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ACCELERATED LONG RANGE ELECTROSTATICS

COMPUTATIONS ON SINGLE AND MULTIPLE FPGAS

ANTHONY DUCIMO

ABSTRACT

Classical Molecular Dynamics simulation (MD) models the interactions of thousands

to millions of particles through the iterative application of basic Physics. MD is one of

the core methods in High Performance Computing (HPC). While MD is critical to many

high-profile applications, e.g. drug discovery and design, it suffers from the strong scaling

problem, that is, while large computer systems can efficiently model large ensembles of

particles, it is extremely challenging for any computer system to increase the timescale,

even for small ensembles. This strong scaling problem can be mitigated with low-latency,

direct communication. Of all Commercial Off the Shelf (COTS) Integrated Circuits (ICs),

Field Programmable Gate Arrays (FPGAs) are the computational component uniquely ap-

plicable here: they have unmatched parallel communication capability both within the chip

and externally to couple clusters of FPGAs. This thesis focuses on the acceleration of the

long range (LR) force, the part of MD most difficult to scale, by using FPGAs.

This thesis first optimizes LR acceleration on a single-FPGA to eliminate the amount

of on-chip communication required to complete a single LR computation iteration while

maintaining as much parallelism as possible. This is achieved by designing around appli-

cation specific memory architectures. Doing so introduces data movement issues overcome

by pipelined, toroidal-shift multiplexing (MUXing) and pipelined staggering of memory

access subsets. This design is then evaluated comprehensively and comparatively, deriving

equations for performance and resource consumption and drawing metrics from previously

developed LR hardware designs. Using this single-FPGA LR architecture as a base, FPGA
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network strategies to compute the LR portion of larger sized MD problems are then theo-

rized and analyzed.

This thesis has seven chapters. Chapter one formally introduces the topic with addi-

tional detail. Chapter two provides the theoretical background for MD, honing in on LR

and its computational approximations while highlighting related work that either directly

or indirectly sets the foundation for the single-FPGA LR hardware design. Chapter three

discusses the single-FPGA LR accelerator hardware, detailing architectural the features as

they relate to the theoretical background of MD and system performance. Chapter four

evaluates the hardware, providing performance and resource consumption metrics from

actual FPGA implementations, while drawing comparisons to pre-existing hardware solu-

tions. It also provides a means of extrapolating both performance and resource consump-

tion to larger MD sizes. Chapter five discusses single-development-board solutions to MD

sizes that cannot fit on a single-FPGA alone. Chapter six expands hardware solutions for

large MD sizes to networks of FPGA-boards. Chapter seven draws conclusions on the

hardware designs, both developed and theorized, and lays out future work to be performed

as a result of what was accomplished in this thesis.
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Chapter 1

Introduction

1.1 Molecular Dynamics acceleration for strong scaling

Molecular Dynamics simulation (MD) is a central method in high performance computing

(HPC) with applications throughout engineering and science. MD uses an iterative applica-

tion of Newtonian mechanics on ensembles of atoms and molecules (Rapaport, 2004). Ac-

celeration of MD is a critical problem — there is a many order-of-magnitude gap between

the largest current simulations and the potential physical systems to be studied (Tajkhorshid

et al., 2003; Shirvanyants et al., 2012). There are dozens of MD packages in production use,

e.g. (Case et al., 2005; Phillips et al., 2005; van der Spoel et al., 2005; Eastman and Pande,

2010; Plimpton, 1995), all of which exist in parallel versions and many of which have been

accelerated with GPUs. While many of these packages support efficient weak scaling, i.e.

performance scales with computing resources as long as the problem size scales in propor-

tion, strong scaling remains problematic. That is, for fixed, modest problem sizes, adding

significant computing resources does not result in an increase in performance. The failure

to support strong scaling is, in large part, the cause of the performance gap. For instance,

small problem sizes (20K-50K particles) are common in drug discovery and design (Cour-

nia et al., 2017; NVIDIA, 2017). There, long timescales, on the order of milliseconds per

day, would be extremely beneficial, but only hundreds of nanoseconds per day are currently

being achieved (Yang et al., 2019a).

