPN network response to inputs outside the beta range is

regularized; the small regions of entrainment to resonance observed in the previ-

ous section are abolished, and the ability of SPNs to lock to frequencies below the

beta range is diminished. In the low DA condition, the beta produced by SPNs in

response to frequencies above their entrainment range is completely abolished. In

the high DA condition, both D1s and D2s produce a beta when the input frequency

is above their entrainment range, but this beta is lower in power and frequency,

and more broadband, than it would be without FSIs. In the high DA condition,

FSIs also cut down on SPN firing rate in general compared to the low DA condi-

tion.

Aside from the D2 SPNs having marginally lower network firing rates than the

D1 SPNs, the D1s and D2s behave almost identically in both conditions when given

inputs of varying strengths or frequencies; they fire more in response to stronger

input and input at their baseline beta frequency, which is still determined by over-

all excitation (including input strength). The increase in firing rate in response to

input at the baseline beta is larger for both SPN subtypes in the low DA condition

than in the high DA condition, especially for strong inputs. This is because FSI ac-

tivity in the high DA condition substantially decreases maximum SPN firing rate,

from 30 Hz to 22 Hz (Figure 4 B ii; note the difference in scale of the color bars).

Because of this broad inhibition from FSIs, in the high DA condition, the maximum

SPN firing rate is achieved by a substantially lower frequency of beta input than

in the low DA condition, as the SPN network is much less excitable.

The most notable impact the FSIs have on SPN phase locking is on inputs in the

high gamma range that are harmonics of the network beta: without FSIs, the SPN
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network achieves PLVs near 1 for inputs at these frequencies, whereas when FSIs

are present, these high-frequency peaks in PLV are suppressed (compare Figure

4C with Figure 3C). In response to input above the low gamma range, the SPN

subnetwork produces no rhythm in the low DA condition and a weak beta in the

high DA condition (Figure 4 A). In the combined SPN-FSI network, phase locking

values for SPNs are maximal at the baseline beta. The range of input frequencies

that produce high PLVs is broader in the low DA condition (Figure 4 C i) than in

the high DA condition (Figure 4 C ii and iii) and broader for stronger input. In the

low DA condition, the SPN subnetwork entrains to all input up to some frequency

in the low gamma range, the highest frequency of which is determined by input

strength (Figure 4 A i; Table 2 A). This can cause the SPNs and FSIs to fire in sync

with each other in frequency ranges where they both entrain well to the same low

gamma (Table 3 A i).

In the high DA condition, the SPNs have lower PLVs in response to low fre-

quency input than they would if the FSIs were not present (Figure 4 C ii). The FSI

subnetwork has poor phase locking to almost all frequencies below the gamma

range, with the exception of 3 Hz in the high DA network; by contrast, the iso-

lated SPN subnetwork has high PLVs in response to most of these frequencies.

The inhibition generated by the FSIs, which is not locked to low input frequencies,

therefore cuts down on the degree to which SPNs can entrain to low frequency

inputs. The entrainment of the SPNs to input at low frequencies is slightly worse

in the high DA condition than in the low DA condition; in the low DA condition,

SPNs can produce as many beta cycles as the duty cycle of the input permits (Table

2 A i and ii), whereas in the high DA condition, SPN behavior in response to low

frequency inputs is irregular (Table 2 B, C i and ii ). The SPNs have slightly better
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phase locking to 3 Hz than to surrounding frequencies in the high DA condition

due to the FSIs imposing a 3 Hz rhythm on the network, but it does not actually

exceed the phase locking to 3 Hz in the low DA condition.

The frequency and strength of the input in the high DA condition determines

whether FSIs and SPNs alternate (and if so at what timescale), spike at the same

time as each other, or act independently. Given noise as input, the high dopamine

network is entrained to a 3 Hz theta, with FSIs spiking at a gamma frequency at

the peaks and SPNs spiking at a beta frequency in the troughs (Chapter 2). In

the present study, the response of the SPN subnetwork to square wave input in

the high DA condition is similar to that of the isolated SPN-only network in that

it produces only frequencies in the beta range as output. The difference in the

full network is that rather than producing an uninterrupted beta in the high DA

condition, SPN beta occurs only in a subset of theta phases (Table 2B, 3B, C).

There are two exceptions in which the switching between gamma and beta de-

scribed in Chapter 2 does not occur in the high DA condition. The first exception is

that strong input in low to beta range frequencies (1-25 Hz) causes the SPN subnet-

work to entrain exactly or nearly exactly to the input, overriding the theta-coupled

gamma from the FSIs. The SPNs will spike even when the FSIs are most active,

including in response to input at the baseline 3 Hz theta (Table 2 C). The second

exception is that 55-70 Hz input at sufficient strengths causes the FSI theta to speed

up to over 10 Hz, as shown above (see ’FSI network results: high DA’, Figure 2F,

Table 3 C ii). Input above 2 µA in strength causes FSIs to break free of the theta

cycle entirely and spike continuously at the input gamma frequency; this causes

the SPNs to entrain to this same gamma (Table 3 D ii). At input frequencies above

the 60-70 Hz range, the behavior of the high DA network goes back to being very
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similar to its behavior when given noise as input.

3.4 DISCUSSION

In general, the resonance properties of the model striatal network mirror the oscil-

lations produced by the noise-driven network in Chapter 2. As expected, we found

that in both the low and high dopamine conditions, FSI network PLV is high in re-

sponse to inputs at the baseline gamma frequency of the network. Similarly, the

SPNs will phase lock to inputs in the beta band or slightly above or below it.

However, the simulations described above provide valuable insight into prop-

erties of network behavior in response to oscillations that could not be predicted

from the behavior of the network given noise alone. For instance, in the low

DA state, the model FSI network will not change firing rate in response to input

strength and frequency, but in the high DA state, the FSIs fire much more in re-

sponse to high gamma input, to a degree that is proportionate to input strength.

