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ABSTRACT
We study the problem of composing and optimizing relational query
plans under secure multi-party computation (MPC). MPC enables
mutually distrusting parties to jointly compute arbitrary functions
over private data, while preserving data privacy from each other
and from external entities.

In this paper, we propose a relational MPC framework based
on replicated secret sharing. We define a set of oblivious opera-
tors, explain the secure primitives they rely on, and provide an
analysis of their costs in terms of operations and inter-party com-
munication. We show how these operators can be composed to
form end-to-end oblivious queries, and we introduce logical and
physical optimizations that dramatically reduce the space and com-
munication requirements during query execution, in some cases
from quadratic to linear with respect to the cardinality of the input.

We provide an efficient implementation of our framework, called
Secrecy, and evaluate it using real queries from several MPC ap-
plication areas. Our results demonstrate that the optimizations we
propose can result in up to 1000× lower execution times compared
to baseline approaches, enabling Secrecy to outperform state-of-
the-art frameworks and compute MPC queries on millions of input
rows with a single thread per party.

1 INTRODUCTION
Cryptographically secure multi-party computation, or MPC for
short, enables mutually distrusting parties to make queries of their
collective data while keeping their own sensitive data siloed from
each other and from external adversaries. Several MPC software
libraries have been designed over the past decade that offer some
combination of speed, scale, and programming flexibility (e.g., [1,
17, 20, 66, 81, 96]). MPC has been deployed to protect healthcare
data like disease surveillance, educational data like student GPAs,
financial data like credit modeling, advertising data like conversion
rates, public interest data like the gender wage gap, and more
[11, 16, 19, 29]. Nevertheless, adoption of MPC is rare, in part due
to the challenge of developing and deploying MPC without domain-
specific expertise [49].

To make secure computation more accessible to data analysts,
systems like Conclave [88], ObliDB [36], OCQ [31], Opaque [98],
SAQE [15], SDB [51, 92], Senate [79], Shrinkwrap [14], and SM-
CQL [13] are designed to compute relational queries while pro-
viding strong security guarantees. Despite their particular differ-
ences, these works aim to improve query performance either by
sidesteping expensive MPC operations or by relaxing the full MPC
security guarantees (or both).

We distinguish three main lines of work in this space: (i) works
that rely on trusted hardware (e.g., secure enclaves [36, 98]) to avoid
the inherent communication cost of MPC protocols, (ii) works that

Figure 1: MPC setting overview for secure collaborative analytics

employ hybrid execution (e.g., [13, 88]) and split the query plan into
a plaintext part (executed by the data owners) and an oblivious
part (executed under MPC), and (iii) works that trade off secure
query performance with controlled information leakage, e.g., by
revealing information about intermediate result sizes to untrusted
parties, either with noise [14, 15] or not [51, 88, 92]. More recently,
Senate [79] combines hybrid execution in the spirit of SMCQL and
Conclave with a technique that reduces joint computation under
MPC by leveraging information about data ownership. Table 1
summarizes the features of the most prominent software solutions
for relational analytics under MPC (we discuss hardware-based
approaches in Section 7).

Although the frameworks listed in Table 1 propose various types
of optimizations, these are applicable under certain conditions on
data sensitivity, input ownership, and the role of data owners in
the computation (cf. Optimization Conditions). For example, mini-
mizing the use of secure computation via hybrid execution is only
feasible when data owners can compute part of the query locally
on their plaintext data (i.e. outside the MPC boundary). Moreover,
SMCQL, SDB, and Conclave can sidestep MPC when attributes are
annotated as non-sensitive, Shrinkwrap and SAQE calibrate leak-
age based on user-provided privacy budgets, and Senate reduces
joint computation when some relations are owned by subsets of
the computing parties.

In this paper, we study the fundamental problem of composing
and optimizing MPC queries in a more challenging setting, where
all data are sensitive and data owners may not have their own
private resources to participate in the computation. In contrast to
existing work that has sought to improve MPC query performance
by either avoiding secure computation or relaxing its guarantees,
we propose a set of optimizations for end-to-end oblivious queries
that retain the full security guarantees of MPC. We contribute Se-
crecy, a framework for secure collaborative analytics that applies
these optimizations, and we find that they can improve MPC query



Framework MPC Protocol Information
Leakage

Trusted
Party

Query
Execution

Optimization
Objective Optimization Conditions

Conclave [88] Secret Sharing /
Garbled Circuits

Controlled
(Hybrid operators) Yes Hybrid Minimize the use of

secure computation

1. Data owners participate in computation
2. Data owners provide privacy annotations
3. There exists a (fourth) trusted party

SMCQL [13] Garbled Circuits /
ORAM No No Hybrid Minimize the use of

secure computation
1. Data owners participate in computation
2. Data owners provide privacy annotations

Shrinkwrap [14] Garbled Circuits /
ORAM

Controlled
(Diff. Privacy) No Hybrid Calibrate padding of

intermediate results

1. Data owners participate in computation1
2. Data owners provide privacy annotations1
and intermediate result sensitivities

SAQE [15] Garbled Circuits Controlled
(Diff. Privacy) No Hybrid Choose sampling rate

for approximate answers

1. Data owners participate in computation1
2. Data owners provide privacy annotations1
and privacy budget

Senate [79] 2 Garbled Circuits No No Hybrid Reduce joint computation
to subsets of parties

1. Data owners participate in computation
2. Input or intermediate relations are owned
by subsets of the computing parties

SDB [51, 92] 3 Secret Sharing Yes
(operator dependent) No Hybrid Reduce data encryption

and decryption costs
1. Data owner participates in computation
2. Data owner provides privacy annotations

Secrecy Repl. Secret Sharing No No End-to-end
under MPC

Reduce MPC costs
(Section 4) None

1 Shrinkwrap and SAQE build on top of SMCQL’s information flow analysis and inherit its optimizations along with their conditions.
2 Senate provides security against malicious parties whereas all other systems adopt a semi-honest model.
3 SDB adopts a typical DBaaS model with one data owner and does not support collaborative analytics.

Table 1: Summary of MPC-based software solutions for relational analytics. Hybrid query execution is feasible when data owners participate
in the computation. The rest of the optimizations supported by each system are applicable under one or more of the listed conditions.

performance by orders of magnitude. To the best of our knowledge,
this is the first work to report results for oblivious queries on rela-
tions with up to millions of input rows, entirely under MPC, and
without any information leakage or need for trusted hardware.

1.1 Framework overview
Figure 1 gives an overview of our MPC setting. A set of k data
owners that wish to compute a public query on their private data
distribute secret shares of the data to three untrusted computing
parties.We adopt replicated secret sharing protocols (cf. Section 2.2),
according to which each party receives two shares per input. The
computing parties execute the query under MPC and open their
results to a learner. Making such architectures for secure database
services practical has been a long-standing challenge in the data
management community [3, 4]. We design our MPC framework,
Secrecy, on the following principles:

1. Decoupling data owners from computing parties. Contrary
to existing works, Secrecy decouples the role of a computing party
from that of a data owner. Our optimizations do not make any
assumptions about data ownership and are all applicable even when
none of the data owners participates in the computation.

2. No information leakage. Secrecy retains the full MPC security
guarantees, that is, it reveals nothing about the data and the ex-
ecution metadata to untrusted parties. It completely hides access
patterns and intermediate result sizes.

3. No reliance on trusted execution environments. Secrecy
does not rely on any (semi-)trusted party, honest broker or spe-
cialized secure hardware. To make our techniques accessible and
remove barriers for adoption, we target general-purpose compute
and cloud.

4. End-to-endMPCexecution. Secrecy does not require data own-
ers to annotate attributes as sensitive or non-sensitive and does

not try to reduce the amount of secure computation. Instead, it
executes all query operators under MPC and protects all attributes
to prevent inference attacks that exploit correlations or functional
dependencies in the data.

1.2 Contributions
We define a set of oblivious operators based on replicated secret
sharing and describe how they can be composed to build complex
MPC query plans. Our contributions are summarized as follows:
• We analyze the cost of oblivious operators and their com-
position with respect to the number of required operations,
messages, and communication rounds under MPC.
• Based on this cost analysis, we propose a rich set of optimiza-
tions that significantly reduce the cost of oblivious queries:
(i) database-style logical transformations, such as operator
re-ordering and decomposition, (ii) physical optimizations,
including operator fusion and message batching, and (iii)
secret-sharing optimizations that leverage knowledge about
the MPC protocol.
• We provide efficient implementations of the oblivious oper-
ators and corresponding optimizations in a new relational
MPC framework called Secrecy.
• We evaluate Secrecy’s performance and the effectiveness of
the proposed optimizations using real and synthetic queries.
Our experiments show that Secrecy outperforms state-of-the-
art MPC frameworks and scales to much larger datasets.

Wewill release Secrecy as open-source andmake our experiments
publicly available. This work aims to make MPC more accessible
to the data management community and catalyze collaborations
between cryptographers and database experts.

2 BACKGROUND ON MPC
Each party in MPC has one or more of the following roles:

2



• Input party or data owner that provides some input data.
• Computing party, e.g. a cloud provider that provides re-
sources (machines) to perform the secure computation.
• Result party or learner, e.g. a data analyst who learns the
output of the computation.

A party may have any combination of the above roles; in fact, it
is quite common to have data owners acting as computing and/or
result parties at the same time. This is also supported by Secrecy
without affecting the security guarantees or the proposed optimiza-
tions. In addition, a party in MPC is a logical entity and does not
necessarily correspond to a single compute node. For example, a
cloud or IaaS provider can play the role of a single computing party
that internally distributes its own part of the computation across a
cluster of machines. Secrecy does not make any assumption about
the parties’ actual deployment, so it could be perfectly possible
to deploy each party at competing providers or to have multiple
providers in the same datacenter in a federated cloud.

Before using MPC, data owners must agree on the computation,
in our setting a relational query, that they want to execute over the
union of their private data. This query is public, i.e., known to all
parties regardless of their role. To evaluate the query, computing
parties execute an identical computation and exchange messages
with each other.

2.1 Security guarantees and threat model
MPC broadly offers two types of security guarantees: privacy, mean-
ing that nobody learns more than (what they can infer from) their
own inputs and outputs, and correctness, meaning that the parties
are convinced that the output of the calculation is accurate. These
guarantees hold even in the presence of a dishonest adversary who
controls a (strict) subset of the computing parties; different MPC
protocols can withstand different adversary size and threat posture.

Most MPC protocols consider an adversary who corrupts an
arbitrary threshold T of the N computing parties, although more
complicated access control policies are possible. Also, most proto-
cols consider an adversary who either passively attempts to break
privacy while following the protocol (a “semi-honest” adversary)
or one who is actively malicious and is therefore willing to deviate
from the prescribed protocol arbitrarily. In this work, we focus
on the setting of a semi-honest adversary, noting that there exist
general transformations to the stronger malicious setting [37]. We
discuss malicious security further in Section 8.