The strong scaling problem arises in MD because of the necessarily iterative nature of

the application. Each timestep (of force computation and motion update) simulates roughly



2

two femtoseconds (E-15s) of reality; thus simulating a millisecond of reality per day re-

quires that each timestep be computed in hundreds of nanoseconds. The critical path lies

with the Long Range Force computation (LR), which requires global communication; this

makes accelerating LR a classic strong scaling problem. Large numbers of processors are

required to generate sufficient FLOPs, but then proportionally increase the communication

time. This disconnect becomes overwhelming when simulating small molecules: applying

large computing resources is both unhelpful and extremely wasteful.

The only way to address the strong scaling problem is to reduce communication latency

to the barest minimum which, in the end, requires direct communication links–application

layer to application layer–among the integrated circuits (ICs) in the cluster. This approach

was originally taken by the Grape family of ASIC-based MD processors (Ohmura et al.,

2014), but currently being used (with great success) by DE Shaw with the Anton family

(Shaw, D.E., et al., 2007; Young et al., 2009; Grossman et al., 2015). But while ASIC-based

solutions can have orders-of-magnitude better performance than commodity clusters, they

also have issues with general availability, prohibitive cost, plus all the problems inherent

with small-run ASIC-based systems.

As is often the case when looking for cost-effective ASIC replacement, FPGAs provide

a viable alternative (Gokhale and Graham, 2005; Herbordt et al., 2007; Hauck and DeHon,

2008; Herbordt et al., 2008a; VanCourt and Herbordt, 2009; Benkrid and Vanderbauwhede,

2013). FPGAs have been explored as possible MD accelerators for many years (Azizi et al.,

2004; Hamada and Nakasato, 2005; Gu et al., 2006a; Gu et al., 2006c; Gu et al., 2006b;

Alam et al., 2007); see (Schaffner and Benini, 2018) for a survey. The first generation of

complete FPGA/MD systems accelerated only the range limited (RL) force and used CPUs

for the rest of the computation (Gu et al., 2005a; Gu et al., 2005b; Kindratenko and Pointer,

2006; Scrofano et al., 2008). While performance was sometimes competitive, high cost and

lack of availability of FPGA systems meant that they were never in production use. In the
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last few years, however, proof-of-concept studies have shown that FPGA clusters (Pascoe

et al., 2010; Khan and Herbordt, 2012; Sheng et al., 2015; George et al., 2016; Sheng

et al., 2017a; Plessl, 2018; Miyajima et al., 2018; Boku et al., 2019) can have performance

approaching that of ASIC clusters for LR (Sheng et al., 2014; Sheng et al., 2017b; Lawande

et al., 2016). These studies, however, only implement the critical path as little more than a

microbenchmark; creating a complete LR, even for a single FPGA, remains unstudied.

In this thesis, a state-of-the-art, single-FPGA LR architecture is developed and evalu-

ated. Following the evaluation of this single-FPGA design, the accommodation of larger

grid sizes using both a single FPGA coupled with off-chip but on-board memory and a

network of FPGAs are explored.

1.2 Real World Applicability

MD can be found at the core of computational chemistry and is central to computational

biology. Variations in particle ensemble size are used to model differing biological con-

structs. Typically, the more complex the structure, the more particles in the ensemble.

Over time, these particle interactions can model various biological processes, with more

complex processes requiring longer timescales. Table 1.1 lists some of these structures and

processes.

Directly applying the equations from Newtonian physics, MD simulations of any par-

ticle ensemble size over any timescale can be achieved, but it may take decades, if not

centuries, to do so. Single time-steps (typically 2 ∗ 10−15s or 2fs) of reality can be simu-

lated on a single core in around a second for small particle ensembles (< 100K). Staying at

the protein level, thousand-core and small multi-GPU systems (2-4 GPUs) have been able

to simulate 500ns of reality in a single day. Anton 2, a 512-ASIC processor, has been able

to model these ensembles for hundreds of microseconds and milliseconds of reality in a

day and 16 days, respectively (Grossman et al., 2015).
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We now give an example of how a physical application requirement translates into a

computational requirement. Protein folding involves proteins (10s of thousands of parti-

cles) and folding (100s of microseconds to seconds). With a 2fs MD timestep, simulating

20ms of reality requires E13 timesteps. If MD is executed for, say, 10 days, then reality

must be simulated at 2ms per day. This translates to E12 timesteps per day or roughly E7

timesteps per second or 1 timestep every 100ns.