This suggests that dopamine may alter not only the frequency of the gamma in

the FSI network but also its response properties to gamma input, and provides

evidence that the gamma oscillations generated in low and high dopamine con-

ditions are meaningfully mechanistically different. There is also evidence for a

weak 1 Hz rhythm present in the low DA condition, which was not evident in the

noiseless condition or from examining the rasters; this suggests that there may be

a mechanism for delta generation independent of the theta generation mechanism

identified in Chapter 2, and warrants further investigation. It is also worth noting

that the theta oscillation in the high DA condition does not change its frequency to

entrain to low frequency input, suggesting that frequencies other than 3 Hz gener-

ated in response to low frequency input may have a distinct origin; however, the



71

theta will change frequency in response to gamma band input, an effect discussed

below.

Additionally, the FSI subnetwork in the model performs several surprising sig-

nal transformation functions on the SPN subnetwork, discussed below. Specifi-

cally, the FSI network prevents the SPN networks generation of phase-locked beta

oscillations in response to betas harmonic frequencies, ensuring fidelity of trans-

mission of cortical beta rhythms, and limits or entrains SPN activity in response to

certain gamma frequency inputs. These effects of the striatal network architecture

could potentially illuminate the role of striatum in processing cortical input that is

transmitted to the basal ganglia.

3.4.1 Role of SPNs and FSIs in patterning striatal resonance response

Modeling work has already shown that the SPN network in isolation is conducive

to beta oscillations, and the frequency of the SPN network beta is dependent on ex-

citation (McCarthy et al. (2011)). Therefore, it is no surprise that the SPN network

entrains to a range of frequencies (centered at beta) that is determined by excita-

tion level, and produces a beta oscillation in response to input frequencies both

below the beta range (Figure 4C, Table 1 C i) and above it (Figure 4A, Table 1 B,

C iii and iv), if sufficiently excited. The M-current inhibitory rebound mechanism

described in (McCarthy et al. (2011)) promotes SPN network activity at beta; it ap-

pears that input outside the beta frequency range can engage this mechanism. This

beta response to non-beta input could pose a problem for faithful transduction of

the beta oscillations present in the cortico-basal ganglia-thalamic loop. Beta oscil-

lations are important for function in the corticostriatal circuit in health (Ardid et al.

(2019)), but are also pathologically amplified in disease (Stein & Bar-Gad (2013)).
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A functioning network needs to both be able to transmit beta oscillations when

necessary and prevent beta oscillations from occurring when unnecessary. The

SPN subnetwork works well for conduction of beta oscillations from cortex, but

producing beta oscillations in response to non-beta inputs could result in Parkin-

sonian pathologies.

Suppression of beta resonance to input outside of the beta range could be an

essential function of the striatal FSI network. Striatal projection neurons have a

broad range of entrainment to input frequencies in vitro (Beatty et al. (2015)), and

the model striatal neurons in the present study share this property. However, this

general responsiveness to excitatory input of many frequencies can also lead to in-

puts outside the beta range being transformed into beta oscillations. Without FSIs,

the beta response of the SPN subnetwork in response to frequencies outside the

beta range is much more powerful (compare Figure 3A and C to Figure 4A and

C). Therefore, one important combined role of striatal FSIs and SPNs may be to act

as a band pass filter on cortical input such that only beta oscillations can reliably

produce a beta in response. Within the beta range, however, the specific frequency

preferences of the SPN network output are highly tunable by background excita-

tion, allowing the striatum to control which frequency of cortical beta input comes

through the strongest. Both in vitro and modeling studies suggest that SPNs have

a broad range of frequencies to which they can entrain (Beatty et al. (2015); Belić

et al. (2017)), but in vivo studies have found that SPNs seem to entrain to beta and

theta but not gamma frequency input (Zhang et al. (2016); Berke (2009); Sharott

et al. (2009, 2012)). The inhibitory filtering effect of the FSIs could be the reason for

this frequency specificity.

Despite the fact that FSIs prevent SPNs from producing a beta oscillation in re-
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sponse to gamma input, they also appear to provide a means for the entire striatal

network to entrain to specific gamma oscillations. In response to input frequencies

between 60-70 Hz, FSIs speed up their theta oscillations to such an extent that suffi-

ciently strong inputs cause them to produce a continuous gamma, which generates

gamma entrainment in the SPN subnetwork (Table 3 D ii). This is notable in that

the SPN subnetwork will not otherwise produce a high gamma as output; without

FSIs, the SPN subnetwork produces a beta in response to high gamma input (Fig-

ure 3A). Since SPNs are the only output neurons of the striatum, this action of the

FSI subnetwork is the only mechanism in this model that allows for the striatum

to produce a gamma oscillation as output. This FSI-mediated response to gamma

input has implications for the role of fast-spiking interneurons in the striatal mi-

crocircuit in vivo. Several studies have noted that striatal FSIs are more capable

of entraining to gamma input than are striatal projection neurons (Berke (2009);

Sharott et al. (2009, 2012); Naze et al. (2018)); in addition, striatal FSIs receive much

stronger cortical input than SPNs (Owen et al. (2018)). These properties, combined

with the continuous spiking behavior demonstrated by the FSIs in response to a

narrow band of input frequencies, suggest that gamma oscillations from cortex,

when combined with dopaminergic input, could be a specific signal for FSIs to

start spiking continuously and override the other frequencies (i.e. delta/theta or

beta) that can be produced by the striatal network.