Concretely, the threat model of this work is as follows: we con-
sider three computing parties, where the adversary has complete
visibility into and control over the network through which these
parties exchange messages. The adversary may add, drop, or modify
packets at any time. Additionally, the adversary can passively mon-
itor 1 of the 3 computing parties of their choice from the beginning
of the protocol execution. Here, “passive monitoring” means that
the adversary can view the contents of all messages received by
this party and any data stored on the machine, but they cannot
alter the execution of the corrupted party. We also assume that the
software faithfully and securely implements the MPC protocol; that
is, formal verification is out of scope for this work.

2.2 (Replicated) Secret Sharing
MPC protocols follow one of two general techniques: obscuring the
truth table of each operation using Yao’s garbled circuits [95], or
interactively performing operations over encoded data using secret
sharing [83]. Garbled circuits are an effective method to securely
compute Boolean circuits in high-latency environments because
they only need a few rounds of communication between comput-
ing parties. Secret sharing-based approaches require less overall
bandwidth and support more data types and operators.

This work follows the approach of 3-party replicated secret shar-
ing by Araki et al. [8]. We encode an ℓ-bit string of sensitive data s
(secret ) by splitting it into 3 shares s1, s2, and s3 that individually
have the uniform distribution over all possible n-bit strings (for
privacy) and collectively suffice to specify s (for correctness). Next,
we give each party Pi two of the shares si and si+1. Hence, any 2
parties can reconstruct a secret, but any single party cannot.

We consider two secret sharing formats: boolean secret shar-
ing in which s = s1 ⊕ s2 ⊕ s3, where ⊕ denotes the boolean
XOR operation, and additive or arithmetic secret sharing in which
s = s1 + s2 + s3 mod 2ℓ .

The computing parties are placed on a logical ‘ring,’ as shown
in Figure 1. Given boolean secret sharings of two strings s and t
or additive secret sharings of two values u and v , we describe next
how the parties can collectively compute secret shares of many
operations, without learning anything about the secrets.

2.3 Oblivious primitives
In this section, we briefly explain all primitives we use in our work.

Boolean operations. The parties can compute shares of s ⊕ t
locally, i.e. without communication, by simply XORing their shares
si ⊕ ti . To compute shares of the bitwise AND operation between s
and t , denoted with s · t or simply st , one round of communication
is required. Observe that st = (s1 ⊕ s2 ⊕ s3) · (t1 ⊕ t2 ⊕ t3). After
distributing the AND over the XOR and doing some rearrangement
we have st = (s1t1 ⊕ s1t2 ⊕ s2t1) ⊕ (s2t2 ⊕ s2t3 ⊕ s3t2) ⊕ (s3t3 ⊕
s3t1 ⊕ s1t3). In our replicated secret sharing scheme, each party
has two shares for s and two shares for t . More precisely, P1 has
s1,s2,t1,t2 whereas P2 has s2,s3,t2,t3, and P3 has s3,s1,t3,t1. Using
its shares, each party can locally compute one of the three terms
(in parentheses) of the last equation and this term corresponds to
its boolean share of st . The parties then XOR this share with a
fresh sharing of 0 (which is created locally [8]) so that the final
share is uniformly distributed. In the end, each party must send the
computed share to its successor on the ring (clockwise) so that all
parties have two shares of st (without knowing the actual value of
st ) and the replicated secret sharing property is preserved. Logical
OR and NOT operations are based on the XOR and AND primitives.

Equality/Inequality. The parties can collectively form a secret
sharing of the bit b that equals 0 if and only if s = t by first comput-
ing a sharing of s ⊕ t and then taking the boolean-AND of each of
the bits of this string. Similarly, the parties can compare whether
s < t by checking equality of bits from left to right and taking the
value of si at the first bit i in which the two strings differ.

By arranging the n fanin-2 AND gates in a log-depth tree, the
number of communication rounds required for secure equality
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(=, <>) and inequality (<,>,≥,≤) is ⌈log ℓ⌉ and ⌈log(ℓ + 1)⌉ respec-
tively, where ℓ is the length of the operands in number of bits. For
example, to check equality (resp. inequality) between two 64-bit
integers, we need ⌈log 64⌉ = 6 (resp. ⌈log 65⌉ = 7) rounds. Note
that it is possible to compute (in)equality in a constant number of
rounds [30], but the constants are worse for typical string lengths.

Some special cases of (in)equality operators can be further op-
timized. Less-than-zero checks (s < 0) require a secret sharing of
the most significant bit of s , which the parties already possess, so
no communication is needed. Equality with a public constant s ?

= c
can also be optimized by having the data owners compute two
subtractions s − c and c − s locally (in the clear) and secret share
the results. This way, checking s = c is reduced in two oblivious
inequalities s − c < 0 and c − s < 0, both of which are local. This
optimization exists in other MPC frameworks as well [1], and we
show later how we use it to evaluate selection locally.

Compare-and-swap. The parties can calculate the min andmax of

two strings. Setting b = s
?
< t , we can use a multiplexer to compute

s ′ = min{s,t } = bs ⊕ (1 ⊕ b)t and t ′ = max{s,t } = (1 ⊕ b)s ⊕ bt .
Evaluating these formulas requires ⌈log(ℓ + 1)⌉ rounds for the
inequality plus two more rounds: one for exchanging shares of the
computed bit b, and a second one to exchange the shares of the
results of the four ANDs required by the multiplexer. Compare-and-
swap overwrites the original strings s and t .

Sort and shuffle. A bitonic sorter, such as Batcher’s sort [61],
combines O (n log2 n) compare-and-swap operators with a data-
independent control flow. We can obliviously shuffle values in a
similar fashion: each party appends a new attribute that is populated
with locally generated random values, sorts the values on this new
attribute, and then discards the new attribute (although we remark
that faster oblivious shuffle algorithms are possible).

Boolean addition. In case s and t are integers, computing the
share of s + t can be done in ℓ rounds of communication using a
ripple-carry adder [59]. Rounds can be further reduced to O (log ℓ)
with a parallel prefix adder, at the cost of exchanging more data.

Arithmetic operations. Addition using additive shares is more
efficient. Given additive shares of two secrets u and v , parties can
compute u +v locally. Multiplication u ·v is equivalent to a logical
AND using boolean shares, so it requires one round of communica-
tion as explained above. Scalar multiplication is local.

Conversion.We can convert between additive and boolean shar-
ings [68] by securely computing all of the XOR and AND gates in a
ripple-carry adder. One special case of conversion that is useful in
many cases is the boolean-to-arithmetic conversion of shares for
single-bit secrets. This conversion can be done in two rounds with
the simple protocol used in [1]. We explain how we leverage this
optimization to speedup oblivious aggregations later.

3 OBLIVIOUS RELATIONAL OPERATORS
In this section, we define the oblivious operators of Secrecy, analyze
their cost, and describe how they can be composed. At a high level,
oblivious selection requires a linear scan over the input relation, join
and semi-join operators require a nested-loop over the two inputs,
whereas order-by, distinct, and group-by are based on oblivious

sorting. In all cases, the operator’s predicate is evaluated under
MPC using the primitives of Section 2.3.

Our oblivious operators hide both access patterns and output size
from the computing parties. We hide access patterns by implement-
ing the operator in a way that makes its control-flow independent
of the input data so that it incurs exactly the same accesses for all
inputs of the same size. In practice, this means that the implementa-
tion does not include any if statements that depend either directly
or indirectly on the input data. Also, all operators except PROJECT
and ORDER-BY introduce a new single-bit attribute that stores the
(secret-shared) result of a logical or arithmetic expression evaluated
under MPC. This extra attribute denotes whether the respective
tuple belongs to the output of an oblivious operator and is always
discarded before opening the final result to the learner(s). Along
with ‘masking’ that we describe below, the single-bit attribute en-
ables the computing parties to jointly apply each operator without
learning the actual size of any intermediate or output relation.

3.1 Individual operators
Let R, S , and T be relations with cardinalities |R |, |S |, and |T | re-
spectively. Let also t[ai ] be the value of attribute ai in tuple t . To
simplify the presentation, we describe how each operator is com-
puted over the logical (i.e. secret) relations and not the actual shares
distributed across parties. That is, when we say that “a computa-
tion is applied to a relation R and defines another relation T ”, in
practice this means that each computing party begins with shares
of R, performs some MPC operations, and ends with shares of T .

PROJECT. Oblivious projection has the same semantics as the
non-oblivious operation.

SELECT. An oblivious selection with predicate φ on a relation R
defines a new relation:

T = {t ∪ {φ (t )} | t ∈ R}

with the same cardinality as R, i.e. |T | = |R |, and one more attribute
for each tuple t ∈ R that contains ϕ’s result when applied to t (each
party has two shares of the actual result according to the replicated
secret sharing protocol). The result is a single bit denoting whether
the tuple t is included in T (1) or not (0). The predicate ϕ can be
an arbitrary logical expression with atoms that may also include
arithmetic expressions (+,∗,=,>,<,,,≥,≤). Such expressions are
evaluated under MPC using the primitives of Section 2.3. Note that,
in contrast to a typical selection in the clear, oblivious selection
defines a relation with the same cardinality as the input relation,
i.e., it does not remove tuples from the input so that the size of the
output remains hidden to the computing parties.

JOIN. An oblivious θ -join between two relations R and S , denoted
with R ▷◁θ S , defines a new relation:

T = {(t ∪ t ′ ∪ {θ (t ,t ′)}) | t ∈ R ∧ t ′ ∈ S }

where t ∪ t ′ is a new tuple that contains all attributes of t ∈ R
along with all attributes of t ′ ∈ S , and θ (t ,t ′) is θ ’s result when
applied to the pair of tuples (t ,t ′). This result is a cartesian product
of the input relations (R × S), where each tuple is augmented with
a single bit (0/1) denoting whether the tuple t “matches” with tuple
t ′ according to θ . Generating the cartesian product is inherent to
general oblivious join algorithms (we discuss special join instances
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in Section 7). Like selections, the join predicate can be an arbitrary
logical expression with atoms that may also include arithmetic
expressions. Join is the only oblivious operator in Secrecy that
generates a relation with cardinality larger than the cardinalities of
its inputs.

SEMI-JOIN. An oblivious (left) semi-join between two relations R
and S on a predicate θ , denoted with R ⋉θ S , defines a new relation:

T = {(t ∪ {
∨
∀t ′∈S

θ (t ,t ′)}) | t ∈ R}

with the same cardinality as R, i.e. |T | = |R |, and one more at-
tribute that stores the result of the formula

∨
∀t ′∈S θ (t ,t

′) indicat-
ing whether the row in R “matches” with any row in S .