Biological Construct
Type Ensemble Size [particles]

Protein 104-105

Virus 106-107

Chromotophore 108

Bacteria 1010

Eukaryote 1013

Biological Process
Type Timescale Range [s]

Chemical Reactions 10−15-10−14

Backbone Librations 10−12-10−10

Side-Chain Motions 10−11-10−8

Aromatic Ring Flipping 10−7-10−5

Large Conformational Changes 10−5-10−3

Protein Folding 10−4-101

Protein Association and Dissociation 100-104

Protein Aggregation 103-104

Table 1.1: Computational Biology MD Modeling Examples. Table adapted

from (Sharma et al., 2007; Proctor et al., 2011; Shirvanyants et al., 2012).

Two observations are made from these results. The first is that adding cores or GPUs

does not improve the timescales achieved for small simulations; this is the MD strong

scaling problem already described. The second is that there is a factor of 100 difference

in performance between the best performance using off-the-shelf processing and the best

performance using heroic dedicated technology developed at, conservatively, several orders

of magnitude greater cost.

This thesis aims to explore the gap between the off-the-shelf and the heroic implemen-

tations of MD. The end goal, beyond the current scope, is to implement tightly coupled
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FPGA clusters with dozens to hundreds of FPGAs. Such a cluster may achieve perfor-

mance somewhat comparable to Anton 2 — but without having to design a full ASIC or

develop such an ASIC network — while using much more recent technology. But the crit-

ical next step in this program is to address, on a single FPGA, the most difficult hurdle to

achieving MD strong scaling: the efficient evaluation of the long-range force.

1.3 Contributions

Contributions of this thesis are as follows:

1. LR friendly memory architecture. Application-specific memory interleaving is

implemented to simultaneously support a single particle’s mapping to its 64 nearest-

neighboring grid-points in three dimensions and remove the need for the transposi-

tion of data prior to successive 1D FFT calculations.

2. Novel 1D FFT parallelization. Given the inherent constraints of the application-

specific memory architecture, a memory access pattern was developed to maximize

the parallelization of 1D FFTs.

3. Single-FPGA LR accelerators. Reusing portions of previously developed designs

and deploying some of the above contributions, working single-FPGA LR accelera-

tors were implemented for multiple MD grid sizes and particle ensembles. Solutions

for both a 16x16x16 MD grid accommodating 163 particles and a 32x32x32 ac-

commodating 323 particles were successfully implemented with data suggesting the

feasibility for a solution for a 64x64x64 grid accommodating 643 particles.

4. Better Performance vs. Hardware Tradeoffs. The single-FPGA LR accelerator

developed here reduces the LR critical path of MD, enabling the simulation of en-

sembles on the order of 105 particles over hundreds of nanoseconds of reality to
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complete in a single day. This performance is achieved with a single FPGA, avoid-

ing the prohibitive resource costs of multi-core systems or ASIC design.

5. Extensions to FPGA clusters. Leveraging some of the features deployed in the

single-FPGA accelerators, three multi-node network architectures are proposed to

accelerate LR even further. Each network proposal includes high-level analysis of

the messaging methods required for the various phases of LR acceleration.

1.4 Outline

The remainder of this thesis is broken up into 6 chapters. Chapter 2 provides additional

MD background information and discusses prior work. Chapter 3 details the architecture

of the single-FPGA LR design. Chapter 4 evaluates the single-FPGA LR design. Chapter

5 discusses the plausibility of using off-chip memory to accommodate larger grid sizes

while keeping the entire LR design on a single FPGA board. Chapter 6 proposes multiple

FPGA network topologies to distribute large-grid-sized LR problems over. In chapter 7

conclusions are drawn and future work is discussed.
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Chapter 2

Background

This chapter provides an MD overview. First it is approached from a pure theoretical

physics standpoint. Then, methods of MD approximation are introduced along with their

aptitude for hardware acceleration. Having laid the groundwork for hardware accelerated

MD, this chapter goes on to detail prior work used as the foundation for the design devel-

oped in conjunction with this thesis.