This ’gamma override’ hypothesis has important implications for the hypoth-

esis presented in Chapter 2 that the role of FSI gamma is to disrupt the ongoing

SPN network beta in order to encourage motor program switching. Ordinarily,

this gamma is limited to half a theta cycle, but with specific cortical input, it seems

that FSI gamma could be induced during a different phase of theta and could last
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for an indefinitely long or short amount of time. The fact that this can occur only

in the high dopamine condition suggests that perhaps this override signal is sent

during times of highly motivated behavior when rapid changes in strategy are

needed. In this case, cortical input could induce a gamma in an FSI population in

order to direct specific FSIs to interrupt specific beta-producing SPNs with their co-

ordinated gamma bursts. This may be a mechanism by which the cortex, working

in concert with the local striatal response to dopamine, interrupts habitual mo-

tor programs to allow for goal-directed behavior to occur. The FSIs could pause

SPN beta while the cortex provides input essential to decision making, and then

release the SPN network to resume producing beta once this information has been

integrated. Of note, Belic et al. (Belić et al. (2016)) found that during levodopa-

induced dyskinesia, i.e. a pathologically high dopamine state, gamma oscillations

in striatum that are usually coupled to theta lose this low-frequency coupling and

increase in power. This could be a direct result of the continuous FSI spiking at

gamma modeled in the present study.

3.4.2 Caveats and limitations

The input used in the present study was entirely composed of square waves of

injected current, which lack biological realism; real input from striatum to cortex

likely has complex waveforms and is shaped by synaptic currents. The behavior of

the FSI network in response to non-square currents is likely to be different in some

aspects. A single model FSI responds differently to Gaussian or sinusoidal input

than to square waves. Inputs with slower rise times are more likely to cause FSIs to

burst, which can cause differences in firing rates and phase locking values to differ-

ent shaped waveforms of the same frequency (unpublished work). The response
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of a single model FSI to input of various properties is worth further study, as this

behavior may translate to a different likelihood of bursting in the FSI network in

response to different input shapes. The mechanism of theta oscillations in the net-

work is dependent on bursting, and therefore the network theta may be stronger

in response to inputs with slower rise times; however, this hypothesis would need

to be tested in a full network model.

Additionally, within the present study, the properties of the FSI D current (and

the SPN M current) were never varied. The frequencies of the gamma and theta

oscillations in FSIs and the beta oscillations in SPNs are respectively determined

by the time constants of these currents. In order to truly understand the properties

of the input response of single cell models used in these situations, the parameters

of these currents would need to be systematically tested in order to examine their

impact on the trajectory of the state variables of the model through phase space. It

is possible that the resonant frequencies of the network are determined solely by

the time constants of the D and M currents, but it could also be the case that other

properties of these currents have an impact on the frequency response properties

of the network.

Another avenue for future inquiry utilizing this model is to examine how the

correlations between disparate streams of input impact network behavior. Hjorth,

Blackwell, and Kotaleski (Hjorth et al. (2009)) found that correlations in cortical in-

put streams can increase firing rate in striatal FSIs. Gap junctions between striatal

FSIs act as correlation detectors: when input is heterogeneous, gap junctions allow

electrical shunting from depolarized neurons into hyperpolarized ones, inhibit-

ing spiking, while shunting does not occur with homogeneous inputs. However,

Hjorth et al. did not explore whether correlated input induces oscillations in the
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FSI network, nor what might be the downstream impact of correlated input on the

SPN network.

Unfortunately, due to the preliminary nature of the present study, the simula-

tions described above have several shortcomings that may limit their applicabil-

ity to generating hypotheses about in vivo activity. The most critical drawback

of these simulations is that each point in parameter space has only been simulated

once rather than being averaged over multiple runs as in Chapter 2. Because many

of the phenomena described here are highly sensitive to specificity in frequency

and input strength, this means that characterizations of these phenomena are both

imprecise and possibly vulnerable to fluctuations in noise and initial conditions.

For instance, the resonance of the SPN network at specific gamma frequencies is

attributed here to beta harmonics, but it is possible that the gamma frequencies at

which this resonance occurs are to some degree influenced by noise. A preliminary

analysis suggests that these gamma frequencies are in fact stable per parameter

regime (see Supplementary Figure 1), but statistical analysis would still be prefer-

able. Another issue of the present data is the limitations on parameter space. Input

strengths above and below those presented here can produce varied behaviors in

the striatal network that are not described by the above analysis. Additionally, the

ratio between input strength to FSIs and input strengths to SPNs has been arbitrar-

ily set to 2:1 here; this choice of ratio may have important impacts on the network

behavior as a whole. Overall, there are a wealth of possible manipulations possible

with the present model and the scope of this chapter is only able to scratch the sur-

face. However, even limited to the region of parameter space explored here, we are

able to model network behavior with significant possible functional implications.
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3.5 FIGURES AND TABLES
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Figure 3.1: FSI network responses to square wave inputs of fre-
quencies between 1 and 100 Hz in the low dopamine condition.

A. Power spectrum of surrogate LFP of FSI network in response to square wave
inputs with an intensity of 1 µA (color indicates power in arbitrary units). B. Aver-
age firing rate of the FSI network in response to inputs of varying strength (color
indicates network mean firing rate in Hz). C. Example raster plot showing the re-
sponse of the FSI network to input at 65 Hz of 1 µA over 3500 milliseconds. D.
Phase locking value of FSI network spiking to the input frequency (color indicates
PLV). E. Strongest frequency in the network power spectral density below 10 Hz
(color indicates frequency). F. Phase locking value of FSI network spiking to the
network output frequency identified in E, given inputs from 1-100 Hz.
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Figure 3.2: FSI network responses to square wave inputs of fre-
quencies between 1 and 100 Hz in the high dopamine condition.

A. Power spectrum of surrogate LFP of FSI network in response to square wave in-
puts with an intensity of 1 µA. B. Average firing rate of the FSI network in response
to inputs of varying strength. C. Example raster plot showing the response of the
FSI network to input at 65 Hz of 0.2 µA over 3500 milliseconds. D. Phase locking
value of FSI network spiking to the input frequency. E. Example raster plot show-
ing the response of the FSI network to input at 3 Hz of 1 µA over 500 milliseconds.
F. Example raster plot showing the response of the FSI network to input at 65 Hz
of 1 µA over 500 miliseconds. G. Strongest frequency in the network power spec-
tral density below 10 Hz. H. Phase locking value of FSI network spiking to the
network output frequency identified in D, given inputs from 1-100 Hz. I. Power
spectrum (arbitrary units) of the network activity shown in F, showing peaks at 10
Hz, 65 Hz (the input frequency), and 75 Hz. J. Example raster plot showing the
response of the FSI network to input at 65 Hz of 2 µA over 3500 milliseconds.
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Figure 3.3: Isolated SPN network responses to square wave inputs
of frequencies between 1 and 100 Hz, without FSI input.