ORDER-BY. Oblivious order-by on attribute ak has the same se-
mantics as the non-oblivious operator, where each tuple is assigned
an index i such that:

∀ti ,tj ∈ R,i < j ⇐⇒



ti [ak ] < tj [ak ] (ASC)

ti [ak ] > tj [ak ] (DESC)

The tuple ordering is computed underMPCusing oblivious compare-
and-swap operations (cf. Section 2.3). Hereafter, sorting a relation
R withm attributes on ascending (resp. descending) order of an at-
tribute ak ,1 ≤ k ≤ m, is denoted as s↑ak (R) = T (resp. s↓ak (R) = T ).
We define order-by on multiple attributes using the standard se-
mantics. For example, sorting a relation R first on attribute ak
(ascending) and then on an (descending) is denoted as s↑ak ↓an (R).

An order-by operator is often followed by a LIMIT that defines
the number of tuples the operator must output. Limit in the obliv-
ious setting has the same semantics. Order-by with limit is the
only operator in Secrecy that may output a relation with cardinality
smaller than the cardinality of its input.

GROUP-BY with aggregation. An oblivious group-by aggrega-
tion on a relation R withm attributes defines a new relation T =
{ f (t ′) | t ′ = t ∪ {aд ,av }, t ∈ R} with the same cardinality as
R, i.e. |T | = |R |, and two more attributes: aд that stores the re-
sult of the aggregation, and av that denotes whether the tuple
t is ‘valid’, i.e., included in the output. Let ak be the group-by
key and aw the attribute whose values are aggregated. Let also
S =

[
t1[aw ],t2[aw ], ...,tu [aw ]

]
be the list of values for attribute

aw for all tuples t1,t2, ...,tu ∈ R that belong to the same group, i.e.,
t1[aw ] = t2[aw ] = ... = tu [aw ], 1 ≤ u ≤ |R |. The function f in T ’s
definition above is defined as:

f (ti ) =



ti [aд] = aдд(S ),ti [av ] = 1, i = u ′, 1 ≤ u ′ ≤ u

tinv , i , u
′, 1 ≤ i ≤ u

where tinv is a tuple with tinv [av ] = 0 and the rest of the attributes
set to a special invalid value, while aдд(S ) is the aggregation func-
tion, e.g. MIN, MAX, COUNT, SUM, AVG. Put simply, oblivious aggre-
gation sets the value of aд for one tuple per group equal to the
result of the aggregation for that group and updates (in-place) all
other tuples with “garbage.” Groups can be defined on multiple
attributes (keys) using the standard semantics. Global oblivious
aggregation on attributes of R is defined by assigning all tuples in
R to a single group.

DISTINCT. The oblivious distinct operator is a special case of
group-by with aggregation, assuming that ak is not the group-by
key as before but the attribute where distinct is applied. For distinct,
there is no aд attribute and the function f is defined as follows:

f (ti ) =



ti [av ] = 1, i = u ′, 1 ≤ u ′ ≤ u

ti [av ] = 0, i , u ′, 1 ≤ i ≤ u

In simple words, distinct marks one tuple per ‘group’ as ‘valid’ and
the rest as ‘invalid’.

MASK. Let tinv be a special tuple with invalid attribute values.
A mask operator with predicate p on a relation R defines a new
relation T = { f (t ) | t ∈ R}, where:

f (t ) =



t , p (t ) = 0

tinv , p (t ) = 1

Mask is used at the end of the query, just before opening the result
to the learner, and only if there is no previous masking.

3.2 Cost of oblivious operators
We now describe the implementation of oblivious operators and
analyze their individual costs before discussing plan composition
in the next section. In Secrecy, we have chosen to provide general
implementations that favor composability. Building a full-fledged
MPC planner that considers alternative operator implementations
and their costs is out of the scope of this paper but certainly an
exciting opportunity for follow-up work (cf. Section 8).

We consider two types of costs for individual operators: (i) oper-
ation costs defined in terms of the total number of MPC operations
per party, which include local computation and message exchange,
and (ii) synchronization costs for inter-party communication, which
we measure by the number of communication rounds across parties.
All secret-shared data in our framework reside in main memory,
therefore, we do not consider disk I/O costs.

A communication round corresponds to a single clockwise data
exchange on the ring between the 3 computing parties. In practice,
this is a barrier, i.e. a synchronization point in the distributed com-
putation, where parties must exchange data in order to proceed. In
general, the fewer rounds an operation needs the faster it reaches
completion since each party can make more progress without being
blocked on other parties. Table 2 shows the number of operations
as well as the communication rounds required by each individual
operator with respect to the input size. Throughout this section,
we use n,m to refer to the cardinalities of input relations and ℓ to
denote the length (in bits) of a secret-shared value.

PROJECT. The cost of an oblivious PROJECT is the same as its
plaintext counterpart: it does not require any communication, as
each party can locally disregard the shares corresponding to the
filtered attributes.

SELECT. In terms of operations, oblivious SELECT performs a lin-
ear scan of the input relation R. Because predicate evaluation can
be computed independently for an arbitrary number of rows, the
number of rounds (i.e., synchronization barriers) to perform the
SELECT equals the number of rounds required to evaluate the se-
lection predicate on a single row; it is independent of the size of R.
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Operator #operations (#messages) #communication rounds

SELECT O (n) O (1)
JOIN O (n ·m) O (1)

SEMI-JOIN O (n ·m) O (logm)

ORDER-BY O (n · log2 n) O (log2 n)
DISTINCT O (n · log2 n) O (log2 n)
GROUP-BY O (n · log2 n) O (n)

MASK O (n) O (1)
Table 2: Summary of operation and synchronization costs for gen-
eral oblivious relational operators w.r.t. the cardinalities (n, m) of
the input relation(s). The asymptotic number of operations equals
the asymptotic number ofmessages per computing party, as each in-
dividual operation on secret shares involves a constant number of
message exchanges under MPC. These messages can be batched in
rounds as shown in the rightmost column. JOIN is the most expen-
sive operator in number of operations/messages whereas GROUP-
BY is the most expensive operator in number of rounds.

In Section 4.4, we describe a technique we use in Secrecy that can
reduce selections to local operations.

JOIN. Oblivious JOIN is the most expensive operation in terms of
operation cost as it requires a nested-loop over the input relations
to check all possible pairs (n ·m); however, the number of commu-
nication rounds in the oblivious JOIN is independent of the input
sizes n and m. As in the case of SELECT, the number of rounds
only depends on the join predicate. For equality joins, each one of
the n ·m equality checks requires ⌈log ℓ⌉ rounds (where ℓ is the
length of the join attributes in bits) and is independent of others,
hence, the whole join can be done in ⌈log ℓ⌉ rounds. Range joins are
more expensive. A range join with predicate of the form R.a ≤ S .b,
where a, b are attributes of the input relations R and S , requires
⌈log(ℓ + 1)⌉ rounds in total. The constant asymptotic complexity
with respect to the input size holds for any θ -join.

SEMI-JOIN. Oblivious semi-joins require the same number of op-
erations as the θ -joins but the number of communication rounds
is different. A semi-join R ⋉θ S requires O (log |S |) communication
rounds to evaluate the formula

∨
∀t ′∈S θ (t ,t

′)} from Section 3.1.
This formula requires ORing |S | bits, which can be done in ⌈log |S |⌉
communication rounds by using a binary tree of logical operators,
as in the case of equality and inequality (cf. Section 2.3).

ORDER-BY. Oblivious ORDER-BY relies on Bitonic sort that per-
forms O (n · log2 n) compare-and-swap operations in logn (1+logn)

2
stages, where each stage involves n

2 independent compare-and-
swap operations that can be performed in bulk. In this case, the
number of messages required by each oblivious compare-and-swap
is linear to the number of attributes in the input relation, however,
the number of rounds depends only on the cardinality of the input.
Given the number of rounds of each compare-and-swap operation
(cf. Section 2.3), the total number of rounds required by ORDER-BY is:

logn · (1 + logn) · (1 + 1/2 ·
⌈
log(ℓ + 1)

⌉
)

where n is the cardinality of the input relation, and ℓ is the length of
the sort attribute in bits. The analysis assumes one sorting attribute.
Adding more sorting attributes increases the number of rounds in
each comparison by a small constant factor.

1 sort input relation R on ak ;
2 for each pair of adjacent tuples (ti , ti+1), 0 ≤ i < |R |, do

//Are tuples in the same group?

3 let b ← ti [ak ]
?
= ti+1[ak ];

//Aggregation

4 ti+1[aд ]← b · aдд
(
ti [aw ], ti+1[aw ]

)
+ (1 − b ) · ti+1[aд ];

5 ti [av ]← ¬b ;
//Masking

6 for each attribute a , av of ti do
7 let r be an invalid value;
8 a ← b · r + (1 − b ) · a;

9 shuffle R;
Algorithm 1: Main control-flow of oblivious group-by

GROUP-BY. The logic of oblivious group-by is given in Algo-
rithm 1. Let ak be the group-by key, aw the aggregated attribute,
aд the extra attribute that stores the aggregation result, and av
the ‘valid’ bit (same notation as in Section 3.1). The first step is
to sort the input relation on the group-by key (line 1). Then, the
operator scans the sorted relation and, for each pair of adjacent
tuples, applies an oblivious equality comparison on ak (line 3). The
result of this comparison (b) is used to aggregate (line 4), set the
‘valid’ bit (line 5), and “mask” (lines 6-8) obliviously. Aggregation
is updated incrementally based on the values of the last pair of
tuples (line 4). MIN, MAX, COUNT, and SUM can be easily evaluated
this way but for AVG we need to keep the sum (numerator) and
count (denominator) separate. When the scan is over, the algorithm
requires a final shuffling (line 9) to hide the group “traces” in case
the relation (or a part of it) is opened to the learner; this step is
only needed if no subsequent sorting is required in the query plan,
which would obliviously re-order R anyway.

This operator is the most expensive in terms of communication
rounds because the aggregation function is applied sequentially on
each pair of adjacent tuples. Accounting for the initial sorting and
final shuffling, the total number of rounds required by GROUP-BY is:

(n − 1) · caдд + logn · (1 + logn) · (2 +
⌈
log(ℓ + 1)

⌉
)

where caдд is the number of rounds required to apply the aggrega-
tion function to a pair of rows (independent of n).

Aggregations.Aggregations can be usedwithout a GROUP-BY clause.
In this case, applying the aggregation function requires n − 1 op-
erations in total but the number of communication rounds can be
reduced to O (logn) by building a binary tree of function evalua-
tions. This optimization makes aggregations efficient in practice,
and other works have used it to reduce the number of rounds in
GROUP-BY if the data owners agree to reveal the group sizes [22, 55].