2.1 Molecular Dynamics Overview

This overview follows material found in similar presentations in a number of excellent

texts and surveys, e.g., (Allen and Tildesley, 1987; Haile, 1997; Frenkel and Smit, 2002;

Schlick, 2002; Rapaport, 2004). MD models interactions between ensembles of particles

by iteratively calculating the forces acting on each particle exhibited by the remaining par-

ticles in the ensemble and the movement of each particle caused by the forces acting upon

it. The forces computed depend on the system being simulated, but include bonded and

non-bonded terms (Haile, 1997):

Ftotal = Fbond +Fangle +Fdihedral +Fnon−bonded (2.1)

Direct computation of the first three force components, the bonded forces, each have a com-

plexity of O(np), whereas direct computation of the non-bonded force is O(n2
p), where np

is the number of particles in the ensemble. In order to reduce the computational complexity,

computation of the non-bonded forces is typically approximated as discussed below. And
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because it represents over 99% of the FLOPs it is the part most likely to be performed by

hardware accelerators (Essmann et al., 1995; Lee, 2005; Herbordt, 2013).

The non-bonded force can be broken up into two forces (Haile, 1997), the Lennard-

Jones force :

FLJ
i

r ji
= ∑

j 6=i

εab

σab

{

12

(

σab

|r ji|

)14

−6

(

σab

|r ji|

)8}

(2.2)

which, as seen in Figure 2·1, decays quickly as the radial distance between two particles in

the pair increases and the Coulombic Force:

FC
i

r ji
= qi ∑

j 6=i

(

q j

|r ji|3

)

(2.3)

which does not decay with radial distance. This Coulombic force can be further

Figure 2·1: Lennard-Jones Force Plot

approximated by partitioning it into short-range and long-range components (Haile, 1997).

The short-range component of the Coulombic force can be combined with the Lennard-

Jones force as the range limited (RL) force, while the long-range component of the Coulom-
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bic force is computed on its own as the long range (LR) force.

2.2 Computing the Long Range Force

The LR force is calculated by solving the Poisson Equation for the given charge distribution

(Haile, 1997).

FLR
i = ∑

j 6=i

q j

|r ji|
~rji (2.4)

LR force is often calculated with a grid-based map of the smoothing function converted

from continuous space to a discrete grid coordinate system (Young et al., 2009). This

method reduces the asymptotic complexity from O(n2
p) to O(ng logng), where ng is the

number of grid-points, and results in the following equation (Procacci, 2009):

FLR ≈
Kx−1

∑
x=0

Ky−1

∑
y=0

Kz−1

∑
z=0

∂Q(x,y,z)

∂r ji
Θi rec ∗Q(x,y,z) (2.5)

Each particle is interpolated to grid-points (Q(x,y,z)) by applying the following third-order

basis function for charge density calculation (Skeel et al., 2002):

φ(ξ) =











(1−|ξ|)(1+ |ξ|− 3
2

ξ2) |ξ| ≤ 1

−1
2
(|ξ|−1)(2−|ξ|)2 1 ≤ |ξ| ≤ 2

0 2 ≤ |ξ|

(2.6)

where ξ is the distance between the particle and any grid-point. Grid-points obtain their

charge densities from neighboring particles within a range of two grid points in each direc-

tion. The resulting charge grid is then convolved with a Green’s function (Θirec ∗Q(x,y,z))

to transform it into a grid of electrostatic potentials. To simplify convolution, the charge

grid is converted from a spatial domain to the Fourier Domain, where convolution becomes

a simple multiplication, and then converted back to the spatial domain. The Fast Fourier

Transform (FFT) is used to convert to the Fourier domain and the inverse FFT (IFFT)

is used to convert back to the spatial domain. Once the grid of electrostatics has been
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generated, the three directional forces on each particle is calculated by taking the partial

derivatives of the mapping function, multiplying the corresponding electrostatic potential

grid-points, and summing across all grid points in 3D.

Overall, LR has the following phases.

1. Map particles into a charge grid

2. Perform 3D FFT

3. Perform convolution by multiplication

4. Perform 3D IFFT to create force grid

5. Map forces onto particles.

2.3 Previous Work and Design in FPGA Acceleration of MD

2.3.1 FPGA Architecture for HPC

FPGAs are well-known as ICs with configurable logic; the image is often of a sea of avail-

able logic configurable with an appropriate description. More accurate is that the FPGA

is actually mostly VLSI building blocks embedded in a sea of configurable interconnects.

