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 ABSTRACT 

 High-throughput transcriptomic profiling has become a ubiquitous tool to assay 

an organism transcriptome and to characterize gene expression patterns in different 

cellular states or disease conditions, as well as in response to molecular and 

pharmacologic perturbations. Refinements to data preparation techniques have enabled 

integration of transcriptomic profiling into large-scale biomedical studies, generally 

devised to elucidate phenotypic factors contributing to transcriptional differences across a 

cohort of interest. Understanding these factors and the mechanisms through which they 

contribute to disease is a principal objective of numerous projects, such as The Cancer 

Genome Atlas and the Cancer Cell Line Encyclopedia. Additionally, transcriptomic 

profiling has been applied in toxicogenomic screening studies, which profile molecular 

responses of chemical perturbations in order to identify environmental toxicants and 

characterize their mechanisms-of-action. 

Further adoption of high-throughput transcriptomic profiling requires continued 

effort to improve and lower the costs of implementation. Accordingly, my dissertation 
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work encompasses both the development and assessment of cost-effective RNA 

sequencing platforms, and of novel machine learning techniques applicable to the 

analyses of large-scale transcriptomic data sets. The utility of these techniques is 

evaluated through their application to a toxicogenomic screen in which our lab profiled 

exposures of adipocytes to metabolism disrupting chemicals. Such exposures have been 

implicated in metabolic dyshomeostasis, which is the predominant cause of obesity 

pathogenesis. Considering that an estimated 10% of the global population is obese, 

understanding the role these exposures play in disrupting metabolic balance has the 

potential to help combating this pervasive health threat.  

This dissertation consists of three sections. In the first section, I assess data generated 

by a highly-multiplexed RNA sequencing platform developed by our section, and report 

on its significantly better quality relative to similar platforms, and on its comparable 

quality to more expensive platforms. Next, I present the analysis of a toxicogenomic 

screen of metabolism disrupting compounds. This analysis crucially relied on novel 

supervised and unsupervised machine learning techniques which I specifically developed 

to take advantage of the experimental design we adopted for data generation. Lastly, I 

describe the further development, evaluation, and optimization of one of these methods, 

K2Taxonomer, into a computational tool for unsupervised molecular subgrouping of bulk 

and single-cell gene expression data, and for the comprehensive in-silico annotation of 

the discovered subgroups. 
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Chapter 1: Introduction 

1.1 Motivation 

High-throughput transcriptomic profiling is employed to assay the collection of 

RNA transcripts extracted from a tissue sample or cell culture. Due in part to the 

revolutionizing role of next generation sequencing1, over the past decade transcriptomic 

profiling has emerged as a ubiquitous tool for comprehensively examining molecular 

patterns across cohorts representative of diverse phenotypic factors, such as cell states, 

disease states, and experimental conditions. However, the relatively high cost of 

transcriptomic profiling limits the practicality of implementation, particularly for large-

scale projects, i.e., projects which would require the generation of hundreds or thousands 

of profiles. Thanks to various technological innovations, as well ambitious and well-

funded projects, transcriptomic profiling has been integrated in several large-scale 

studies, notably in the fields of population-based cancer genomics and toxicogenomic 

screens of environmental chemicals. The generation of such data sets presents exciting 

new opportunities for biological discovery. However, the feasibility of generating these 

data must be met with suitable computational tools with which they can be appropriately 

and exhaustively analyzed. Accordingly, in this dissertation I present work covering both 

the refinement of protocols for high-throughput transcriptomic data generation, as well as 

the development of analytical tools for extracting relevant information. The utility of 

these developments is showcased via their application to transcriptomic profiling data 

generated as part of a toxicogenomic screen of metabolism disrupting chemicals. 

Collectively, this work seeks to further biological discovery by transcriptomic profiling 
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through the contribution of novel methodological approaches and illustration of their 

application.  

1.2 Overview of high-throughput transcriptomic profiling 

High-throughput transcriptomic profiling culminated from various practical 

breakthroughs in genomic science, including: the reverse transcription of RNA to cDNA 

in 19702, DNA sequencing in 19753, and polymerase chain reaction (PCR) mediated 

DNA amplification in 19904. Whole transcriptome quantification protocols were first 

implemented with the development of hybridization-based microarrays in the mid-

1990’s5. Microarrays measure transcript abundance based on fluorescence generated 

through the annealing of a sample-derived ribonucleotide sequences to a compendia of 

oligonucleotide probes5. The oligonucleotide probes are generally curated to measure the 

abundance of a large sets of transcripts. Most often these transcripts pertain to transcribed 

genes, such that these measurements are referred to as gene expression. Ten years after 

the development of microarrays, the advent of next generation sequencing1 lead to the 

development of high-throughput RNA sequencing (RNAseq) with which the sequences 

derived from RNA fragments, referred to as reads, are recorded. Transcript abundance is 

then quantified by mapping these sequences to the annotated genome of the organism 

from which the sample originated. In the case of gene expression, both microarrays and 

RNAseq quantify individual genes on the order of tens of thousands, e.g. ~20,000 genes 

from human samples6.  

Whereas microarray profiling is only implemented to measure transcript 

abundance7, the utility of RNAseq profiling is more general, such that additional use 
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cases include but are not limited to: de novo transcriptome assembly8 and characterization 

of alternative splicing variants9. Furthermore, RNAseq protocols are flexible, facilitating 

the optimization of data resolution relative to sequencing depth10. As a result, the 

popularity of RNAseq profiling eclipsed that of microarray profiling in the mid-2010’s; 

an estimated 3000 and 1500 publications reported the use of RNAseq and microarrays in 

2016, respectively11. 

Despite RNAseq becoming the gold-standard method of high-throughput 

transcriptomics12, its high cost relative to other methods has deterred its implementation 

in large-scale projects. In recent studies performed in our lab, the cost of an RNAseq run 

was $500, while that of microarray was $350, such that a study of 100 samples would 

result in a $15,000 price difference between the techniques. Accordingly, many large-

scale transcriptomic profiling studies have used microarrays, well after the availability of 

RNAseq. For example, in 2012 the Molecular Taxonomy of Breast Cancer International 

Consortium (METABRIC), used microarrays to profile breast cancer tumors from ~2000 

patients13. Moreover, as of 2018, the Connectivity Map (CMap), a toxicogenomic/drug 

repurposing project, has generated ~1.3 million exposure profiles, forgoing the use of 

high-throughput platforms altogether by developing their own assay, which only profiles 

973 individual genes14. 

The need to lower the per-sample cost of RNAseq lead to the development of 

multiplexing techniques, in which unique barcodes are attached to cDNA fragments of 

each sample, thereby enabling pooling and simultaneous sequencing15. These methods 

were quickly adopted for generating RNAseq data for such large-scale projects as The 
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Cancer Genome Atlas (TCGA)16, a consortium which currently contains 10,558 profiles 

from patients across 33 cancer types (https://portal.gdc.cancer.gov/) and the Cancer Cell 

Line Encyclopedia (CCLE), a database of 1,072 cell line profiles17. Innovations in 

barcoding techniques eventually lead to the practicality of performing single-cell RNA 

sequencing (scRNAseq), in which the cells from a tissue sample are isolated and 

sequenced individually18. Recently, the size of scRNAseq data sets has exploded, 

commonly consisting of thousands of individual cell profiles from a single tissue 

sample19.  

When performing multiplexed RNAseq, an important consideration is that pooling 

reduces number of sequenced reads for each sample, thereby reducing the precision of 

expression measurements, especially for lowly expressed transcripts10. Furthermore, 

preparing multiplexed RNAseq libraries requires more extensive library preparation 

protocols, including specific techniques to improve efficiency20. Therefore, careful 

assessment must be made to assess the quality of the data generated by novel protocols. 

In this dissertation, I present an extensive assessment of a highly-multiplexed RNAseq 

library preparation protocol developed by collaborators within the Boston University 

Section of Computational Biomedicine. The performance of this platform was examined 

relative to full-coverage RNAseq and microarray platforms, as well as a similar, well-

established technique, called 3’ digital gene expression (3’DGE)21. 3’DGE has been 

utilized in our lab for other projects, one of which I introduce next. 
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1.3 Toxicogenomic screening and metabolism disrupting compounds 

Shortly after the availability of high-throughput transcriptomics platforms, the field 

of toxicogenomics emerged22. Toxicogenomic research is concerned with 

characterization of molecular perturbation of biological systems following exposure to 

environmental chemicals in order to identify environmental toxicants and elucidate 

mechanisms-of-action contributing to chemical toxicity22. This mission is daunting given 

that there are more than 84,000 registered consumer chemicals with ~200 new chemicals 

being registered each year23. Furthermore, effects of chemical exposure is both dose and 

context dependent, making the task of characterizing chemical toxicants even more 

difficult. To make a dent in this problem, numerous toxicogenomics screening studies 

have been performed, which are devised to efficiently expose model organisms or cell 

lines to panels of environmental chemicals. Examples of previous toxicogenomic 

screening studies include those previously mentioned, the CMap project, as well the 

Carcinogenome project, a toxicogenomic screen performed by our lab, profiling chemical 

carcinogenicity in two separate human cells lines, HEPG2 (liver) and MCF10A (breast), 

exposed to respective panels of 330 and 345 individual chemicals24.  

Unlike carcinogenic chemicals, the effect of chemical exposures on human 

metabolism has been relatively unexamined. In a recent statement, the Endocrine Society 

implicated the disruption of energy homeostasis as the main cause of obesity 

pathogenesis, attributable to multiple aspects of modern lifestyle (e.g., high calorie 

intake, sedentary lifestyle, stable home temperatures, disrupted circadian rhythms)." 

More recently, evidence for the potential role of chemical exposures has grown25. 
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Importantly, obesity is associated with increases the risk of metabolic syndrome (i.e., fat 

around the waist, elevated blood pressure, high blood sugar, high serum triglycerides, low 

HDL-cholesterol) and metabolic disease (e.g., type 2 diabetes, cardiovascular disease, 

nonalcoholic fatty liver disease, and stroke)26. Furthermore, the prevalence of global 

obesity has doubled since 1980, such that an estimated 108 million children and 604 

million adults were obese in 2015, i.e. ~10% of the global population27. Adipose tissue is 

a crucial regulator of metabolic homeostasis, functioning as repositories of free fatty 

acids and releasing hormones that can regulate multiple aspects of metabolic homeostasis 

from food intake to insulin responsiveness28. Identifying chemical exposures that disrupt 

adipocyte activity and the elucidating the specific biological processes that are perturbed 

by these chemical exposures presents an opportunity to understand risk factors 

contributing to this major public health threat. 

In this dissertation, I present analyses of 3’DGE transcriptomic profiling data, 

generated as part of a toxicogenomic screen of chemical exposures to an adipocytes cell 

line. This panel was curated to include chemicals for which there is published evidence as 

to their effect or lack thereof on adipocyte activity, as well as chemicals for which 

previous evidence suggests an effect on adipocyte activity, but have not been rigorously 

examined in this context. The objectives of this project necessitated the development of 

novel machine learning methods to take better advantage of the experimental design used 

in this study. After describing each method and demonstrating their validity for modeling 

the data in this study, I finish by reporting the further development of one of these 
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methods and demonstrate its general applicability for unsupervised learning of both bulk 

and single-cell transcriptomic profiling data. 

1.4 Dissertation Aims 

1.4.1 Aim 1: Assessment of a cost-effective highly multiplexed RNA sequencing platform 

The need to reduce per sample cost of RNAseq profiling for scalable data 

generation has led to the emergence of highly multiplexed RNAseq. In chapter 2, I report 

the assessment of one such technique, denoted as sparse full length sequencing (SFL), a 

ribosomal RNA depletion-based RNA sequencing approach that allows for the 

simultaneous sequencing of 96 samples and higher. The performance of SFL was 

examined relative to well established single-sample techniques, including: full coverage 

Poly-A capture RNAseq, microarrays, as well as 3’ digital gene expression (3′DGE), 

another highly multiplexed technique. Our lab generated data for a set of exposure 

experiments on immortalized human lung epithelial (AALE) cells in a two-by-two study 

design, in which samples received both genetic and chemical perturbations of known 

oncogenes/tumor suppressors and lung carcinogens. 

The quality of each data set was evaluated analytically in terms of transcriptomic 

coverage, as well as the extent to which they captured expected transcriptional 

differences between exposure groups. To this end, I leveraged published transcriptional 

signatures of lung carcinogen exposure, as well as gene expression signatures associated 

with mutations of the genes over-expressed in this data from, derived from the TCGA 

Lung Squamous Cell Carcinoma (LUSC) and Lung Adenocarcinoma (LUAD) datasets. 

Additionally, discussion of the performance of each platform weighs their relative cost. 
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1.4.2 Aim 2: Transcriptomic profiling of adipocyte activity disrupting chemicals 

In chapter 3, I report on transcriptomic profiling of chemical exposures which 

disrupt adipocyte function by modifying activity of the transcription factor, Peroxisome 

proliferator activated receptor γ (PPARγ), the predominant transcriptional regulator of 

adipocytes29. These chemicals, denoted as adipogens, have been previously shown to 

activate specific subsets of PPARγ’s transcriptional programs to induce adipocytes with 

distinct phenotypes30–32. 

  The two main objectives of this work was to 1) predict PPARγ modifying 

chemicals and 2) group PPARγ modifying chemicals based on their effects on the 

adipocyte transcriptome and downstream metabolic functions. Data was generated using 

3’DGE transcriptomic profiling of 3T3-L1 mouse adipocytes following differentiation in 

the presence of 76 chemicals. 

 The analytical focus of this chapter encompasses the implementation of two novel 

machine learning methods I developed to improve modelling of the data. For predicting 

PPARγ modifying chemicals, I developed an amended random forest classification 

procedure, tailored to account for the presence of replicates, i.e. multiple samples in the 

data that received the same chemical exposure. The classification performance of this 

procedure relative to traditional random forest modeling was evaluated by cross 

validation. To identify subgroups of PPARγ modifying chemicals, I developed a novel 

recursive partitioning algorithm, denoted as K2Taxonomer, which utilizes repeated 

perturbations of the data to estimate robust partitions, recursively, thereby estimating a 

taxonomy-like subgrouping of the chemical exposures. The resulting taxonomy was then 
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annotated in-silico based on the patterns of gene expression and pathway enrichment 

specific to each subgroup. Finally, I developed an interactive web-portal of these results, 

which is publicly available (https://montilab.bu.edu/adipogenome/). Chapter 3 concludes 

with a series of experiments to validate the findings of these analyses. 

1.4.3 Aim 3: Tool development for characterization of molecular subgroups in bulk and 

single-cell transcriptomic profiling data 

 Unsupervised learning methods are commonly employed on high-dimensional 

data sets with the goal of identifying data-driven molecular subtypes, i.e. groups of 

observations that had not been distinguished prior to the analysis. In addition to the 

validity of subtype estimation, the utility of these approaches depends on the level to 

which the resulting models can be appropriately interpreted. This task is non-trivial 

considering the breadth of information that was utilized in model estimation. 

 In chapter 4, I present the further development of K2Taxonomer as an R package 

to perform robust recursive partitioning of large-scale transcriptomic data sets and 

facilitate the comprehensive exploration of the resulting models. K2Taxonomer’s 

generalizability to large-scale transcriptomic data sets was examined via application to 

simulated data, as well as various publicly available gene expression data collected from 

breast cancer tissue collected from living patients and airway tissue collected from 

healthy human subjects. These applications included implementation of K2Taxonomer on 

both bulk and single-cell gene expression data. To assess the validity of K2Taxonomer, I 

include performance comparisons to relative agglomerative hierarchical clustering 

methods. Chapter 4, concludes with a practical example, in which I applied 
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K2Taxonomer to an scRNAseq data set of breast cancer tumor infiltrating lymphocytes 

and utilized the package’s post-modeling functionality to characterize subgroups of T cell 

subtypes. Finally, I leveraged bulk gene expression data generated from breast cancer 

patient tissue to confirm these findings in silico. 
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Chapter 2: Assessment of a cost-effective highly multiplexed RNA sequencing 

platform 

2.1 Background 

Since its inception in 2008, RNA sequencing has become the gold-standard for 

whole-transcriptome high-throughput data generation33. In addition to RNA transcript 

expression quantification, RNAseq allows for more advanced analyses including de novo 

transcriptome assembly8 and characterization of alternative splicing variants9. 

Furthermore, RNAseq is species agnostic, such that the same library preparation 

technique may be utilized for humans, mouse, rat, kidney bean, etc. These represent clear 

advantages over hybridization-based microarray platforms in which individual 

microarray platforms are designed to quantify specific transcripts for a specific species7. 

However, one persistent drawback of RNAseq has been its relatively high cost. The use 

of classic RNAseq techniques for experimental designs that require profiling of many 

samples – especially when the marginal information value of each sample is relatively 

low, such as in medium- and high-throughput screening applications – can thus present a 

disqualifying cost burden.  

Large-scale projects based on transcriptional profiling of chemical exposure 

experiments include the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation 

System (Open TG-GATEs)34, the DrugMatrix database35, and the Connectivity Map 

(CMap)14, among others. Both the TG-GATEs and the DrugMatrix projects used 

microarrays for expression profiling, which was at the time significantly less costly than 

full coverage RNAseq, yet still requiring multi-million dollar budgets. Alternatively, the 
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CMap project utilizes the Luminex-1000 (L1000) profiling platform, a bead-based analog 

expression assay which quantifies 973 human transcripts, which are used to impute the 

expression of 11,350 additional transcripts14. This technique is among the least expensive 

expression assays available, but it is restricted to human screens and it directly profiles 

only a limited panel of genes. Given the flexibility of RNAseq platforms, highly 

multiplexed techniques represent a viable alternative for generating transcriptional data 

from exposure screens, as well as from other experiments that require a large sample size. 

Therefore, evaluation of the technical validity of specific techniques serves to inform 

research strategies for a variety of biological inquiries.  

The need to reduce the per sample cost of RNAseq has led to the adoption of 

barcoding technologies, where cDNA sequences from individual samples are tagged and 

their libraries are combined and multiplex sequenced in a single lane36. More recently, 

these techniques have been optimized to allow multiplex sequencing of 96 samples per 

lane or higher37,38. Here, we report the results of our effort at optimizing and evaluating 

one such technique denoted as sparse full length (SFL) sequencing38, a ribosomal RNA 

depletion-based RNA sequencing approach. We offer comparisons to well established 

single-sample techniques, including: full coverage Poly-A capture RNAseq and 

microarray, as well as another low-cost highly multiplexed technique known as 3’ digital 

gene expression (3’DGE)39. Assessments include comparisons of coverage between the 

three RNAseq techniques, as well as signal-to-noise and biological recapitulation of 

gene-level differential signals between treatment groups for the same samples profiled 

across SFL, microarray, and 3’DGE. For this evaluation study, we generated a set of 
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exposure experiments on immortalized human lung epithelial (AALE) cells40 in a two-

by-two study design, in which samples received both genetic and chemical perturbations 

of known oncogenes/tumor suppressors and lung carcinogens (Illustration 2.1). The goal 

of this report is not only to assess the performance of our optimized highly multiplexed 

technique, but to inform future research in terms of the strengths and pitfalls of available 

cost-effective high throughput transcriptomic profiling techniques. 

2.2 Methods 

2.2.1 Samples 

Exposure experiments were performed on immortalized human bronchial 

epithelial cells (AALE). Cells were exposed to both genotypic and chemical perturbations 

with three replicates per perturbation combination. Illustration 2.1 describes the specific 

combinations of perturbations profiled across each platform. Cells were thawed from 

liquid nitrogen and grown up in SAGM small airway epithelial cell growth media (Lonza, 

Portsmouth NH). Cells were subcultured using Clonetics ReagentPack subculture 

reagents (Lonza, Portsmouth, NH). In preparation for exposure, cells were plated into 24-

well plates and allowed to reach confluency for 24 hours. Genotypic perturbations 

included CRISPR knockouts of genes coding for lung tumor suppressor proteins: 

protocadherin FAT1 (FAT1)41 and cyclin-dependent kinase inhibitor 2A (CDKN2A)42, as 

well as overexpression of oncogenes: nuclear factor erythroid-derived 2-like 2 (NRF2)43, 

fibroblast growth factor receptor 1 (FGFR1)44, neuregulin 1 (NRG1)45 and 

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA)46. Cells 

transfected with a pSpCas9-EGFP (GFP) plasmid (PX458) in the absence of sgRNAs 
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were used as controls for the CRISPR perturbations while overexpression of an empty 

vector containing the reporter HcRed served as control for the overexpression 

experiments. Cell culture media was then replaced with either dimethylsulfoxide 

(DMSO) vehicle or one of three lung carcinogens: 24 µg/ml cigarette smoke concentrate 

(CSC)47, 173µM benzo[a]pyrene (BaP)48, or 490µM nicotine-derived nitrosamine ketone 

(NNK)49. NNK and BaP compounds were obtained from Sigma-Aldrich (St. Louis MO) 

and CSC obtained from Murty Pharmaceuticals (Lexington, KY). Aliquots of total RNA 

from the same samples were profiled across SFL, microarray, and 3’DGE for a subset of 

combinations of exposures, though all samples were profiled by SFL. In addition, full 

coverage poly-A RNAseq was performed on a separate set of samples for a subset of 

genotypic exposures, including CRISPR knockouts of FAT1, as well as overexpression of 

NRF2, NRG1, and PIK3CA. These samples did not receive any chemical exposures 

(Illustration 2.1). Note that in a few cases there was not enough material to perform 

3’DGE, as indicated by the sample numbers of certain perturbation combinations. 

2.2.2 Library preparation 

Total RNA was isolated using a standard Qiazol and Qiacube protocol from 

Qiagen (Valencia, CA). RNA purity was assessed using a NanoDrop spectrophotometer 

and no samples were excluded from downstream analysis. Library preparation for SFL 

sequencing was carried out based on the published protocol38. The dual-barcoded SFL 

libraries were pooled from 96 individual samples and then sequenced on the Illumina® 

NextSeq 550 to generate more than 400 million single-end 75-bp reads. Microarray 

procedures were performed as described in GeneChip™ WT PLUS Reagent Kit manual 
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and GeneChip™ WT Terminal Labeling and Controls Kit protocol (Thermo Fisher 

Scientific). The labeled fragmented DNA was generated from 100 ng of total RNA and 

was hybridized to the GeneChip™ Human Gene 2.0 ST Array. Microarrays were scanned 

using Affymetrix GeneArray Scanner 3000 7G Plus. 3’DGE library preparation was 

performed by Broad Institute, Cambridge, MA, USA, similar to 50. Final libraries were 

purified using AMPure XP beads (Beckman Coulter) according to the manufacturer’s 

recommended protocol and sequenced on an Illumina NextSeq 500 using paired-end 

reads of 17bp (read1) + 46bp (read2). Read1 contains the 6-base well barcode along with 

the 10-base UMI. Poly-A RNA Sequencing libraries were prepared from total RNA 

samples using Illumina® TruSeq® RNA Sample Preparation Kit v2 and then sequenced 

on the Illumina® HiSeq 2500 to generate more than 5 million single-end 50-bp reads per 

sample. Across all platforms, the number of samples that were successfully profiled per 

perturbation combination is shown in Illustration 2.1. 

2.2.3 Data pre-processing 

Affymetrix GeneChip Human Gene 2.0 ST Microarray CEL files were annotated 

to unique Entrez gene IDs, using a custom CDF file from BrainArray 

(hugene20st_Hs_ENTREZG_21.0.0) and RMA-normalized. For SFL, adapter sequences 

were trimmed from raw sequence files using Cutadapt (v1.12). Quality assessment of 

trimmed SFL sequence files as well as raw full coverage RNAseq sequencing files was 

performed with FastQC (v0.11.5). Both SFL and RNAseq reads were aligned to human 

genome (UCSC RefSeq hg19) with STAR v2.5.2b with the non-defulat parameter, “--

outSAMtype BAM SortedByCoordinate”51. Expression quantification in RefSeq genes 
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was carried out with featureCounts (v1.5.0)52. For 3’DGE, pre-quantified gene expression 

count matrices were obtained from the Broad Institute, Cambridge, MA, USA. These 

reads had been aligned to the transcriptome (UCSC RefSeq hg19), using BWA aln 

(v0.7.10) with the non-default parameter, “-l 24”53. Considering that there are 410 

(~1.05E6) possible UMIs and the 3’DGE library sizes are on the order of 106 reads, it is 

highly unlikely for the same UMI to be added to multiple cDNA fragments from the 

same gene. Therefore, using a custom python program 50, reads with the same UMI and 

sample barcode were only counted once per gene. All further data processing and 

analysis were carried out in R. 

2.2.4 Coverage assessment 

Read coverage across the 82 samples, shared between SFL and 3’DGE, as well as 

all 18 full coverage RNAseq samples was assessed for library size as well as percentage 

of the library size that was aligned, uniquely aligned (i.e. reads that only align once in the 

genome), and counted in the 22,233 genes which were annotated across all three 

platforms, i.e. the intersection of annotated genes. The full set of counted reads is 

hereafter referred to as the counted library. Unlike SFL and full coverage RNAseq, 

3’DGE reads are aligned directly to mRNA sequences, such that the reported numbers of 

counted reads and uniquely aligned reads are the same. To assess the relative distribution 

of reads across the total set of shared genes, we plotted the cumulative proportion of the 

sum of reads aligning to individual genes per samples ranked by relative expression 

across all three platforms. Saturation analysis of the estimated minimum percentage of 

the counted library size to maximize the number of genes quantified by each platform 



 

 

17 

was performed using a loess fit the gene discovery of 20 subsamplings of the per sample 

counted libraries. All subsampling analysis was performed using Subseq (v1.8.0). 

Finally, we assessed the relative induction of noise introduced by subsampling 

progressively larger proportions of the original counted library sizes in each platform, as 

measured by the principal component error54. In order to compare the three platforms 

assuming equally sized starting library, we repeated the assessment after first 

subsampling full coverage RNAseq libraries and 3’DGE libraries to sizes matching that 

of SFL, the smallest library of the three platforms. This analysis was performed on the 18 

samples of like genotypic perturbations, with no chemical treatment in the case of full 

coverage RNAseq samples and vehicle DMSO treatment in SFL and 3’DGE samples. 