DISTINCT. Distinct is a special case of group-by where ak is in
this case the distinct attribute. As such, it follows a slightly different
version of Algorithm 1 where, for each pair of adjacent tuples, we
apply the equality comparison on ak (line 3) and set the distinct bit
ti+1[av ] to ¬b (the value t0[av ] of the first tuple is set to 1). Lines
4-9 are simply omitted in this case because distinct does not require
aggregation, masking or shuffling. Crucially, each evaluation of the
loop is independent, so the communication rounds of the equality
comparisons (line 3) can be performed in bulk for all pairs of tuples.
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Figure 2: Example composition of two oblivious selections and a θ -
join. The single-bit attributes ϕ1, ϕ2, and θ are used to compute the
final attribute ec that denotes whether a row belongs to the result
T and is secret-shared amongst computing parties. The cost of the
composition in this case is the cost of evaluating the logical expres-
sion ec = ϕ1 ∧ϕ2 ∧ θ under MPC, for each tuple in T . All |T | expres-
sions are independent and can be evaluated in bulk within two com-
munication rounds, one for each logical AND (∧) in ec ’s formula.

Hence, oblivious DISTINCT requires the same asymptotic number
of operations as ORDER-BY because its operation cost is dominated
by the initial sort (line 1). DISTINCT’s communication cost is also
dominated by that of ORDER-BY; the only extra effort is to compute
n − 1 equality checks in bulk, yielding the following total cost:

logn · (1 + logn) · (1 + 1/2 ·
⌈
log(ℓ + 1)

⌉
) + ⌈log ℓ⌉

MASK. The cost of MASK is similar to the cost of SELECT; it requires
n operations and a constant number of communication rounds to
apply the masking function.

3.3 Composing oblivious operators
Consider the composition of two operators defined as applying the
second operator to the output of the first operator. One merit of our
approach is that all operators of Section 3.1 reveal nothing about
their output or access patterns, so they can be arbitrarily composed
into an end-to-end oblivious query plan without special treatment.

Let op1 and op2 be two oblivious operators. In general, the com-
position op2 (op1 (R)) has an extra cost (additional to the cost of
applying the operators op1 and op2) because it requires evaluating
under MPC a logical expression ec for each generated tuple. We
define the composition cost of op2 (op1 (R)) as the cost of evaluating
ec on all tuples generated by op2. The expression ec depends on
the types of operators, as described below. Table 3 summarizes the
composition costs for different operator pairs in Secrecy.

Composing selections and joins. Recall that selections, joins,
and semi-joins append a single-bit attribute to their input relation
that indicates whether the tuple is included in the output. To com-
pose a pair of such operators, we compute both single-bit attributes
and take their conjunction under MPC. For example, for two selec-
tion operators σ1 and σ2 with predicates φ1, φ2, the composition
σ2 (σ1 (R)) defines a new relationT = {t ∪ {ec = φ1 (t ) ∧φ2 (t )} | t ∈
R}. The cost of composition in this case is the cost of evaluating
the expression φ1 (t ) ∧ φ2 (t ) for each tuple in T . This includes |T |
boolean ANDs all of which are independent and can be evaluated

in one round. An example of composing two oblivious selections
with an oblivious θ -join is given in Figure 2.

Composing distinct with other operators.Applying a selection
or a (semi-)join to the result of DISTINCT requires a single commu-
nication round in order to compute the conjunction of the selection
or (semi-)join bit with the bit av generated by distinct. However,
applying DISTINCT to a relation derived by a selection, a (semi-)
join or a group-by operator, requires some care. Consider the case
where DISTINCT is applied to the output of a selection. Let aϕ be
the attribute added by the selection and ak be the distinct attribute.
To set the distinct bit av at each tuple, we need to make sure there
are no other tuples with the same attribute ak , with aϕ = 1, and
whose distinct bit av is already set. More formally:

ti [av ] =



1, iff ∄tj ,i , j : ti [ak ] = tj [ak ] ∧ tj [aϕ ] = 1 ∧ tj [av ] = 1

0, otherwise

To evaluate the above formula, the distinct operator must process
tuples sequentially and the composition itself requires n rounds,
where n is the cardinality of the input. This results in a significant
increase over the constant number of rounds required by distinct
when applied to a base relation (cf. Table 2). Applying distinct to the
output of a group-by or (semi-)join incurs a linear number of rounds
for the same reason. In Section 4.3, we propose an optimization
that reduces the cost of these compositions to a logarithmic factor.

Composing group-bywith other operators.To perform a group-
by on the result of a selection or (semi-)join, the group-by operator
must apply the aggregation function to all tuples in the same group
that are also included in the output of the previous operator. Con-
sider the case of applying group-by to a selection result. To identify
the aforementioned tuples, we need to evaluate the formula:

b ← b ∧ ti [aϕ ] ∧ ti+1[aϕ ]

at each step of the for-loop in Algorithm 1, where b is the bit that
denotes whether the tuples ti and ti+1 belong to the same group
(line 3 in Algorthm 1) and aϕ is the selection bit. This formula
includes two logical ANDs that require two communication rounds.
Applying group-by to the output of a (semi-)join has the same
composition cost; in this case, we replace aϕ in the above formula
with the (semi-)join attribute aθ .

To apply a selection to the result of GROUP-BY, we must compute
a logical AND between the selection bit aϕ and the ‘valid’ bit av of
each tuple generated by the group-by. The cost of composition in
number of rounds is independent of the group-by result cardinality,
as all logical ANDs can be applied in bulk. The same holds when
applying a (semi-)join to the output of group-by. Finally, composing
two group-by operators has the same cost with applying GROUP-BY
to the result of selection, as described above.

Composing order-by with other operators. Composing ORDER-
BY with other operators is straight-forward. Applying an operator
to the output of order-by has zero composition cost. The converse
operation, applying ORDER-BY to the output of an operator, requires
a few more boolean operations per oblivious compare-and-swap
(due to the attribute/s appended by the previous operator), but does
not incur additional communication rounds.
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Operator pair(s) #comm. rounds

{SELECT, (SEMI-)JOIN}→ DISTINCT O (n)
DISTINCT→ {SELECT, (SEMI-)JOIN} O (1)

SELECT↔ (SEMI-)JOIN O (1)
GROUP-BY→ {SELECT, (SEMI-)JOIN} O (1)
{SELECT, (SEMI-)JOIN}→ GROUP-BY O (n)

{GROUP-BY, DISTINCT}↔ {GROUP-BY, DISTINCT} O (n)
Table 3: Summary of composition costs in number of rounds for
pairs of oblivious operators in Secrecy w.r.t the number of generated
tuples (n). Arrows denote the order of applying the two operators.
Composition incurs a small constant number of boolean operations
per tuple, so the cost in number of operations is O (n) for all pairs.

4 OPTIMIZATIONS FOR OBLIVIOUS QUERIES
In this section, we present the set of optimizations in Secrecy: logical
transformation rules, such as operator reordering and decomposi-
tion (Section 4.2), physical optimizations, such as message batching
and operator fusion (Section 4.3), and secret-sharing optimizations
that further reduce the number of communication rounds for certain
operators (Section 4.4). Finally, in Section 4.5, we show concrete
examples of the cost reduction our optimizations achieve when
applied on real-world queries.

Target queries. In this work, we focus on collaborative analytics
under MPC where two or more data owners want to make queries
on their collective data without compromising privacy. We consider
all query inputs as sensitive and assume that data owners wish
to protect their raw data and avoid revealing attributes of base
relations in query results. For example, employing collaborative
MPC to compute a query that includes a patient’s name along with
their diagnosis in the SELECT clause would be pointless. Thus, we
target queries that return global or per-group aggregates and/or
distinct results.

4.1 Optimization rationale
Cost-based query optimization on plaintext data relies on selectivity
estimation to reduce the size of intermediate results. The oblivious
operators in Secrecy, however, hide the true size of their results by
producing fixed-size outputs for all inputs of the same cardinality.
As a consequence, traditional cost-based optimization techniques
for relational queries are not always effective when optimizing
plans under MPC. Consider, for instance, the case of the ubiquitous
“filter push-down” transformation rule. Since oblivious selections
do not reduce the size of intermediate data, this transformation
does not improve the cost of operators following the filter.

To define optimizations that are effective under MPC, we instead
aim to minimize the cost of oblivious queries. The total cost of a
query plan can be computed as a function of the individual costs
provided in Tables 2 and 3. In particular:

• The operation cost, which is determined by the total num-
ber of operations and messages per party (Section 3.2).
• The synchronization cost, given by the number of com-
munication rounds across parties (Section 3.2).
• The cost of composition, which is also measured in num-
ber of operations and communication rounds (Section 3.3).

Observations. The optimization rules we present in this section
are guided by the following observations:

(1) With the exception of LIMIT, oblivious operators never re-
duce the size of intermediate data.

(2) JOIN is the only operator that produces an output larger
than its input.

(3) The synchronization cost of the blocking operators, ORDER-BY,
GROUP-BY, and DISTINCT, depends on the size of their input.

(4) When DISTINCT follows a selection, a (semi-)join or a group-
by, the total asymptotic cost of composition increases from
a constant to a linear number of rounds w.r.t. the input size.

4.2 Logical transformation rules
Guided by observations (1)-(3), we propose three logical transforma-
tion rules that reorder and decompose pairs of operators to lower
the cost of oblivious query plans. Although non-standard, the rules
we describe in this section are valid algebraic transformations for
plaintext queries and there are no special applicability conditions
in the secure setting.

4.2.1 Blocking operator push-down. Blocking oblivious operators
(GROUP-BY, DISTINCT, ORDER-BY) materialize and sort their entire
input before producing any output tuple. Contrary to a plaintext
optimizer that would most likely place sorting after selective op-
erators, in MPC we have an incentive to push blocking operators
down, as close to the input as possible. Since oblivious operators
do not reduce the size of intermediate data, sorting the input is
clearly the best option. Blocking operator push-down reduces all
three cost factors and can provide significant performance improve-
ments in practice, even if the asymptotic costs do not change. As an
example, consider the case of applying ORDER-BY before a selection.
Recall that the number of operations and messages required by the
oblivious ORDER-BY depends on the cardinality and the number of
attributes of the input relation (cf. Section 3.2). Applying the selec-
tion after the order-by reduces the actual (but not the asymptotic)
operation cost, as selection appends one attribute to its input.