Left (i): baseline/ low DA excitation level (equivalent for D1s and D2s), center
(ii): high dopamine D1 SPN excitation level, right (iii): high dopamine D2 SPN
excitation level. A. Power spectrum of surrogate LFP of SPN network in response
to square wave inputs with an intensity of 0.2 µA. B. Average firing rate of the SPN
network in response to inputs of varying strength. C. Phase locking value of SPN
network spiking to the input frequency.
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Figure 3.4: SPN network responses to square wave inputs of fre-
quencies between 1 and 100 Hz in the full network, with FSIs
present.

Left: baseline/ low DA excitation level (equivalent for D1s and D2s), center (ii):
high dopamine D1 SPN excitation level, right (iii): high dopamine D2 SPN exci-
tation level. A. Power spectrum of surrogate LFP of SPN network in response to
square wave inputs with an intensity of 0.2 µA. B. Average firing rate of the SPN
network in response to inputs of varying strength. C. Phase locking value of SPN
network spiking to the input frequency. D. Phase locking value of FSI network
spiking to the network output frequency identified in Figures 2D (for i) and 3D
(for ii and iii), given inputs from 1-100 Hz.
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Table 1. Rasters showing examples of the SPN network at different
levels of background excitation responding to inputs of varying
strengths and frequencies.

At all input strengths and levels of excitation, the SPN network will respond to
1 Hz input with output at 1 Hz (column i). However, if background excitation
is high, the SPN network will also produce a beta oscillation that is not coupled
to the low frequency input (row C i). The network entrains well to 15 Hz input
in all conditions (column ii). If background excitation is low and input is weak,
the SPN network will go silent in response to input frequencies above the beta
range (row A, columns iii and iv). Otherwise, if either excitation or input strength
is sufficiently high, the network will respond to all inputs by producing a beta
oscillation (rows B and C, columns iii and iv). Phase locking values are higher
when the input is a multiple of the natural beta frequency of the network (rows B
and C, column iv).
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Table 2. Rasters showing examples of the full network in the low
and high dopamine conditions responding to inputs of varying
strengths and frequencies between 1 and 15 Hz.

Cyan indicates FSIs, magenta indicates D1 SPNs, and yellow indicates D2 SPNs. In
the low dopamine condition (row A), the SPNs entrain well to inputs at these fre-
quencies, and the FSIs do not. In the high DA condition, the FSI subnetwork pro-
duces a theta-coupled gamma in response to any input below 15 Hz (rows B and
C). When input strength is low (row B), the SPN subnetwork is also patterned by
theta, and spikes antiphase to the FSI subnetwork. However, when input strength
is high (row C), the SPN subnetwork entrains to the input instead of to theta and
SPNs will fire at the same time as the FSIs.
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Table 3. Rasters showing examples of the full network in the low
and high dopaminergic condition responding to inputs of varying
strengths and frequencies between 45 and 85 Hz.

Cyan indicates FSIs, magenta indicates D1 SPNs, and yellow indicates D2 SPNs.
In the low dopamine condition, there is a band of low gamma frequencies which
both FSIs and SPNs will entrain to (row A, column i). Above a low gamma, the
SPNs entrain poorly to input and produce little oscillatory power (row A, columns
ii and iii). In the high dopamine condition, as in the low dopamine condition,
weak inputs result in the SPN and FSI networks alternating spiking at theta (row
B). When input is strong and between 55 and 70 Hz (column iii), the frequency of
the FSI theta increases. For inputs over 2 µA, this increased theta frequency gives
way to continuous FSI spiking at gamma, to which the SPNs also entrain (row D,
column iii). Above 70 Hz, FSI theta returns to a lower frequency (rows C and D,
column iv).
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Supplementary Figure 1. Noiseless SPN network
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CHAPTER 4

Reward learning generates theta-coupled beta rhythms in human EEG that are

sensitive to feedback valence

4.1 INTRODUCTION

The present data analysis is motivated by predictions made by the striatal model

developed in Chapter 2. Specifically, this model predicts that during periods of

high dopaminergic tone, the striatum should be producing a high beta around 20

Hz and a high gamma around 80 Hz, nested within alternating phases of a low

frequency around 3 Hz (either high delta or low theta). The high gamma is ex-

pressed only by local fast-spiking interneurons and is not conducted downstream

to the striatal projection neurons, making it hard to observe. However, the beta is

expressed in projection neurons and is expected to travel through the basal gan-

glia (BG)-thalamus loop and into cortex (Brittain & Brown (2014)).Therefore, if this

model is correct, periods of high striatal dopamine should be associated with a

3 Hz-nested beta. Models of the trajectory of striatal dopamine during reward

learning suggest that peak dopaminergic tone should occur when an unexpected

reward is given (Keiflin & Janak (2015)). Thus, one way to test whether my model

holds true in humans would be to look for this signature 3 Hz-nested beta activity

in human electrophysiological recordings (from striatum, thalamus, and/or cor-

tex) during a probabilistic (i.e. chance-based) reward learning task, immediately

after feedback is given.

Recording electrical activity directly from human striatum is possible via inva-

sively implanted electrodes, making acquiring large quantities of data to test these

model predictions difficult. Instead, I explored whether the network behavior pre-
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dicted by my model would be detectable in noninvasive electroencephalogram

(EEG) recordings. There is evidence that striatal activity can be detected via EEG

during reward learning, a task in which striatum is heavily involved due to its in-

tegral role in the dopaminergic reward processing system (Keiflin & Janak (2015)).