Reported values reflect means across 20 iterations of the subsampling and principal 

component error calculation procedure. 

2.2.5 Signal-to-noise assessment 

Signal-to-noise was compared among SFL, 3’DGE and microarrays based on 

four-group ANOVA analysis and two-group differential analysis. In order to estimate 

signal-to-noise as a means for assessing expected performance when applying standard 

statistical methods to the data, rather than differential gene expression analysis packages, 

classic ANOVA was performed for each gene using normalized data across all three 

platforms, using the glm function in R. In this analysis, the signal-to-noise was assessed 

across like samples undergoing exposure to CSC or DMSO vehicle, as well as genotypic 

perturbations of NRF2 overexpression or HcRed control. Thus, the analysis included four 

independent groups of samples, receiving each combination of chemical (CSC or DMSO) 
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and genotypic (NRF2 or HcRed) perturbations, with three replicates in each group. Only 

genes with mean expression ≥ 1 across all 12 samples in both SFL and 3’DGE were 

included in the analysis (9,813 total genes). Expression levels across SFL and 3’DGE 

were normalized via trimmed mean of M values (TMM)55 scaling and log2 counts-per-

million transformation. Additionally, two-group differential gene expression analysis was 

performed for each stratified chemical and genotypic perturbation, using limma (v3.30.7). 

That is, differential expression of CSC- vs. DMSO-treated samples, within either HcRed 

or NRF2 treatment, as well as differential expression of NRF2- vs. HcRed-treated 

samples, within either DMSO or CSC exposure, was performed. The SFL and 3’DGE 

count data were transformed for linear modeling based on voom56. Following modeling, 

results were restricted to the top 10,000 genes as ranked by median-absolute-deviation 

(MAD). This heuristic gene filtering procedure was adopted because quantification-based 

filtering is not applicable to microarray data. This approach follows recommendations 

detailed in the limma manual56. All p-values reported from two-group differential 

analysis are two-sided. In both ANOVA and limma analyses, nominal p-values for each 

gene were corrected for multiple comparisons using the Benjamini-Hochberg procedure 

57. 

2.2.6 Biological signal recapitulation 

Two-group differential analysis signatures were compared by pre-ranked gene set 

enrichment analysis (GSEA) to gene sets derived from published signatures of smoking 

exposure in the airway from healthy volunteers58,59, as well as to gene sets analytically 

derived from The Cancer Genome Atlas (TCGA) for patients with lung squamous cell 
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carcinoma (LUSC) or lung adenocarcinoma (LUAD). The two smoking gene sets consist 

of genes reported as either up- or down-regulated in response to smoking in at least one 

of the two publications, while TCGA gene sets were derived by probing differential 

expression of individual genes between patients with or without point mutations or copy 

number alterations (CNA) in genes of interest. These include mutations for the same 

panel of genes profiled for genotypic perturbations. In addition we include KEAP1 

mutations, a repressor of NRF260. Specifically, point mutation signatures were derived 

from LUSC and LUAD, independently, by performing differential analysis of subjects 

with and without point mutations in genes of interest, matched for age, sex, and cancer 

stage. For NRF2 and PIK3CA point mutations were defined at specific mutation hotspots 

of along the gene body (Figure A.2)61. Likewise, CNA gene signatures were assessed for 

amplification and deletions of genes of interest by differential analysis, using subjects 

with zero, one, or two additional copies or deletions of a gene of interest, respectively. 

All models for mutations and CNA were adjusted for tumor purity, as reported61. 

Differential signatures were derived using limma. Genes associated with specific 

mutations or CNA were defined as those with significance and magnitude of the linear 

model’s genetic alteration coefficient at FDR Q-value < 0.05 and |log2 fold-change| > 

log2(1.5), respectively.  

Each of our genotypic perturbation signatures was compared by GSEA to the 

corresponding TCGA-derived gene sets. For example, the PIK3CA overexpression 

signatures were compared to the gene sets derived from PIK3CA mutation and copy 

number alterations in the TCGA data. To assess the effect of read counts on gene discovery 
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and biological recapitulation of each platform, we compared the differential analysis and 

GSEA results to that derived from subsampled libraries across full coverage RNAseq, SFL, 

and 3’DGE. Similar to coverage assessment, this analysis was performed starting with full 

libraries across all three platforms, as well as initially subsampling the full coverage 

RNAseq and 3’DGE libraries to sizes matching that of SFL. Reported values reflect means 

from 20 iterations of the subsampling followed by differential analysis and GSEA 

procedures.  

2.3 Results 

2.3.1 Coverage assessment 

Comparison of coverage of the three sequencing platforms, full coverage poly-A 

RNAseq, SFL, and 3’DGE, is summarized in Table 2.1, Figure 2.1, and Figure A.1. 

Comparison between SFL and 3’DGE included 82 samples each, while full coverage poly-

A RNAseq included all 18 available samples. None of the three platforms demonstrated 

differences in the library size variability (total number of assigned reads) across samples, 

although there was a notably high difference between the largest and smallest library size 

for the SFL samples, with a fold change of 4.3. Fold changes for full coverage RNAseq 

and 3’DGE were 1.9 and 2.9, respectively (Table 2.1, Figure 2.1A). 

Unsurprisingly, full coverage poly-A RNAseq generated the largest library size, 

while the SFL and 3’DGE libraries were of comparable size (Figure 2.1A). Furthermore, 

full coverage poly-A RNAseq yielded the highest percentage of reads aligned to the 

genome, followed by SFL and 3’DGE (Table 2.1, Figure 2.1Ci, Figure A.1A). The lower 

mapping rate of 3’DGE is most likely due to the lower read quality scores of 3’DGE 
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compared to full coverage RNAseq and SFL (Figure A.1B). The mean percentage of 

reads with Phred quality scores greater than 20 (Q20) was only ~88% for 3’DGE, 

compared to ~100% for both full coverage RNAseq and SFL. The relative 5’-3’ transcript 

coverage for each sample across all three platforms is shown in Figure A.1f. As expected, 

reads alignments were skewed towards the 3’ end of transcripts for 3’DGE, while we did 

observe relatively uniform coverage along the transcript for full coverage RNAseq and 

SFL. 

For SFL there was a clear drop-off when going from percentage of aligned reads 

to percentage of uniquely aligned reads due to ribosomal RNA (rRNA) contamination of 

the SFL samples (Figure 2.1Cii). The majority of reads aligning to ribosomal regions 

specifically align to RNA28S (Figure A.3). For 3’DGE, unique UMIs are aligned directly 

to transcript sequences and not to the whole genome, such that the number of uniquely 

aligned reads and reads counted in transcripts are the same (Figure 2.1Cii-iii)62. The 

percentage of reads that are counted in transcripts is greatest for full coverage poly-A 

RNAseq (mean percentage of total library size: 65.2%), followed by 3’DGE (33.3%), and 

SFL (24.5%). However, while the counted read library size is greater for 3’DGE than for 

SFL, more genes were quantified by SFL than by 3’DGE (Figure 2.1Civ) (counts > 0 

across all samples for 22,233 genes shared across all three platforms,). A median of 

60.9% and 50.5% genes were quantified by SFL and 3’DGE, respectively. The number of 

genes quantified was near the saturation point for each platform, such that this 

discrepancy is not due to read depth of each platform (FigureS1C). The reason for the 

low gene discovery of 3’DGE is further illustrated in Figure 2.1B, where it is shown that 
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the reads are more evenly distributed across the 22,233 genes by SFL than by 3’DGE, 

with the cumulative distribution of reads counted in individual genes nearly identical in 

SFL and full coverage poly-A RNAseq. 

The principal component (PC) error was estimated for each platform for different 

subsamples of the full counted library size. The first PC is shown in Figure 2.1D, while 

the second through the fifth PCs are shown in Figure A.1D. We observe that as the 

counted library size increases, the PC error decreases at the fastest rate for full coverage 

RNAseq, followed by SFL, then 3’DGE. Though these differences are more prominent 

when comparing full coverage RNAseq to either SFL or 3’DGE, we do observe that 

when down-sampling from 10% to 100% of the counted library size, the PC error 

decreases at a consistently faster rate for SFL than for 3’DGE. Initially subsampling full 

coverage RNAseq and 3’DGE to match the full SFL counted library size does not change 

the results. The same trend is also observed in the cumulative variance explained by each 

successive PC across full coverage RNAseq, SFL, and 3’DGE (Figure A.1E).  

In summary, despite lower overall counted library size due to ribosomal RNA 

contamination, SFL demonstrates greater coverage in low-to-medium expressed genes 

than 3’DGE, comparable to full coverage poly-A RNAseq. Consequently, the 

transcriptional signal captured by the SFL libraries are more robust to subsampling of the 

data compared to 3’DGE as measured by the principal component error.  

2.3.2 Signal-to-noise evaluation 

Differential expression models comparing experimental groups of matched 

samples was performed in SFL, microarray, and 3’DGE and the corresponding signal-to-
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noise scores were compared pairwise between platforms (Figure 2.2). Samples shared 

across the three platforms include three replicates for each of four experimental groups, 

corresponding to NRF2 overexpression or HcRed vehicle, as well as CSC chemical 

exposure or DMSO vehicle (Illustration 2.1). Signal-to-noise was assessed by a four-

group comparison with classic ANOVA (Figure 2.2A-D), as well as by stratified two-

group differential analyses using limma (Figure 2.2 E-F).  

We compared the log10 F-statistics between ANOVA models across all three 

platforms (Figure 2.2A). Overall, the distribution of F-statistics is most similar between 

SFL and microarrays, with a Pearson correlation of 0.291. Though statistically significant 

(p < 0.01), the corresponding mean difference between log10 F-statistics is only 0.026. 

The mean differences of the log10 F-statistics between SFL and 3’DGE, and between 

3’DGE and microarray are 0.328 and 0.302, respectively, and the corresponding Pearson 

correlations are 0.160 and 0.216, respectively. These results are consistent with the 

discovery rates estimated for different FDR Q-value thresholds (Figure 2.2B). For 

example, at the FDR Q-value threshold of 0.05, the discovery rates of SFL and 

microarray are almost identical, 0.214 (2083 genes), 0.209 (2038 genes), respectively, 

while the discovery rate of 3’DGE is much smaller 0.032 (310 genes).  

Loess regression of the log10 F-statistics as a function of mean gene expression 

shows that the statistical signal increases with mean normalized expression. This trend is 

consistently positive for both SFL and 3’DGE, while leveling off at the most highly 

expressed genes in microarrays (Figure 2.2C). Furthermore, SFL signal is greater than 

3’DGE signal at all levels of mean expression (Figure 2.2C). In agreement with the 
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results from coverage comparison, the distribution of mean normalized expressions in 

3’DGE is smaller than that of SFL, while SFL is comparable to that of microarray (Figure 

2.2D). Adherence to assumption of normality, assessed through a Shapiro-Wilk test, is 

also associated with higher mean normalized expression (Figure A.4).  

 
The results of the comparisons of the two-group differential analyses across all 

three platforms were generally congruous with those of the four-group ANOVA analyses 

(Figure 2.2E-F, Figure A.5, Figure A.6). In all four two-group comparisons, the 

correlation of test statistics is closest between microarray and SFL results, followed by 

3’DGE versus microarray results, and 3’DGE versus SFL. For example, in the DMSO-

stratified, NRF2 versus HcRed analysis, estimates of the Pearson correlations of test 

statistics are 0.66, 0.45, and 0.43, respectively (Figure 2.2E). The discovery rate of 

3’DGE is the lowest across all four differential analyses, while the discovery rate of SFL 

is higher in three out of four of these analyses (Figure 2.2F, Figure A.5, Figure A.6). 

In summary SFL demonstrated greater statistical power than 3’DGE to detect 

differentially expressed genes, and its results more closely matched those in microarrays. 

2.3.3 Biological signal recapitulation evaluation 

To evaluate the ability of each platform to recapitulate biologically relevant 

results, we utilized previously published signatures of smoking exposure in lung58,59, as 

well as differential signatures derived from the TCGA LUSC and LUAD datasets 

associated with mutations of the genes over-expressed in our experiments. From each of 

these signatures two gene sets were extracted, one of genes positively associated and one 
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of genes negatively associated to the variable of interest. These gene sets were then tested 

via pre-ranked gene set enrichment analysis against each of our differential analysis 

results (CSC vs. DMSO, stratified by NRF2 or HcRed perturbation; NRF2 vs. HcRed, 

stratified by CSC or DMSO perturbation). The enrichment results with respect to both the 

smoking exposure signatures and the TCGA mutations are summarized in Figure 2.3A, 

and further detailed in Figure A.5, and confirm the highest sensitivity of microarrays, 

followed by SFL and 3’DGE. 

The set of genes up-regulated in “smokers vs. non-smokers” was found to be 

significantly (FDR Q-value < 0.05) enriched in all “CSC vs. DMSO” signatures, within 

both genotypic stratifications for all three platforms. Conversely, the set of down-

regulated genes in “smokers vs. non-smokers” was only enriched in the microarray 

signature of “NRF2 over-expressed; CSC vs. DMSO” (Figure A.7). 

The enrichment results of TCGA-derived gene sets with respect to differential 

signatures of genotypic perturbations were in agreement with the gene-level results, in 

that they consistently demonstrated smaller discovery rates by 3’DGE than by SFL or by 

microarrays (Figure 2.3A). For example, the significantly enriched gene sets in “DMSO-

treated; NRF2 vs. HcRed” differential signatures across all three platforms are 

highlighted in Figure A.7. The number of gene sets enriched in microarray, SFL, and 

3’DGE platforms are five, three, and zero, respectively.  

In addition to comparing which gene sets were significantly enriched in individual 

differential signatures, we compared the relative statistical signal of these enrichments. 

To this end, we transformed the permutation-based FDR Q-values by taking the negative 
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Log10 and multiplying by the direction of the enrichment score (ES), –Log10(FDR Q-

values)*sign(ES). For each two-platform comparison, we fit a regression model through 

the origin. Since consistent results across platforms would result in a model fit close to 

the identity line, y=x, we tested whether the slope coefficient equaled 1 (i.e. B1 = 1). 

Figure 2.3B shows these results for each of the three comparisons of the NRF2 and 

KEAP1 mutation-based gene sets enrichment against the “DMSO-treated; NRF2 vs. 

HcRed” signatures. In all three comparisons, microarrays have the highest measured 

enrichment signal, followed by SFL and 3’DGE, however the difference between 

microarray and SFL results is not significant, B1 = 0.73; p-value = 0.2. The coefficients 

for both of the comparisons to 3’DGE, are highly skewed in favor of microarray and 

SFL, B1 = 0.18 and 0.14, respectively. Both of these comparisons are highly significant 

with p-values < 0.01. Comparison of the enrichment results for other differential 

signatures show similar trends (Figure A.8). 

Next, we compared enrichment results with respect to all genotypic perturbation 

signatures between SFL and 3’DGE (Figure 2.4A; Figure A.9A). Each comparison (i.e., 

each point in the plot) denotes gene set enrichment results with respect to genotypic 

perturbations within each of the four chemical exposures, DMSO, CSC, BaP, and NNK. 

Gene sets were tested for enrichment against concordant differential signatures, e.g., the 

PIK3CA mutation-derived gene set was tested against the “PIK3CA vs. HcRed” 

signatures. As in the previous analysis, the permutation-based enrichment FDR Q-values 

were transformed by –Log10(FDR Q-values)*sign(ES). In the “DMSO-treated; 

genotypic perturbation vs. control” signatures, we observe that the gene set enrichment is 
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generally more significant for SFL than for 3’DGE (B1 = 0.63; p-value < 0.01; Figure 

2.4A). The results obtained in CSC- and NNK-treated signatures, demonstrate 

concordance to these results (B1 = 0.65; p-value = 0.03 and B1 = 0.60; p-value = 0.01, 

respectively). The BaP-treated results are less comparable since only one genotypic 

perturbation signature, “FAT1 vs. GFP”, is available for this stratification (Figure A.9A).  

Additionally, we compared our differential signatures to available full coverage 

poly-A RNAseq genotypic perturbations (Figure A.9B), although these results are 

considered less comparable because of differences in experimental set-up. In particular, 

in the full coverage poly-A RNAseq experiments the genotypic perturbations were 

performed on untreated rather than DMSO-treated cell lines (Illustration 2.1).  

The effect on discovery rate by subsampling the data across all three platforms is 

shown in Figure 2.4B. Generally, we did not observe a plateauing of discovery rate, 

where the number of detected genes plateaus near full counted library size. When 

comparing the correlation between GSEA results on subsampled data we observe similar 

trends across full coverage RNAseq, SFL, and 3’DGE (Figure 2.4C). Initial subsampling 

of full coverage RNAseq and 3’DGE to the SFL counted library size did not change the 

analysis results.  

In summary, differential analysis of molecular and genotypic perturbations with 

SFL recapitulates biologically meaningful signals of gene sets derived from high 

coverage in vivo data sets. This performance is comparable to both 3’DGE and 

microarray. 
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2.4 Discussion 

The goal of this study was to evaluate the performance of SFL sequencing, a low-

cost method for performing highly multiplexed RNAseq, and to compare it to other high-

throughput gene expression profiling platforms. The development of such methods would 

be instrumental to the generation of large-scale perturbation screens based on in-vitro 

models. The reduction of the cost per profile would make it feasible to significantly 

increase the number of replicates and conditions to be profiled, including multiple time 

points, concentrations, and biological models, and thus would support a more in-depth 

investigation of the heterogeneity of the biological response to different exposures. It 

would also support the development of more accurate predictive models of the adverse or 

therapeutic outcomes of various exposures. Finally, insights gained from our study will 

also inform the design of protocols for single-cell RNAseq (scRNAseq)63, given their 

reliance on highly-multiplexed libraries. 

In addition to SFL, the platforms included in this analysis were 3’DGE, an 

alternative highly multiplexed sequencing platform, Affymetrix GeneChip Human Gene 

2.0 ST Microarray, an analog expression platform, and full coverage poly-A capture 

RNAseq. The cost per sample for SFL and 3’DGE was ~$50, a 10-fold decrease from 

that of full coverage RNAseq, $500, and a 7-fold decrease from that of the microarray, 

$350 USD. Throughout this analysis we demonstrate comparable performances of SFL 

and 3’DGE to these more expensive platforms. Furthermore, in this analysis we 

consistently find evidence that SFL outperforms 3’DGE. 
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Performance was assessed in terms of coverage, signal-to-noise, and 

recapitulation of expected biological signal derived from independently generated, 

publicly available data collected from human subjects. Coverage was assessed by 

comparing the three digital expression platforms, while signal-to-noise and biological 

recapitulation was assessed by comparing SFL, 3’DGE, and microarrays. Microarray 

expression quantification has been shown to be highly correlated with qRT-PCR, 

especially when processed with updated probe set annotations, utilized in this analysis64. 

Chemical and molecular perturbations were carried out in the same samples, and 

concurrently profiled by SFL, 3’DGE, and microarrays. We also leveraged previously 

generated full coverage poly-A RNAseq profiles from similar perturbations of AALE cell 

lines.  

For coverage assessment, performance was evaluated in terms of the distribution 

of total reads, or library size, that were aligned to the human genome, and further 

quantified in annotated genes. The best performance was expected in full coverage poly-

A RNAseq, given that this is the most well-established technique and has by far the 

highest sequencing depth. This was confirmed, as full coverage poly-A RNAseq was 

measured to have the highest per sample library size, percentage of aligned reads, 

percentage of uniquely aligned reads, and percentage of counted reads (Figure 2.1, Figure 

A.1). The coverage performance of SFL suffered as a result of rRNA contamination, 

where as many as 53% of the total library size per sample was assigned to ribosomal 

regions of the genome (Figure A.3).  
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3’DGE is a poly-A capture technique, therefore ribosomal depletion is not a 

possible pitfall. 3’DGE generates short nucleotide tags from transposon-based 

fragmentation, which are enriched for 3’ adjacent sequences of a given transcript 50. 

Since many transcripts of the same gene generate identical sequence tags, unique 

molecular identifiers (UMIs) are used to distinguish between unique reads and duplicate 

reads generated from PCR amplification. Although mRNA fragment duplication occurs 

with any RNAseq protocol, the impact of this artifact on downstream analyses is 

negligible for techniques, such as SFL, which generate more complex sequence 

libraries65. 

3’DGE sequences were aligned directly to human mRNAs, rather than the whole 

genome. Therefore, percentages of reads aligned and reads counted (Figure 2.1Ci,iii) 

reflect the percentages of these non-unique UMIs that align to at least one gene and the 

number of unique UMIs that align to only one gene, respectively. We observe that the 

percentage of counted reads is greater for 3’DGE than SFL, which is explained by a loss 

of reads to rRNA contamination in SFL. However, we observe notably more genes 

quantified by SFL than by 3’DGE (Figure 2.1B, Figure 2.1Civ), which indicates that 

more reads are assigned to fewer genes in 3’DGE compared to SFL, as well as to full 

coverage RNAseq (Figure 2.1C). Although rRNA contamination is a potential drawback 

of any ribosomal depletion RNA sequencing technique, the extent of ribosomal 

contamination is variable, and could be potentially improved by further optimization of 

the library preparation protocol.  
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The difference in distribution of reads across shared genes between SFL and 

3’DGE likely explains the difference in information retained by subsampling as measured 

by principal component error. We consistently observe that, as the counted library size 

increases, the rate of principal component error decreases faster for SFL than 3’DGE 

(Figure 2.1D, Figure A.1D). This is unsurprising considering that not only are 

considerably fewer genes quantified by SFL compared to 3’DGE, but there is also no 

discernable difference between the rate of genes counted as a function of counted library 

size between the two platforms (Figure A.1C). As we subsample the counted libraries, 

though we may lose the same number of genes between SFL and 3’DGE, the percent of 

genes lost, and consequently the information lost, will be greater for 3’DGE than SFL. 

Furthermore, this more even read distribution likely explains the improved performance 

of SFL over 3’DGE in statistical signal. In particular, our signal-to-noise evaluation 

shows consistently higher gene-level statistical signal from SFL and microarray 

experiments than from 3’DGE experiments (Figure 2.2). These differences appear to be 

driven by the differences in the relative quantification of genes, given that statistical 

signal is positively associated with mean gene expression for each platform, and 3’DGE 

experiments showed lower gene-level quantification than SFL and microarrays (Figure 

2.2C-D). We observe similar cross-platform relationships in the two-group differential 

analyses (Figure 2.2E-F).  

The gene set-based enrichment results are consistent with those from signal-to-

noise analyses. In every comparison of enrichment scores between SFL and 3’DGE, we 

observe generally higher gene set enrichment with respect to the SFL-derived signatures 
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(Figure 2.3, Figure 2.4A, Figure A.8, Figure A.9). The gene sets were selected to 

represent known biological responses to the profiled perturbations, and thus their 

enrichment with respect to the perturbation signatures are expected to be true positives. 

The enrichment results confirm this expectation. For example, in the signatures of 

NRF2 overexpression, we consistently observe enrichment of the gene sets derived from 

NRF2 amplifications and KEAP1 deletions, each of which should increase NRF2 activity 

(Figure A.7)60. Similarly, we observe significant concordant enrichment of the gene sets 

derived from NRF2 and KEAP1-dysregulated lung tumors in the signature of CSC 

exposure, suggesting that the NRF2 pathway is activated by CSC exposure in vitro 

(Figure A.7), which has been previously reported66. Interestingly, these results 

demonstrate that the activation of the NRF2 pathway in normal airway epithelial cells in 

vitro (by ectopic expression of the gene or by CSC treatment) is concordant with the 

activation of NRF2 by somatic genome alterations in lung tumors, a finding that, to the 

best of our knowledge, has not been previously observed. 

Possible sources of technical variability in this study are the different sequencing 

platforms, service providers, and read lengths. However, when subsampling the 3’DGE 

and SFL counted libraries, we generally observe higher discovery rates at all percentages 

of the full counted libraries, and even more so when the 3’DGE counted libraries are 

initially subsampled to full SFL counted library sizes (Figure 2.4B), demonstrating that 

SFL shows improvements independent of the mapping rate. This result confirms previous 

reports showing that increasing read length above 50-bp does not improve read 

quantification67. Furthermore, similar results have been reported even when the same 
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sequencing platform is used. A recent study reported a greater number of genes detected, 

as well as higher differential analysis discovery rates, in conventional RNAseq than in 

3’DGE at identical counted library sizes, using the Illumina HiSeq 2500 platform to 

generate both libraries68.  

In summary, in this study we observe higher performance of SFL than 3’DGE, as 

measured by coverage, signal-to-noise, and biological recapitulation of known signal, 

with the performance of SFL often matching that of well-established “gold standards” 

(full coverage RNAseq or microarrays). On the other hand, the fact that 3’DGE is shown 

to allocate a large number of reads to relatively fewer, highly expressed genes, makes this 

platform more suitable for problems where high accuracy in the differential 

quantification of highly expressed genes is needed. Furthermore, the ready availability of 

3’DGE as a core-provided option, which allows for the out-sourcing of library 

preparation, sequence read pre-processing and gene quantification, is an additional value-

added of the platform. Ultimately, the best-suited platform for a specific project will 

depend on the study goals, design, and availability of different resources. We believe our 

study presents useful results to make a more informed choice. 

The utility of highly multiplexed RNAseq crucially depends on the trade-off 

between cost and data quality, and on the nature of the experiments for which the 

platform would be ideally suitable. These will in general be experiments where the 

marginal information content of a single profile is relatively low, and thus justifies 

trading-off some data quality for reduced cost.  
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Illustration 2.1: Design of Cross-Platform Experiments and High-throughput Data 
Processing 

Schematic of the number of each pair of genotypic and chemical perturbations, as well as 
a summary of preprocessing methods used to quantify gene-level expression for each 
platform. Note that “Unt.” is an abbreviation of “untreated”, denoting that the RNAseq 
samples used in this experiment did not receive chemical perturbations. Numbers in each 
box represent biological replicates of each condition. The color scheme for each platform 
is consistent throughout this report. 
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Table 2.1: Comparison of Read Assignment Between Full Coverage Poly-A RNAseq, 
SFL, and 3’DGE 
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Figure 2.1: Comparison of Coverage Between Poly-A RNAseq, SFL, and 3’DGE 

A) Boxplots of distribution of library size for each platform.  
B) Cumulative distribution of reads assigned to individual genes per sample. The x-axis 

indicates the quantile for each gene in terms of ranking by relative expression. The y-
axis shows the cumulative proportion of total counted reads assigned to these genes, 
i.e., the running sum of reads divided by the total number of reads across all genes. 