4.2.2 Join push-up. The second transformation rule is guided by
observation (2) that JOIN is the only operator whose output is larger
than its input. Based on this, we have an incentive to perform joins
as late as possible in the query plan so that we avoid applying other
operators to join results, especially those operators whose synchro-
nization cost depends on the input size. For example, placing a
blocking operator after a join requires sorting the cartesian product
of the input relations, which increases the synchronization cost
of a subsequent GROUP-BY to O (n2) and the operation cost of any
following blocking operator to O (n2 log2 n).

Similar re-orderings have been proposed for plaintext queries [26,
94], however, in the MPC setting this transformation does not
reduce the size of intermediate data. Note that, under MPC, a plan
that applies ORDER-BY on a JOIN input produces exactly the same
amount of intermediate data as a plan where ORDER-BY is placed
after JOIN, yet the latter plan has a higher cost.

Example. Consider the following query:
Q1: SELECT DISTINCT R.id

FROM R, S

WHERE R.id = S.id
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1 sort input relation R on aθ , ak ;
2 for each pair of adjacent tuples (ti , ti+1), 0 ≤ i < |R |, do

//Are tuples in the same group?

3 let b ← ti [ak ]
?
= ti+1[ak ];

//Are tuples in the semi-join output too?

4 let bc ← b ∧ ti [aθ ] ∧ ti+1[aθ ]; //bc is a single bit

//Aggregation

5 ti+1[aд ]← bc ·
(
ti [aд ] + ti+1[aд ]

)
+ (1 − bc ) · ti+1[aд ];

6 ti [av ]← ¬bc ; //av is the ‘valid’ bit

//Masking

7 for each attribute a , av of ti do
8 let r a random value;
9 a ← bc · r + (1 − bc ) · a;

10 shuffle R;
Algorithm 2: Second phase of the Join-Aggregation decomposition.

Let R and S have the same cardinality n. A plan that applies
DISTINCT after the join operator requires O (n2loд2n) operations
and messages per party. On the other hand, pushing DISTINCT
before JOIN reduces the operation cost to O (n log2 n) and the com-
position cost from O (n2) to O (n) (in number of operations) and
O (1) (in number of rounds). The asymptotic synchronization cost
is the same for both plans, i.e. O (log2 n), but the actual number of
rounds when DISTINCT is pushed before JOIN is 4× lower.

4.2.3 Join-Aggregation decomposition. Consider a query planwhere
a JOIN on attribute aj is followed by a GROUP-BY on another at-
tribute ak , aj . In this case, pushing the GROUP-BY down does not
produce a semantically equivalent plan. Still, we can optimize the
plan by decomposing the aggregation in two phases and push the
first (and most expensive) phase before the JOIN.

Let R, S be the join inputs, where R includes the group-by key
ak . The first phase of the decomposition sorts R on ak and com-
putes a semi-join (IN) on aj , which appends two attributes to R: an
attribute aθ introduced by the semi-join, and a second attribute aд
introduced by the group-by (cf. Section 3.1)1. During this step, aд is
initialized with a partial aggregation for each tuple in R. The partial
aggregation depends on the aggregation function in the query (we
provide an example below).

In the second phase, we compute the final aggregates per ak
using Algorithm 2, which takes into account the attribute aθ and
updates the partial aggregates aд in-place with a single scan over R.
The decomposition essentially replaces the join with an equivalent
semi-join and a partial aggregation in order to avoid performing
the aggregation on the cartesian product R×S . This way, we signifi-
cantly reduce the number of operations and communication rounds,
but also ensure that the space requirements remain bounded by |R |
since the join output is not materialized. Note that this optimization
is fundamentally different than performing a partial aggregation in
plaintext (at the data owners) and then computing the global ag-
gregates under MPC [13, 79]; in our case, all data are secret-shared
amongst parties and both phases are under MPC.

1In case the aggregation function is AVG, we need to keep the value sum (numerator)
and count (denominator) as separate attributes in R .

The decomposition rule works for all common SQL aggrega-
tions (SUM, COUNT, MIN/MAX, AVG). It can also be used to push down
DISTINCT in queries like Q1 when the distinct attribute is different
from the join attribute. In this case, there is no partial aggregation;
we simply do the semi-join that appends the attribute aθ (as above)
and, in the second phase, we apply the distinct operator to R by
taking into account aθ .

Example. Consider the following query:
Q2: SELECT R .ak, COUNT(*)

FROM R, S
WHERE R.id = S.id

GROUP BY R .ak

Let R and S have the same cardinality n. The plan that applies
GROUP-BY to the join output requires O (n2 log2 n) operations and
O (n2) communication rounds. When decomposing the aggregation
in two phases, the operation cost is reduced to O (n log2 n) (due to
oblivious sorting of R) and the synchronization cost is reduced to
O (n) rounds (due to the final grouping on R). The space require-
ments are also reduced from O (n2) to O (n). In this example, the
partial aggregation amounts to summing (under MPC) the |S | bits
produced by the semi-join in the first phase of the decomposition.

4.3 Physical optimizations
In this section, we describe a set of physical optimizations in Secrecy
that further reduce the cost of oblivious plans.

4.3.1 Predicate fusion. Fusion is a common optimization in plain-
text query planning, where the predicates of multiple filters can be
merged and executed by a single operator. Fusion is also applicable
to oblivious selections and joins with equality predicates, and is
essentially reduced to identifying independent operations that can
be executed within the same communication round. For example, if
the equality check of an equi-join and a selection are independent
of each other, a fused operator requires ⌈log ℓ⌉+1 rounds instead of
2⌈log ℓ⌉ + 1. Next, we describe a somewhat more interesting fusion.

4.3.2 Distinct fusion. Recall that applying DISTINCT after SELECT
requires n communication rounds (cf. Section 4.1, Observation (4)).
We can avoid this overhead by fusing the two operators in a dif-
ferent way, that is, sorting the input relation on the selection bit
first and then on the distinct attribute. Sorting on two (instead
of one) attributes adds a small constant factor to each oblivious
compare-and-swap operation, hence, the asymptotic complexity of
the sorting step remains the same. When DISTINCT is applied to
the output of other operators, including selections and (semi-)joins,
this physical optimization keeps the number of rounds required for
the composition low.

Example. Consider the following query:
Q3: SELECT DISTINCT id

FROM R

WHERE ak = ’c’

Fusing the distinct and selection operators reduces the number
of communication rounds from O (n) to O (log2 n), as if the distinct
operator was applied only to R (without a selection). DISTINCT can
be fused with a join or a semi-join operator in a similar way. In
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this case, the distinct operator takes into account the equality or
inequality predicate of the (semi-)join.

4.3.3 Message batching. In communication-intensive MPC tasks,
each non-local operation requires exchanging a constant number
of messages, which in practice are very small in size (i.e., a few
bytes). Grouping and exchanging small independent messages in
bulk improves performance significantly. Consider applying a se-
lection with an equality predicate on a relation with n tuples. Per-
forming oblivious equality on one tuple requires ⌈log ℓ⌉ rounds
(cf. Section 2.3). Applying the selection tuple-by-tuple and send-
ing messages eagerly (as soon as they are generated) results in
n · ⌈log ℓ⌉ communication rounds. Instead, if we apply independent
selections across the entire relation and exchange messages in bulk,
we can reduce the total synchronization cost to ⌈log ℓ⌉. We apply
this optimization by default to all oblivious operators in Secrecy.
Costs in Tables 2 and 3 already take message batching into account.

4.4 Secret-sharing optimizations
Secrecy uses boolean sharing by default, however, computing arith-
metic expressions or aggregations, e.g. COUNT and SUM, on boolean
shares requires using a ripple-carry adder, which in turn requires
inter-party communication. On the other hand, the same operations
on additive shares are local to each computing party. In this section,
we describe two optimizations that avoid the ripple-carry adder in
aggregations and predicates with constants.

4.4.1 Dual sharing. The straight-forward approach of switching
from boolean to additive shares (and vice versa) based on the type
of operation does not pay off; the conversion itself relies on the
ripple-carry adder (cf. Section 2.3), which has to be applied twice
to switch to the other representation and back. The cost-effective
way would be to evaluate logical expressions using boolean shares
and arithmetic expressions using additive shares. However, this is
not always possible because arithmetic and boolean expressions in
oblivious queries often need to be composed into the same formula.
We mitigate this problem using a dual secret-sharing scheme.

Recall the example queryQ2 from Section 4.2.3 that applies an ag-
gregation function to the output of a join according to Algorithm 2.
The attribute aθ in Algorithm 2 is a single-bit attribute denoting
that the respective row is included in the join result. During obliv-
ious evaluation, each party has a boolean share of this bit that is
used to compute the arithmetic expression in line 4. The naïve
approach is to evaluate the following equivalent logical expression
directly on the boolean shares of bc , ti [aд], and ti+1[aд]:

ti+1[aд]← bℓ ∧ RCA
(
ti [aд],ti+1[aд]

)
⊕ bℓ ∧ ti+1[aд]

where RCA is the oblivious ripple-carry adder primitive, bℓ is a
string of ℓ bits (the length of aд ) all of which are set equal to
bc , and bℓ is the binary complement of bℓ . Evaluating the above
expression requires ℓ communication rounds for RCA plus two more
rounds for the logical ANDs (∧). On the contrary, Secrecy evaluates
the equivalent formula in line 4 of Algorithm 2 in four rounds
(independent from ℓ) as follows. First, parties use arithmetic shares
for the attribute aд to compute the addition locally. Second, each
time they compute the bitbc in line 4, they exchange boolean as well
as arithmetic shares of its value. To do this efficiently, we rely on

(a) Comorbidity (b) Recurrent C.Diff.

(c) Aspirin Count

Figure 3: Optimized query plans for three real queries

the single-bit conversion protocol used also in CrypTen [1], which
only requires two rounds of communication. Having boolean and
arithmetic shares of bc allows us to use it in boolean and arithmetic
expressions without paying the cost of RCA.

4.4.2 Proactive sharing. The previous optimization relies on bc
being a single bit. In many cases, however, we need to compose
boolean and additive shares of arbitrary values. Representative
examples are join predicates with arithmetic expressions on boolean
shares, e.g. (R.a−S .a ≥ c ), where a is an attribute and c is a constant.
We can speedup the oblivious evaluation of such predicates by
proactively asking the data owners to send shares of the expression
results. In the previous example, if parties receive boolean shares
of S .a + c they can avoid computing the boolean addition with
the ripple-carry adder. A similar technique is also applicable for
selection predicates with constants. In this case, to compute a > c ,
if parties receive shares of a − c and c − a, they can transform the
binary equality to a local comparisonwith zero (cf. Section 2.3). Note
that proactive sharing is fundamentally different than having data
owners perform local filters or pre-aggregations prior to sharing.
In the latter case, the computing parties might learn the selectivity
of a filter or the number of groups in an aggregation (if not padded).
In our case, parties simply receive additional shares and will not
learn anything about the intermediate query results.