The three most important building blocks are (i) DSP units, basically multipliers or floating

point units; (ii) Block Rams (BRAMs), which are small (1KB) independently accessible

multiported memories; and (iii) multi gigabit transceivers (MGTs) for I/O. There are on the

order of 10,000 DSPs and BRAMs and 100 MGTs.

A typical FPGA/HPC design uses some fraction of the FPGA’s resources in the follow-

ing design pattern. The working set of data is stored in BRAMs (scratchpads). Computation

is performed by custom logic pipelines constructed from DSPs and random logic. Data is

streamed from scratchpads through one or more compute pipelines and back to scratch

pads. The datapaths among scratchpads and pipelines can be almost arbitrarily complex.
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The power of FPGA/HPC comes from the efficiency with which applications can be

mapped to the hardware. Since control is embedded into the logic, every cycle gener-

ates payload. Pipelines are exactly what is required by the application and can be triv-

ially short or hundreds of stages. Data types can be any precision or mode using only the

logic needed. Since there are many thousands of scratchpads and DSPs, there can be that

many data streams running in parallel. These scratchpads and compute pipelines can be

interconnected chip-wide in almost any configuration. Of course some methods are more

efficient than others; the most performant FPGA/HPC design patterns are described, e.g.,

in (Sanaullah and Herbordt, 2018a).

2.3.2 FPGA Acceleration of HPC

While not yet having the penetration of GPUs in HPC, FPGAs have been shown to be a

likely component of future HPC systems. Other types of Molecular Modeling accelerated

with FPGAs include Molecular Dynamics using Discrete Event Simulation, rather than the

timestep driven studies here (Model and Herbordt, 2007; Herbordt et al., 2008b; Herbordt

et al., 2009; Khan and Herbordt, 2011) and Molecular Docking, which often uses MD as

one of its functions (VanCourt et al., 2004; VanCourt and Herbordt, 2005; VanCourt and

Herbordt, 2006b; Sukhwani and Herbordt, 2008; Sukhwani and Herbordt, 2010). Other

scientific applications include Adaptive Mesh Refinement (Wang et al., 2019b; Wang et al.,

2019a) and Algebraic Multigrid (Haghi et al., 2020b). Of particular interest for FPGA use

in computation, especially in data centers, is Machine Learning (Liu et al., 2016; Sanaullah

et al., 2018b; Geng et al., 2018b; Geng et al., 2018a; Geng et al., 2019c; Geng et al., 2019b;

Geng et al., 2019a; Geng et al., 2020a; Geng et al., 2020b; Li et al., 2019; Shi et al., 2020;

Wang et al., 2020a; Wu et al., 2020; Geng et al., 2021). Programmability has often been a

problem, but has recently been addressed in design tools (Sanaullah and Herbordt, 2018c;

Sanaullah and Herbordt, 2018a; Sanaullah et al., 2018a; Herbordt, 2019) and middleware

(Xiong et al., 2018b; Xiong et al., 2018a; Xiong et al., 2019; Xiong et al., 2020; Stern et al.,



12

2018; Haghi et al., 2020c; Haghi et al., 2020a).

2.3.3 FPGA Acceleration of MD

Prior MD/FPGA studies not otherwise mentioned here include surveys, (Chiu et al., 2008;

Sukhwani and Herbordt, 2009; Chiu and Herbordt, 2010b; Herbordt, 2013; Khan et al.,

2013), integration (Gu et al., 2006c), RL datapath optimization (Gu et al., 2008), handling

neighbor lists in RL (Chiu and Herbordt, 2009; Chiu and Herbordt, 2010a; Chiu et al.,

2011), the bonded force (Xiong and Herbordt, 2017), parallel implementations (Pascoe

et al., 2020), and complete FPGA integration (Yang et al., 2019b; Yang et al., 2019a).

2.4 Previous Work and Design in FPGA Acceleration of LR

2.4.1 Overview of Previous LR Design

Figure 2·2 depicts LR computation hardware that was previously under development.