C) The top 3 boxplots show the percentage of reads aligned (i), uniquely aligned (ii), and 
counted(iii) relative to the total library size for each platform. The bottom boxplot (iv) 
shows the proportion of genes with counts > 1, for protein-coding genes annotated 
across all 3 platforms (18,488). For Figure 2.1Cii, “Reads Uniquely Aligned” is not 
shown for 3’DGE because “Reads Uniquely Aligned” and “Reads Counted” are the 
same values as a result of the data pre-processing protocol, specific to 3’DGE (see 
Methods). Counts values for these percentages are given in Figure A.1A. 

D) Analysis of the principal component error of subsampled counted library sizes for full 
coverage poly-A RNAseq, SFL, and 3’DGE for principal component 1. Results for 
principal component 2-5 is shown in Figure A.1D. Initial subsamples of Poly-A 
RNAseq and 3’DGE to the SFL library size are also given as dotted lines. 
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Figure 2.2 Signal-to-Noise Comparison Between SFL, Microarray, and 3’DGE 

A) Scatterplots comparing the log10(F-Statistics) from ANOVA models comparing four 
n=3 groups (HcRed:DMSO, HcRed:CSC, NRF2:DMSO, and NRF2:CSC). The grey 
line shows y=x. The platform with the higher mean log10(F-Statistic) is plotted on 
the y-axis. Also, included are the p-value and difference in mean between each bi-
platform comparison from paired t-testing, as well as the squared correlation 
coefficient. P-values ~ 0 are less than 0.01. Color of indicate genes discovered by 
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individual platforms (green, orange, or blue), neither platform (grey), and both 
platforms (red). 

B) Plot of the Discovery Rate versus FDR Q-Value from threshold for each platform 
from four group ANOVA models. The x-axis is plotted on a -log10 scale. The vertical 
line is indicative of a Q-value threshold of 0.05. 

C) Loess fit of the log10(F-Statistic) versus median normalized expression from four 
group ANOVA models. 

D) Distribution of mean normalized expression across all three platforms. 
E) Comparison of gene discovery (FDR Q-Value < 0.05) by differential analysis with 

limma, comparing normalized gene expression between DMSO:NRF2 and 
DMSO:HcRed, including the raw discovery rates, discovered gene overlap, and linear 
fits, comparing test statistics from each platform. Genes that are discovered by more 
than 1 platform are shown in red in the scatterplots. Additional comparisons are 
shown in Figure A.5. 

F) Plot of the Discovery Rate versus FDR Q-Value from threshold for each platform 
from two group differential analyses. The x-axis is plotted on a -Log10 scale. The 
vertical line is indicative of a Q-value threshold of 0.05. 
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Figure 2.3: Comparison of Gene-set enrichment of Smoking and Gene Mutation 
Signatures across SFL, 3’DGE and Microarray 

A) Violin plots of the –Log10(FDR Q-Value) from gene set enrichment analysis of 
TCGA-derived gene-sets with respect genotypic perturbations (left) and chemical 
perturbations (right) differential signatures across like samples within SFL, 
Microarray, and 3’DGE. Each column corresponds to differential signatures 
comparing genotypic or chemical perturbation groups, stratified by a single chemical 
or genotypic perturbation group, respectively, e.g. the left-most column shows the 
enrichment results with respect to the “DMSO-treated; NRF2 vs. HcRed” signature 
within the samples (stratum) in SFL data. Specific results for TCGA-derived genes 
sets are shown in Figure A.7. 

B) Comparison of the gene set enrichment results between SFL, microarray and 3’DGE 
with respect to the “DMSO-treated; NRF2 vs. HcRed” differential signature. Shown 
are the transformed FDR Q-values of the TCGA-derived gene sets corresponding to 
mutations of NRF2 and CNA of KEAP1. The |–Log10(FDR Q-Values)| 
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corresponding to the FDR<0.05 significance thresholds are shown as vertical and 
horizontal gray lines for the y and x-axes, respectively. Points of gene sets whose 
enrichment meets this threshold in either of the two platforms are filled in. Colors and 
shape of points denote direction and source of the gene set, respectively. Additional 
results for chemical and genotypic perturbation signatures are shown in Figure A.8. 
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Figure 2.4: Comparison of Gene-set enrichment of Gene Mutation Signatures across 
SFL and 3’DGE 

A) Comparison of the gene set enrichment results between SFL and 3’DGE with respect 
to the “DMSO-treated; genotypic perturbation vs. control” differential signatures. 
Points indicate gene set enrichment against concordant signatures, e.g., PIK3CA 
mutation and CNA gene sets against the “PIK3CA vs. HcRed” differential signatures. 
Shown are the transformed FDR Q-values from permutation-based testing by pre-
ranked GSEA. |–Log10(FDR Q-Values)| corresponding to the FDR=0.05 significance 
thresholds are shown as vertical and horizontal gray lines for the y and x-axes, 
respectively. The names of the gene sets whose enrichment meets this threshold in 
either of the two platforms are shown and their points are filled in. Colors and shape 
of points denote direction and source of the gene set, respectively. Additional results 
for CSC, NNK, and BaP stratified genotypic perturbation signatures, as well as 
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comparisons between full coverage RNAseq and either SFL and 3’DGE are shown in 
Figure A.9. 

B) Discovery rates for genotypic perturbations across full coverage poly-A RNAseq, 
SFL, and 3’DGE, for chemically untreated (full coverage RNAseq) and DMSO 
treated (SFL and 3’DGE) samples. Results demonstrate full counted library size, as 
well as subsampled libraries. 

C) Correlation between transformed FDR Q-values from gene set enrichment at different 
subsamples of each platform and the results from the full counted library size. Shown 
are the results from genotypic perturbations from untreated (full coverage 
RNAseq)/DMSO treated (SFL and 3’DGE), CSC, and NNK chemically treated 
samples. 
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Chapter 3:  Transcriptomic profiling of adipocyte activity disrupting chemicals 

3.1 Background 

Since 1980, the prevalence of obesity has been increasing globally and has 

doubled in more than 70 countries. In 2015, it was estimated that a total of 108 million 

children and 604 million adults were obese worldwide27. This poses a major public health 

threat since overweight and obesity increase the risk of metabolic syndrome, which, in 

turn, sets the stage for metabolic diseases, such as type 2 diabetes, cardiovascular disease, 

nonalcoholic fatty liver disease, and stroke26. The Endocrine Society’s latest scientific 

statement on the obesity pathogenesis states that obesity is a disorder of the energy 

homeostasis system, rather than just a passive accumulation of adipose, and that 

environmental factors, including chemicals, confer obesity risk25. The rapid increases in 

obesity and metabolic diseases correlate with substantial increases in environmental 

chemical production and exposures over the last few decades, and experimental evidence 

in animal models demonstrates the ability of a broad spectrum of various environmental 

metabolism-disrupting chemicals to induce adiposity and metabolism disruption69.  

Adipocytes are crucial for maintaining metabolic homeostasis as they are 

repositories of free fatty acids and release hormones that can modulate body fat mass28. 

Adipogenesis is a highly regulated process that involves a network of transcription 

factors acting at different time points during differentiation70. Peroxisome proliferator 

activated receptor γ (PPARγ) is a ligand activated, nuclear receptor and essential 

regulator of adipocyte formation and function29, as well as metabolic homeostasis, as all 
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PPARγ haploinsufficient and KO models present with lack of adipocyte formation and 

metabolism disruption71–75.  

PPARγ activation regulates energy homeostasis by both stimulating storage of 

excess energy as lipids in white adipocytes and stimulating energy utilization by 

triggering mitochondrial biogenesis, fatty acid oxidation and thermogenesis in brite and 

brown adipocytes. The white adipogenic, brite/brown adipogenic and insulin sensitizing 

activities of PPARγ are regulated separately through post-translational modifications76–78 

and differential co-regulator recruitment79–82. Importantly, humans with minimal brite 

adipocyte populations are at higher risk for obesity and type 2 diabetes83–85. 

Growing evidence supports the hypothesis that environmental PPARγ ligands 

induce phenotypically distinct adipocytes. Tributyltin (TBT) induces the formation of an 

adipocyte with reduced adiponectin expression and altered glucose homeostasis30. 

Furthermore, TBT fails to induce expression of genes associated with browning of 

adipocytes (e.g. Ppara, Pgc1a, Cidea, Elovl3, Ucp1) in differentiating 3T3-L1 

adipocytes31,32. As a result, TBT-induced adipocytes fail to up-regulate mitochondrial 

biogenesis and have low levels of cellular respiration31,32. The structurally similar 

environmental PPARγ ligand, triphenyl phosphate, also fails to induce brite adipogenesis, 

and this correlates with an inability to prevent PPARγ from being phosphorylated at 

S27386. 

The EPA developed the Toxicity Forecaster (ToxCast™) program to use high-

throughput screening assays to prioritize chemicals and inform regulatory decisions 

regarding thousands of environmental chemicals87. Several ToxCast™ assays can 
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measure the ability of chemicals to bind to or activate PPARγ, and these assays have been 

used to generate a toxicological priority index (ToxPi) that were expected to predict the 

adipogenic potential of chemicals in cell culture models88. Yet, it has been shown that the 

results of ToxCast™ PPARγ assays do not always correlate well with activity measured 

in a laboratory setting and that the ToxPi designed for adipogenesis was prone to 

predicting false positives89. Furthermore, the ToxCast/ToxPi approach cannot distinguish 

between white and brite adipogens90.  

In this study, we investigate differences in cellular response between adipogenic 

and non-adipogenic compounds, as well as the heterogeneity of response across 

adipogenic compounds. Our ultimate goal is the identification of potential novel 

adipogenic compounds, and the taxonomic organization of known and predicted 

adipogenic compounds based on their divergent transcriptional response. To this end, we 

generated phenotypic and transcriptomic data from adipocytes differentiated in the 

presence of 76 different chemicals. We combined the cost-effective generation of 

agonistic transcriptomic data by 3’Digital Gene Expression, a highly multiplexed 

RNAseq technology, with a new classification method to predict PPARγ-activating and 

modifying chemicals. Further, we investigated metabolism-related outcome pathways as 

effects of the chemical exposures. We created a data-driven taxonomy to specifically 

classify chemicals into distinct categories based on their various interactions with and 

effects on PPARγ. Based on the taxonomy-based predictions, we tested the phenotype 

(white vs. brite adipocyte functions) of environmental adipogens predicted to fail to 

induce brite adipogenesis in 3T3-L1 cells and primary human adipocytes.  
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3.2 Methods 

3.2.1 Chemicals 

DMSO was purchased from American Bioanalytical (Natick, MA). CAS 

numbers, sources and catalog numbers of experimental chemicals are provided in Table 

A.1. Human insulin, dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), and all other 

chemicals were from Sigma-Aldrich (St. Louis, MO) unless noted.  

3.2.2 Cell culture 

3T3 L1 (RRID:CVCL_0123, Lot # 63343749) cells were originally derived from 

a Swiss mouse embryonic fibroblast line. Cells were maintained in high-glucose DMEM 

(Corning, 10-013-CV) with 10% calf serum (Sigma), 100 U/ml penicillin, 100 µg/ml 

streptomycin, 0.25 µg/ml amphotericin B. All experiments were conducted with cells 

between passages 3 and 8. Experimental conditions are outlined in Table 3.1 and Figure 

A.10A. For experiments, cells were plated in Growth Medium and incubated for 4 days, 

at which time the cultures are confluent for 2 days. “Naïve” pre-adipocytes were cultured 

in Growth Medium for the duration of an experiment. On day 0, differentiation was 

induced by replacing the medium with Differentiation Medium (DMEM,10% fetal 

bovine serum (FBS, Sigma-Aldrich), 100 U/ml penicillin, 100 µg/ml streptomycin, 250 

nM dexamethasone, 167 nM human insulin, 0.5 mM IBMX). Also on day 0, single 

experimental wells were treated with vehicle (DMSO, 0.2% final concentration), 

rosiglitazone (100 nM) or test chemicals. Rosiglitazone was included in experiments as a 

positive control because it is a potent PPARγ agonist and metabolic therapeutic. On days 
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3 and 5 of differentiation, medium was replaced with Maintenance Medium (DMEM, 

10% FBS, 167 nM human insulin, 100 U/ml penicillin, 100 µg/ml streptomycin), and the 

cultures were re-dosed. On Day 7 of differentiation, medium was replaced with 

Adipocyte Medium (DMEM, 10% FBS, 100 U/ml penicillin, 100 µg/ml streptomycin), 

and the cultures were re-dosed. On day 10, cytotoxicity was assessed by microscopic 

inspection, with cultures containing more than 10% rounded cells excluded from 

consideration (See Table A.1 for information on maximum concentrations tested). Wells 

with healthy cells were harvested for analysis of gene expression, lipid accumulation, 

fatty acid uptake, mitochondrial biogenesis, mitochondrial membrane potential, and 

cellular respiration.  

OP9 cells (RRID:CVCL_4398, Lot # 63544739) are a bone marrow stromal cell 

line derived from newborn calvaria of the (C57BL/6xC3H)F2-op/op mouse. Cells were 

maintained in αMEM (Gibco, 12-561-056) with 20% FBS, 26 mM sodium bicarbonate, 

100 U/ml penicillin, 100 µg/ml streptomycin, 0.25 µg/ml amphotericin B. Cells were 

plated in 24 well plates at 50,000 cells were well in 500 µl medium and incubated for 4 

days. Induction and maintenance of adipogenesis and treatment were as described for 

3T3 L1 cells, except that the dexamethasone concentration was 125 nM. 

Primary human subcutaneous pre-adipocytes were obtained from the Boston 

Nutrition Obesity Research Center (Boston, MA) and differentiated as previously 

described91. Experimental conditions are outlined in Table 3.1 and Figure A.10B. The 

pre-adipocytes were maintained in Growth Medium (αMEM with 10% FBS, 100 U/ml 

penicillin, 100 µg/ml streptomycin, 0.25 µg/ml amphotericin B). For experiments, human 
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pre-adipocytes were plated in Growth Medium and grown to confluence (3-5) days. 

“Naïve” pre-adipocytes were cultured in Growth Medium for the duration of an 

experiment. On day 0, differentiation was induced by replacing the Growth Medium with 

Differentiation Medium (DMEM/F12, 25 mM NaHCO3, 100 U/ml penicillin, 100 µg/ml 

streptomycin, 33 µM d-Biotin, 17 µM pantothenate, 100 nM dexamethasone, 100 nM 

human insulin, 0.5 mM IBMX, 2 nM T3, 10 µg/ml transferrin). Also on day 0, single 

experimental wells also were treated with vehicle (DMSO, 0.1% final concentration), 

rosiglitazone (positive control, 4 µM) or test chemicals. On day 3 of differentiation, 

medium was replaced with fresh Differentiation Medium, and the cultures were re-dosed. 

On days 5, 7, 10, and 12 of differentiation, the medium was replaced with Maintenance 

Medium (DMEM/F12, 25 mM NaHCO3, 100 U/ml penicillin, 100 µg/ml streptomycin, 

3% FBS, 33 µM d-Biotin, 17 µM pantothenate, 10 nM dexamethasone, 10 nM insulin), 

and the cultures were re-dosed. Following 14 days of differentiation and dosing, cells 

were harvested for analysis of gene expression, lipid accumulation, fatty acid uptake, 

mitochondrial biogenesis, and cellular respiration. 

3.2.3 Lipid accumulation 

3T3-L1 cells or human preadipocytes were plated in 24 well plates at 50,000 cells 

per well in 0.5 ml maintenance medium at initiation of the experiment. Dosing is outlined 

in Table 3.1. Medium was removed from the differentiated cells, and they were rinsed 

with PBS. The cells were then incubated with Nile Red (1 µg/ml in PBS) for 15 min in 

the dark. Fluorescence (λex= 485 nm, λem= 530 nm) was measured using a Synergy2 

plate reader (BioTek Inc., Winooski, VT). The fluorescence in all experimental wells was 
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normalized by subtracting the fluorescence measured in naïve pre-adipocyte cultures 

reported as “RFU.” 

3.2.4 Transcriptome analysis 

3T3-L1 cells were plated in 24 well plates at 50,000 cells per well in 0.5 ml 

maintenance medium at initiation of the experiment. Dosing is outlined in Table 3.1. 

Total RNA was extracted and genomic DNA was removed using the Direct-zol MagBead 

RNA Kit and following manufacturer’s protocol (Zymo Research, Orange, CA). A final 

concentration of 5 ng RNA/ul was used for each sample. For each chemical, 3-5 

replicates were profiled and carefully randomized across six 96-well plates, including 26 

DMSO vehicle controls, and 16 naïve pre-adipocyte cultures. Sequencing and gene 

expression quantification was carried out by the MIT Technology Lab at Broad Institute 

(Cambridge, MA). RNA libraries were prepared using a highly multiplexed 3’ Digital 

Gene Expression (3’ DGE) protocol developed by 92 and sequenced on an Illumina 

NextSeq 500, generating between 2.13E8 and 3.87E8 reads and a mean of 3.02E8 reads 

per lane across 96 samples. All reads containing bases with Phred quality scores < Q10 

were removed. The remaining reads were aligned to mouse reference genome, GRCm38, 

and counted in 21,511 possible transcripts annotations. Only instances of uniquely 

aligned reads were quantified (i.e. reads that aligned to only one transcript). Furthermore, 

multiple reads with the same unique molecular identifier (UMI), aligning to the same 

gene were quantified as a single count.  

All processing and analyses of gene expression data were carried out in R (v 

3.4.3). The number of counted reads per samples varied widely with a range of 7.90E1 to 
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2.27E6 (Mean = 2.25E5, SD = 2.94E5). To remove technical noise introduced by low 

overall expression quantification of individual samples, we performed an iterative 

clustering-based approach to determine sets of samples which segregate as a result of low 

total read counts. Each iteration included four steps: removal of low count genes, 

normalization, plate-level batch correction, and hierarchical clustering. Low count genes, 

defined as having mean counts <1 across all samples, were removed to reduce statistical 

noise introduced by inaccurate quantification of consistently lowly expressed transcripts. 

Normalization was performed using Trimmed Mean of M-values (TMM), the default 

method employed by limma (v 3.34.9)93. Batch correction was performed by ComBat (v 

3.26.0)94. Hierarchical clustering was performed on the 3000 genes with the largest 

median absolute deviation (MAD) score, using Euclidean distance and 1-Pearson 

correlation as the distance metric for samples and genes, respectively, and Ward’s 

agglomerative method95. Clusters of samples clearly representative of low expression 

quantification were removed. This process was repeated until no such low expression 

outlier sample cluster was present (four iterations). For the remaining samples, low count 

genes were removed and samples were normalized and batch corrected by the same 

procedure. 

Following sample- and gene-level quality control filtering, the final processed 

data set included expression levels of 9,616 genes for each of 234 samples. These 234 

samples include 2-4 remaining replicates of each compound, 25 DMSO vehicle controls, 

and 15 naïve pre-adipocyte cultures.  
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3.2.5 PPARγ ligand/modifier classification 

A classification model was inferred from the training set consisting of 38 known 

PPARγ-modifying compounds and 22 known non-PPARγ modifying compounds, 

including vehicle, to predict the label of the test set of 17 suspected PPARγ-modifying 

compounds (Table A.1). The model inference was based on an amended random forest 

procedure developed to better account for the presence of biological replicates in the data. 

Specifically, for each classification tree, samples and genes were bagged using sampling 

techniques consistent with 96. In particular, samples were bootstrapped (i.e., sampled with 

replacement), and genes were subsampled by the square root of the number of 

represented genes. To account for chemical-level variability and to prevent replicates of 

the same chemical exposure from being separated, we implemented an extra step, which 

we denote as “bag-merging”, to summarize values from replicate samples of the same 

chemical exposure after bootstrap sampling: within each “bag” of samples, replicates of 

the same chemical exposure were merged to their mean expression. For prediction of test 

data, replicates of the same chemical exposure were merged to their mean expression and 

run through the trained random forest, such that each tree generates a vote of either 0 or 

1, PPARγ-modifying negative or positive, respectively. The mean of these votes across 

all trees is a value between 0 and 1, which can be interpreted as the pseudo-probability of 

the chemical exposure being PPARγ-modifying. 

Prior to generating the final predictive model, the expected performance of this 

classification approach for predicting PPARγ-modification status with this data set was 

assessed using 10-fold cross validation on the training set of known PPARγ-modification 
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status. For each fold, samples were stratified at the chemical exposure level, such that 

each fold included 6 distinct compounds and a different number of samples, and all 

replicates of the same compound were only included in either the training or the test 

folds. Next, prior to training each random forest model, gene filtering based on within vs. 

between exposure variance using ANOVA was performed. Genes with an F-statistics 

associated with an FDR corrected p-value > 0.05 were filtered out. Thresholds for 

determining class membership based on voting was determined by running the training 

folds through the random forest and selecting the threshold producing the highest F1-

score, i.e., the harmonic mean of precision and sensitivity. Performance was assessed in 

terms of area under the ROC curve (AUC), as well as precision, sensitivity, specificity, 

F1-score, and balanced accuracy, i.e., the mean of specificity and sensitivity. All random 

forests were generated using 2000 decision trees.  

The performance of this procedure was compared to three alternative random 

forest strategies. In the first, which we denote as “pre-merging”, the mean gene 

expression across replicates was computed, and a classic random forest was applied to the 

classification of each merged chemical profile. In the second, which we denote as 

“classic”, replicate samples were treated as independent perturbations and classified 

based on a classic random forest. Finally, for the third, which we denote as “pooled”, the 

mean of votes across replicates from the previous strategy were used to estimate class 

membership per compound. To compare the classifiers’ performance, we repeated the 10-

fold CV procedure 10-times to generate a distribution of performance statistics for each 

strategy. 
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The final classification model used to predict the unlabeled chemicals was built 

using the full training set of 59 labelled chemicals, including vehicle, and 1,199 genes 

after performing the same ANOVA gene filtering approach used for cross validation as 

described above. The relative importance of each gene in each random forest model was 

measured using the gini importance measure96. 

3.2.6 PPARγ ligand/modifier clustering 

Known and suspected PPARγ modifiers were clustered based on their test 

statistics from univariate analysis comparing each chemical exposure or naïve pre-

adipocyte culture to vehicle using limma (v 3.34.9)93. In order to assess taxonomic 

differences between different exposure outcomes, a recursive unsupervised procedure, 

which we denote as K2Taxonomer, was developed, whereby the set of PPARγ modifying 

compounds underwent recursive partitioning into subgroups. At each iteration of the 

procedure, the top 10% genes was selected based on estimation of non-random changes 

in gene expression across compounds via the sum of squared test statistics across the 

current set or subset of chemicals. Chemicals were then separated into two clusters based 

on their Euclidean distance, using Ward’s agglomerative method 95and the cutree R 

function. The procedure was then applied to each of the two subsequent subgroups of 

chemicals and repeated until the two-cluster split would result in a single chemical in the 

terminal subgroup. To obtain and measure the most stable clusters, each iteration was 

bootstrapped 200 times by resampling gene-level statistics with replacement. The most 

common clusters were used, and the proportion of total bootstrapping iterations that 

included these identical clustering assignments was reported. 
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In order to derive gene-signatures of each split, differential analysis was 

performed to compare chemicals from the two clusters at that split. In these models, 

biological replicate status was accounted for using the duplicate correlation procedure in 

the limma (v 3.34.9) package. From these models, differential signatures were defined 

whereby genes were assigned to one of four genesets based on two criteria: their 

differential expression between the two chemical clusters at the split, and within each 

chemical cluster – the differential expression between chemicals and vehicle. In 

particular, for a particular gene, the difference between mean expression between the two 

chemical clusters must have |log2(Fold-Change)|> 1 (i.e., Fold-Change>2) and an FDR 

Q-value < 0.1. Each gene was then assigned to one-of-four genesets: 1) genes up-

regulated in the “left” chemical group vs. the “right” chemical group, and up-regulated in 

the left chemical group vs. vehicle; 2) genes up-regulated in the left chemical group vs. 

the right chemical group, and down-regulated in the left chemical group vs. vehicle; 3) 

genes up-regulated in the right chemical group vs. the left chemical group, and up-

regulated in the right chemical group vs. vehicle; 2) genes up-regulated in the right 

chemical group vs. the left chemical group, and down-regulated in the right chemical 

group vs. vehicle. Since the results of direct differential analysis between the two 

chemical clusters are not indicative of overall up- or down-regulation, these designations 

were determined based on the aggregate of the comparisons of each chemical or naïve 

pre-adipocyte culture to vehicle. Specifically, a gene was assigned to a cluster based on 

maximum absolute value of the mean of the chemical or naïve pre-adipocyte culture 

versus vehicle derived test statistics used for clustering. Direction of regulation was then 
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determined based on the sign of the mean of these test statistics. Functional enrichment, 

comparing these gene sets to independently annotated gene sets was carried out via 

Fisher’s exact test. These gene sets include those of the full set of Gene Ontology (GO) 

Biological Processes gene set compendia downloaded from MSigDB 

(c5.bp.v6.2.symbols.gmt), as well two gene sets derived from publicly available 

microarray expression data from an experiment using mouse embryonic fibroblasts to 

compare wild-type samples with mutant samples that do not undergo phosphorylation of 

PPARγ at Ser273 (GEO accession number GSE22033)77. These additional gene sets were 

comprised of genes, measured to be significantly up- or down-regulated (FDR Q-Value < 

0.05) in mutant samples, based on differential analysis of RMA normalized expression 

with limma (v 3.34.9). In these tables, the nomenclature for each intermediate and 

terminal subgroup reflects those reported in Figure 3.3. 