4.5 Optimizations on real queries
We now showcase the applicability of Secrecy’s optimizations on
three queries from clinical studies [52, 74, 84] that have also been
used in other MPC works [13–15, 79, 88]. We experimentally evalu-
ate the performance benefits on a larger set of queries in Section 6.

10



Comorbidity. This query returns the ten most common diagnoses
of individuals in a cohort.

SELECT diag, COUNT(*) cnt
FROM diagnosis
WHERE pid IN cdiff_cohort
GROUP BY diag
ORDER BY cnt DESC

LIMIT 10

This query lends itself to join-aggregation decomposition and dual
sharing, producing the plan shown in Figure 3a. Let n be the cardi-
nality of diagnosis. The number of operations needed to evaluate
this query is O (n log2 n) (due to oblivious sorting) whereas the
number of communication rounds is O (n) (due to the oblivious
group-by). The space requirements are bounded by the size of
diagnosis, i.e., O (n).

Recurrent Clostridium Difficile. This query returns the distinct
ids of patients who have been diagnosed with cdiff and have two
consecutive infections between 15 and 56 days apart.

WITH rcd AS (
SELECT pid, time, row_no() OVER
(PARTITION BY pid ORDER BY time)
FROM diagnosis
WHERE diag=cdiff)

SELECT DISTINCT pid
FROM rcd r1 JOIN rcd r2 ON r1.pid = r2.pid
WHERE r2.time - r1.time >= 15 DAYS
AND r2.time - r1.time <= 56 DAYS

AND r2.row_no = r1.row_no + 1

Two optimizations are applicable in this case. First, we apply block-
ing operator push-down to sort on diagnosis before applying
the selection. Second, we use distinct fusion (σ -δ ) to evaluate the
inequality predicates along with DISTINCT. The optimized plan
is shown in Figure 3b and it requires O (n log2 n) operations and
O (log2 n) communication rounds. Note that an end-to-end oblivi-
ous implementation of the plan used in [13] requires O (n2 log2 n)
operations and 4× more communication rounds, i.e., O (log2 n2) =
O (4 log2 n) = O (log2 n). This is because PARTITION BY is not possi-
ble underMPCwithout revealing the number of partitions and, thus,
the self-join will generate and materialize the cartesian product
rcd × rcd, before applying the final DISTINCT operation.

Aspirin Count. The third query returns the number of patients
who have been diagnosed with heart disease and have been pre-
scribed aspirin after the diagnosis was made.

SELECT count(DISTINCT pid)
FROM diagnosis as d, medication as m on d.pid = m.pid
WHERE d.diag = hd AND m.med = aspirin

AND d.time <= m.time

Here, we use blocking operator push-down and join push-up. We
push the blocking distinct operator after the join to avoid materi-
alizing and sorting the join output. The optimized plan is shown
in Figure 3c. Let diagnosis and medication have the same cardi-
nality n. The number of operations needed to evaluate the query is
O (n2) whereas the number of communication rounds is O (log2 n).
In contrast, an end-to-end oblivious implementation of the plan in
[13] requires O (n2 log2 n) operations and 4× more rounds, since it
applies distinct to the materialized join output.

Figure 4: Overview of the Secrecy architecture.

1 /** Commorbidity Query **/
2 BTable t1 = get_shares(diagnosis);
3 BTable t2 = get_shares(cohort);
4
5 // Sort t1 on diag (at index 2)
6 bitonic_sort(&t1, 2, ASC);
7 in(&t1, &t2, 0, 0); // Semi-join on pid
8 group_by_count(&t1, 2); // Group-by on diag
9 // Sort t1 on count (at index 4)
10 bitonic_sort(&t1, 4, ASC);
11 open(t1, 10); // Open first 10 rows

Figure 5: Comorbidity query with Secrecy’s API.

5 SECRECY IMPLEMENTATION
Even though there exist various open-source MPC frameworks [49],
we decided to implement Secrecy entirely from scratch. As a result,
we were able to design and implement secure low-level primitives
and oblivious operators that are optimized to process shares of
tables instead of single attributes. In this section, we provide a brief
description of the most important Secrecy implementation aspects.

Architecture overview. Figure 4 shows an overview of the Secrecy
framework. Secrecy is implemented in C and can be deployed on
local clusters or machines in the cloud. The distributed runtime and
communication layer are based on MPI2. Secrecy currently does not
encrypt data in transit between parties but it can be easily combined
with any TLS implementation or other networking library that does
so. Each computing party is a separateMPI process andwe currently
use a single thread per party to handle both local computation and
communication with other parties. Parties are logically placed on
a ring as shown in Figure 1. The middle layers of Secrecy include
our implementation of the replicated secret sharing protocol, a
library of secure computation and communication primitives, and
the random number generation protocols. We built the latter with
the libsodium library3. The upper two layers of the stack provide
optimized implementations of the oblivious relational operators
and a declarative relational API.

Query execution. Upon startup, the parties establish connections
to each other and learn the process ids of their successor and pre-
decessor parties. Then, they construct a random sharing of zero
generator, so that they can jointly create random shares of the
value 0 for the various secure primitives. To achieve that at scale,
parties generate a random seed and share it with their succes-
sor in the ring. This way, each party has access to one local and

2https://www.mcs.anl.gov/research/projects/mpi/standard.html
3https://libsodium.gitbook.io
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one remote pseudo-random number generator: rand1 and rand2.
The parties can now generate a random share of 0 on demand as
sz = rand1.дet_next ()−rand2.дet_next (). Next, they receive input
shares for each base relation from the data owners.

Queries are specified in a declarative API that allows composing
operators seamlessly and abstracts the communication and MPC
details. To compute the result of a query, parties execute an identical
piece of code on their data shares. As an example, Figure 5 shows
the Secrecy code that implements the Comorbidity query from
Section 4.5 (we omit two function calls that convert boolean shares
to arithmetic for brevity). We use a 64-bit data representation for
shares, so in our implementation ℓ = 64 (cf. Section 3).

Configurable batching. Primitives and relational operators in Se-
crecy operate in batched mode, that is, they provide the ability to
process multiple table rows in bulk and batch independent messages
into a single round of communication (cf. Section 4.3.3). The batch
size is configurable and allows Secrecy to compute expensive oper-
ators, such as joins, with full control over memory requirements.
While batching does not reduce the total number of operations,
we leverage it to compute on large inputs without running out of
memory or switching to an expensive disk-based evaluation.

6 EXPERIMENTAL EVALUATION
Our experimental evaluation is structured into five parts:

Performance on real and synthetic queries. In Section 6.2, we
evaluate Secrecy on eight real and synthetic queries. We show that
Secrecy’s implementation is efficient and its optimizations effec-
tively reduce the runtime of complex queries by up to three orders
of magnitude. In contrast to the baseline plans that fail to scale for
inputs beyond a few thousand records, Secrecy can process hun-
dreds of thousands and up to millions of input rows, entirely under
MPC, in reasonable time.

Comparison with state-of-the-art frameworks. In Section 6.3,
we compare Secrecy with two state-of-the-art MPC frameworks:
SMCQL [13] and EMP [91]. We show that Secrecy outperforms both
of them and can comfortably process much larger datasets within
the same amount of time.

Benefits of optimizations. In Section 6.4, we evaluate the benefits
of Secrecy’s logical, physical, and secret-sharing optimizations on
the three queries of Sections 4.2-4.4. Our results demonstrate that
pushing down blocking operators reduces execution time by up to
1000× and enables queries to scale to 100× larger inputs. Further,
we show that operator fusion and Secrecy’s dual sharing improve
execution time by 2×.

Performance of relational operators. In Section 6.5, we present
performance results for individual relational operators. We show
that Secrecy’s batched operator implementations are efficient and
that by properly adjusting the batch size, they can comfortably
scale to millions of input rows without running out of memory.

Micro-benchmarks. Finally, in Section 6.6, we drill down and
evaluate individual secure computations and communication prim-
itives that relational operators rely upon. We empirically verify the
theoretical cost analysis of Section 2.3, evaluate the scalability of

Figure 6: Performance gains of Secrecy’s optimizations over baseline
plans for real and synthetic queries. Logical and physical optimiza-
tions result in over 100× lower execution times, while secret-sharing
optimizations improve query performance by up to 71×.

primitives, and quantify the positive effect that message batching
has on the performance of communication-heavy operations.

6.1 Evaluation setup
We run all experiments on a three-node cluster of VMs in the Mas-
sachusetts Open Cloud (MOC) [2]. Each VM has 32GB of memory
and 16 vCPUs and runs Ubuntu 16.04.12, C99, gcc 5.4.0, and
MPICH 1.4. Each MPC party is assigned to a different VM and runs
as a single MPI process. For the purpose of our experiments, we
designate one party as the data owner that distributes shares and re-
veals results in the end of the computation. Reported measurements
are averaged over at least three runs and are plotted in log-scale,
unless otherwise specified.

Queries. We use 11 queries in total. Five of them are real-world
queries that have also been used in previous MPC works [13–15,
79, 88]. We use the three medical queries from [13] (Comorbidity,
Recurrent C.Diff., and Aspirin Count) and two queries from different
MPC application areas [79]: the first query (Password Reuse) asks for
users with the same password across different websites, while the
second (Credit Score) asks for persons whose credit scores across
different agencies have significant discrepancies in a particular
year. To showcase the applicability of our optimizations in other
domains, we also use three TPC-H queries (Q4, Q6, Q13) that
include aggregations along with selections or joins (in Q13 we
replace LIKE with an equality since the former is not yet supported
by Secrecy). Finally, to evaluate the performance gains from each
optimization in isolation, we use the three example queries (Q1,
Q2, Q3) of Sections 4.2-4.4.

Input data. In all experiments, we use randomly generated tables
with 64-bit values. Note that the MPC protocols we use assume a
fixed-size representation of shares. The data representation size is
implementation-specific and could be increased to any 2k value
without modifying the protocols. We also highlight that using ran-
domly generated inputs is no different than using real data, as all
operators are oblivious and the data distribution does not affect the
amount of computation or communication. No matter whether the
input values are real of random, parties compute on shares, which
are by definition random.
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(a) Category A (b) Category B (c) Category C

Figure 7: Scaling behavior of optimized real and synthetic queries on Secrecy

6.2 Performance on real and synthetic queries
In this section, we evaluate Secrecy’s performance on eight queries
with and without the optimizations of Section 4. For each query,
we implement both the optimized and the non-optimized (baseline)
plan using Secrecy’s efficient batched operators. Although this fa-
vors the baseline, the communication cost of MPC is prohibitive
without message batching and queries cannot scale to more than a
few hundred input rows in reasonable time.