Reward learning tasks in humans produce several characteristic responses in the

EEG, both as event-related potentials and as induced oscillatory activity (Cohen

et al. (2007); Cavanagh (2015); HajiHosseini et al. (2012)); several studies have sug-

gested striatal involvement in producing these EEG signatures (Foti et al. (2015);

Mas-Herrero et al. (2015); Andreou et al. (2017)). Immediately after feedback pre-

sentation in a reward-learning task, recordings at frontal electrodes show power

increases in several frequency bands relative to baseline, with the identity of these

frequencies depending on feedback. Positive feedback is associated with increases

in power in the delta (1-3 Hz) and beta (20-30 Hz) bands (Cavanagh (2015); Haji-

Hosseini et al. (2012)), while negative feedback is associated with increased power

in the theta (4-8 Hz) band (Cohen et al. (2007)). Source localization studies suggest

that the delta and beta oscillations can be related to activity in the striatum, specif-

ically nucleus accumbens, whereas the theta oscillation appears to arise from ante-

rior cingulate (Foti et al. (2015); Mas-Herrero et al. (2015); Andreou et al. (2017)).

Delta and beta oscillations arising in striatum in response to positive feedback

(when striatal dopamine should be high) could be the same rhythms predicted by

my model. If so, the beta should be tightly coupled to the delta; my model predicts

that in high dopaminergic tone conditions, beta can only be produced during the

permissive phase of the delta in which striatal fast-spiking interneurons are silent.

In order to determine whether my striatal models predictions are applicable to

cortical signals, I measured phase amplitude coupling (PAC) between delta ( 3 Hz)
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and beta frequencies detected in human reward learning data. Phase amplitude

coupling is defined as the modulation of the amplitude envelope of a faster oscil-

lation by the phase of a slower oscillation. In order to assess PAC between any two

oscillations, one must find the instantaneous phase of the lower frequency oscilla-

tion and the instantaneous amplitude of the higher frequency oscillation and then

compute one of several available PAC metrics. In this analysis, I used the measure

proposed by Tort et al. (2010), as it fares well in tests of sensitivity to the degree of

dependence of amplitude on phase (Seymour et al. (2017)). I was successfully able

to detect theta-beta PAC in the data presented here, suggesting that the alternating

striatal rhythms predicted by my model can be detected noninvasively at cortical

electrodes.

4.2 DATA DESCRIPTION

EEG and behavioral data were recorded during a probabilistic learning task in

which participants had to learn which of two computer generated images of frac-

tals was more likely to result in a positive outcome. The task used here is based

on the task design of (Frank (2004)). Feedback given after choosing one of these

options was probabilistic; one image resulted in a 60 percent probability of cor-

rect (positive) feedback, whereas the other resulted in a 40 percent probability of

positive feedback. The task consisted of 360 trials. Each trial began with a fixation

cross for 800-1200 milliseconds, followed by a black and white image displayed for

a maximum of 4000 milliseconds. Subjects were instructed to choose a target by

pressing a gamepad button using the thumb of their right hand. Immediately after

their decision, feedback indicating whether their decision was correct or incorrect

was displayed for 200 milliseconds. Visual feedback is provided following each
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choice (the word ’Correct!’ printed in blue or ’Incorrect’ printed in red). If no re-

sponse is made within four seconds, the words ’no response detected’ are printed

in red.

The task duration for each experiment was approximately 30 minutes. EEG

was collected from 96 electrodes sampling at 1000 Hz and was online referenced

to the right mastoid electrode. Eye position (horizontal and vertical) and blinks

were also monitored with electrodes for the purpose of artifact detection. EEG

processing and analyses were conducted in MATLAB using the Fieldtrip toolbox.

The recorded EEG data were initially high-pass filtered at 0.1 Hz and low- pass

filtered at 170 Hz. In order to avoid edge artifacts, data segments from 4 seconds

before until 5 seconds after feedback onset were extracted for analysis on a shorter

timescale. Trials containing muscle artifacts were removed by visual inspection.

Once these had been removed, an independent component analysis of the data

was used to identify components that appeared to be blink or noise artifacts, which

were then removed. For exploratory and total power analysis prior to assessment

of phase-amplitude coupling, time frequency analysis was performed using com-

plex Morlet wavelets.

4.3 METHODS

PAC analyses search for fluctuations in amplitude that are coupled to fluctuations

in phase; both types of fluctuations are only possible in broadband oscillatory com-

ponents. Thus, the filtering that precedes PAC analyses must use broadband filters.

Complex Morlet wavelets are preferable to other filtering methods because they

are intrinsically broadband, and do not exhibit steep rolloff in frequency space.

They also output instantaneous phase and amplitude data for every frequency of
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interest, eliminating the need to Hilbert transform the data before finding these

values (Pittman-Polletta et al. (2014)). For each trial and channel, the EEG time se-

ries was convolved with complex Morlet wavelets corresponding to phase-giving

(i.e., low) frequencies from 2 to 7.5 Hz, spaced at 0.5 Hz, and amplitude-giving (i.e.,

high) frequencies from 12 to 100 Hz, spaced at 1 Hz. The low frequency wavelets

had a width of 3 cycles and the high frequency wavelets had a width of 7.5 cy-

cles. The latter number was chosen such that the bandwidth of frequencies consid-

ered for the amplitude-giving oscillation is at least as large as the frequency of the

fastest phase-giving oscillation. This way, changes in amplitude at the timescale

of this fastest phase-giving oscillation could be assessed (Pittman-Polletta et al.

(2014)). After convolution, the instantaneous phase of the low frequency oscilla-

tions is then given by the angle of the resulting complex time series, while the

instantaneous amplitude of the high frequency oscillation is the magnitude of the

resulting complex time series.