3.2.7 Human transcriptome analysis 

To assess the human relevance of the gene signatures derived from the PPARγ 

ligand/modifier clustering in chemical-exposed 3T3-L1 cells, we analyzed projections of 

these signatures onto the transcriptional profiles from 770 subjects who were part of the 

Metabolic Syndrome in Men (METSIM) study. Though comprised of only male subjects, 

the METSIM data set was chosen for this analysis because it is the largest publicly 

available human subject data set (GEO accession number GSE70353)97, which includes 

gene expression profiles from subcutaneous adipose tissue, as well as a comprehensive 

set of cardio-metabolic measurements. Affymetrix Human Genome U219 Array 

Microarray CEL files were annotated to unique Entrez gene IDs, using a custom CDF file 
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from BrainArray (HGU219_Hs_ENSG_22.0.0). Each of the four possible gene sets 

derived from PPARγ ligand/modifier clustering were then projected on each of the 770 

human transcriptome profiles using gene set variation analysis (GSVA), using the 

GSVA(v 1.30.0) package 35, resulting in an enrichment score for each gene set and 

sample.  

For each projected gene set, we tested for relationships between single-sample 

enrichment scores and clinical measurements. Of notice, many of the clinical 

measurements are correlated with each other, such that confounding is likely to generate 

many spurious results. To overcome this problem, for each gene set projection, we tested 

the significance of the partial correlation between single-sample enrichment scores and 

each of the clinical variables while controlling for the remaining ones, including age, 

using the ppcor (v 1.1) R package. Given that the relationships between single-sample 

enrichment scores and any one clinical variable are not assumed to be linear, these partial 

correlations were calculated from Spearman correlation estimates. P-values were adjusted 

across all combinations of gene set and clinical measurement. Measurements with at least 

one comparison with a gene set projection yielding an FDR Q-value < 0.1 are reported. 

To reduce expected redundancies in the measurements, of the 23 initial quantitative 

measurements included in these data, we ran this analysis on a subset of 12 

measurements (Table A.2). Of note, fat free mass % was chosen in this subset of 12 

measurements over body mass index because it has been shown to be more associated 

with risk and presence of metabolic syndrome98. 
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3.2.8 Reverse transcriptase (RT)-qPCR 

3T3-L1 cells or human preadipocytes were plated in 24 well plates at 50,000 cells 

per well in 0.5 ml maintenance medium at initiation of the experiment. Dosing is outlined 

in Table 3.1. Total RNA was extracted and genomic DNA was removed using the 96-

well Direct-zol MagBead RNA Kit (Zymo Research). cDNA was synthesized from total 

RNA using the iScript™ Reverse Transcription System (BioRad, Hercules, CA). All 

qPCR reactions were performed using the PowerUp™ SYBR Green Master Mix 

(Thermo Fisher Scientific, Waltham, MA). The qPCR reactions were performed using a 

7500 Fast Real-Time PCR System (Applied Biosystems, Carlsbad, CA): UDG activation 

(50°C for 2 min), polymerase activation (95°C for 2 min), 40 cycles of denaturation 

(95°C for 15 sec) and annealing (various temperatures for 15 sec), extension (72°C for 60 

sec). The primer sequences and annealing temperatures are provided in Table A.3. 

Relative gene expression was determined using the Pfaffl method to account for 

differential primer efficiencies 99, using the geometric mean of the Cq values for beta-2-

microglobulin (B2m) and 18s ribosomal RNA (Rn18s) for mouse gene normalization and 

of ribosomal protein L27 (Rpl27) and B2M for human gene normalization. The Cq value 

from naïve, pre-adipocyte cultures was used as the reference point. Data are reported as 

“Relative Expression.” 

3.2.9 Cell death 

3T3-L1 cells or human preadipocytes were plated in 96 well, black-sided plates at 

10,000 cells per well in 0.2 ml maintenance medium at initiation of the experiment. 

Dosing is outlined in Table 3.1. Cells death was measured by treating differentiated cells 
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will MitoOrange Dye according to manufacturer’s protocol (Abcam, Cambridge, MA). 

Measurement of fluorescence intensity (λex= 485 nm, λem= 530 nm) was performed 

using a Synergy2 plate reader. The fluorescence in experimental wells was normalized by 

subtracting the fluorescence measured in naïve pre-adipocyte cultures and reported as 

“RFU.” 

3.2.10 Fatty acid uptake 

3T3-L1 cells or human preadipocytes were plated in 96 well, black-sided plates at 

10,000 cells per well in 0.2 ml maintenance medium at initiation of the experiment. 

Dosing is outlined in Table 3.1. Fatty acid uptake was measured by treating differentiated 

cells with 100 µL of Fatty Acid Dye Loading Solution (Sigma-Aldrich, MAK156). 

Following a 1 hr incubation, measurement of fluorescence intensity (λex= 485nm, λem= 

530nm) was performed using a Synergy2 plate reader. The fluorescence in experimental 

wells was normalized by subtracting the fluorescence in differentiated, negative control 

wells and reported as “RFU.”  

3.2.11 Mitochondrial biogenesis 

3T3-L1 cells or human preadipocytes were plated in 24 well plates at 50,000 cells 

per well in 0.5 ml maintenance medium at initiation of the experiment. Dosing is outlined 

in Table 3.1. Mitochondrial biogenesis was measured in differentiated cells using the 

MitoBiogenesis In-Cell Elisa Colorimetric Kit, following the manufacturer’s protocol 

(Abcam). The expression of two mitochondrial proteins (COX1 and SDH) were 

measured simultaneously and normalized to the total protein content via JANUS staining. 
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Absorbance (OD 600nm for COX1, OD 405nm for SDH, and OD 595nm for JANUS) 

was measured using a BioTek Synergy2 plate reader. The absorbance ratios of 

COX/SDH in experimental wells were divided by the ratios in naïve pre-adipocyte 

cultures and reported as “Relative Mitochondrial Protein Expression.”  

3.2.12 Oxygen consumption 

3T3-L1 cells or human preadipocytes were plated in Agilent Seahorse plates at 

50,000 cells per well in 0.5 ml maintenance medium at initiation of the experiment. 

Dosing is outlined in Table 3.1. Prior to all assays, cell media was changed to Seahorse 

XF Assay Medium without glucose (1mM sodium pyruvate, 1mM GlutaMax, pH 7.4) 

and incubated at 37°C in a non-CO2 incubator for 30 min. To measure mitochondrial 

respiration, the Agilent Seahorse XF96 Cell Mito Stress Test Analyzer (available at 

BUMC Analytical Instrumentation Core) was used, following the manufacturer’s 

standard protocol. The compounds and their concentrations used to determine oxygen 

consumption rate (OCR) included 1) 0.5 µM oligomycin, 1.0 µM carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP) and 2 µM rotenone for 3T3-L1s; and 2) 5 µM 

oligomycin, 2.5 µM FCCP, and 10 µM rotenone for the primary human adipocytes. Non-

mitochondrial respiration was determined from the minimum rate measurement after 

injection of rotenone. Basal respiration was determined by subtracting non-mitochondrial 

respiration from the last rate measurement before the injection of ologomycin. Maximum 

respiration was determined by subtracting non-mitochondrial respiration from the 

maximum rate measurement after the injection of FCCP. Spare capacity was determined 

by subtracting the basal respiration from the maximum respiration. 
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3.2.13 Statistical analyses 

All statistical analyses were performed in R (v 3.4.3) and Prism 7 (GraphPad 

Software, Inc., La Jolla, CA). Data are presented as means ± standard error (SE). For 

3T3-L1 experiments the biological replicates correspond to independently plated 

experiments. For human primary preadipocyte experiments the biological replicates 

correspond to distinct individuals’ preadipocytes (3 individuals in all). The Nile Red data 

and the qPCR data were not normally distributed; therefore, the data were log 

transformed before statistical analyses. One-factor ANOVAs were performed to analyze 

the qPCR and phenotypic data and determine differences from vehicle-treated cells. 

Sequencing data from 3’DGE have been deposited into GEO (Accession number 

GSE124564).  

3.3 Results 

3.3.1 Classification of novel taxonomic subgroups of PPARγ ligands/modifiers 

Potential adipogens (chemicals that change the differentiation and/or function of 

adipocytes) were identified by review of the literature and based on reports of PPARγ 

agonism or modulation of adipocyte differentiation (Table A.1). Our classification groups 

were labeled as “Yes”, “No”, or “Suspected”, based on the chemical’s potential ability to 

act as a ligand of or modify PPARγ (i.e., to alter its post translational modifications) as 

noted in the “PPARγ Ligand or Modifier” column in Table A.1. 

The classic mouse pre-adipocyte model, 3T3-L1 cells, was differentiated and 

treated with vehicle (DMSO) or with each of the 76 test chemicals (concentrations are 

reported in Table A.1). In order to maximize the number of chemicals that could be 
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characterized, each chemical was tested at a single, maximal, non-toxic dose. We also 

limited the maximum concentrations to 20 µM because concentrations above this would 

not be reached in humans and because most (although not all) chemicals are not toxic at 

or below 20 µM. Lipid accumulation was determined after 10 days. Effects on lipid 

accumulation spanned significant down-regulation to significant up-regulation (Figure 

3.1). Lipid accumulation was highly correlated with expression of adipocyte specific 

genes (e.g. Cidec36, Figure A.11); therefore, we consider it a biomarker of adipocyte 

differentiation in this system. Of the 27 chemicals that significantly increased lipid 

accumulation, 18 were known PPARγ ligands/modifiers and 9 were suspected PPARγ 

ligands/modifiers. Mono(2-ethylhexyl) phthalate (MEHP), SR1664, and 15-deoxy-Δ12,14-

prostaglandin J2 (15dPGJ2) are PPARγ agonists that were expected to increase adipocyte 

differentiation, but did not. LG268 and TBT are RXR agonists that were also expected to 

significantly increase adipocyte differentiation, but did not. The 3 chemicals that 

significantly down-regulated lipid accumulation are all known to interact with the 

retinoic acid receptor. T007 is a PPARγ antagonist that was expected to decrease 

adipocyte differentiation, but did not. Some of the suspected PPARγ ligands did not 

significantly enhance lipid accumulation. Somewhat different results were observed in 

the late pre-adipocyte model OP9 cells; we have found that these cells are more sensitive 

to differentiation stimulated by RXR ligands. 9-cisRA, LG268, LG754, TBT and TPhT all 

significantly stimulated adipocyte differentiation (Figure A.13). 

Following the analysis of lipid accumulation, RNA was isolated from the cells, 

and the transcriptome was characterized by RNAseq. The transcriptome data then were 
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used to develop a classification model to identify PPARγ ligands/modifiers. More 

specifically, the training set of 59 chemicals with “Yes”/“No” labels was used to build 

the classifier, which was then applied to the prediction of the test set of 17 “Suspected” 

chemicals. When predicting PPARγ ligand/modifier status (“Yes” vs. “No”), the mean 

AUC, precision, sensitivity, specificity, F1-score, and balanced accuracy from repeated 

10-fold cross validation (over the training set) of the random forest with bag merging 

procedure was 0.89, 0.90, 0.80, 0.85, 0.85, and 0.82, respectively (Figure 3.2A). We 

observed the most drastic improvement of measured balanced accuracy, precision, and 

specificity by the bag merging procedure compared to other assessed strategies (Figure 

A.12). The first two metrics in particular (AUC and precision) reflect expectation of 

relatively few false positive results compared to the other strategies. In the final model, 

the voting threshold that produced the highest F1-score was 0.53. When we applied the 

classifier to the test set of the 17 chemicals of unknown interaction with PPARγ, 13 had 

random forest votes greater than this value (Table 3.2). Of these 13 compounds, four had 

votes > 0.88. These chemicals included quinoxyfen, tonalide, allethrin, and fenthion. 

These compounds were predicted as PPARγ ligands/modifiers with high confidence and 

were selected for further functional analyses. Of the 1,215 genes that past ANOVA 

filtering and were included in the random forest models, ribosomal protein L13 (Rpl13) 

and cell death Inducing DFFA Like Effector C (Cidec) had the highest measured Gini 

Importance (Figure 3.2B) with Rpl13 mostly down-regulated and Cidec mostly up-

regulated by known PPARγ ligands/modifiers (Figure A.13). 



 

 

63 

3.3.2 Adipogen taxonomy discovery 

The taxonomy derived by the K2Taxonomer procedure recapitulated many known 

characteristics shared by PPARγ ligands/modifiers included in this study (Figure 3.3). For 

example, three terminal subgroups were labelled in Figure 3.3 based on their shared 

characteristics. These include: flame retardants (tetrabromobisphenol A (TBBPA) and 

triphenyl phosphate (TPhP)), phthalates (MBUP, MEHP, MBZP, and BBZP), and RXR 

agonists (TBT and LG268). Interestingly, we observed two subgroups containing all of 

the four thiazolidinediones, with rosiglitazone (Rosig) segregating with the non-

thiazolidinedione S26948 and pioglitazone, MCC 555, and troglitazone segregating 

together. 

All of these terminal subgroups fell within a larger module containing 26 

chemicals, highlighted by expression patterns consistent with increased adipogenic 

activity including up-regulation of genes significantly enriched in pathways involved in 

adipogenesis and lipid metabolism100. In addition, these chemicals also demonstrated 

consistent down-regulation of extracellular component genes. This effect was strongest in 

cells exposed to thiazolidinediones and flame retardants, two classes of chemicals well-

described to be strong PPARγ agonists101–103. The subgroup of thiazolidinediones, 

including S26948, was characterized by up-regulation of genes involved in beta-

oxidation, the process by which fatty acids are metabolized. 

The gene expression profiles of the remaining 17 chemicals, including naïve pre-

adipocytes, demonstrate markedly less up-regulation of genes regulated by PPARγ. Of 

these 17 perturbations, a subgroup of 8 chemicals (BADGE, PrPar, 15dPGJ2, SR1664, 
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METBP, DINP, BuPA, and Fenth) includes the reference vehicle signature. Compared to 

the next closest subgroup, expression profiles of these compounds was characterized by 

up-regulation of adipogenesis-related pathways indicative of modest PPARγ agonism. 

Additionally, a subgroup comprised of 9CRA, DBT, LG754, and ATRA exposures and 

naïve pre-adipocyte signatures was characterized by down-regulation of genes involved 

in adipogenesis and lipid metabolism, indicating repression of PPARγ activity. 

Interestingly, both protectin D1 (Prote) and resolvin E1 (Resol) clustered closely in a 

subgroup with the CDK inhibitor, roscovitine (Rosco), which is known to induce insulin 

sensitivity and brite adipogenesis104. 

In summary, our top-down taxonomy discovery approach elucidated subgroups of 

PPARγ ligands/modifiers, characterized by differential transcriptomic activity at each 

split. Annotation of these transcriptomic signatures revealed clear differences in the set 

and magnitude of perturbations to known adipocyte biological processes by subgroups of 

chemicals. Membership of these subgroups confirmed many expectations, such as 

subgroups comprised solely of phthalates, thiazolidinediones, or flame retardants  

3.3.3 Relationship between taxonomic subgroups and the human adipose transcriptome 

Given that our taxonomic clustering was based on adipogen exposures in a mouse 

model, we sought to establish its relevance to the relationship between human adipose 

tissue function and markers of cardio-metabolic health. To this end, we projected the 

gene signatures derived as either up- or down-regulated gene sets in specific taxonomic 

subgroups onto a publicly available clinical data set of gene expression profiles from 

subcutaneous adipose tissue of 770 male subjects and assessed the relationship of these 
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projections to a set of 12 clinical measurements97. Figure 3.4A-B shows the partial 

correlation between plasma adiponectin and projection of gene sets, either up- or down-

regulated in specific subgroups. Figure 3.4C shows these relationships for the remaining 

measurements which demonstrated a statistically significant partial correlation for at least 

one projection, FDR Q-value < 0.10. For positive associations, i.e. in the same direction, 

the up-regulated gene sets have positive partial correlation measurements, while down-

regulated gene sets have negative partial correlation measurements. The opposite is true 

for negative associations.  

We observed concordant results for putative markers of metabolic health, plasma 

adiponectin and fat free mass %, which were positively associated with projection of 

gene signatures from two terminal subgroups which include all TZD and non-TZD type 2 

diabetic drugs, Trogl, MCC555, Piogl, Rosig, and S26948, as well as a terminal subgroup 

which includes Rosco, Resol, and Protec. Similary, we observed concordant results for 

putative markers of metabolic dysfunction, interleukin-1 receptor antagonist and fasting 

plasma insulin, which included a primary subgroup comprised of terminal subgroups 

characterized by weak PPARγ agonism, PPARγ modification, or PPARγ activity 

repression.  

Taken together, these results confirm the ability of our mouse-based, in vitro-

derived signatures of capturing salient functional aspects of healthy and unhealthy 

metabolic functions in human subjects. 
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3.3.4 Investigation of the white and brite adipocyte taxonomy  

We aimed to better assess how the distinction between gene expression patterns 

translated into functional differences in the induced adipocytes. Therefore, we selected 

chemicals from representative groups related of PPARγ ligands/modifiers for genotypic 

and phenotypic characterization. We compared a strong PPARγ therapeutic agonist that 

also modifies PPARγ phosphorylation (Rosig), a chemical that modifies only PPARγ 

phosphorylation (Rosco), a weak PPARγ agonist and endogenous molecule (15dPGJ2) 

and two known environmental PPARγ ligands (TBBPA and TPhP). 3T3-L1 cells were 

differentiated and treated with vehicle (DMSO), Rosig (positive control, 20 µM), Rosco 

(2 µM), 15dPGJ2 (1 µM), TBBPA (20 µM) and TPhP (10 µM). Gene expression and 

phenotype were determined after 10 days. Analysis of mitochondrial membrane potential 

confirmed that the concentrations used were not toxic (Figure A.14A), while only Rosig 

significantly increased cell number (Figure A.14B).  

First, we determined if changes in gene expression correlated with expression of 

genes previously shown to be associated with white and brite adipocytes (Qiang et al. 

2012). As expected, all of the PPARγ agonists (Rosig, 15dPGJ2, TBBPA, TPhP) 

significantly increased Pparγ expression, while Rosco did not (Figure 3.5A). Similarly, 

the PPARγ agonists induced expression of adipocyte genes common to all adipocytes 

(Plin, Fabp4, Cidec), while roscovitine did not (Figure 3.5B). In contrast, only the 

chemicals known to prevent phosphorylation of PPARγ at Ser273 (i.e., Rosig and Rosco) 

induced expression of Pgc1a (Figure 3.5A) and induced expression of brite adipocyte 

genes (Cidea, Elovl3) (Figure 3.5C). Rosig, Rosco, and 15dPGJ2 induced the expression 
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of Adipoq (Figure 3.5C). In order for brite adipocytes to catabolize fatty acids and 

expend excess energy, they must up-regulate expression of β-oxidation genes and 

mitochondrial biogenesis. In line with their browning capacity, Rosig and Rosco up-

regulated expression of Ppara and the mitochondrial marker gene Acaa2 (Figure 3.5D). 

Furthermore, only Rosig and Rosco strongly up-regulated Ucp1, the protein product of 

which dissociates the H+ gradient the mitochondrial electron transport chain creates from 

ATP synthesis (Figure 3.5D).  

Next, we determined if changes in gene expression correlated with changes in 

adipocyte function. 3T3-L1 cells were differentiated and treated as described for the 

mRNA expression analyses. Fatty acid uptake by adipocytes is necessary for lipid droplet 

formation and for removal of free fatty acids from circulation. Compared to vehicle-

treated cells, all of the adipogens significantly induced fatty acid uptake (Figure 3.6). In 

order to increase the utilization of fatty acids, mitochondrial number and/or function must 

increase. Only Rosig and Rosco significantly induced mitochondrial biogenesis, while 

15dPGJ2 and the environmental PPARγ agonists had no effect (Figure 3.7). Rosig 

modestly and 15dPGJ2 significantly increased cellular respiration (Figure 3.8, Figure 

A.15). Rosco, TBBPA and TPhP did not increase cellular respiration. 

Overall, Rosig and Rosco, therapeutic PPARγ ligand and PPARγ modifier, 

respectively, were most efficacious at inducing gene expression and metabolic 

phenotypes related to up-regulation of mitochondrial processes and energy expenditure. 

In comparison, environmental PPARγ ligands (TBBPA and TPhP) were not able to 

induce the gene and phenotypic markers of brite adipocytes. 
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3.3.5 Identification of novel adipogens that favor white adipogenesis 

Quinoxyfen (Quino) and tonalide (Tonal) were two of the environmental 

chemicals that received the highest PPARγ ligand/modifier vote and segregated distinctly 

from the therapeutic ligands (Table 3.2). Thus, we tested the hypothesis that Quino and 

Tonal are adipogens that do not induce gene expression or metabolic phenotypes 

indicative of high energy expenditure or brite adipogenesis. 3T3-L1 cells were 

differentiated and treated with vehicle (DMSO), rosiglitazone (positive control, 20 µM), 

Quino (10 µM), or Tonal (4 µM). These concentrations were determined to be non-toxic 

(Figure A.16A). In 3T3-L1 cells, Quino and Tonal significantly induced lipid 

accumulation (Figure 3.9A), without increasing cell number (Figure A.16B). They 

significantly increased expression of the white adipocyte marker gene, Cidec. However, 

Quino failed to significantly increase expression of Cidea, the brite adipocyte marker 

gene, while Tonal significantly suppressed expression of Cidea (Figure 3.9B). 

Accordingly, Quino and Tonal increased fatty acid uptake (Figure 3.9C) but not 

mitochondrial biogenesis (Figure 3.9D). Quino modestly, but not significantly, increased 

maximal cellular respiration; Tonal had no effect on cellular respiration (Figure 3.8). 

Last, we investigated whether results in our mouse model, 3T3-L1 cells, could be 

recapitulated in a human model. Primary, human subcutaneous preadipocytes were 

differentiated and treated with vehicle (DMSO), rosiglitazone (positive control, 4 µM), 

Quino (4 µM), or Tonal (4 µM). Quino and Tonal significantly induced lipid 

accumulation (Figure 3.10A). Tonal, but not Quino, increased cell number (Figure 

A.16C). Both Quino and Tonal failed to induce CIDEA expression expression (Figure 



 

 

69 

3.10B). In contrast to 3T3-L1 cells, Quino and Tonal did not increase fatty acid uptake 

over that induced by the hormonal cocktail in the differentiated primary human 

adipocytes (Figure 3.10C). Quino and Tonal also reduced mitochondrial biogenesis 

(Figure 3.10D). 

In summary, the combination of random forest classification voting and gene 

expression clustering identified two environmental contaminants likely to favor the 

induction of white adipocytes. Hypothesis testing carried out with functional analyses 

confirmed that Quino and Tonal induce white, but not brite, adipogenesis in both mouse 

and human preadipocyte models. Importantly, we demonstrate that hypothesis testing can 

be conducted with readily available cells lines and analytical reagents. 

3.4 Discussion 

The chemical environment has changed dramatically in the past 40 years, and an 

epidemic increase in the prevalence of obesity has occurred over the same time period. 

Yet, it is still unclear how chemical exposures may be contributing to adverse metabolic 

health effects. New tools are needed not just to identify potential adipogens, but to 

provide information on the type of adipocyte that is formed. Here, we have both 

developed a new analytical framework for adipogen identification and characterization 

and tested its utility in hypothesis generation. We show that adipogens segregate based on 

distinct patterns of gene expression, which we used to identify two environmental 

contaminants for hypothesis testing. Our results support the conclusion that quinoxyfen 

and tonalide have a limited capacity to induce the health-promoting effects of 

mitochondrial biogenesis and brite adipocyte differentiation. 
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3.4.1 Adipogen taxonomy identifies environmental chemicals that favor white 

adipogenesis 

Potential adipogens (chemicals that change the differentiation and/or function of 

adipocytes) were identified by review of the literature and based on reports of PPARγ 

agonism or modulation of adipocyte differentiation, as well as through querying ToxCast 

data. Not all of the chemicals identified as PPARγ ligands/modifiers induced significant 

lipid accumulation. We hypothesize that this likely resulted from the fact that we did not 

apply any chemical above 20 µM (with the exception of fenthion). Concentrations in the 

100 μM range have been used in previous studies (e.g. DOSS 105; parabens106; 

phthalates107). The RXR agonists LG268 and TBT also were expected to significantly 

increase adipocyte differentiation but did not. We have previously shown that TBT 

induces adipogenesis with greater efficacy in OP9 cells rather than 3T3-L1 cell108 and 

also show here that OP9 cells more efficaciously respond to RXR ligands, in general, 

likely because they are more committed to adipogenesis as late pre-adipocytes than 3T3 

L1 cells, which are early pre-adipocytes. 

We identified four compounds as high-confidence PPARγ ligands/modifiers: 

quinoxyfen, tonalide, allethrin, and fenthion. In the final model used for these 

predictions, biologically informative genes emerge as important for predicting PPARγ 

ligand/modification status, specifically the down-regulation of Rpl13 and the up-

regulation of Cidec. Rpl13 is involved in ribosomal machinery is down-regulated during 

human adipogensis109. Cidec is a lipid droplet structural gene, the expression of which is 

positively correlated with adipocyte lipid droplet size, insulin levels, and glycerol 
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release110. Of these four compounds, quinoxyfen and tonalide are of particular public 

health concern. Quinoxyfen is among a panel of pesticides with different chemical 

structures and modes of action (i.e., zoxamide, spirodiclofen, fludioxonil, tebupirimfos, 

forchlorfenuron, flusilazole, acetamaprid, and pymetrozine) that induce adipogenesis and 

adipogenic gene expression in 3T3-L1 cells111. Quinoxyfen is a fungicide widely used to 

prevent the growth of powdery mildew on grapes112. We chose to test tonalide because it 

was reported to strongly increase adipogenesis in 3T3-L1 cells, although it was 

concluded that this response was not due to direct PPARγ activation90. Our results differ 

in this regard. Tonalide bioaccumulates in adipose tissue of many organisms including 

humans, and exposure is widespread because of its common use in cosmetics and 

cleaning agents113. Combined, tonalide and galaxolide constitute 95% of the polycyclic 

musks used in the EU market and 90% of that of the US market114.  

Our results support the conclusion that quinoxyfen and tonalide are adipogenic 

chemicals, likely to be acting through PPARγ. In clustering analysis, quinoxyfen and 

tonalide were among the largest subgroup of eight potential strong PPARγ agonists. 