Comparison with baseline. We execute each query plan with
1K rows per input relation and present the results in Figure 6. For
Comorbidity, we use a cohort of 256 patients. For Q4 (resp. Q13), we
use 1K rows for LINEITEM (resp. ORDERS) andmaintain the size ratio
with the other input relation as specified in the TPC-H benchmark.

The optimized plans for Recurrent C.Diff., Aspirin Count, and
Q13 achieve the highest speedups over non-optimized plans, that is,
1868×, 134×, and 6486× lower execution times respectively. Opti-
mized plans for these queries leverage logical and physical optimiza-
tions to push blocking operators before joins (Aspirin Count), fuse
operators (Recurrent C.Diff.), or decompose join with aggregation
(Q13). The optimized plans for Comorbidity, Password Reuse, Q4, and
Q6 leverage secret sharing optimizations that result in up to 71×
lower execution times compared to non-optimized plans. Finally,
the Credit Score query leverages dual sharing optimizations, which,
in this case, do not provide significant performance improvement.

Scaling behavior.Wenow run the optimized planswith increasing
input sizes and measure total execution time. For these experiments,
we group queries into three categories of increasing complexity.
Category A includes queries with selections and global aggregations,
Category B includes queries with select and group-by or distinct
operators, and Category C includes queries with select, group-by
and (semi-)join operators. Figure 7 presents the results.

The only query that falls in Category A is Q6. This query includes
five selections plus a global aggregation and requires very limited
inter-party communication that does not depend on the size of the
input relation. As a result, Q6 scales comfortably to large inputs and
takes a bit less than 13s for 8M rows. Queries in Category B scale
to millions of input rows as well, but with higher execution times
compared to Q6. The cost of queries in this category is dominated by
the oblivious group-by and distinct operators that rely on oblivious
sort. For large inputs, the most expensive of the four queries is
Recurrent C.Diff., which completes in ∼ 7h for 2M input rows.

Finally, queries in Category C scale to tens or hundreds of thou-
sands of input rows, depending on the particular operators in the
plan. The cost of queries in this category is dominated by the obliv-
ious join and semi-join operators. All three queries have two input

relations but with different size ratios: for Q4 and Q13, we use
the ratio specified in the TPC-H benchmark whereas for Aspirin
Count we use inputs of equal size. For each query in Figure 7c, we
start with 1K rows for the smaller input relation (scaling factor 1×)
and increase the size of the two inputs up to 32×, always keeping
their ratio fixed. The most expensive query is Aspririn Count, as
it includes an oblivious θ -join with both equality and inequality
predicates. Recall that join needs to perform O (n ·m) comparisons,
that is, over 1B for 64K rows (32K per input). Nevertheless, due
to Secrecy’s ability to push down blocking operators and perform
joins in batches, it successfully completes in ∼ 10.5h. Q4 requires
∼ 6h on 164K rows, and Q13 is able to complete in ∼ 9.7h on 295K
rows due to the join-aggregation decomposition.

While MPC protocols remain highly expensive for real-time
queries, our results demonstrate that offline collaborative analytics
on medium-sized datasets entirely under MPC are viable. To the
best of our knowledge, Secrecy is the first framework capable of eval-
uating real-world queries on inputs of such scale, while ensuring
no information leakage and no reliance on trusted hardware.

6.3 Comparison with other MPC frameworks
In this section, we compare Secrecy with two state-of-the-art MPC
frameworks: SMCQL [13] and the 2-party semi-honest version of
EMP [91]. We choose SMCQL (the ORAM-based version) as the
only open-source relational framework with a semi-honest model
and no information leakage (cf. Table 1). More recent systems,
such as Shrinkwrap [14], SAQE [15], and a new version of SMCQL,
although not publicly available, build on top of EMP. Senate [79]
also relies on EMP, albeit its malicious version.

Comparison with SMCQL. In the first set of experiments, we
aim to reproduce the results presented in the SMCQL paper (Figure
7) [13] on our experimental setup. We run the three medical queries
on SMCQL and Secrecy, using a sample of 25 tuples per data owner
(50 in total), and present the results in Table 4. We use the plans and
default configuration of protected and public attributes, as in the
SMCQL project repository4. As we can see, Secrecy is over 2000×
faster than SMCQL in all queries, even though SMCQL pushes
operators outside the MPC boundary by allowing data owners to
execute part of the computation on their plaintext data. In the
SMCQL experiment, each computing party is also a data owner
and, although it provides 25 tuples per relation to a query, only 8 of
those enter the oblivious part of the plan; the rest are filtered out
before entering the MPC circuit.

4https://github.com/smcql/smcql
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Figure 8: Performance comparison between EMP and Secrecy on oblivious equi-join (left) and sort (right). Secrecy evaluates the join on 100K
rows per input in 12h whereas EMP requires 14.3h for 40K rows per input. Secrecy is up to 1.45× faster than EMP on oblivious sort.

Comorbidity Recurrent C. Diff. Aspirin Count

SMCQL 197s 804s 796s
Secrecy 0.083s 0.092s 0.171s

Table 4: SMCQL and Secrecy execution times for the three medical
queries of Section 4.5 on 25 tuples per input relation.

Comparison with EMP. EMP is a general-purpose MPC frame-
work and does not provide implementations of relational operators
out-of-the-box. For this set of experiments, we implemented an
equi-join operator using the sample program available in the SoK
project5 and we also use the oblivious sort primitive provided in
the EMP repository6. Figure 8 presents the results. For joins, we use
inputs of the same cardinality (n =m) and increase the size from
10K to 100K rows per input. We cap the time of these experiments
to 15h. Within the experiment duration, EMP can evaluate joins
on up to 40K rows per input (in 14.3h). Secrecy is 7.53× faster for
the same input size and can process up to 100K rows per input in a
bit less than 12h. The performance gap between Secrecy and EMP
on oblivious sort is less dramatic but still considerable. In this case,
both frameworks scale to much larger inputs and Secrecy is up to
1.45× faster (3.27h vs 4.74h for 4M input rows).

6.4 Benefits of optimizations
Wenowuse the example queries of Section 4 (Q1, Q2, Q3) to evaluate
the performance impact of Secrecy’s optimizations. We run each
query with and without the particular optimization and measure
total execution time. The results are shown in Figure 9.

Distinct-Join reordering. Q1 applies DISTINCT to the result of
an equi-join. The baseline plan executes the oblivious join first,
then sorts the materialized cartesian product R × S and applies
DISTINCT. In the optimized plan, DISTINCT is pushed before the
JOIN and, thus, Secrecy sorts a relation of n rows instead of n2.
Figure 9a shows that the optimized plan is up to two orders of
magnitude faster than the baseline, which runs out of memory for
even modest input sizes.

Join-Aggregation decomposition.Q2 performs a grouped aggre-
gation on the result of an equi-join. The baseline plan performs the
join first, materializes the result, and then applies the grouping and

5https://github.com/MPC-SoK/frameworks/blob/master/emp/sh_test/test/xtabs.cpp
6https://github.com/emp-toolkit/emp-sh2pc

(a) Distinct-Join reordering in Q1 (b) Join-Aggreg. decomposition in Q2

(c) Select-Distinct fusion in Q3 (d) Dual sharing in Group-by-count

Figure 9: Benefits of optimizations on Secrecy. Operator reordering
(a) and decomposition (b) result in over 100× lower execution times
compared to alternative plans, while physical (c) and secret-sharing
(d) optimizations improve performance by up to 2×. All optimiza-
tions enable Secrecy to scale to much larger inputs (up to 100×) with-
out running out of memory.

aggregation. Instead, the optimized plan decomposes the aggrega-
tion in two phases (cf. Section 4.2.3) and transforms the equi-join
into a pipelined semi-join. As shown in Figure 9b, this optimization
provides up to three orders of magnitude lower execution time than
that of the baseline plan. Further, the materialized join causes the
baseline plan to run out of memory for inputs larger than 1K rows.

Operator fusion. Q3 applies DISTINCT on the result of a selection.
The baseline plan applies the oblivious selection and then sorts
its output and applies DISTINCT sequentially. As we explain in
Section 4.3.2, Secrecy fuses the two operators and performs the
DISTINCT computation in bulk. Figure 9c (plot in linear scale) shows
that this optimization provides up to 2× speedup for large inputs.

Dual sharing.We also evaluate Secrecy’s ability to switch between
arithmetic and boolean sharing to reduce communication costs for
certain operations. For this experiment, we compare the run-time
of the optimized GROUP-BY-COUNT operator (Section 4.4) to that of a
baseline operator that uses boolean sharing only and, hence, relies
on the ripple-carry adder to compute the COUNT. Figure 9d plots the
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(a) Unary operators (b) Join operators (c) Semi-join operator

Figure 10: Performance of oblivious relational operators in Secrecy

results. The baseline operator is 2× slower than the optimized one,
as it requires 64 additional rounds of communication per input row.

6.5 Performance of relational operators
The next set of experiments evaluates the performance of oblivious
relational operators in Secrecy. We perform DISTINCT, GROUP-BY,
ORDER-BY, IN, and JOIN (equality and range) on relations of in-
creasing size and measure the total execution time per operator.
We empirically verify the cost analysis of Section 3 and show that
our batched implementations are efficient and scale to millions of
input rows with a single thread. Figure 10 shows the results.

Unary operators. In Figure 10a, we plot the execution time of
unary operators vs the input size. Recall from Section 3.1 that
DISTINCT and GROUP-BY are both based on sorting and, thus, their
cost includes the cost of ORDER-BY for unsorted inputs of the same
cardinality. To shedmore light on the performance of DISTINCT and
GROUP-BY, Figure 10a only shows the execution time of their second
phase, that is, after the input is sorted and, for GROUP-BY, before
the final shuffling (which has identical performance to sorting).

For an input relation with n rows, DISTINCT performs n − 1
equality comparisons, one for each pair of adjacent rows. Since
all these comparisons are independent, our implementation uses
batching, thus, applying DISTINCT to the entire input in six rounds
of communication (the number of rounds required for oblivious
equality on pairs of 64-bit shares). As a result, DISTINCT scales well
with the input size and can process 10M rows in 45s . GROUP BY is
slower than DISTINCT, as it requires significantly more rounds of
communication, linear to the input size. Finally, ORDER BY relies
on our implementation of bitonic sort, where all n2 comparisons at
each level are batched within the same communication round.