Next, for each frequency pair of interest, I calculated an empirical marginal

distribution of instantaneous amplitude by instantaneous phase. First, I binned

the phase domain (the interval from 0 to 360 degrees) into 20 18-degree intervals,

and identified the sets of times at which the phase of the low frequency oscillation

fell into each of these bins. Then I averaged the instantaneous amplitudes of the

high frequency oscillation at these sets of times, to obtain the mean high-frequency

amplitude observed in each (low-frequency) phase bin. This distribution of ampli-

tude by phase was then normalized by the sum of all of these mean amplitudes

to generate a probability density function. From this, I calculated the mutual in-

formation (MI) PAC metric (Tort et al. (2010)) by finding the Kullback-Liebler (KL)

distance between this distribution and the uniform distribution. This distance is
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also known as inverse entropy and is given by the difference between the Shannon

entropy of the empirical amplitude distribution and the entropy of the uniform

distribution. The entropy H of a distribution P is given by

H(P ) = −
N∑
j=1

P (j)log[P (j)] (4.1)

The KL distance between this distribution and the uniform distribution U is then

defined as

DKL(P,U) = log(N)−H(P ) (4.2)

The entropy of the uniform distribution is always log(N), where N is the number

of phase bins, because this is the maximum possible entropy value. The MI is

simply the KL distance normalized to log(N) so that it only takes values between

0 and 1. In this case, 0 would represent an empirical distribution identical to the

uniform distribution (no phase-amplitude dependence) and 1 would represent the

high frequency oscillation only having nonzero amplitude during one phase bin

of the low frequency oscillation.

In practice, due to finite data length, the MI is always nonzero, even for non-

simultaneous phase- and amplitude-giving time series (for which there can be no

phase-amplitude coupling). The size of the MI for a given pair of nonsimulta-

neous time series depends on many factors, including the frequency of fluctua-

tions in amplitude and phase. Furthermore, as it can only be between 0 and 1, the

MI cannot be normally distributed. All these factors make it difficult to tell from

the value of the MI whether it represents a difference from the ’baseline’ coupling

value we expect due to finite size effects even for nonsimultaneous time series.

Rather than identifying a distribution function, the most straightforward way to
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assess whether the MI is significantly different from this baseline distribution is

to use nonparametric testing based on surrogate data. We generated a surrogate

’baseline’ MI distribution by randomly (without replacement) selecting phase giv-

ing oscillations from one trial and pairing them with amplitude giving oscillations

from another, then calculating the resulting MI. Pairs for which the phase and am-

plitude giving oscillations came from the same trial are excluded from this distri-

bution in order to exclude the actual observed PAC in the background estimate.

The time vector for the surrogate data remains aligned by the time point of feed-

back, allowing us to account for the fact that background PAC may change over

the course of the experiment. This analysis is done on a per-subject basis such that

each subject has an individual mean surrogate MI value, and both that subjects real

data and their surrogate data are normalized to this value. We can then assign a p-

value to each subjects real normalized mean MI value by identifying where it lies

in the ensemble (normalized) surrogate distribution over all subjects. When com-

paring between two conditions (in this case, comparing trials where the choice was

rewarded versus trials where the choice was unrewarded), the surrogate distribu-

tion was calculated by selecting nonsimultaneous phase- and amplitude-giving

time series randomly from trials in both conditions.

Because the precise identity of the frequencies at which we expect to see phase-

amplitude coupling was not known in advance, exploratory analyses were per-

formed using ’comodulograms’ that covered broad ranges of frequencies. Given

the number of possible phase-amplitude pairs within the frequency ranges used,

some amount of correction for multiple comparisons is necessary. To address this

issue, I utilized the cluster-based algorithm described in (Maris & Oostenveld

(2007)). This algorithm is a means of solving the multiple comparisons problem
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by incorporating biophysically motivated constraints. Namely, we expect that the

underlying structure of biological data will cause adjacent data points to have sim-

ilar values, and therefore that real effects of experimental manipulations are likely

to appear as a cluster of adjacent data points that are all improbable under the null

hypothesis as opposed to isolated outlier values. Therefore, this algorithm utilizes

a test statistic that is calculated based on a set of adjacent points that all exhibit a

similar difference from the baseline distribution of values.

This test statistic is calculated by first comparing two data sets. In the present

study, one data set consisted of PAC values at each possible pair of frequencies,

calculated from real data from trials of one condition (correct or incorrect), and

the other data set consisted of PAC values for the same frequency pairs, calculated

from shuffled surrogate data comprised of trials from all conditions. These two

data sets are combined into one set, and then randomly partitioned into two sets,

which are each the same size as the original two, but which contain a randomly

chosen subset of the combined data. For these two randomly partitioned sets, we

calculate a t-value for the sets of observed MI at each frequency pair, using a de-

pendent samples t-test. We do this partitioning 1000 times in order to generate 1000

’permutation’ comodulograms with t-values for each frequency pair. We can now

assign a p- value to both observed and permutation t-values (at each frequency

pair), by calculating the proportion of random partitions that resulted in a larger

t-value than the given t-value. Once we have done this, for each comodulogram

we select all frequency pairs with a p-value less than an alpha level of 0.05 as clus-

ter candidates. All of the candidate frequency pairs that are adjacent to each other

are considered to be in the same cluster (Maris & Oostenveld (2007)). Each clus-

ter is then assigned a cluster-level test statistic, the sum of the t-values within the
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cluster, which depends on both the size of the cluster and the size of the t-values

of individual frequency pairs in the cluster.

Next, we used the same permutation comodulograms to test the significance

of each cluster. For each of the 1000 permutation comodulograms, we select the

largest cluster-level test statistic in order to form a permutation distribution of

cluster-level test statistics. This permutation distribution can now be used to as-

sign p-values to the test statistics arising from the clusters in the observed comod-

ulogram. If any of these p-values are below the alpha level of 0.05, we consider

that cluster significant. In the figures below, the significant clusters are outlined in

black.