Notably, this cluster includes both synthetic/therapeutic (nTZDpa, tesaglitazar, 

telmisartan) and environmental compounds (tributyl phosphate and triphenyltin) and is 

characterized by general up-regulation of pathways of adipogenic activity. However, 

quinoxyfen and tonalide generate adipocytes that are phenotypically distinct from 

adipocytes induced by therapeutics such as rosiglitazone. That environmental PPARγ 

ligands can induce a distinct adipocyte phenotype has been shown previously for TBT30–

32 and TPhP86. 
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We tested the effect of quinoxyfen and tonalide on human subcutaneous 

preadipocyte differentiation. There is a strong association between abdominal adiposity 

and metabolic syndrome115. Classically, visceral adipose tissue has been thought to be the 

driver of metabolic dysfunction; however, there is an alternative explanation that visceral 

adiposity results secondarily from the dysfunction of subcutaneous adipose tissue in the 

upper body116,117. While humans have greater “browning” potential in their visceral 

adipose tissue than mice118, subcutaneous adipose represents 85% of all body fat119 and 

thus has a large overall capacity for generating brite adipocytes. Additionally, lack of 

browning capacity of human subcutaneous adipocytes is associated with insulin 

resistance120. As hypothesized based on the taxonomical analysis, quinoxyfen and 

tonalide induced white adipocyte functions such as increased lipid accumulation, but in 

contrast to rosiglitazone, did not induce mitochondrial biogenesis, energy expenditure or 

brite adipocyte gene expression. 

We hypothesize that the differences in adipocyte phenotype that are induced by 

environmental PPARγ ligands (e.g. TBBPA, TPhP, quinoxyfen, tonalide) result from the 

conformation that PPARγ assumes when liganded with these chemicals rather than with 

therapeutic agents. These differences in conformation not only determine the efficacy to 

which PPARγ is activated but also the transcriptional repertoire121. Consistent with this 

hypothesis, we observed multiple terminal subgroups of PPARγ ligands/modifiers of 

shared properties, specifically TZDs and non-TZD type 2 diabetic drugs, phthalates, and 

flame retardants. Furthermore, subgroups containing therapeutics share gene expression 

patterns in human adipose tissue in accordance with positive markers of metabolic health, 
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specifically plasma adiponectin and fat free mass %, suggesting that these gene 

expression are related to metabolic health in humans. 

Access to post-translational modification sites and coregulator binding surfaces 

depends upon the structure that PPARγ assumes. The white adipogenic, brite/brown 

adipogenic and insulin sensitizing activities of PPARγ are regulated separately through 

differential co-regulator recruitment82 and post-translational modifications77,122, with 

ligands having distinct abilities to activate each of PPARγ’s functions. Suites of genes 

have been shown to be specifically regulated by the acetylation status of PPARγ (SirT1-

mediated)78, by the phosphorylation status of PPARγ (ERK/MEK/CDK5-mediated)77,104 

and/or by the recruitment of Prdm16 to PPARγ123. Future work will investigate the 

connections between the phosphorylation status of PPARγ liganded with environmental 

PPARγ ligands such as quinoxyfen and tonalide, the recruitment and release of 

coregulators, and the ability of PPARγ to recruit transcriptional machinery to specific 

DNA-binding sites. It will be important to determine the metabolic effects of chemicals 

like quinoxyfen and tonalide in vivo. 

3.4.2 Analytical approaches for adipogen characterization 

In this study, we performed a high-throughput, cost-effective transcriptomic 

screening to profile adipocytes formed from 3T3-L1 preadipocytes exposed to a panel of 

compounds of known and unknown adipogenic impact. Common to toxicogenomic 

projects, this panel-based study design allows for characterization of the extent to which 

each chemical modifies differentiation (in this case, adipogenesis as related to the change 

in lipid accumulation). It also supports the exploration of how subsets of chemicals 
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influence multiple biological processes that determine the functional status of a cell (in 

this case, processes that determine white vs. brite adipogenesis). Exploration of these 

biological processes allows for the prediction of the phenotypic impact of previously 

unclassified compounds, as well as for the characterization of the heterogeneity of the 

cellular activity of compounds with similar known phenotypic impact. Here we have 

performed both types of analyses: first through the implementation and application of 

random forest classification models to identify potential PPARγ ligands/modifers, and 

second via the recursive clustering of the data to identify and characterize taxonomic 

subgroup of known and predicted PPARγ ligands/modifiers.  

For both analyses, we introduced amendments to commonly used machine 

learning procedures, to improve accuracy and resolution of the acquired result. For the 

classification task, we amended the random forest algorithm to tailor it to study designs 

typically adopted in toxicogenomic projects (see Methods). With the addition of an extra 

step to average the expression across replicates of the bootstrapped samples, we observe 

consistently higher performance across conventional metrics than with the standard 

algorithm. For the clustering task, we employ a procedure where we recursively divide 

sets of chemicals into two subgroups and assess the robustness of each division, as well 

as annotate transcriptional drivers of each division. As a result, we are not limited to 

interpreting the clustering results as mutually exclusive groups, but rather as a taxonomy 

of subgroups where sets of compounds share some transcriptional impact and differ in 

others, as is expected given the dynamic nature of the modifications by which compounds 

directly and indirectly affect PPARγ activity.  
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Future work will generalize random forest method to incorporate more complex 

study designs. To this end, the classification approach adopted in this project is being 

developed as a random forest software tool soon to be made available as an R package, 

allowing for the interchanging independent functions at different steps of the algorithm. 

The strength and utility of this approach extends beyond toxicogenomic studies, and can 

be used in a variety of applications of high-throughput screening, including drug 

discovery, such as the Connectivity Map (CMap)124 and longitudinal molecular 

epidemiology studies, such as the Framingham Heart Study125. 

3.4.3 Adipogen portal 

Given the breadth of results generated by this analysis, our description here is far 

from exhaustive. As such, we have created an interactive website 

(https://montilab.bu.edu/adipogenome/) to support the interactive exploration of these 

results at both the gene and pathway-level. The portal is built around a point-and-click 

dendrogram of the clustering results as in Figure 3.3. Selecting a node of this dendrogram 

will populate the rest of the portal with the chemical lists, differential analysis, and 

pathway level hyper-enrichment results for each subgroup defined by a split. For 

instance, selecting node “H” will show the chemicals in each subgroup to the right 

(Group 1 = Honokiol, T007907; Group 2 = Prote, Resol, and Rosco), as well as the 

differential gene signature for each group below. Selecting Cidec, the top gene in the 

Group 2 signature, displays hyper-enrichment results for gene sets which include Cidec 

and have a nominal p-value < 0.50. The hyper-enrichment results for all genes can be 

found below this table. Finally, selecting a gene set name will display the gene set 
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members at the bottom frame of the portal, with gene hits in bold. All tables are query-

able and downloadable.  

3.5 Conclusions 

Emerging data implicate contributions of environmental metabolism-disrupting 

chemicals to perturbations of pathways related to metabolic disease pathogenesis, such as 

disruptions in insulin signaling and mitochondrial activity. There is still a gap in 

identifying and examining how environmental chemicals can act as obesity-inducing and 

metabolism-disrupting chemicals. Our implementation of novel strategies for 

classification and taxonomy development can help identify environmental chemicals that 

are acting on PPARγ. Further, our approach provides a basis from which to investigate 

effects of adipogens on not just the generation of adipocytes, but potentially pathological 

changes in their function. To this end, we have shown how two environmental 

contaminants, quinoxyfen and tonalide, are inducers of white adipogenesis.  
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Table 3.1: Summary of experimental conditions 

 
3T3-L1 

HUMAN 

PREADIPOCYTES 

Exposure Period (days) 10 14 

Number of times doseD 4 6 

Positive Control Rosiglitazone Rosiglitazone 

Negative Control 

(Vehicle) 
DMSO DMSO 

Endpoint Test Chemicals and Concentrations (M) 

Transcriptome 

Analysis 
Rosiglitazone (100 nM) 

See Table A.1 

NP 

Lipid Accumulation 

Rosiglitazone (4 μM) 

Quinoxyfen (4 µM) 

Tonalide (4 µM) 

RT-qPCR Rosiglitazone (1 or 20 μM) 

Roscovitine (2 µM) 

15dPGJ2 (1 µM) 

TBBPA (20 µM) 

TPhP (10 µM) 
Quinoxyfen (10 µM) 

Tonalide (4 µM) 

Cell Death 

Fatty Acid Uptake 

Mitobiogenesis 

Cell Number 

Oxygen Consumption NP 

NP – not performed 

 

  



 

 

78 

Table 3.2: Amended random forest classification results for 17 compounds 
suspected to be PPARγ Ligands/Modifiers. 

CHEMICAL NAME REFEFRENCE KNOWN 
SOURCE/USE 

PPARγ 
LIGAND/MODIFIER 
(VOTE ± 95% CI) 

CHEMICALS ABOVE THE HIGHEST F1-SCORE THRESHOLD 
d-cis,trans-Allethrin  88 Insecticide 0.91 ± 0.01 

Tonalide 
90 Musk 

(fragrance) 0.90 ± 0.01 

Quinoxyfen 88 Fungicide 0.90 ± 0.01 
Fenthion  88 Insecticide 0.88 ± 0.01 

2,4,6-Tris(tert-butyl)phenol 
88 Antioxidant 

(industrial) 
0.80 ± 0.02 

Prallethrin 88 Insecticide 0.78 ± 0.02 
Tebuconazole 88 Fungicide 0.78 ± 0.02 
Fludioxonil 88 Fungicide 0.77 ± 0.02 
Tris(1,3-dichloro-2-propyl) 
phosphate 

38 
Flame retardant 0.76 ± 0.02 

Cyazofamid  88 Pesticide 0.72 ± 0.02 

Perfluorooctanoic acid 
126 Fluorosurfactan

t 
0.59 ± 0.02 

Triphenyl phosphite 102 Pesticide 0.57 ± 0.02 
Tris(1-chloro-2-propyl) phosphate 127 Flame retardant 0.54 ± 0.02 
CHEMICALS BELOW THE HIGHEST F1-SCORE THRESHOLD 

Triphenylphosphine oxide 
128 Crystallizing 

aid, byproduct 
0.49 ± 0.02 

Diphenyl phosphate 129 Metabolite of 
TPhP 

0.47 ± 0.02 

Dioctyl sulfosuccinate sodium 105 Surfactant 0.41 ± 0.02 

Perfluorooctanesulfonic acid 
126 Fluorosurfactan

t 
0.40 ± 0.02 

a We used the ToxPi designed to identify chemicals in the ToxCast dataset that are likely 
to be PPARγ ligands/modifiers. 
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Figure 3.1: Lipid accumulation in differentiated and treated 3T3-L1 pre-adipocytes. 

Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail for 10 
days. During differentiation, cells were treated with vehicle (Vh, 0.2% DMSO, final 
concentration), rosiglitazone (positive control, 100 nM) or test chemical (Table A.1). On 
days 3, 5, and 7 of differentiation, the medium was replaced and the cultures re-dosed. 
Following 10 days of differentiation and dosing, cells were analyzed for lipid 
accumulation by Nile Red staining. In Naïve cells (undifferentiated 3T3 -L1 cells) Nile 
Red staining was 7% of the maximum. In Vh-treated cells (hormone cocktail only) Nile 
Red staining was 25% of the maximum. Data are presented as mean ± SE (n=4). 
Statistically different from Vh-treated (highlighted in green) (*p<0.05, ANOVA, 
Dunnett’s). 
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Figure 3.2: Amended random forest classification performance and gene 
importance of final classification model. 

A) Performance of random forest classification procedure based on 10-fold cross 
validation.  

B) Gini Importance versus ranking of genes used in the final random forest model. 
The names of the top 2 genes are highlighted. Compound-specific gene 
expression of Rpl13 and Cidec are shown in Figure A.13. 
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Figure 3.3: Chemical taxonomy of PPARγ ligands/modifers based on K2 clustering 
of the 3’DGE data.  

The dendrogram shows the taxonomy-driven hierarchical grouping of test chemical 
exposures of 3T3-L1 cells or naïve pre-adipocytes. Each split is labeled with a letter, and 
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the proportion of gene-level bootstraps which produced the resulting split is shown. 
Highlights of hyper-enrichment of gene ontology (GO) biological processes are shown. 
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Figure 3.4: Associations between plasma adiponectin levels and projections of the 
3T3-L1 derived chemical taxonomy gene signatures onto human adipose tissue gene 
expression. 

A) Each adjoined triangle in the dendrogram denotes a set of genes derived from the 
3T3-L1 data, either up-regulated (left) or down-regulated (right) at a given node. 
Triangles are colored according to the direction of the partial correlation of the 
projection of these gene sets with plasma adiponectin levels. Interpretation of 
these associations is in the key on the upper right. All colored triangles reach a 
significance threshold of FDR Q-value < 0.10. 

B) Plots of the partial correlation measurements for gene set projections and plasma 
adiponectin levels. The top and bottom plots are indicative of gene sets that are 
either up- or down-regulated in a particular sub-group, respectively. All colored 
points reach a significance threshold of FDR Q-value < 0.10, as in (A). 

C) Results of all partial correlation analyses of projection of taxonomy gene sets 
with clinical measurements with at least one comparison reaching significance, 
FDR Q-value < 0.10. The interpretation of these associations is the same as in 
(A).  
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Figure 3.5: White and brite gene expression in differentiated and treated 3T3-L1 
adipocytes. 

Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail for 10 
days. During differentiation, cells were treated with vehicle (Vh, 0.2% DMSO, final 
concentration), rosiglitazone (Rosig, 1 µM), roscovitine (Rosco, 2 µM), 15dPGJ2 (1 µM), 
TBBPA (20 µM) and TPhP (10 µM). On days 3, 5, and 7 of differentiation, the adipocyte 
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maintenance medium was replaced and the cultures re-dosed. Following 10 days of 
differentiation and dosing, cells were analyzed for gene expression by RT-qPCR.  

A) PPARγ and coregulator expression. 
B) Genes related to white adipogenesis. 
C) Genes related to brite adipogenesis. 
D) Genes related to mitochondrial biogenesis and energy expenditure. 

 Data are presented as mean ± SE of n=4 independent experiments. Statistically different 
from Vh-treated (highlighted in green) (*p<0.05, **p<0.01, ANOVA, Dunnett’s). 
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Figure 3.6: Fatty acid uptake in differentiated and treated 3T3-L1 adipocytes. 

Differentiation and dosing were carried out as described in Figure 3.5. Following 10 days 
of differentiation, fatty acid uptake was analyzed using a dodecanoic acid fluorescent 
fatty acid substrate. Data are presented as means ± SE (n=4). Statistically different from 
Vh-treated (highlighted in green) (*p<0.05, **p<0.01, ANOVA, Dunnett’s). 
 

 

Figure 3.7: Mitochondrial biogenesis in differentiated and treated 3T3-L1 
adipocytes. 

Differentiation and dosing were carried out as described in Figure 3.5. Following 10 days 
of differentiation, mitochondrial biogenesis was analyzed by measuring mitochondria-
specific proteins. Vehicle, Rosig and TPhP data have been published previously86. Data 
are presented as means ± SE (n=4). Statistically different from Vh-treated (highlighted in 
green) (*p<0.05, ANOVA, Dunnett’s).   
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Figure 3.8: Cellular respiration in differentiated and treated 3T3-L1 adipocytes. 

Differentiation and dosing were carried out as described in Figure 3.5, with the exception 
of Rosig (20 µM). Following 10 days of differentiation, mitochondrial respiration was 
analyzed by Seahorse Assay. Vehicle, Rosig and TPhP data have been published 
previously86. Data are presented as means ± SE (n=4). Statistically different from Vh-
treated (highlighted in green) (*p<0.05, ANOVA, Dunnett’s). 
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Figure 3.9: Tonalide and quinoxyfen induce white, but not brite, adipogenesis in 
3T3-L1 pre-adipocytes.  

Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail for 10 
days. During differentiation, cells were treated with vehicle (Vh, 0.2% DMSO, final 
concentration), rosiglitazone (Rosig, 1 µM), quinoxyfen (Quino, 10 µM) or tonalide 
(Tonal, 4 µM). On days 3, 5, and 7 of differentiation, the adipocyte maintenance medium 
was replaced and the cultures re-dosed. Following 10 days of differentiation and dosing, 
cultures were analyzed for  

A) adipocyte differentiation 
B) white (Cidec) and brite (Cidea) gene expression 
C) fatty acid uptake 
D) mitochondrial biogenesis. 

Data are presented as means ± SE (n=4). Statistically different from Vh-treated 
(highlighted in green) (*p<0.05, ANOVA, Dunnett’s). 
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Figure 3.10: Tonalide and quinoxyfen induce white, but not brite, adipogenesis in 
primary human adipocytes 

Confluent primary human preadipocytes were differentiated using a standard hormone 
cocktail for 14 days. During differentiation, cells were treated with vehicle (Vh, 0.1% 
DMSO, final concentration), rosiglitazone (Rosig, 4 µM), quinoxyfen (Quino, 4 µM) or 
tonalide (4 µM). On days 3, 5, 7, 10, and 12 of differentiation, the medium was replace 
and the cultures re-dosed. Following 14 days of differentiation and dosing, cultures were 
analyzed for  

A) adipocyte differentiation 
B) white (Cidec) and brite (Cidea) gene expression 
C) fatty acid uptake 
D) mitochondrial biogenesis.  

Data are presented as mean ± SE (n=3, each n is from adipocytes from an individual). 
Statistically different from Vh-treated (highlighted in green) (*p<0.05, ANOVA, 
Dunnett’s). 
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Chapter 4:  Tool development for characterization of molecular subgroups in bulk 

and single-cell transcriptomic profiling data 

4.1 Background 

As high-throughput transcriptomic assays become more efficient and cost 

effective, they are being routinely integrated in large-scale biomedical projects130–133. 

Bulk gene expression profiling by RNA sequencing (RNAseq) has been widely adopted 

in multiple high-throughput genomics studies, the paramount example being The Cancer 

Genome Atlas (TCGA) data commons, which currently include 10,558 bulk RNA 

sequencing (RNAseq) profiles across 33 cancer types (https://portal.gdc.cancer.gov/). 

Furthermore, since its first published application in 2009134, the size of single-cell RNA 

sequencing (scRNAseq) studies has exploded, such that is now commonplace for studies 

to generate tens of thousands of profiles19. As the scale of these studies and the associated 

datasets increases, so does their utility as a resource from which biological information 

can be extracted through the application of machine learning approaches. Common 

deliverables of these types of analysis include discovery and characterization of 

molecular subtypes, which is prevalent in both bulk and single-cell gene expression 

studies. For example, TCGA bulk expression data has been utilized to characterize 

subtypes of numerous cancer, including but not limited to: breast135, colorectal136, 

liver137, and bladder cancer138,139. Similarly, characterization of molecular subtypes is a 

standard component of the scRNAseq data analysis workflow, insofar as estimation and 

annotation of subpopulations of cells is one of the primary goals of the assay140.  
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The general framework for subtype characterization can be summarized in two 

steps: 1) estimation of data-driven groups of observations via application of an 

unsupervised learning procedure, followed by 2) annotation of each group based on the 

identification of distinct patterns of gene expression relative to other groups. While most 

approaches focus on discovering a “flat” set of non-overlapping groups or subtypes, in 

this chapter we present an alternative approach, devised to emphasize “taxonomy-like” 

hierarchical relationships between observations in order to discover non-mutually 

exclusive subgroups. 

Whereas a wide range of unsupervised learning algorithms is available for the 

analysis of bulk gene expression data, the considerable sparsity of scRNAseq data has 

motivated the development of novel methods specifically tailored to the analysis of this 

type of sparse, high-dimensional data. Popular software packages, such as Seurat141 and 

Scran142, generate “flat” clusters, in which a finite set of mutually exclusive cell types is 

estimated. In so doing, they fail to capture the “taxonomy-like” hierarchical structure that 

may exist among subgroups of observations at multiple levels of resolution, driven by 

transcriptional signatures based on different factors, including but not limited to: shared 

lineage, cell state, pathway activity, or morphological origin. Complementary methods 

exist to model such relationships, such as Neighborhood Joining143,144and more recent 

single cell trajectory inference approaches145, which estimate “pseudo-temporal” states of 

individual cells indicative of developmental progression. Given the stringent 

interpretation of such models, their suitability depends on the assumption that the 

measured similarity between cell profiles arises solely from temporal progression. 



 

 

92 

However, relative similarity between cell profiles may be confounded by numerous 

factors, including: cell cycle progression, spatial patterning, and cell stress146. 

Hierarchical clustering (HC) algorithms at face value address the need for a multi-

resolution representation of the relationship among observations, and while originally 

adopted for the analysis of bulk gene expression data147, numerous packages have also 

been developed for scRNAseq analysis, such as pcaReduce148, ascend149, and 

BackSPIN150. However, since the number of possible subgroupings increases with the 

number of observations, robustly identifying such relationships can be challenging. As a 

result, tree-cutting methods are often applied, ultimately yielding a flat set of non-

overlapping clusters. Furthermore, the bottom-up nature of HC’s sample aggregation 

procedure forces the use of the same set of genes/features to drive the agglomeration at 

all levels of the hierarchy, thus precluding the discovery of nested structures defined by 

possibly distinct transcriptional programs.  

Here we introduce K2Taxonomer, a novel taxonomy discovery approach and 

associated R package for the estimation and in-silico characterization of hierarchical 

subgroup structures in both bulk and single cell data. An important feature of the 

approach is that it can analyze both individual samples as well as sample groups such as, 

but not limited to, those corresponding to scRNAseq cell types. The package employs a 

recursive partitioning algorithm, which utilizes repeated perturbations of the data at each 

partition to estimate ensemble-based K=2 subgroups. For scRNAseq analysis, 

K2Taxonomer utilizes the constrained k-means algorithm151, to estimate partitions of the 

data at the cell type level, while preserving the influence of each individual cell profile. A 
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defining feature of the method is that each recursive split of the input data is based on a 

distinct set of features selected to be most discriminatory within the subset of samples 

member of the current hierarchy branch. This makes the approach quite distinct from a 

standard clustering algorithm, and particularly apt to discover nested taxonomies. In 

addition, the package includes functionalities to comprehensively characterize and 

statistically test each subgroup based on their estimated stability, gene expression 

profiles, and a-priori phenotypic annotation of individual profiles. Importantly, all results 

are aggregated into an automatically generated interactive portal to assist in parsing the 

results.  

In this chapter we assess the performance of K2Taxonomer for partitioning both 

bulk gene expression and scRNAseq data, using both simulated and publicly available 

data sets, and we compare it to agglomerative clustering procedures. For bulk gene 

expression data, performance is assessed in terms of unsupervised sorting of breast 

cancer subtypes and established genotypic markers, using breast cancer patient tumor 

tissue data from the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC)13 and the TCGA compendia. For scRNAseq data, performance is assessed 

in terms of recapitulation of established relationships between 28 annotated cell types of 

the airway of healthy subjects152. We conclude with a case study where we perform a 

K2Taxonomer-based analysis of breast cancer tumor infiltrating lymphocytes (TILs) 

profiled by scRNAseq153. Our analysis significantly expands upon the previously 

published results, and identifies a phenotypically diverse subgroup of CD4 and CD8 T 

cells, characterized by constitutive up-regulation of a subset of translation machinery 
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genes. We further show that high expression of translational machinery genes in breast 

cancer tissue bulk expression are associated with better survival, supporting recent 

findings on the role of the translation machinery assembly in T cell activation154,155, and 

demonstrate that this coordinated expression of the translation machinery is pervasive 

among T cell subpopulations to such a degree high expression of these genes in bulk 

measurements of tumor tissue is indicative of the presence of immune infiltrating 

lymphocytes. The complete suite of analysis results is accessible through an 

automatically generated and publicly accessible portal. 

While in this chapter we focus on the analysis of transcriptomics data, we 

emphasize that our approach is equally applicable to other bulk and single cell ‘omics’ 

data, such as those generated by high-throughput proteomics and metabolomics assays. 

4.2 Methods 

4.2.1 K2Taxonomer algorithm overview 

K2Taxonomer implements a recursive partitioning algorithm that takes as input 

either a set of individual observations or a set of sample groups and returns a top-down 

hierarchical taxonomy of those samples or groups (Illustration 4.1). To achieve robust 

model estimation, each partition is defined based on the aggregation of repeated partition 

estimations from distinct perturbations of the original set. Each of these partition 

estimates is created in three steps. First, a perturbation-specific data set is generated by 

bootstrapping features, i.e., sampling features from the original data set with replacement. 

Next, this perturbation-specific data set undergoes variability-based feature selection 

filtering. Finally, a K=2 clustering algorithm is run, producing a perturbation-specific 
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partition estimate. These three steps are repeated, generating a set of perturbation-specific 

partition estimates, which are aggregated into a cosine similarity matrix.The aggregate 

partition is then estimated based on hierarchical clustering and a K=2 tree cut. The 

current implementation of K2Taxonomer includes many options for parametrizing steps 

in this procedure. Additionally, the K2Taxonomer package includes functionalities for 

performing group-level recursive partitions, i.e., partitioning data sets where observations 

have a priori-assigned group labels, whereby the objective of the K2Taxonomer 

procedure is to identify intermediate relationships between these groups. This 

functionality was specifically incorporated to enable partitioning and annotations of cell 

types estimated by scRNA-seq clustering algorithms, but it is applicable to any data set 

with group-level labels. 

4.2.2 K2Taxonomer feature filtering 

A distinguishing property of K2Taxonomer when compared to other methods, 

such as traditional agglomerative hierarchical cluster or trajectory inference, is the 

manner in which feature selection is implemented. Even in large studies of high-

throughput data sets, the number of features is typically much larger than the number of 

observations. This generally requires filtering the data set prior to modelling in order to 

reduce variance and computational expense of model fit. One way to do this is through 

feature selection, in which features suspected to contain more information about the 

relationship between observations are chosen for down-stream analysis. For unsupervised 

learning, relative information estimation is commonly calculated via variability-based 

metrics. Assuming the amount of noise is consistent across features, these metrics will 
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capture the relative magnitude of signal of individual features. Two common choices are 

standard deviation (SD) and median absolute deviation (MAD), of which the former is 

more statistically efficient with small sample size and the latter is more robust to 

outliers156. Implementation of these feature selection techniques prior to modelling may 

be problematic when learning hierarchical models. The magnitude of variability-based 

metrics is influenced by the frequency of observations for which the signal-to-noise ratio 

is higher, such that the subset of features is more likely to capture broader relationships 

between larger sets of observations and less likely to capture relationships between 

smaller sets of observations. This can obscure important relationships within smaller sets 

of observations, as when evaluating a sub-group of samples in a hierarchical procedure. 