Joins. The oblivious join operators in Secrecy hide the size of their
output, thus, they compute the cartesian product between the two
input relations and produce a bit share for all pairs of records,
resulting in an output with n ·m entries. We run both operators with
n =m, for increasing input sizes, and plot the results in Figure 10b.
The figure includes equi-join results for up to 100K rows per input
and range-join results for up to 40K rows per input, as we capped
the duration of this experiment to 15h. Secrecy executes joins in
batches without materializing their entire output at once. As a
result, it can perform 10B equality comparisons and 1.6B inequality
comparisons under MPC within the experiment duration limit.

We also run experiments with semi-joins (IN) and present the re-
sults in Figure 10c. In this case, we vary the left and right input sizes
independently, as they affect the cost of the semi-join differently.

(a) Eager vs. batched communication (b) Comparison and addition

Figure 11: Performance of oblivious primitives in Secrecy

Each line corresponds to an experiment where we keep one of the
inputs fixed to 1K rows and increase the size of the other input
from 1K to 1M rows (in powers of two). The two lines overlap when
inputs are small (up to 256K rows) but they diverge significantly
for larger inputs. The reason behind this performance difference
is because the number of communication rounds in the semi-join
depends only on the size of the right input (cf. Table 2). Although a
semi-join between 1M (left) and 1K (right) rows incurs the same
asymptotic number of operations with a semi-join between 1K (left)
and 1M (right) rows, the latter has a higher synchronization cost,
which in practice causes a latency increase of ∼ 800s .

6.6 Micro-benchmarks
To better understand the results of the previous sections, we now
use a set of micro-benchmarks and evaluate the performance of
Secrecy’s MPC primitives.

Effect ofmessage batching on communication latency. In the
first experiment, we measure the latency of inter-party communi-
cation using two messaging strategies. Recall that, during a mes-
sage exchange, each party sends one message to its successor and
receives one message from its predecessor on the ‘ring’. Eager ex-
changes data among parties as soon as they are generated, thus,
producing a large number of small messages. The Batched strategy,
on the other hand, collects data into batches and exchanges them
only when computation cannot otherwise make progress, thus,
producing as few as possible, albeit large messages.

We run this experiment with increasing data sizes and measure
the total time from initiating the exchange until all parties complete
the exchange. Figure 11a shows the results. We see that batching
provides two to three orders of magnitude lower latency than eager
messaging. Using batching in our experimental setup, parties can
exchange 100M 64-bit data shares in 10s . These results reflect the
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network performance in our cloud testbed. We expect better perfor-
mance in dedicated clusters with high-speed networks and higher
latencies if the computing parties communicate over the internet.

Performance of secure computation primitives.We now eval-
uate the performance of oblivious primitives that require commu-
nication among parties. These include equality, inequality, and
addition with the ripple-carry adder. In Figure 11b we show the
execution time of oblivious primitives as we increase the input
size from 1K rows to 10M rows. All primitives scale well with the
input size as they all depend on a constant number of communica-
tion rounds. Equality requires six rounds. Inequality requires seven
rounds and more memory than equality. Boolean addition is not as
memory- and computation-intensive as inequality, but requires a
higher number of rounds (64).

7 RELATEDWORK

Enclave-based approaches. In this line of work, parties apply the
oblivious operators on the actual data (rather than secret shares)
within a physically-protected environment, such as a trusted server,
a hardware enclave or a cryptographic coprocessor. This is a funda-
mentally different approach to achieve security, where parties send
their (encrypted) data to other parties and the oblivious computa-
tion happens inside the trusted environment without paying the
communication cost of MPC (cf. Table 2). In Secrecy, computing
parties execute an identical computation on commodity hardware
and must communicate multiple times to apply each operator, thus,
the main objective is to optimize communication. By contrast, the
main objectives within enclave-based approaches are to operate
with a small amount of RAM, properly pad intermediate query
results, and hide access patterns while reading/writing (encrypted)
data from/to untrusted storage. The theoretical works by Agrawal
et al. [5] and Arasu et al. [10] focus on secure database queries in
this setting. ObliDB [36], Opaque [98], and StealthDB [87] are three
recent systems that rely on secure hardware (e.g. Intel’s SGX) to
support a wide range of database operators, including joins and
group-by with aggregation. OCQ [31] builds on Opaque and in-
troduces additional optimizations that reduce intermediate result
padding by leveraging foreign-key constraints between private and
public relations. Enclave-based systems typically achieve better
performance than MPC-based systems but they require different
trust assumptions (as an alternative to cryptography) and are sus-
ceptible to various side-channel attacks, including branching [65],
cache-timing [21, 47, 90], and other attacks [23, 24, 64, 93].

ORAM-based approaches. Oblivious RAM [45, 46] allows for
compiling arbitrary programs into oblivious ones by carefully dis-
torting access patterns to eliminate leaks. ORAM-based systems like
SMCQL [13] and Obladi [28] hide access patterns but the flexibility
of ORAM comes at high cost to throughput and latency. Two-server
distributed ORAM systems like Floram [33] and SisoSPIR [56] are
faster but require the same non-collusion assumption as in this
work. Secrecy does not rely on ORAM; instead, we implement spe-
cific database operators with a data-independent control flow.

Hybrid query processing. In addition to the frameworks in Ta-
ble 1, two other works that employ hybrid query execution and
let data owners execute as many operators as possible on their

plaintext data are those by Aggarwal et al. [4] and Chow et al. [27].
The latter also leverages a semi-trusted party that learns metadata
and must not collude with any other party.

Oblivious operators. Related works in the cryptographic and
database communities focus on standalone oblivious operators,
e.g. building group-by from oblivious sorting [57], building equi-
joins [6, 62, 69, 77], or calculating common aggregation operators
like MIN, MAX, SUM, and AVG [35]. Our work is driven by real-world
applications that typically require oblivious evaluation of queries
with multiple operators. Two recent works in this direction are
[22, 55], however, they focus on specific queries and do not employ
any of the optimizations we introduce in this paper.

Outsourced databases. Secure database outsourcing is an active
area of research and there are many approaches proposed in the lit-
erature. Existing practical solutions [42] use “leaky” cryptographic
primitives that reveal information to the database server. Systems
based on property-based encryption like CryptDB [80] offer full
SQL support and legacy compliance, but each query reveals informa-
tion that can be used in reconstruction attacks [48, 60, 71]. Systems
based on structural encryption [58] like Arx [78], BlindSeer [73],
and OSPIR-OXT [25] provide semantic security for data at rest and
better protection, but do not eliminate access pattern leaks. SDB [51,
92] uses secret-sharing in the typical client-server model but its
protocol leaks information to the database server. KafeDB [97] uses
a new encryption scheme that leaks less information compared to
prior works. Finally, Cipherbase [9] is a database system that relies
on a secure coprocessor (trusted machine).

FHE-based approaches. Fully Homomorphic Encryption (FHE)
protocols [43] allow arbitrary computations directly on encrypted
data with strong security guarantees. Although many implementa-
tions exist [12, 34, 44, 54, 67, 82], this approach is still too computa-
tionally expensive for the applications we consider in this work.

Differential privacy. Systems like DJoin [70], DStress [72], and
the work of He et al. [50] use the concept of differential privacy to
ensure that the output of a query reveals little about any one input
record. This property is independent of (yet symbiotic with) MPC’s
security guarantee that the act of computing the query reveals no
more than what may be inferred from its output, and Secrecy could
be augmented to provide differentially private outputs if desired.

Shrinkwrap [14] and SAQE [15] achieve better efficiency by
relaxing security for the computing parties only up to differentially
private leakage. This is effectively the same guarantee as above
when the computing and result parties are identical, but is weaker
when they are different. For this reason, Secrecy does not leak
anything to computing parties.

MPC frameworks. The recent advances in MPC have given rise
to many practical general-purpose MPC frameworks like ABY [32],
ABY3 [68], Jiff[20], Obliv-C [96] ObliVM[66], SCALE-MAMBA [63],
and ShareMind [18]; we refer readers to Hastings et al. [49] for an
overview of these frameworks. Some of these frameworks support
standalone database operators (e.g. [11, 18, 68]) but do not address
query costs under MPC. Splinter [89] uses function secret sharing
to protect private queries on public data. This system supports a
subclass of SQL queries that do not include private joins.
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8 WHAT’S NEXT?
We see several exciting research directions for the database and
systems communities:

MPC query optimizers. Several of our examples showcase that
optimal plans in a cleartext evaluation are not necessarily optimal
under MPC (and vice versa). Building robust MPC query optimizers
that take into account alternative oblivious operators and public
information about the data schema is a promising research avenue.
The optimizations in Section 4 are by no means exhaustive and
there are many opportunities for continued research in this space.
For example, Krastnikov et al. [62] and Mohassel et al. [69] recently
introduced oblivious algorithms for joins on unique keys with linear
(rather than quadratic) worst-case runtime. These algorithms could
be extended to avoid materializing intermediate state and applied
to other settings like foreign-key joins.

Parallelism and oblivious hashing. Task and data parallelism
offer the potential for improved performance and scalability. Ex-
tending oblivious operators to work in a task-parallel fashion is
straight-forward (e.g. for bitonic sort) but data-parallel execution
requires additional care. In a plaintext data-parallel computation,
data are often partitioned using hashing: the data owners agree on a
hash function f and hash the input records into buckets, so that sub-
sequent join and group-by operations only need to compare records
within the same bucket. In MPC, data parallelism can be achieved
via oblivious hashing, with care taken to ensure that the bucket
sizes do not reveal the data distribution or access patterns. Indeed,
many private set intersection algorithms leverage this technique in
a setting where the input and computing parties are identical [76].
To achieve better load balancing of keys across buckets and keep
the bucket size low, one can use Cuckoo hashing, as in [75, 77]. It is
an interesting direction to design oblivious hashing techniques in
the outsourced setting, where data owners generate and distribute
secret shares along with their corresponding bucket IDs to reduce
the cost of oblivious join and group-by operators.

Efficient MPC primitives and HW acceleration. There exist
opportunities to improve upon the efficiency of the underlying
MPC building blocks used in our operators. First, while we strived
to minimize Secrecy’s codebase and thus to repurpose oblivious
bitonic sort for as many operators as possible, one can achieve even
better performance by adding support for more primitives, e.g. a
fast oblivious shuffle with linear (rather than quasi-linear) work
and constant rounds. Second, while Secrecy takes a software-only
approach, one could implement special MPC primitives on modern
hardware [38–41, 53, 85, 86] to further improve computation and
communication latency.

Malicious security. While the current work focuses on semi-
honest security, it provides a strong foundation for achieving mali-
cious security in the future. Secrecy protects data using the repli-
cated secret sharing scheme of Araki et al. [8], which can be ex-
tended to provide malicious security with low computational cost
[7]. By optimizing MPC rather than sidestepping it, our approach
has an advantage over prior work [79]: we do not need to take
additional non-trivial measures to protect the integrity of local
pre-processing steps.
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