4.4 RESULTS

Our analysis of total power at electrode Fz immediately after feedback was in good

agreement with previous findings in the literature (Cavanagh (2015); HajiHosseini

et al. (2012); Cohen et al. (2007)) regarding the role of the low frequency bands in

reward learning. In my analysis, I found that delta oscillations were stronger after

correct feedback (Figure 1A, C), and theta and beta oscillations were stronger after

incorrect feedback (Figure 1B, C). This finding about beta is at odds with previ-

ous results in the literature (HajiHosseini et al. (2012); Mas-Herrero et al. (2015);

Andreou et al. (2017)).

Significant phase-amplitude coupling was present between several of the fre-

quency bands studied, and was sensitive to feedback valence. Within the first 500

milliseconds after subjects were told their answer was correct, amplitude at all

beta and gamma frequencies showed increased modulation by the phase of a 3-5

Hz rhythm, (p < 0.001, cluster statistic = 723.77) accompanied by a drop in cou-
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pling of high gamma (70-100 Hz) to a 7-8 Hz rhythm (p = 0.018, cluster statistic

= −161.79; Figure 2A). Expanding the analysis window to include the first second

after feedback suggests that this coupling to 3-5 Hz phase is strongest specifically

in the high beta to low gamma band (20-60 Hz) (p < 0.001, cluster statistic = 347.22;

Figure 2B).

An exploratory data analysis with a significance level of 0.1 revealed additional

structure in the data that could prompt further investigation; the remainder of the

results in this section were analyzed at this significance level. (Note that the p-

values here to have been adjusted to correct for testing at multiple frequency pairs,

but have not been corrected by the number of tests run.) In order to assess whether

coupling was affected at even lower frequencies that may not have had a sufficient

number of cycles in this 1 second time window to allow PAC detection, I further

expanded the analysis to a 2 second long period starting 500 milliseconds before

feedback was given. Doing so revealed that there appears to be a near-significant

reduction in coupling between 2 Hz and high gamma (65-95 Hz) associated with

positive feedback (p = 0.071, clustering statistic = −55.45; Figure 2C).

The reward learning task used in this experiment is simple enough that by the

end of the experiment, subjects had reached near ceiling in terms of performance;

46.1 percent (SEM = 3.0 percent) of trial 1 responses were rewarded, while 58 per-

cent (SEM = 1.8 percent) of trial 360 responses were rewarded, with 60 percent

being the maximum optimal performance. In order to assess whether the observed

results differed early in learning before mastery had been achieved, I examined

PAC restricted solely to the first 30 correct and incorrect trials each. Doing so re-

vealed that correct feedback was associated with an increase in coupling between

4-8 Hz and 60 Hz (p = 0.068, cluster statistic = 64.91), whereas incorrect feedback
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was associated with increased coupling between 4-8 Hz and 70-90 Hz (p = 0.025,

cluster statistic = −100.07; Figure 3A). Interestingly, these effects are present in the

500 millisecond window prior to the actual feedback onset, suggesting a role in

reward anticipation (p = 0.076, cluster statistic = −58.48; Figure 3B).

4.5 DISCUSSION

To a first approximation, the results in Figure 2 are novel and appear to be in

agreement with my model of striatal dynamics, suggesting striatum may be the

source of these EEG oscillations. Specifically, my model predicts higher coher-

ence between a 3 Hz low theta/high delta and a high beta around 20 Hz during

conditions of higher dopaminergic tone, and coherence is indeed higher between

these frequencies in the rewarded condition. This suggests that the beta generated

during reward learning is in fact modulated by the delta generated by reward, in

agreement with both of these rhythms being generated within the striatum as pre-

dicted by my model. While previous studies have established that both beta and

delta are associated with positive feedback, this is the first demonstration that the

reward-associated beta is modulated by a lower frequency.

However, several aspects of the results shown in figure 2 do not necessarily

support my model and may be at odds with the literature as well. Most notably,

the frequency that is coupled with the beta in the current data is between 3 and 5

Hz, consistent with my model. However, there are several candidate definitions of

delta or theta bands that this frequency actually represents, which could include

frequencies ranging from 1 to 8 Hz. While my model makes specific predictions

about a 3 Hz low-theta frequency, it is based on data that includes a much higher 8

Hz theta (Berke (2009)), and the specific identity of the low frequency generated by



97

my model depends on properties of the input; given specific gamma frequencies

as input, an 8 Hz theta is achievable by my model (see Chapter 3). However, if

the present data are to be considered evidence for my model, it relies on the as-

sumption that the low frequency detected at electrode Fz after positive feedback

is the striatally-generated delta, which other studies have described as between 1

and 3 Hz (Cavanagh (2015); Foti et al. (2015)). It is possible that the 3-5 Hz band

in these data does not correspond to the striatal delta at all, and may represent

the 4-8 Hz theta frequency that has been reported in frontal EEG (Foti et al. (2015);

Mas-Herrero et al. (2015); Andreou et al. (2017)). Furthermore, Figure 2C shows

that there is some degree of decoupling between a 2 Hz frequency and a high

gamma in the correct feedback condition; this 2 Hz frequency may be the delta

described in the literature, providing further evidence that the 3-5 Hz band may

not be representative of the positive feedback associated delta. My model also pre-

dicts relatively specific coupling between theta and beta, and the coupling to 3-5

Hz in these data is not specific to beta, but rather is centered around a low gamma.

Gamma is typically thought to represent local activity (Whittington et al. (2011)),

so this gamma may arise from frontal cortical network activity that is patterned by

the striatal delta.

It is notable that the data analyzed here did not seem to provide evidence for

the beta associated with positive feedback that has been detected in previous stud-

ies (HajiHosseini et al. (2012); Mas-Herrero et al. (2015); Andreou et al. (2017)); in

fact, there appears to be an association between beta and negative feedback. How-

ever, there is a large amount of beta power present in both conditions, and the

immediate post-feedback beta (around 20 Hz) may not be the same as the beta

present later in the trial, which is closer to 13 Hz. The reward- associated beta
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reported in previous studies is typically a high beta, verging on low gamma (Ha-

jiHosseini & Holroyd (2015)). The later, lower beta in these data may be related

to pre-cue preparatory processing for the next trial (Kilavik et al. (2013)). The pre-

cue beta is thought to be related to attention; perhaps the reason beta is more el-

evated after negative feedback is because participants are paying more attention

to the task. The PAC shown in Figure 2B appears to be more strongly associated

with high beta, suggesting that the low-frequency modulation of beta is more as-

sociated with the earlier, feedback-related response than with the later, possibly

preparatory response.