In addition, an appropriate choice of the number features to use for modeling is difficult 

to determine a-priori, and may be obscured by many factors, including: the number of 

subgroups, number of observations belonging to each subgroup, and the number of 

features distinguishing individual subgroups.  

To overcome these challenges, K2Taxonomer produces a model fit for each 

partition independently, such that feature selection is only performed within the subgroup 

of observations being evaluated at a given step. In particular, at each recursive step the 

objective of partition estimation is to split the data based only on the dominant 

relationship between two subgroups. Since the selected features need only capture one 

relationship, a much smaller subset of features will be sufficient to discovering this 

partition. By default, K2Taxonomer uses the square root of the total number of features, 

which is used in a related albeit supervised learning method, random forests157. In doing 
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so, the percentage of filtered features is dependent on the total number of features. For 

example, if the data set consists of 1,000 or 10,000 features, K2Taxonomer will estimate 

partitions using 3.2% or 1.0% of the total number of features, respectively. The 

appropriateness of using the square root of the total number of features against fixed 

percentages is later assessed with simulation-based testing.  

The K2Taxonomer package includes options to perform both SD and MAD based 

feature selection. In the case of group-level analysis, K2Taxonomer can perform F-

statistic based feature selection based on the proportion of between group variability and 

within group variability implemented by the limma R package93. 

4.2.3 K2Taxonomer data partitioning 

To estimate each partition, K2Taxonomer, performs feature-level bootstrap 

aggregation, similar to that of consensus clustering158. More specifically, each data 

partition represents the aggregation of a set of partitions estimated from perturbations of 

the original data set in which features have been sampled with replacement. Feature 

selection and K=2 clustering is independently performed within each perturbation-

specific data set. The final partition estimate is calculated by aggregating the set of 

perturbation-specific partitions into a cosine similarity matrix (defined below), which 

further undergoes hierarchical clustering, followed by a K=2 tree cut.  

K2Taxonomer package implements separate clustering methods tailored to 

analysis of either observation-level and group-level data input. For observation-level 

data, the perturbation-specific partitions are estimated via hierarchical clustering of the 

Euclidean distance matrix, followed by a K=2 tree cut. By default, Ward’s agglomerative 
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method is performed at this step because it has been shown to generally perform well 

compared to other hierarchical methods147. For group-level data, perturbation-specific 

partitions are estimated via constrained K-means clustering151. This algorithm performs 

semi-supervised clustering, in which group-level information is included as a pairwise 

“must-link” constraint, preserving relationships between observations from the same 

group.  

To assess the robustness of the partitioning of the aggregated results, hereby 

referred to as partition stability,  as well as to facilitate interpretability, a cosine similarity 

matrix is computed, with each pairwise cosine similarity measurement functionally 

equivalent to the Pearson correlation of standardized variables.  

Let an “item” denote a single observation or group, depending on whether 

observation- or group-level analysis is being performed, respectively. The cosine 

similarity of two items is a measure proportional to the number of times across 

perturbation iterations that the two items are assigned to the same group in the 

perturbation-specific dichotomous partitions. It takes its maximum/minimum value when 

the two items are always/never assigned to the same group.  

If we represent with “-1” and “1” the assignments of an item to one or the other 

group in a dichotomous partition, we can then represent, and compare, the complete set 

of assignments of any two items across  perturbation-specific partitions as the vectors 

, 

where  and   represent the  and 	item,	respectively. 

p

Xi = (xi1,...,xip | xi ∈{−1,1})

X j = (x j1,...,x jp | x j ∈{−1,1})

Xi X j ith jth
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We can then define the cosine similarity of  and  as 

. 

where  represents the dot product, and  represents the product of the 

Euclidean norms of  and . Next, we prove the equivalence of the cosine similarity 

and Pearson correlation of two assignment vectors. The cosine similarity can be rewritten 

as follows: 

. 

In the above derivation, since  and  only take values in {-1,1}, their dot product, 

, is equal to the difference between the number of iterations, Z, the two items are 

assigned to the same group, and the number of iterations, p-Z, the two items are assigned 

to different groups. Furthermore, the product of the Euclidean norms of  and , 

, is equal to .  

Similarly, taking advantage of the relationship between Pearson correlation of 

standardized variables, , and Euclidean distance, , we have 

,	

where we used the fact that the squared Euclidean distance of  and , , is 

equal to . Furthermore, for , the difference between mismatched 

Xi X j

CS(Xi ,X j ) =
Xi ⋅ X j

|| Xi |||| X j ||

Xi ⋅ X j || Xi |||| X j ||

Xi X j
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Xi ⋅ X j
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= ( p − Z )− Z

p
= 1− 2Z

p

Xi X j

X ⋅Y

Xi X j

|| Xi |||| X j || p

r() d()

r(Xi ,X j ) = 1−
d 2(Xi ,X j )
2p

= 1−
(Xi − X j )

2

2p
= 1− 4Z

2p
= 1− 2Z

p

Xi X j d
2(Xi ,X j )
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adjacent elements is 2 and the difference between matched adjacent elements is 0. 

Therefore, .  

The function, , is the Hamann similarity index159. Consistent with Pearson 

correlation, the range of possible values for the Hamann similarity is between 1 and -1; 

these extremes occur if Z is equal to p and 0, respectively, indicating that  and  are 

either identical or fully dissimilar. Furthermore, if elements of  and  share 50% of 

their matching assignments, then  and the Hamann similarity is equal to 0, 

indicating a lack of a relationship between their perturbation-specific partition estimates. 

This is not true for the related phi similarity160, another correlation metric for 

dichotomous variables, the calculation of which includes adjustment for the marginal 

distribution of  and . In this case the marginal distribution of  and  is 

irrelevant because the elements of  and  are only meaningful in relation to their 

matching assignments. 

4.2.4 K2Taxonomer partition stability 

 In order to assess the robustness of partition estimates, indicating the consistency 

of the perturbation-specific partition results, we developed a partition stability metric, 

which is calculated using the eigen-decomposition of the matrix of pairwise cosine 

similarities, , of dimension, , the number of items. The eigen-decomposition of  

satisfies 

(Xi − X j )
2 = 4Z

1− 2Z
p

Xi X j

Xi X j

Z = p
2

Xi X j Xi X j

Xi X j

Q N Q
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, 

where  is the matrix of eigenvectors corresponding with , the vector of rank ordered 

eigenvalues 

. 

Each eigenvalue is proportional to the “variance explained” by each eigenvector, such 

that the cumulative sum of variance explained by the first  eigenvectors, , is given by 

. 

In this context, the variance explained by eigenvectors captures the consistency with 

which pairs of items received the same or different assignments across perturbation-

specific partitions. Therefore, we can summarize this consistency by evaluating the 

difference between the variance explained by the eigenvectors of the estimated cosine 

matrix and the variance explained by these eigenvectors if there was no consistency 

across perturbation-specific partition assignments. We denote this deviation as the 

partition stability, , calculated as the maximum difference between  and , the 

null value corresponding to all items being linearly independent, 

. 

The possible values for the partition stability range between  and 0, with the 

former representing the case in which , where every perturbation-specific partition 

QU = diag(Λ)U

U Λ

Λ = (λ1,...,λk ,...,λN |λk > λk+1)

k vk
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λl
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is identical, i.e., all values of the cosine matrix are either -1 or 1. Conversely, a partition 

stability of 0 represents the case when the perturbation-specific partition assignments are 

random, i.e., all values of the cosine matrix are close to 0. The maximum value for a 

given partition is dependent on the number of items in the partition, approaching 1 when 

 is large, and equal to 0.5 when . Using the K2Taxonomer package, partition 

stability can be used to set stopping criteria for creating new partitions, thereby serving as 

a way to control the number of terminal subgroups without prior knowledge.  

 Finally, partition stability is used as a heuristic for calculating branch heights in 

dendrogram creation of the K2Taxonomer output. For a series of  partitions resulting in 

a given partition, , the branch height, , is calculated as 

, 

where c is a constant added to ensure that the minimum height for a node is equal to 1.  

4.2.5 K2Taxonomer R package functionality 

In addition to running the recursive partitioning algorithm, the K2Taxonomer R 

package provides functionalities for comprehensive annotation of the estimated 

subgroups, via subgroup-level statistical analyses, including: differential analysis, gene 

set enrichment analysis, and phenotypic variable testing. Differential analysis of gene 

expression is carried out using the limma R package, which is well-suited to the analysis 

of normally distributed data such as microarray gene expression, as well as log 

transformed and normalized RNAseq data93. Gene set enrichment analysis is carried out 

on a set of user-provided gene sets and implemented in two ways: over representation 

N N = 2

m

zm hm

hm = log(Nm )+ l
l=1

m

∑ og(PSl )+ c
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analysis based on hypergeometric test, and differential analysis of single sample gene set 

projections scores based on the GSVA R package161. Finally, phenotypic variable testing 

is carried out on user-provided variables labeling individual observations or groups, 

supporting both continuous and categorical variables. Testing of association between 

continuous variable and taxonomy subgroups can be performed based on the parametric 

Student’s t-test or the nonparametric Wilcoxon rank-sum test, while categorical testing is 

carried out using Fisher’s exact test. All subgroup-level statistical analyses are corrected 

for multiple hypothesis testing based on the FDR procedure162. The full set of results are 

compiled into an interactive-web portal for exploration and visualization. Differential 

analyses comparisons are carried out at the partition-level, i.e., comparing only the two 

subgroups at a particular node. However, the web portal includes functionality for 

performing post-hoc differential analysis of any combination of user-selected subgroups. 

The implementation of K2Taxonomer for these analyses was based on R (v3.6.0), limma 

(v3.42.2), and GSVA (v1.34.0).  

4.2.6 Simulated data generation 

 K2Taxonomer’s performance was assessed in terms of its capability to 

recapitulate induced hierarchical structure in simulated data, and it was further compared 

to Ward’s agglomerative method as a term of reference. Hierarchical structured data was 

generated by assigning a mutually exclusive set of C labels to N observations. To define 

hierarchical relationships between labels, the set of C labels was recursively subdivided 

into intermediate subgroups until the final subgroups contained only a single label. To 

represent expected hierarchical structures in real data, we allowed for more than two 
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subgroups to be created at each subdivision. As such, neither K2Taxonomer or 

agglomerative methods are able to recapitulate this structure exactly. 

 After simulating the hierarchical relationships between labels, data was generated 

as follows. First, a set of 10,000 features was generated, each from a normal distribution, 

with mean, 0, and standard deviation, BN, denoting the background noise in the data. 

Second, for each subgroup of labels, we assigned a random set of features for which to 

add signal. For each feature assigned to a specific subgroup of labels, the value of added 

signal was sampled from a normal distribution with mean, 0, and standard deviation, 2. 

To ensure that the value of added signal was the same across all subgroup-specific 

observations, a feature was only allowed to be assigned to an individual label once. 

Considering that in real data we expect only a subset of features in a data set  contain 

information of its subgroup structure, prior to assigning random sets of features to each 

subgroup, the full set of features was subsetted by a given percentage, DS, of the total.  

4.2.7 Simulated data performance assessment 

 Following generation of each simulated data set, K2Taxonomer and Ward’s 

method were run. Performance of each method was assessed by the relative similarity of 

the learned structured to the known hierarchy from which the data was generated using 

Baker’s gamma correlation163. Baker’s gamma correlation is a measure of Spearman 

correlation between two similarity matrices, where each similarity matrix is calculated 

from the number of shared partitions between each pair observations in a given hierarchy. 

Baker’s gamma correlation ranges between -1 and 1, with 1 representing the case when 

two dendrograms induce identical hierarchies. This metric was chosen over cophenetic 



 

 

105 

distance because cophenetic pairwise similarities are calculated using branch heights and 

branch height is not applicable to the known hierarchy. 

4.2.8 Observation-level analysis of simulated data 

 For observation-level analysis, each simulated data set included N=300 

observations. We evaluated the following data generation parameters 

• Number of labels (C):   5, 10, 20, 30 

• Background Noise (BN):   0.5, 1, 2, 3 

• Percent features with signal (DS): 2.5, 5, 10, 25, 50. 

Especially when the value of DS is small, Ward’s method is not expected to perform well 

when run on the full set of data. Therefore, Ward’s method was evaluated on simulated 

data with the following variability-based prefiltering percentage levels, PF, of the data: 

• Pre-filtering percentage level (PF): 5, 10, 25, 5, 1.  

On the other hand, K2Taxonomer was always run on the square root of the total 

number of features. It should be emphasized that this design does not allow for a totally 

unbiased comparison of K2T and Ward, and it favors the latter, since in real settings we 

would not know the optimal PF to be used. 

Standard deviation was used for variability-based feature selection, including 

partition-specific feature selection by K2Taxonomer. For each combination of these 

parameters, we generated 25 simulated data sets and ran K2Taxonomer and Ward’s 

method. For each combination of parameters, the statistical significance of the difference 
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between the two methods’ distributions of Baker’s gamma correlation estimates was 

tested using Wilcox’s Rank Sum tests. The resulting p-values were corrected for multiple 

hypotheses testing using the FDR procedure162. 

 As noted, for each of these comparisons, we ran K2Taxonomer using the square 

root of the total number of features as the parameter for partition-specific feature 

filtering. In order to assess the validity of using this as the default, we performed 

additional simulations and compared K2Taxonomer performance at different partition-

specific feature filtering levels, based on the set of percentages of the total number of 

features: 1%, 2%, 10%, and 20%. These were performed using the same combinations of 

parameters as the previous analysis and included 25 repetitions. 

4.2.9 Group-level analysis of simulated data 

 For group-level analysis, each simulated data set included N=1000 observations. 

For data generation, we tested the following sets of data generation parameters 

• Number of labels (C):   10, 25, 20, 30 

• Background Noise (BN):   0.5, 1, 2, 3 

• Percent features with signal (DS): 2.5, 5, 10, 25, 50. 

As with observation-level analysis, we performed analyses on simulated data with the 

following variability-based prefiltering percentage levels, PF, of the data: 

• Pre-filtering percentage level (PF): 5, 10, 25, 5, 1. 
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Linear model-based F-statistics were used for all variability-based feature selection 

scoring, including partition-specific feature selection by K2Taxonomer.  

For running each method, the groups were defined by the labels to which each of the 

observations were assigned. Unlike K2Taxonomer, agglomerative methods are not 

devised to utilize group-level labels for unsupervised learning tasks. Therefore, Ward’s 

method was applied using the Z-score mean value of each group, generated by the same 

linear model used for feature selection. 

4.2.10 METABRIC breast cancer primary tumor bulk gene expression processing 

METABRIC breast cancer primary tumor Illumina HT-12 v3 microarray bulk gene 

expression data was obtained from the CBioPortal, 

https://www.cbioportal.org/datasets164,165. The data set includes normalized expression 

values for 24,360 genes and Pam50 cancer subtype166 estimations for individual primary 

breast cancer tumor samples across 1,974 female patients. Additional clinical variables 

considered for this analysis, included: patient age at diagnosis, survival status, ER-status, 

PR-status, and HER2-status. 

4.2.11 TCGA breast cancer primary tumor bulk gene expression processing 

The cancer genome atlas (TCGA) breast cancer (BRCA) primary tumor bulk 

RNAseq data was obtained from Genomic Data Commons (GDC), 

https://gdc.cancer.gov/access-data/16. The data set includes raw gene expression counts 

for 36,812 genes and Pam50 cancer subtype166 estimations for individual primary breast 
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cancer tumor samples across 973 female patients. Additional utilized clinical variables, 

included: patient age at diagnosis, ER-status, PR-status, and HER2-status.  

Raw counts were normalized by the trimmed mean of M-values (TMM) method 

and log-normalized using edgeR (v3.28.1) R package167 and genes with fewer than 2 

reads in more than 90% of samples were removed, resulting in 25,729 genes in the 

processed data set. 

4.2.12 Performance assessment using breast cancer primary tumor bulk gene expression 

data 

 K2Taxonomer was evaluated for its ability to recover the Pam50 subtypes166, as 

well ER-, PR-, and HER2-status, and the aggregate three-gene genotype of ER-, PR-, and 

HER2-status, in the TCGA and METABRIC breast cancer datasets, independently. 

K2Taxonomer was also compared to two agglomerative clustering algorithms, Ward’s 

and average. These specific methods were chosen because they have been previously 

shown to outperform other common agglomerative methods147,168. Given the sensitivity 

of hierarchical clustering to the level of feature filtering, analyses included individual 

runs on four filtered data subsets of the total number of features: 100%, 25%, 10%, and 

5%, while K2Taxonomer was only run on the full set of 100% of the total number of 

features. This should be kept in mind when comparing performances. Since the best-

performing pre-filtering level is not known a-priori, and it is in general dataset dependent. 

For every pre-filtering level, the median absolute deviation (MAD) score was used for 

feature selection and Euclidean distance was used to estimate observation-level distance. 

Performance was assessed as the entropy of each of the phenotypes (e.g., PAM50 labels), 
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induced by the inferred sample sub-grouping, with lower entropy indicating “purer” 

subgroups, hence better performance169. The different methods were evaluated and 

compared by the relative decrease in entropy as the number of mutually exclusive 

clusters, K, increased from 2 to 8 based on tree cuts of the dendrograms produced by each 

model. 

4.2.13 Healthy airway tissue scRNAseq gene expression analysis 

Publicly available scRNAseq data of normalized, batch corrected, and log-

transformed gene expression estimates from airway tissue of healthy subjects was 

obtained from the UCSC Cell Browser portal, published as a supplement to the original 

manuscript for which these data were used, 

https://www.genomique.eu/cellbrowser/HCA/?ds=HCA_airway_epithelium152. This data 

set includes expression estimates for 18,417 genes and 77,969 individual cells from 35 

samples across 10 subjects. Multiple samples taken from individual subjects were 

collected from distinct locations of the human airway including: nasal biopsies, nasal 

brushings, tracheal biopsies, intermediate bronchial biopsies, and distal brushings. In 

addition, this data set included cell type estimations for each of the 77,969 cells, and 

comprised 28 estimated cell types in total. The methods of data processing, as well as 

distributions of subject-level sample identities and estimated cell types can be found in 

the original publication152. 

K2Taxonomer partitioning of these 28 estimated cell types was evaluated against 

the known relationships among the included cell types, and was compared to the 

partitioning obtained by two agglomerative methods, Ward’s and average. Cell type-level 
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data processing and feature selection were performed consistent with the results of group-

level analysis of simulated data. 

4.2.14 Breast TIL scRNAseq gene expression analysis 

Publicly available scRNAseq gene expression of raw counts from breast cancer 

TILs of two TNBC patients was obtained from GEO, accession number GSE110938153. 

The data was processed in accordance with the original manuscript153, recapitulating the 

reported 5,759 individual cells, 4,844 and 915 from either sample, with 15,623 genes 

passing QC criteria, selection of 1,675 highly variable genes, and 10 latent variables 

estimated by ZINB-WaVE (v1.8.0)170. To enable exploration of the data at finer resolution, 

clustering of the latent variables with Seurat (v1.3.4) was modified by setting the 

“resolution” argument of “FindClusters()” to 1.1, rather than the default, 0.8171. This 

resulted in 13 estimated cell clusters. Of the 10 cell clusters reported in the original 

manuscript, two cell clusters, “CD4+ FOXP3+” and “CD4+ IL7R+”, were further split into 

three and two individual clusters, respectively. 

K2Taxonomer partitioning of these 13 estimated cell subtypes was performed on 

the normalized count matrix estimated by ZINB-WaVE. According to the developers, 

ZINB-WaVE, normalized count estimates are not recommended for differential analysis170, 

hence differential analysis was performed based on drop-out imputed and batch-corrected 

normalized counts estimated using the bayNorm (v1.4.14) R package172. Pathway-level 

analysis was carried out using Reactome gene sets downloaded from mSigDB (v7.0)173. 

Signatures of up-regulated genes were derived from each subgroup based on their FDR 
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corrected p-value (FDR < 1e-10) and minimum subgroup-specific expression, (mean[log2 

counts] > 0.5), then restricted to a maximum of 50 genes. 

To validate the clinical relevance of signatures of TILs subgroups derived by 

K2Taxonomer we performed survival analysis based on gene signature projection scores, 

as well as on selected genes in the METABRIC breast cancer primary tumor gene 

expression data set. Gene set projection was carried out using GSVA161. Multivariate 

Survival analysis was performed using Cox proportional hazards tests. All models included 

age and Pam50 subtype as covariates. To account for possible confounding effects of 

inflammation and proliferation, we generated separate patient-level activity scores for each, 

using a gene set projections of published signatures of deleterious breast cancer 

inflammation markers174 and breast cancer proliferation175. 

4.3 Results 

4.3.1 K2Taxonomer discovers hierarchical taxonomies on simulated data  

We first evaluated K2Taxonomer's capability to recapitulate hierarchical 

relationships induced in simulated data, as measured by the Baker’s gamma coefficient 

estimate of similarity between two dendrograms based on the number of partitions 

separating each pair of items in the data163. We evaluated the method’s performance both 

on data where the analysis end-points were single samples (observation-level), and 

groups of samples (group-level). The latter correspond to scenarios where the goal is to 

define a taxonomy over sample groups, such as cell types in single cell experiments, or 

chemical perturbations profiled in multiple replicates. As a term of reference, we 

compared K2Taxonomer’s performance to Ward’s agglomerative method. 
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For observation-level analysis K2Taxonomer significantly outperformed Ward’s 

method in 221 out of the 400 combinations of parameters tested (FDR < 0.05), while 

Ward’s performed better for 17 combinations (Figure 4.1A). For instances in which 

K2Taxonomer method outperformed Ward’s method, the differences between Baker’s 

gamma estimates were generally small, such that the median difference in performance 

was 0.14, compared to 0.04 for instances in which Ward’s method performed better. In 

general, K2Taxonomer significantly outperformed Ward’s method when the background 

noise, number of terminal groups, and percent features with signal increased. 

Remarkably, for group-level analysis K2Taxonomer outperformed Ward’s method for all 

400 combinations of variables tested (Figure 4.1B). 

Using the square root of the total number of features as the partition-specific 

feature filtering parameter for running K2Taxonomer demonstrated stable performance. 

When compared to selecting a fixed percentage of the total number of features (Figure 

A.17), the square root outperformed larger percentages when the number of features was 

large, and outperformed smaller percentages when the number of features was small. 

4.3.2 K2Taxonomer accurately sorts breast cancer subtypes without pre-filtering of 

features 

We evaluated K2Taxonomer‘s ability to sort Pam50 subtypes, ER-status, PR-

status, and HER2-status from bulk gene expression data from METABRIC and the 

TCGA BRCA bulk gene expression data, separately. A fourth variable, defined by the 

Cartesian product of ER-status, PR-status, and HER2-status was also assessed. 

Performance was assessed in terms of decrease in entropy as the number of cluster 



 

 

113 

estimates, K, increased from 2 to 8 (Figure 4.2A-B). We also compared K2T’s 

performance to two agglomerative clustering methods, Ward’s and average. Since 

standard hierarchical clustering is sensitive to the level of feature filtering, the 

comparison was repeated for multiple pre-filtering levels.  

In general, K2Taxonomer accurately segregated the known sub-types and 

phenotypes, and performed as well or better than either method (Figure 4.2B). When 

applied to the METABRIC data, K2Taxonomer analysis yielded the lowest entropy score 

compared to all other methods for K=3 and higher with few exceptions. Other methods 

produced similar entropy measurements at selected higher levels of K. For example, 

Ward’s method resulted in similar entropy scores for Pam50 subtypes and HER2-status at 

K=4 and K=5, respectively, but for different pre-filtering levels, 5% and 100%, 

respectively. When applied to the TCGA BRCA data, the difference in performance was 

less pronounced. K2Taxonomer resulted in the lowest entropy score for Pam50 scores, 

genotype, ER-, and PR-status for K=4. Ward’s method at 5% pre-filtering level produced 

the smallest entropy score for HER2-status for K=4. 

4.3.3 K2Taxonomer identifies subgroups of shared progenitors and epithelial cells from 

healthy airway scRNAseq cell clusters 

To assess the capability of K2Taxonomer to recapitulate biologically relevant 

subgroupings of cell types estimated from scRNAseq data, we ran group-level analysis 

using 29 cell types estimations assigned to 77,969 cells of airway tissue from 10 healthy 

subjects (Figure 4.3A-B)24. K2Taxonomer was remarkably accurate in capturing the 

higher order organization of the 28 cell types. The first partition separated all epithelial 
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cell subtypes from non-epithelial cell types (Figure 4.3B). Further partitioning of the 17 

epithelial cell subtypes yielded two subgroups, characterized by shared morphology, 

labelled as “Multiciliated” and “Submucosal”. The former group was comprised of 

differentiated multiciliated cells and their precursor, deuterosomal cells152. Further 

partitioning of the 11 non-epithelial cell types yielded three subgroups characterized by 

shared progenitor cells: myeloid176, lymphoid176, and mesenchymal stem cells177. In 

contrast, agglomerative hierarchical clustering of these cell clusters, even if evaluated at 

multiple F-statistic-based pre-filtering levels, yielded significantly different results poorly 

reflective of the known taxonomic cell type organization (Figure 4.3C, Figure A.18). 

While the mesenchymal stem cell subgroup, comprised of fibroblasts, smooth muscle, 

and pericytes, was identified by Ward’s method, and while there were other instances of 

concordant subgroups, none of these consisted of more than two cell types, and none of 

the other five subgroups were identified by either methods. 

4.3.4 K2Taxonomer identifies subgroups of TILs characterized by differential regulation 

of TNF signaling, translation, and mitotic activity from BRCA tumor scRNAseq cell 

clusters 

We performed K2Taxonomer analysis on scRNAseq data of 13 TIL cell clusters. 

These 13 cell clusters reflect further subdivisions of the 10 cell types reported in the 

original publication for these data153, which was done by reproducing the reported 

methods153 with the exception of including a higher resolution parameter when 

performing clustering with Seuat141. 
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The results of K2Taxonomer partitioning and annotation of breast cancer cell 

clusters estimated from scRNAseq data is shown in Figure 4.4A. Biologically 

informative subgroups, characterized by strongly significant differential expression of 

gene expression and sample-level pathway enrichment are highlighted and labeled within 

each boxed sub-dendrogram. Three distinct multi-cell subgroups emerged, labeled as: 

“Trm All”, “CD4+ CCL5-“, and “Translation+”, characterized by consistent up-

regulation of PD-1 signaling (Reactome PD-1 signaling, FDR = 1.1e-241), translation 

(Reactome eukaryotic translation initiation, FDR = 5.6e-137), and TNF signaling 

(Reactome TNFS bind their physiological receptors, FDR ~ 0.00), respectively (Figure 

4.4B). “Trm All” and “Treg” subgroups each included a mitotic cell subgroup 

characterized by high cell cycle activity (Figure 4.4B). Furthermore, the “CD4+ CCL5-” 

subgroup, comprised of the “CD4+ CXCL13+” cell cluster and “Treg” subgroup, is 

characterized by consistent down-regulation of CCL5 (FDR ~ 0.00) and up-regulation of 

TNFRSF4 (FDR ~ 0.00) (Figure 4.4C-D). Furthermore, additional up-regulation of 

TNFRSF4 (FDR = 1.1e-7) and RGS1 (FDR = 4.3e-55) distinguish non-mitotic “Treg” 

subgroups (Figure 4.4C). Gene-level markers of the “Translation+” subgroup included 

numerous ribosomal proteins, epitomized by up-regulation of RPS27 (FDR = 9.6e-246) 

(Figure 4.4C-D). 

4.3.5 Confounding effects of inflammation and proliferation on association between TIL 

activity and patient survival 

To assess the clinical relevance of K2Taxonomer annotation of single-cell 

immune cell subgroups, we performed survival analysis, via Cox proportional hazards 



 

 

116 

testing, modeling the relationship between K2Taxonomer subgroup gene signature scores 

and patient survival in the METABRIC breast cancer bulk gene expression data set.  

For these models, we examined two possible sources of confounding factors. First, 

inflammation has a well-described paradoxical role in breast cancer progression178, such 

that the content of different subpopulations of lymphocytes have been associated with 

both better and worse prognosis179. Given the physiology similarities between different 

lymphocyte subtypes180, we hypothesized that expression patterns associated with tumor 

promoting inflammation could mask those tumor suppressing TILs subsets. Second, we 

hypothesized that the signatures of the two mitotic T cell subgroups were similar enough 

to that of tumor-specific proliferation to result in a spurious association between T cell 

mitosis and worse prognosis. To assess and correct for these confounding effects 

multivariate survival models were run without and with inclusion of inflammation and 

proliferation scores as individual covariates. These patient-level scores were estimated by 

projecting published signatures of inflammation174 and proliferation175, each of which 

associated with poor prognosis in breast cancer. 

The results of each of these analyses is summarized in Figure 4.4A. Controlling 

for inflammation and proliferation scores increased the overall significance of association 

between subgroup-driven signatures of TILs and improved survival (hazard ratio < 1, 

FDR < 0.05). Furthermore, signatures of two cell subgroups, “CD8+ mit. Trm” and “Treg 

mit.”, characterized by increased cell cycle activity (Figure 4.4B), were associated with 

worse patient survival in models ignoring inflammation and proliferation scores, but were 

subsequently statistically insignificant in models including these covariates, likely 
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reflecting the effect of confounding by proliferation activity (Figure 4.4A). This is further 

illustrated in Figure 4.4E, which shows the 95% confidence intervals of hazard ratios of 

“marginal” inflammation and proliferation models (left-most), as well as the confidence 

intervals of hazard ratios of select subgroups of cell subtypes, unadjusted and adjusted for 

inflammation and proliferation. Controlling for inflammation and proliferation allowed us 

to disentangle the contribution to survival of different components. For example, in the 

“CD8+ mit. Trm” subgroup, we observed that the “CD8+ mit. Trm” signature score was 

highly associated with worse patient survival in the unadjusted model, but the association 

became insignificant in the full model adjusted for proliferation and inflammation. On the 

other hand, there were instances where the hazard ratio achieved or improved 

significance (i.e., patient survival was significantly better) only after controlling for 

inflammation and proliferation in the full adjusted model, as observed in the “Trm All” 

subgroup and, to a lesser extent, in the “Translation+” subgroup (Figure 4.4E). 

4.3.6 High expression of TNFRSF4, a marker for Treg cell activity is associated with 

worse survival, when adjusting for CCL5 expression. 

TNFRSF4 and CCL5 were found to be the top two markers constitutively up- and 

down-regulated, respectively, within Treg subgroups, with TNFRSF4 the top marker 

further discriminating between the two non-mitotic Treg subgroups, Treg TNFRSF4+ 

and Treg RGS1+ (Figure 4.4A, C-D). Furthermore, their expression was highly 

correlated in the METABRIC data set (rho = 0.66, p-value = 3.2e-245) (Figure 4.4F), 

supporting a pattern of co-expression within TIL microenvironments. To assess whether 

TNFRSF4 and CCL5 expression levels could serve as markers for immunosuppressive 
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activity of Treg cells, we performed survival analysis of each gene modelled separately 

and in a combined model (Figure 4.4G). When modelled separately, the expression of 

TNFRSF4 is not associated with patient survival (P-Value = 0.32), while CCL5 is 

associated with better patient prognosis (P-Value = 1.94E-4). However, in the combined 

model both genes are associated with patient survival, with TNFRSF4 associated with 

worse patient survival (P-Value = 0.015).  

4.3.7 Up-regulation of specific translation genes characterizes a subgroup of TILs and is 

associated with better survival prognosis, independent of inflammation activity 

The “Translation+” subgroup was a notable instance for which the subgroup-

specific signature projection was associated with better patient survival, regardless of 

adjustment for inflammation and proliferation score (Figure 4.4A, E). In order to assess 

the extent to which up-regulation of translation specific genes in this subgroup associated 

with better patient prognosis, we ran separate survival analysis for each of the 112 genes 

from the Reactome Eukaryotic Translation Initiation gene set, which were shared 

between the single-cell BRCA gene set and METABRIC data set. Of the 112 genes, 61 

were up-regulated in the “Translation+” subgroup (FDR < 1E-5), including 26 genes 

within the top 50 marker “Translation+” subgroup signatures (Figure 4.4H-I). The test 

statistics derived from single gene Cox proportional hazards models were negatively 

correlated with the corresponding genes’ test statistics of their up-regulation in the 

“Translation+” subgroup (rho = -0.23, p-value = 0.014) (Figure 4.4I). Furthermore, seven 

of the 112 genes were associated with better patient survival (FDR < 0.1). All of these 

genes were significantly up-regulated in the “Translation+” subgroup. Of these seven 
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genes, RPL36A had the minimum “Translation+” subgroup associated test statistic (FDR 

= 1.34e-25) and two (RPS28 and RPS27) were members of the top 50 markers, 

comprising the “Translation+” subgroup signature. RPS27 was the top translation gene 

associated with the “Translation+” subgroup (FDR = 9.6e-246). 

4.4 Discussion 

In this chapter we presented extensive assessment and practical applications of 

K2Taxonomer, a novel unsupervised recursive partitioning algorithm for taxonomy 

discovery in both bulk and single-cell high-throughput transcriptomic profiles. An 

important distinctive feature of the algorithm is that each partition is estimated based on a 

feature set selected to be most discriminatory within that partition, thus permitting the use 

of large sets of features to be used as input, without pre-filtering or dimensionality 

reduction approaches. Additionally, in an effort to minimize generalization error, each 

partition is based on an ensemble181 of partition estimates from repeated perturbations of 

the data. Adoption of an ensemble approach also makes it possible to compute a stability 

measure for each partition, which can be used to assess the robustness of each partition, 

as well as a stopping criterion for limiting the number of subgroup estimates. 

As we have shown in its multiple applications, K2Taxonomer may be applied in a 

fully unsupervised mode to partition individual level data, or it can take group-level 

labels as input to estimate inter-group relationships among the known groups. In the latter 

scenario, partition estimates are based on the constrained K-means algorithm151, which 

estimates clusters at the level of known group labels. This approach is perfectly suited to 

the downstream analysis of scRNAseq data, following the estimation of mutually 
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exclusive cell types using scRNAseq clustering methods such as Seurat141 or Scran142. To 

our knowledge, there is no comparable method, in which subgroup relationships are 

estimated using group-level information. By preserving the single observation 

information within each group, and by thus being able to tailor the feature set to each of 

the groups, we expect our approach to outperform methods in which group-level 

information is summarized into single statistical measures. This conclusion is supported 

by our simulation analysis, where K2Taxonomer was shown to significantly outperform 

Ward’s agglomerative method based on group-level test statistics. Even when adopted for 

observation-level analysis, where inference was performed on the full set of individual 

observations, K2Taxonomer was still shown to significantly outperform standard 

agglomerative methods, on both simulated and real data, although not to as large an 

extent.  

In our analysis of healthy airway cell types’ annotation152, we employed 

K2Taxonomer to (re)discover subgroups of cell types characterized by shared lineage. 

Remarkably, our analysis accurately recapitulated the known taxonomic structure relating 

the different cell types to an extent not matched by the other methods evaluated. This 

example illustrates a prototypical use of the tool: in those cases where a data set and its 

associated cell type estimations are publicly available, K2Taxonomer facilitates their 

immediate repurposing for additional insight and discovery.  

It is important to emphasize that in many data sets shared lineage relationships 

may be non-existent or obscured by phenotype-driven inter-group transcriptional 

relationships. For example, in primary tumor samples, intratumor heterogeneity includes 
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phenotypic convergence of ancestrally divergent cell populations. Given that bulk gene 

expression captures average expression across all cells, identifying dominant 

transcriptional programs driving phenotypic similarities between subgroups of cell 

populations offers additional insight to deconvolute the cellular microenvironment of 

these samples beyond their individual transcriptional signatures. 

Phenotypic convergence of cells of disparate lineages is exemplified by 

subpopulations of CD8+ and CD4+ T cells, each of which exist in various functional 

states as naïve, effector, and memory subpopulations182. Concordant subpopulations of 

CD8+ and CD4+ T cells share transcriptional signatures that may outweigh those arising 

from their shared lineage. For example, both CD8+ Trm and CD4+ Trm cells have been 

reported to express surface molecules, CD69 and CD11a183. As well illustrated in our 

analysis of breast cancer TILs, CD8+ Trm and CD4+ Trm cells segregated into a 

common subgroup, demonstrating the relative dominance of their shared transcriptional 

activity. Projection of the expression signature of Trm cell subgroups was associated with 

better survival in the METABRIC data set. Past studies focusing on CD8+ Trm cell 

markers have reported similar findings153,184. 

Unlike Trm cells, the presence of immune suppressing Treg cells in the micro-

environment has been associated with poor prognosis in breast cancer185–187. After 

identifying TNFRSF4 as heterogeneously expressed across the Treg cell subgroup, we 

showed that TNFRSF4 expression was associated with worse patient survival in the 

METABRIC data set when adjusted for CCL5 expression, which was down-regulated 

among all Treg cells. This supports previous findings that TNFRSF4, also known as 
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OX40, is a marker of high Treg cell immunosuppressive activity188,189. The high level of 

co-expression of TNFRSF4 and CCL5 in the METABRIC data set suggests that either 

gene is associated with immune infiltration in breast cancer tumors. Additionally, this 

provides a resolution as to why projections of the signature of the Treg cell subgroup was 

associated with better patient survival, while the signature of Treg cell subset, 

characterized by high TNFRSF4 expression was not. 

Finally, K2Taxonomer identified a diverse subgroup of breast cancer TILs 

characterized by consistent up-regulation of translational genes. Increased ribosomal 

biogenesis has been previously implicated in increased tumorigenesis190–193, but has only 

recently been described for its roles in T cell activation154 and expansion155. Unlike the 

majority of other subgroups, the signature of the T cell subgroup overexpressing 

translational machinery genes was associated with better patient survival in METABRIC 

patients in cox proportional hazards models regardless of adjustments for inflammation174 

and proliferation175 signatures. Furthermore, the association of the expression of specific 

translational genes with better patient survival was significantly correlated to their 

overexpression in this T cell subgroup. These results suggest that overexpression of these 

T cell specific translational genes are not masked by tumor specific gene expression and 

are therefore indicative of CD4+ and CD8+ T cell tumor infiltration. 

In summary, K2Taxonomer demonstrates a remarkable ability to discover 

biologically relevant taxonomies when applied to the analysis of both bulk gene 

expression and scRNAseq data, and to outperform standard agglomerative methods. In 

multiple practical applications, we showcased the versatility of K2Taxonomer to analyze 
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scRNAseq data toward the characterization of genes and pathways distinguishing specific 

subgroups, thereby generating hypotheses that were then in-silico validated in 

independent bulk gene expression data. As noted, while we here focused on the analysis 

of transcriptomics data, the proposed approach is equally applicable to other bulk and 

single cell ‘omics’ data, such as those generated by high-throughput proteomics and 

metabolomics assays. 
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Illustration 4.1: Schematic of the K2Taxonomer recursive partitioning algorithm 

For each partition, K2Taxonomer generates an ensemble of K=2 estimates from the 
feature bootstrapped data followed by variability-based feature selection. This ensemble 
is aggregated to a cosine matrix followed by hierarchical clustering and tree cutting. A 
stability estimate, indicative of the consistency of K=2 estimates, is calculated based on 
an eigendecomposition of the cosine matrix. See methods for a more thorough 
description of the elements of this procedure. 
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Figure 4.1: Simulation-based performance assessment of K2Taxonomer and Ward’s 
agglomerative method 

Mean Baker’s gamma correlation estimates measuring the similarity of either 
K2Taxonomer and Ward’s agglomerative method estimates to the true hierarchy from 
which the simulated data was generated. Each combination of parameters was simulated 
25 times. The red and blue lines are indicative of statistically significant differences 
between the correlation estimates (FDR < 0.05) based on a Wilcoxon signed-rank test. 
 

A) Observation-level analyses with 300 observations and 10,000 features. 
B) Cohort-level analyses with 1,000 observations and 10,000 features.  
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Figure 4.2: Breast cancer subtyping performance assessment of bulk gene 
expression data 

Comparison of sorting of breast cancer Pam50 subtypes and genotypes (ER-, PR-, and 
ER-status) for two bulk gene expression data sets, METABRIC and TCGA.An aggregate, 
three gene genotype status was also included by combining the individual genotypes. 
Performance was assessed based on reduction of entropy as the number cluster estimate 
increased based on tree cutting. K2Taxonomer was only run on the full set of features, 
while either agglomerative method, average and Ward’s, were run on three additional 
subset of the data. 
 

A) Illustration of the results generated by K2Taxonomer and Ward’s method for the 
METABRIC dataset. These results reflect Ward’s method run on 5% of the total 
number of features, which demonstrated the best performance among 
agglomerative methods. 

B) Entropy measurements for each method as K increased across the METABRIC 
and TCGA data sets. 
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Figure 4.3: Subgrouping of healthy airway cell types from scRNAseq data 

A) tSNE dimensionality reduction of healthy airway scRNAseq data with labels for 
28 cell types annotated by 152. Note cell types labelled ending in “N” indicate 
those which only included cells from nasal samples.  

B) K2Taxonomer results with six identified lineage subgroups. 
C) Ward’s (left) and average (right) agglomerative clustering results for selected 

analyses performed on different subsets of the total number of features. The 
results for additional feature subsets: 100%, 25%, 10%, and 5%, are shown in 
Figure A.18. These results were chosen as the best sorting of these data based on 
lineage for each respective method. 
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Figure 4.4: K2Taxonomer annotation of scRNA-seq clustering of breast cancer 
immune cell data and in-silico validation via patient survival on METABRIC breast 
cancer bulk gene expression data set 

 
A) K2Taxonomer annotation of 13 cell subtypes of breast cancer immune cell 

populations. Cell type labels are in accordance to the original publication of these 
data153. Color and thickness of each edge indicates the association between the 
projected signature of up-regulated genes of each subgroup and patient survival in 
METABRIC breast cancer cohort via Cox proportional hazards testing. The top 
and bottom dendrograms show the results without and with adjusments of 
covariates for inflammation and proliferation. Blue and red are indicative of 
hazard ratio < 1 and hazard ratio > 1, respectively. All models included age and 
PAM50 subtype as covariates. 

B) Boxplots of gene set projection scores of selected REACTOME pathways, 
enriched in subgroups of immune cells. These pathways include: PD-1 Signaling, 
enriched in the Trm All subgroup, Translation, enriched in the Translation+ 
subgroup, TNF Signaling, enriched in the CD4+ CCL5- and Treg TNFRSF4+ 
subgroups, and Cell Cycle, enriched in the CD8+ mit. Trm and Treg mit. 
subgroups, 

C) Boxplots of markers constitutively regulated among selected K2Taxonomer 
subgroups. GZMB is upregulated in the Trm All subgroup. CCL5 and TNFRSF4 
are up- and down-regulated, respectively, in the CD4+ CCL5- subgroup. 
TNFRSF4 is further up-regulated in the Treg TNFRSF4+ subgroup, while RGS1+ 
is up-regulated in the Treg RGS1+ subgroup. Finally, RPS27 is up-regulated in 
the Translation+ subgroup.  

D) tSNE dimensionality reduction of the single-cell breast cancer immune cell data, 
indicating the cell subtype label assignment of every cell, as well as Z-scored 
expression of selected genes from C. 

E) 95% confidence intervals of hazard ratios from Cox proportional hazards testing 
of gene set projections of cellular subgroups on the METABRIC data set. 
Covariates shows the results of the survival model of sample-level inflammation 
and proliferation scores without a K2Taxonomer derived signature. Every other 
models shows the confidence interval of the subgroup-specific model without and 
with adjusting for inflammation and proliferation score, as well as the confidence 
intervals of inflammation and proliferation in the full model. All models included 
age and Pam50 breast cancer subtype as covariates. 

F) Scatterplot of the comparison of the expression of CCL5 and TNFRSF4 
expression in the METABRIC dataset.  

G) 95% confidence intervals of hazard ratios from Cox proportional hazards testing 
of gene-level expression of CCL5 and TNFRSF4, modelled separately, Sep., and 
combined in a single model, Comb.. These models also included age, Pam50 
breast cancer subtype, as well as sample-level inflammation and proliferation 
score as covariates. 
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H) Volcano plot of differential expression analysis of the Translation+ subgroup in 
scRNAseq data of individual genes in the REACTOME eukaryotic translation 
initiation gene set. An alternative coding of the y-axis indicating the absolute 
value of the test statistic is shown on the right side of the plot. The colors 
indicates the association of each gene with survival in the METABRIC data set. 
The names of genes, significantly associated with better survival (hazard ratios < 
1, FDR < 0.1) are labelled. 

I) Comparison of the associations of expression of the REACTOME eukaryotic 
translation initiation gene set to survival in the METABRIC data set and the test 
statistics indicating up-regulation in the Translation+ subgroup. Genes that were 
included as top markers of the Translation+ subgroup are highlighted. The names 
of genes, significantly associated with better survival (hazard ratios < 1, FDR < 
0.1) are labelled. The blue line indicates the linear fit of these two variables. 
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Chapter 5:  Conclusions and future directions 

In this dissertation, I presented the development of methods to advance large-

scale transcriptomic profiling, encompassing both data generation and analyses. The 

strength of these methods was examined through evaluation of their performance relative 

to other methods, as well as through demonstration of biological insights gained through 

their application to real studies. 

In the first section, I presented my assessment of a novel cost-effective highly 

multiplexed RNAseq platform, SFL. Throughout unbiased evaluation of the data quality 

across four different platforms, I showed SFL outperformed the similarly “priced” 

3’DGE platform, and had comparable performance to more expensive RNAseq and 

microarray platforms. Accordingly, our lab is currently working to implement SFL in 

future projects and the SFL protocol was included in the publication of this work for 

broader utilization194. In addition to the SFL protocol itself, the potential impact of this 

work extends to the presentation of a rigorous and thorough strategy for assessing data 

quality of future RNAseq platforms. In short, this strategy includes evaluation of the 

efficiency of a platform to comprehensively measure the transcriptome relative to library 

size, the breadth of transcriptional differences that can be statistically identified, and the 

biological validity of these differences. All of the code I used to implement this strategy 

was published as a supplement to the manuscript194. 

In the second and third sections, I presented two novel machine learning methods 

for performing supervised and unsupervised learning on large-scale transcriptomic 

profiling data. One of the motivating factors for devising these techniques was the lack of 
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available high-dimensional machine learning tools that appropriately account for known 

group labels in the data. In the analyses presented in this dissertation, such group labels 

represented replicates of exposures to metabolism disrupting chemicals (second section) 

and cell type identifiers of scRNAseq profiles (third section). The knowledge of group 

labels provides valuable information for generating models that are capable of capturing 

the within-group and between-group variability. However, including this information 

complicates the learning procedure, especially for high-dimensional data, and my 

contributions tackle this challenge.  

For classification of PPARγ modifying compounds in the toxicogenomic profiles 

of metabolism disrupting chemicals, I developed an amended random forest procedure 

that accounts for this group-level information. This procedure outperformed classic 

random forest modeling procedures run on two different representation of the data: the 

full set of data ignoring the group-level information, and a processed data set consisting 

of “meta-profiles” representing the group-level means. The specific addendum to the 

class random forest procedure was devised to more appropriately accounts for the sources 

of bias that tree-level bagging is meant to reduce. Bagging prevents overfitting in 

predictive modeling by equalizing the influence of individual observations, particularly 

by reducing the over-influence of outliers195. In experimental data, the variability 

associated with individual observations of the same group, e.g., biological replicates, is 

associated with the error of their group-level mean estimate, while the variability 

associated with the true group-level means should reflect actual biological differences. 

Therefore, by taking group-level means after performing observation-level bagging, the 
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amended random forest procedure more appropriately reduces the influence of noise 

associated with the measurements of each observation. It’s important to note the success 

of this strategy is highly contingent on accurate labeling of groups in the training data. 

Future work will include further applications of this method to assess the precise 

conditions in which it may be expected to outperform other methods, as well as 

additional strategies for modeling other data relationships such as that of dose- and 

duration-dependent exposures. 

 The top-down, recursive partitioning approach employed by K2Taxonomer 

utilizes variance reducing properties of ensemble learning, while enabling the flexible 

modeling of data to include group-level information. In this dissertation, I presented 

applications of K2Taxonomer to three types of data: observational-level bulk gene 

expression data, toxicogenomic gene expression data with replicates, and single-cell gene 

expression data. Through numerous performance assessments and comparison to 

agglomerative clustering techniques, K2Taxonomer demonstrated superior performance 

particularly for modeling single-cell gene expression data. To appropriately model each 

data set, K2Taxonomer was designed so as to be customizable. When fitting data with 

group-level information, K2Taxonomer can be run in two ways. In the case of 

toxicogenomic screening data, in which the number of replicates is small relative to the 

number of exposures, K2Taxonomer was applied by performing pre-processing of the 

data set to collapse the replicates of each exposure to a test statistics based on a 

multivariate linear model. In the case of single-cell gene expression data, in which the 

number of members of each cell type is large relative to the number of groups, 
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K2Taxonomer was applied using the constrained K-means semi-supervised algorithm151 

to take advantage of the full set of data. The latter application is especially powerful as 

few unsupervised methods have been devised to account for group-level information. 

 In addition to the extensive performance assessment of these methods, this 

dissertation included several practical applications illustrating their versatility and value 

in supporting biological discovery. Using the amended random forest technique, I 

identified four high likelihood PPARγ modifying compounds: allethrin, tonalide, 

quinoxyfen, and fenthion. Identifying tonalide and quinoxyfen as metabolism disruptors 

has the potential to be particularly impactful as these chemicals remain widely used as 

artificial scents196 and fungicides112, respectively. K2Taxonomer subgrouping of PPARγ 

modifying compounds demonstrated that the transcriptomic profiles of these chemicals’ 

exposures were most similar to those of highly adipogenic environmental compounds. 

Subsequent experimental validation demonstrated that these chemicals induce white 

adipogenesis, but not the beneficial brite adipogenesis, induced by the type 2 diabetic 

drug, rosiglitazone. Furthermore, K2Taxonomer characterized profiles of endogenous 

compounds, protectin D1 and resolvin E1, as being most similar to that of the CDK 

inhibitor, roscovitine, which has been shown to increase insulin sensitivity and to induce 

brite adipogenesis104. Although the focus of this paper was identifying environmental 

metabolism disruptors, these findings could inform future studies of the efficacy of 

protectin D1 and resolvin E1 as metabolic therapeutics. This study represents less than 

0.01% of chemicals in use worldwide23. The success of these analyses could encourage 
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more extensive toxicogenomic profiling and consequently inform action to ameliorate 

exposures contributing to obesity associated pathology. 

 While there are currently many software packages to cluster RNAseq data, there 

remains a gap in the availability of tools to comprehensively annotate these clusters and 

explore relationships between cell types. Through application of K2Taxonomer to the 

analysis of breast cancer immune infiltrating cell types derived from scRNAseq profiles, 

I presented an elegant way to fill this gap. This analysis enabled the discovery of an 

immune cell specific translational machinery gene signature of large subgroup of CD4+ 

and CD8+ T cells associated with improved patient survival in the METABRIC breast 

cancer tissue bulk gene expression data set, suggesting that high expression of this subset 

of translational genes was distinct from translational gene regulation in tumor cells, 

thereby indicating disease attenuating immune infiltration. What’s most noteworthy about 

these results is how transcriptional similarities of cell types from disparate lineages can 

be leveraged to disentangle dominant gene expression patterns of functionally similar 

subtypes of cells in heterogenous tissue. Whereas other methods have been developed to 

infer lineage-specific trajectories of single cells197, our strategy is able to capture 

instances of phenotypic convergence, which is known to occur in both immune182 and 

tumor cells198. Accordingly, I am currently working on a similar analysis of head-and-

neck cancer tumor scRNAseq data to distinguish coregulatory patterns driving tumor cell 

states associated with tumor progression, including: epithelial-mesenchymal transition 

and epithelial differentiation199. 