If the PAC detected here is indeed evidence for the striatal delta/beta coupling

predicted by my model, this has implications for the role of the striatal beta in

corticostriatal communication. Several people have hypothesized that the striatal

beta represents a ’status quo’ signal that encourages maintenance of the current

state (Brittain & Brown (2014)). This has been proposed to refer not just literally to

staying still (though beta is higher during static hold; (Kilavik et al. (2013)); it may

also be the case that beta oscillations are useful as a reinforcing learning signal, en-

couraging the continuing activity of cell assemblies relevant to the current task so

that they can be tagged for potentiation (van de Vijver et al. (2011)). This fits well

with my models prediction that high-dopamine states are associated with packets

of high beta originating in striatal projection neurons, as dopamine is also thought

of as a reinforcement learning signal (Keiflin & Janak (2015)). Beta is also thought

of as a long-range synchrony signal; whereas gamma reflects activity of local cor-

tical circuits (Whittington et al. (2011)), beta oscillations travel through the basal

ganglia-thalamocortical loop (Brittain & Brown (2014)). The role of the striatally

generated delta/theta-modulated beta in this task may be to propagate learning-
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associated signals through the BG and thalamus so that they can reach cortex and

pattern local cortical gamma. This would explain why oscillatory signals originat-

ing from striatum would be detectable on EEG, as well as why gamma activity

during reward learning seems to be locally generated in frontal cortex (HajiHos-

seini & Holroyd (2015)).

While this is the first report of low-frequency coupling to the reward-associated

beta, it is not the first report of theta-beta coupling during a rewarded task. A 2013

paper by Kawasaki and Yamaguchi (Kawasaki & Yamaguchi (2013)) also finds cou-

pling between a low frequency (6 Hz) and a high beta (24 Hz) at electrode Fz dur-

ing reward anticipation, but did not examine response to feedback; this PAC oc-

curred during the period between the task cue and the response. The authors of

that study suggest that this theta-coupled beta may represent reward anticipation,

and point out that it has similar properties to the trajectory of striatal dopamine;

it is stronger for larger rewards, and is more sustained when reward is uncertain.

Examining cue-associated activity in the present data set, especially in later trials,

could confirm whether we see the same patterns in beta PAC in these data. An-

other informative analysis would be to assess whether positive feedback resulting

from the stimulus that was correct only 40 percent of the time produced stronger

PAC than positive feedback resulting from the stimulus that was correct 60 percent

of the time. If this is the case, it would bear out the prediction that this PAC is a

result of phasic increases in striatal dopamine, as dopamine release is predicted to

be higher for unexpected than expected rewards (Keiflin & Janak (2015)).

There are several avenues of inquiry that could be addressed by further anal-

ysis of the present dataset. For instance, one could test whether coherence exists

between beta and gamma frequencies if this were present, it would suggest ei-
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ther that the striatal gamma generated in my model represents a signal that can

be detected even at the level of EEG, or that the reward-associated beta could be

patterning local gamma activity. There is also the possibility of looking at activity

associated with task points besides feedback for instance, measuring PAC around

the time of cue onset or the time of the subjects response. According to models

of reward prediction error, striatal dopamine levels should be higher when the re-

ward is given earlier in learning, but after learning has occurred, striatal dopamine

levels should be highest at the time of the cue that a reward will be given (Keiflin &

Janak (2015)). Examining the time period between response and reward delivery

could also be useful; reward anticipation early in learning is associated with a slow

increase in dopamine (Keiflin & Janak (2015)). Analyzing this time period would

also help elucidate what might be occurring in Figure 3; the two gamma bands are

not predicted by my model, and may be a novel finding.
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4.6 FIGURES AND TABLES

Figure 4.1: Total power results
A. Instantaneous power (arbitrary units) in all measured frequencies averaged
over all correct trials. 0 indicates the time at which feedback was given. Color
indicates magnitude; white indicates no significant power difference from surro-
gate data at alpha = 0.05. B. Instantaneous power in all measured frequencies av-
eraged over all incorrect trials. C. Difference between correct and incorrect trials in
terms of power (A-B). Red indicates where power was stronger after correct trials;
blue indicates where power was stronger after incorrect trials. White indicates no
significant difference between correct and incorrect trials at alpha = 0.05.
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Figure 4.2: Phase amplitude coupling results
A. Phase amplitude coupling in correct trials versus a joint surrogate distribution
of shuffled data from correct and incorrect trials, over the first 0.5 seconds follow-
ing feedback. Black line indicates significant clusters. Data below 2 Hz is unavail-
able due to the short analysis time window. B. Phase amplitude coupling in correct
trials versus a joint surrogate distribution of shuffled data from correct and incor-
rect trials, over the first 1 second following feedback. C. Phase amplitude coupling
in correct trials versus a joint surrogate distribution of shuffled data from correct
and incorrect trials, over a time window encompassing 0.5 seconds before feed-
back was given until 1.5 seconds after feedback was given.
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Figure 4.3: Phase amplitude coupling in the first 30 trials
A. Phase amplitude coupling in the first 30 correct trials versus a joint surrogate
distribution of shuffled data from the first 30 correct and the first 30 incorrect trials,
over a time window encompassing 0.5 seconds before feedback was given until 1.5
seconds after feedback was given. Black line indicates significant clusters. B. Phase
amplitude coupling in the first 30 correct trials versus a joint surrogate distribution
of shuffled data from the first 30 correct and the first 30 incorrect trials, over the 0.5
seconds immediately prior to feedback. Data below 2 Hz is unavailable due to the
short analysis time window.
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