 

 

137 

As exemplified by these analyses, finalization of biological inferences and 

evaluation of the clinical relevance of findings yielded by machine learning analyses of 

transcriptomic profiling data typically require independent in silico or in vivo validation. 

Furthermore, the wealth of information a K2Taxonomer-based analysis yields goes well 

beyond the hierarchical grouping of input samples, and would be lost if the taxonomic 

relationship between samples were the only outcome. This is a recurrent challenge faced 

by machine learning methods for the analysis of high-dimensional data, which all too 

often represent “black boxes” whose inner working, and the features driving the outcome, 

remain inaccessible. To overcome this issue, K2Taxonomer performs a comprehensive 

data-driven annotation of each estimated subgroups and automatically generates an 

interactive web-portal of the full compendia of results . Beside proving pivotal to driving 

the inferences made throughout the latter sections of this dissertation, these portals are 

readily publishable so that they can be further explored by other researchers. Therefore, 

this work highlights opportunities to broaden the impact of one’s data and analyses, 

especially as tools to design these portals, such as RShiny, become more popular. 

Over the past 25 years200, such refinements as those presented in this dissertation 

have facilitated the adoption of high-throughput transcriptomic profiling. The use of these 

assays for biological discovery have well-known limitations. While most transcripts 

function as intermediaries between DNA and proteins, transcript abundance and protein 

abundance are poorly correlated201. Additionally, transcriptomic profiling cannot evaluate 

conformational variants of proteins resulting from post-translational modifications, such 

as phosphorylation, which are critical to their function201. While in many instances high-
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throughput proteomics profiling would be better suited for assessing molecular activity, 

practical challenges limiting its efficiency and precision have persisted and impeded its 

broader adoption202. However, despite the different techniques with which transcriptomes 

and proteomes are quantified, i.e., sequencing versus mass spectrometry, the processed 

data generated by each method are comparable203. Therefore, if and when proteomic 

profiling moves to the forefront of high-throughput -omics research, a wealth of 

analytical resources will be at its disposal, thanks in large part to decades of 

methodological advances driven by transcriptomic profiling. 
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Appendix 

 

 

Figure A.1: Additional coverage analyses comparing Full Coverage RNAseq, SFL, 
and 3’DGE 

A) Distribution of read counts at different preprocessing steps, as well as the number 
of counted genes. 

B) Per platform boxplots of the percentage of reads in each sample with Phred 
Values > 20 (Q20). 

C) Saturation analysis showing the number of genes with counts > 0 versus the 
percent subsampling of the full counted library size. Thick lines show the loess fit 
of each platform. Vertical lines show the estimated point of saturation, i.e. the 
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minimum percentage of the full counted library at which the maximum number of 
genes are counted. This value is also given, as well as the estimated maximum 
number of counted genes. 

D) Principal component error for PC’s 2-5 for each platform, including subsampled 
full coverage RNAseq and 3’ DGE to the SFL library size. 

E) Cumulative variance explained by each successive principal component. 
F) Relative coverage of reads along transcripts from 5’ to 3’. 

 

 

Figure A.2: Locations of mutations hotspots in NRF2 and PIK3CA 
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Figure A.3: Summary of rRNA contamination in SFL libraries 

The total library sizes for SFL samples (left) and proportion of these reads that align to a 
ribosomal region (RNA45S5) in the genome. The majority of these reads align to 
RNA28S5. 
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Figure A.4: Shapiro-Wilk Test Statistic VS Normalized Expression for SFL, 
Microarray, and 3’ DGE 

A) Loess fit of the Shapiro-Wilks test statistic vs normalized expression across each 
platform. Values beneath the vertical black line are indicative of test statistics 
associated with nominal p-values < 0.05. 

B) Distribution of mean normalized expression across all three platforms. 
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Figure A.5: Additional Differential Analysis Results (SFL; Microarray; 3’DGE) 

Comparison of gene discovery (FDR Q-Value < 0.05) by differential analysis with 
limma, comparing normalized gene expression, including the raw discovery rates, 
discovered gene overlap, and linear fits, comparing test statistics from each platform. 
Euler diagrams of these results are shown in Figure A6. 
  



 

 

144 

 

Figure A.6: Venn diagrams of gene discovery from differential analysis (SFL; 
Microarray; 3’DGE) 

Comparison of gene discovery (FDR Q-Value < 0.05) by two-group differential analysis 
with LIMMA. 
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Figure A.7: Gene Set specific results of Smoking and Gene Mutation Signatures 
across SFL, 3’DGE and Microarray 

Gene-set enrichment results with respect to genotypic perturbations (left) and chemical 
perturbations (right) differential signatures across like samples within SFL, Microarray, 
and 3’ DGE. Columns correspond to differential signatures comparing genotypic or 
chemical perturbation groups, stratified by a single chemical or genotypic perturbation 
group, respectively, e.g. the left-most column shows the enrichment results with respect 
to the “DMSO-treated; NRF2 vs. HcRed” signature within the samples (stratum) in SFL 
data. Row labels for the TCGA-derived genes sets follow the nomenclature “<GENE> 
<Mutation Type> <Direction>(<Source>)”. Mutation type can be one of: Amp. for copy 
number gain, Del. for copy number loss, HS# for point mutations in hotspots (See Figure 
A2), and All for collapsed point mutations across the full length of the genes. 
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Figure A.8: Additional Biological Recapitulation Comparisons (SFL; Microarray; 
3’DGE) 

Comparison of the gene set enrichment results between SFL, microarray and 3’ DGE 
with respect to the “CSC-treated; NRF2 vs. HcRed”, “HcRed-treated; CSC vs. DMSO”, 
and “NRF2-treated; CSC vs. DMSO” differential signature. Shown are the transformed 
FDR q-values of the TCGA-derived gene sets corresponding to mutations of comparable 
gene sets. The |-Log10(FDR Q-values)| = 0.05 significance thresholds are shown as 
vertical and horizontal gray lines for the y and x-axes, respectively. Points of gene sets 
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whose enrichment meets this threshold in either of the two platforms are filled in. Colors 
and shape of points denote direction and source of the gene set, respectively. 
 

 

Figure A.9: Additional Biological Recapitulation Comparisons (RNAseq; SFL; 
3’DGE) 

A) Comparison of the gene set enrichment results between SFL and 3’ DGE results 
for genotypic perturbation v control, stratified for BaP chemical exposure. Points 
indicate gene set comparisons to concordant signatures, derived from TCGA. In 
this case only FAT1 gene sets are shown because only FAT1 and GFP genotypic 
perturbations are available for BaP exposed samples. Shown are the transformed 
FDR Q-values from permutations based testing from preranked GSEA. The |-
Log10(FDR Q-values)| = 0.05 significance thresholds are shown as vertical and 
horizontal gray lines for the y and x-axes, respectively. The names of these gene 
sets that meet this threshold in either of the two signatures are shown and their 
points are filled in. Colors and shape of points are indicative of the direction and 
source of the gene set, respectively.  
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B) Comparison of the gene set enrichment results between full coverage RNAseq 
and either SFL or 3’ DGE results for genotypic perturbation v control, stratified 
for DMSO exposures. Points indicate gene set comparisons to concordant 
signatures, derived from TCGA, e.g. PIK3CA mutation and CNA gene sets to 
PIK3CA vs HcRED preranked gene signatures. Shown are the transformed FDR 
q-values from permutations based testing from preranked GSEA. The |-
Log10(FDR Q-values)| = 0.05 significance thresholds are shown as vertical and 
horizontal gray lines for the y and x-axes, respectively. The names of these gene 
sets that meet this threshold in either of the two signatures are shown and their 
points are filled in. Colors and shape of points are indicative of the direction and 
source of the gene set, respectively. 
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Table A.1 Chemical information 
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15-deoxy-Δ12,14-
prostaglandin J2 15dPGJ 87893-55-8 Cayman 

Chemical 18570 1E-6 1E-6 Yes > 95% 204 

2,2',4,4',5,5'-Hexachloro-1,1'-
biphenyl PCB153 35065-27-1 Ultra Scientific RPC-047 1E-5 1E-5 No NA* --- 

2,2',5,5'-Tetrachloro-1,1'-
biphenyl PCB52 35693-99-3 Sigma Aldrich 35599 1E-5 1E-5 No > 98% --- 

2,4,6-Tris(tert-butyl)phenol TTBP 732-26-3 Sigma Aldrich T49409 2E-5 2E-5 Suspected 98% 88 

2-ethylhexanol EtHex 104-76-7 Sigma Aldrich W315109 1E-5 1E-5 No > 99% --- 

3,3',4,4',5-Pentachloro-1,1'-
biphenyl 

PCB12
6 57465-28-8 Ultra Scientific RPC-102 1E-8 1E-8 No NA 205 

3,3',5,5'-Tetrabromobisphenol 
A TBBPA 79-94-7 Sigma Aldrich 330396 2E-5 2E-5 Yes 97% 206 

4,4'-Dichloro-
diphenyldichloroethylene DDE 72-55-9 Sigma Aldrich 48679 1E-5 1E-5 No NA 207 

4,4'-dichloro-
diphenyltrichloroethane DDT 50-29-3 Sigma Aldrich 40124 1E-5 1E-5 No NA 207 

4,5,6,7-
Tetrabromobenzotriazole TBB Synthesized by Asis Chemical 1E-5 1E-5 No 95%  

--9-cis-retinoic acid 9cRA 5300-03-8 Sigma Aldrich R4643 1E-6 1E-6 Yes > 98% 208 

All-trans retinoic acid ATRA 302-79-4 Sigma Aldrich R2625 2E-6 2E-6 Yes > 98% 209 

Benzyl butyl phthalate BBzP 85-68-7 Sigma Aldrich 36927 1E-5 1E-5 Yes 98% 210 

Bisphenol A BPA 80-05-7 Sigma Aldrich 239658 1E-5 1E-5 No > 99% 211 

Bisphenol A diglycidyl ether BADG
E 1675-54-3 Sigma Aldrich D3415 1E-5 1E-5 Yes NA 212 

Bisphenol S BPS 80-09-1 Sigma Aldrich 43034 1E-5 1E-5 No NA 211 

Candesartan Cande 145040-37-5 Sigma Aldrich SML0245 2E-5 4E-6 Yes > 98% 213 

CL 316,243 CL316 138908-40-4 Sigma Aldrich C5976 5E-6 5E-6 No > 98% --- 

Corticosterone Corti 50-22-6 Sigma Aldrich 27840 2E-6 2E-6 No > 98% --- 

Cyazofamid Cyazo 120116-88-3 Sigma Aldrich 33874 4E-5 2E-5 Suspected NA 88 

d-cis,trans-Allethrin Allet 548-79-2 Sigma Aldrich 33396 2E-5 1E-5 Suspected 97% 88  

Dexamethasone Dex-SP 2392-39-4 Sigma Aldrich D1159 2E-7 2E-7 No > 98% --- 

Di(2-ethylhexyl) phthalate DEHP 117-81-7 Sigma Aldrich 36735 1E-5 1E-5 No > 99% 80 

Dibutyltin DBT 683-18-1 Sigma Aldrich 205494 2E-7 2E-7 Yes 96% 214 

Diisononyl phthalate DINP 28553-12-0 Sigma Aldrich 376663 1E-5 1E-5 Yes > 99% 215 

Dioctyl sulfosuccinate sodium DOSS 577-11-7 Sigma Aldrich 323586 5E-6 5E-6 Suspected > 97% 105 

Diphenyl phosphate DiPhPho 838-85-7 Sigma Aldrich 850608 1E-5 1E-5 Suspected 99% 129 

Ethylene brassylate EtBra 105-95-3 Sigma Aldrich W354309 1E-5 1E-5 No > 95% --- 

Fenthion Fenth 55-38-9 Sigma Aldrich 36552 4E-5 4E-5 Suspected > 99% 88 

Firemaster 550 FM550 Gift from Heather Stapleton, Duke 10 
ug/ml 10 ug/ml Yes NA  

Fludioxonil Fludi 131341-86-1 Sigma Aldrich 46102 2E-5 2E-6 Suspected > 95% 88 

Honokiol Honok 35354-74-6 Sigma Aldrich H4914 2E-5 4E-6 Yes > 98% 216 

LG100268 LG268 153559-76-3 Sigma Aldrich SML0279 1E-7 1E-7 Yes > 98% 217 

LG100754 LG754 180713-37-5 Tocris 3831 2E-7 2E-7 Yes > 99% 217 
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Magnolol Magno 528-43-8 Sigma Aldrich M3445 2E-5 2E-5 Yes > 95% 218 

MCC-555 MCC555 161600-01-7 Sigma Aldrich SML0896 5E-6 5E-6 Yes 98% 209 

Melengestrol acetate Melen 2919-66-6 Sigma Aldrich 73248 2E-5 2E-5 No > 97% --- 

Mono-(2-ethyhexyl) 
tetrabromophthalate METBP Synthesized by Asis Chemical 1E-5 1E-5 Yes 95%  

Mono(2-ethylhexyl) phthalate MEHP 4376-20-9 Sigma Aldrich CDS01060
8 1E-5 1E-5 Yes NA 80 

Monobenzyl phthalate MBzP 2528-16-7 Sigma Aldrich 89505 1E-5 1E-5 Yes 95% 107 

Mono-n-butyl phthalate MBuP 131-70-4 Sigma Aldrich 30751 2E-5 2E-5 Yes > 98% 107 

n-Butylparaben BuPara 94-26-8 Sigma Aldrich 54680 2E-5 2E-5 Yes > 99% 219 

N-nitro-2-imidazolidinimine Imida 138261-41-3 Sigma Aldrich 37894 1E-5 1E-5 No > 99% ToxPi 

nTZDpa nTZDpa 118414-59-8 Sigma Aldrich SML0616 1E-6 1E-6 Yes > 98% 220 

Perfluorooctanesulfonic acid PFOS 2795-39-3 Sigma Aldrich 77282 4E-5 4E-5 Suspected NA 126 

Perfluorooctanoic acid PFOA 335-67-1 Sigma Aldrich 33824 1E-5 1E-5 Suspected > 99% 126 

Pioglitazone hydrochloride Piogl 112529-15-4 Sigma Aldrich E6910 1E-5 1E-5 Yes > 98% 221 

Prallethrin Prall 23031-36-9 Sigma Aldrich 32917 1E-5 1E-5 Suspected > 95% 88 

Pregnenolone 16α-carbonitrile Pregn 1434-54-4 Sigma Aldrich P0543 1E-5 1E-5 No > 97% --- 

Propylparaben ProPara 94-13-3 Sigma Aldrich P53357 1E-5 1E-5 Yes > 99% 222  

Protectin D1 Prote 871826-47-0 Cayman 
Chemical 10008128 2E-6 2E-6 Yes > 98% 223 

Quinoxyfen Quino 124495-18-7 Sigma Aldrich 46439 1E-5 1E-5 Suspected NA 88 

Resolvin-E1 Resol 552830-51-0 Cayman 
Chemical 10007848 2E-6 2E-6 Yes > 95% 223  

Roscovitine Rosco 186692-46-6 Sigma Aldrich R7772 4E-5 4E-6 Yes > 98% 104 

Rosiglitazone Rosig 122320-73-4 Cayman 
Chemical 71740 1E-6 1E-6 Yes > 98% 224 

S26948 S26948 353280-43-0 Sigma Aldrich SML0510 2E-6 2E-6 Yes > 98% 225 

Sodium arsenite Arsen 7784-46-5 Sigma Aldrich S7400 4E-7 4E-7 No > 90% 226 

Sodium tungstate Tungs 10213-10-2 Sigma Aldrich 14304 2E-5 2E-5 No > 99% 227 

SR1664 SR1664 1338259-05-
4 Sigma Aldrich SML0636 1E-6 1E-6 Yes 98% 122 

T0901317 T1317 293754-55-9 Sigma Aldrich T2320 1E-6 1E-6 No > 98% --- 

T0070907 T007 313516-66-4 Sigma Aldrich T8703 4E-5 8E-6 Yes > 98% 228 

Tebuconazole Tebuc 107534-96-3 Sigma Aldrich 32013 2E-5 2E-5 Suspected NA 88 

Telmisartan Telmi 144701-48-4 Sigma Aldrich T8949 2E-5 2E-5 Yes > 98% 229 

Tesaglitazar Tesag 251565-85-2 Sigma Aldrich SML1369 5E-6 5E-6 Yes > 98% 230 

Tolylfluanid Tolyl 731-27-1 Sigma Aldrich 32060 2E-7 2E-7 No > 99% 231 

Tonalide Tonal 21145-77-7 Sigma Aldrich W526401 4E-6 4E-6 Suspected > 98% 222 

Tributyl phosphate TBuP 126-73-8 Sigma Aldrich 240494 2E-5 2E-5 Yes > 99% 102 

Tributyltin TBT 1461-22-9 Sigma Aldrich T50202 8E-8 8E-8 Yes 96% 232 

Triflumizole Trifl 68694-11-1 Sigma Aldrich 32611 2E-5 2E-5 Yes NA 233 

Triphenyl phosphate TPhP 115-86-6 Sigma Aldrich 241288 2E-5 1E-5 Yes > 99% 234 

Triphenyl phosphite TPhPhi 101-02-0 Sigma Aldrich T84654 1E-5 1E-5 Suspected 97% 102 

Triphenylphosphine oxide TPhPho
Ox 791-28-6 Sigma Aldrich T84603 1E-5 1E-5 Suspected 98% 128 

Triphenyltin TPhT 639-58-7 Sigma Aldrich 245712 8E-8 8E-8 Yes 98% 214 
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Trisabbre1,3-dichloro-2-
propyl) phosphate TDCPP 13674-87-8 Sigma Aldrich 32951 2E-5 2E-5 Suspected NA 127 

Tris(1-chloro-2-propyl) 
phosphate TCCP 13674-87-5 Sigma Aldrich 32952 1E-5 1E-5 Suspected NA 127 

Troglitazone Trogl 97322-87-7 Sigma Aldrich T2573 5E-6 5E-6 Yes >98% 235 

*NA = Not Available 
a We used the ToxPi designed to identify chemicals in the ToxCast dataset that are likely 
to be PPARγ ligands/modifiers. 
 
 
Table A.2: Metabolic parameters included and excluded in human transcriptome 
analysis.  

PARAMETERS INCLUDED PARAMETERS EXCLUDED 

Fat free mass % Body mass index (kg/m2) 

Fasting Plasma parameters Waist-to-hip ratio 

 Free fatty acid (mmol/l) Waist circumference (cm) 

 Total triglycerides (mmol/l) Hip circumference (cm) 

 LDL cholesterol (mmol/l) Plasma total fatty acids (mmol/l) 

 HDL cholesterol (mmol/l) Plasma total cholesterol (mmol/l) 

 Adiponectin (ug/ml) Matsuda composite insulin sensitivity index 

 Glucose (mmol/l) HOMA-IR 

 Insulin (mU/l) Systolic blood pressure (mm Hg) 

 Proinsulin (pmol/l) Diastolic blood pressure (mm Hg) 

 Glycated HbA1c (%) Glomerular filtration rate 

 High sensitivity C-reactive protein (mg/l)  

 Interleukin-1 receptor antagonist (pg/ml)  
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Table A.3: Mouse (M) and human (H) primer sequences for reverse transcriptase 
qPCR.  

GENE 
SYMBOL FORWARD REVERSE ANNEALING 

TEMP. ° C 

M-RN18S GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 55 

M-B2M CTGCTACGTAACACAGTTCCACCC CATGATGCTTGATCACATGTCTCG 55 

M-CIDEC AGGCCCTGTCGTGTTAGCAC CATGATGCCTTTGCGAACCT 55 

M-CIDEA TGCTCTTCTGTATCGCCCAGT GCCGTGTTAAGGAATCTGCTG 55 

M-ELOVL3 TCCGCGTTCTCATGTAGGTCT GGACCTGATGCAACCCTATGA 55 

M-FABP4 AGCCCAACATGATCATCAGC  TTTCCATCCCACTTCTGCAC  55 

M-PLIN1 GGGACCTGTGAGTGCTTCC GTATTGAAGAGCCGGGATCTTTT 55 

M-PGC1A AACAAGCACTTCGGTCATCCCTG TTACTGAAGTCGCCATCCCTTAG 55 

M-PPARG2 TGGGTGAAACTCTGGGAGATTC AATTTCTTGTGAAGTGCTCATAGGC 55 

M-RIP140 AGAACGCACATCAGGTGGCA GATGGCCAGACACCCCTTTG 55 

M-ADIPOQ GCACTGGCAAGTTCTACTGCAA GTAGGTGAAGAGAACGGCCTTGT 55 

M-UCP1 ACTGCCACACCTCCAGTCATT CTTTGCCTCACTCAGGATTGG 55 

M-ACAA2 TAACGAGGCTGGCTACTTCAA AGGGGCGTGAAGTTATGTTTT 55 

H-RPL27 GTGAAAGTGTATAACTACAATCACC TCAAACTTGACCTTGGCCT 58 

H-B2M GCTATCCAGCGTACTCCAAAG CACACGGCAGGCATACTC 58 

H-CIDEC GGGATACAGTGTTCATGGTCCT TCAATCTTCTTGGCAGGCTTATG 55 

H-CIDEA GGCAGGTTCACGTGTGGATA GAAACACAGTGTTTGGCTCAAGA 60 

 

  



 

 

153 

 

Figure A.10: Differentiation and dosing protocols for 3T3-L1 cells (A) and primary 
human preadipocytes (B). 
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Figure A.11: Correlation of lipid accumulation with Cidec, Fabp4, and Plin1 
expression in differentiated and treated 3T3-L1 pre-adipocytes. 

Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail for 10 
days. During differentiation, cells were treated with vehicle (Vh, 0.1% DMSO, final 
concentration) or test chemical (Table A.1). On days 3, 5, and 7 of differentiation, the 
medium was replaced and the cultures re-dosed. Following 10 days of differentiation and 
dosing, cells were analyzed for lipid accumulation by Nile Red staining and gene 
expression by 3’DGE. Each point represents the mean data for each chemical, (n=2-4). 
The least squares linear model estimate is shown in blue. 
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Figure A.12: Lipid accumulation in differentiated and treated OP9 pre-adipocytes. 

Confluent OP9 cells were differentiated using a standard hormone cocktail for 10 days, 
with the exception of using 125 nM dexamethasone. During differentiation, cells were 
treated with vehicle (Vh, 0.2% DMSO, final concentration), rosiglitazone (positive 
control, 100 nM) or test chemical (Table A.1). On days 3, 5, and 7 of differentiation, the 
medium was replaced and the cultures re-dosed. Following 10 days of differentiation and 
dosing, cells were analyzed for lipid accumulation by Nile Red staining.  
 

A) Nile Red staining induced by individual chemicals. Data are presented as 
mean ± SE (n=4). Statistically different from Vh-treated (highlighted in green) 
(*p<0.05, **<p0.01, ANOVA, Dunnett’s). 

B) Correlation between lipid accumulation induced in 3T3 L1 cells differentiate 
in the presence of dexamethasone (data are from Figure 3.1) and in OP9 cells. 
Pearson’s r = 0.5768 (p<0.0001). 
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Figure A.13: Performance comparison of random forest methods. 

 

 

Figure A.14: Classification Results (Distributions of individual genes).  

Compound specific normalized gene expression of all compounds for the top two genes 
(Rpl13, Cidec). Mean expression across all vehicle samples is shown as a horizontal line 
spanning the plot. Exposures which have statistically significant different means from 
vehicle (FDR Q-value < 0.05) are highlighted with an asterisk.  
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Figure A.15: Mitochondrial membrane potential and cell number analyses in the 
differentiated and treated 3T3-L1s.  

 
Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail for 10 
days. During differentiation, cells were treated with Vh (0.1% DMSO, final 
concentration), rosiglitazone (Rosig, 1 µM), roscovitine (Rosco, 2 µM), 15dPGJ2 (1 µM), 
TBBPA (20 µM) and TPhP (10 µM). On days 3, 5, and 7 of differentiation, the adipocyte 
maintenance medium was replaced and the cultures re-dosed. Cells were incubated for a 
total of 10 days of differentiation. 
 

A) To assess toxicity, cells were stained with MitoOrange and fluorescence 
intensity (λex= 485nm/λem= 530nm). 

B) To assess cell number, cells were stained with JANUS green stain and 
absorbance was measured at 595 nM.  

 
Data are presented as means ± SE (n=4). Statistically different from Vh-treated 
(**p<0.01, ANOVA, Dunnett’s).  
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Figure A.16: Seahorse assay for mitochondrial respiration 

Confluent 3T3 L1 cells were differentiated using a standard hormone cocktail for 10 days 
During differentiation, cells were treated with Vh (0.1% DMSO, final concentration), 
rosiglitazone (Rosig, 20 µM), roscovitine (Rosco, 2 µM), 15dPGJ2 (1 µM), TBBPA (20 
µM) and TPhP (10 µM). On days 3, 5, and 7 of differentiation, the adipocyte maintenance 
medium was replaced and the cultures re-dosed. Following 10 days of differentiation and 
dosing, cells were analyzed by Seahorse assay for mitochondrial respiration. 
Representative traces are shown. 
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Figure A.17: Simulation-based performance assessment of running K2Taxonomer 
using different partition-specific feature subset sizes of the full data set 

Difference of mean Baker’s gamma correlation estimates measuring the similarity of 
K2Taxonomer estimates to the true hierarchy from which the simulated data was 
generated between. Each line shows the difference between a set percentage of the total 
number of features and the square root of the total number of features. Each combination 
of parameters was simulated 25 times. 
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Figure A.18: Additional subgrouping results of healthy airway cell types from 
scRNAseq data 

A) K2Taxonomer results with six identified lineage subgroups. 
B) Ward’s (left) and average (right) agglomerative clustering results for selected 

analyses performed on different subsets of the total number of features. 
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