Slideshow Title Goes Here

LR Pos Cache

Long Range
Force Cache

Particle Force 
(X) Grid

Particle Force 
(Y) Grid

Particle Force 
(Z) Grid

Force (X) 
Calculation

Force (Y) 
Calculation

Force (Z) 
Calculation

Particle to Grid 
Mapping…
…

Grid Memory

FFT / IFFT

Figure 2·2: LR Evaluation Architecture Overview (Yang et al., 2019a)

Computation begins with the caching of position and charge data. Position and charge

information is used when mapping changes to the grid and when calculating the forces

exhibited on each particle. The caching of particle positions and charges allows a host to
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offload data to this accelerator and perform other tasks why LR computations are taking

place. Particle charges are evaluated and assigned to 64 neighboring cell locations using

a third order basis function, with results stored in grid memory. After all particle data is

consumed, the FFT evaluation runs on the resulting grid (through each axis X, Y, and Z).

Resulting data, after multiplying with the Green’s function, is replaced in the memory grid

only a few cycles after evaluation. This is possible because of the pipeline implementation

of the FFT. The inverse FFT is then performed on each dimension. Finally, forces are cal-

culated for each individual particle using the final FFT grid results and the starting particle

position information saved previously in the position cache. These are then saved into a

force cache which is used during the motion update phase to apply long-range forces to the

particle positions.

2.4.2 3D FFT

The initial design of the FFT subsystem is based on previous work (Humphries et al., 2014)

and performs calculations in parallel using vendor supplied FFT cores. This work was later

extended to clusters and clouds of tightly coupled FPGAs (Sheng et al., 2014) and used

for OpenCL case studies (Sanaullah and Herbordt, 2017; Yang et al., 2017; Sanaullah and

Herbordt, 2018b). Recent work has created an efficient version of the 3D FFT for a small

cluster of FPGAs and implemented in OpenCL (Stewart et al., 2020).

The FFT units are assigned to specific banks of the grid memory to ensure high through-

put memory access. As a result, grid data can be continuously streamed through all FFT

cores in parallel. While output is being generated for a given vector, a new input is sent

for the next set of calculations. Each dimension is performed sequentially until all three

dimensions are completed on the memory grid. Once all three dimensions are evaluated

and converted into the Fourier-domain, the grid is multiplied with Green’s function, before

proceeding to the inverse FFT stage going through each dimension again and converting

back. Final values at each grid-point are used to compute the LR force for each particle
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based on its position.

Figure 2·3 shows a block diagram of the logic used. The Crossbars work in conjunction

with the RAMs to select the flow of data so as to affect transpose and reverse-transpose as

needed. The Controller is a large state machine that drives all of the inputs to the RAMs,

Crossbars, and FFT Pipelines. The FFT pipelines are 1D and supplied by the vendors with

standard packages.

FPGA Border
read enable

read address

write enable

write address
RAM

0

RAM

N

RAM to FFT

Crossbar

FFT

0

FFT

N

FFT to RAM

Crossbar

select

select

debug status

Control
data in valid

data in last

data out ready

Figure 2·3: Block Diagram for 3D FFT Design (Humphries et al., 2014)

2.4.3 Particle to Grid Mapping

The third order basis functions in Equation 2.7 are used to spread particle charges to the

four closest grid points, based on particle position data, and can be independently evaluated

for each dimension. The following were used in (Gu and Herbordt, 2007). Previous work

on particle-grid mapping can be found in (Sanaullah et al., 2016a; Sanaullah et al., 2016c;
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Sanaullah et al., 2016b).
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After a particle is evaluated in each dimension, values are assigned to 64 neighboring cells

and each result is accumulated into grid memory locations. Figure 2·4 shows the process

of a single particle’s influence on 64 neighbor cells and their mapping to a prior work’s

grid memory structure. Starting with a particle’s initial position and charge (a), it mapped

to its nearest neighboring 4 grid-point in each of the three dimensions (b), permuting the

combinations of 1D mappings to 3D, a cube of 3D grid-points is created (c), and finally

mapped to 64 address locations within 16 independent memory units.

Figure 2·4: Previously Developed Particle-to-Grid-Memory Flow (Yang

et al., 2019a)

2.4.4 Grid Memory Network

One issue with the particle-grid converter is that a large number of grid points must be

accessed on every cycle; this requires both high bandwidth and highly parallel addressing

logic. Fortunately, modern FPGAs, with their thousands of independent BRAMs, have
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just such capability. The interleaved memory design described in (VanCourt and Herbordt,

2006a) is one such example. Figure 2·5 motivates the need for this network.

X

Y

03020100

13121110

23222120

33323130

03020100

13121110

23222120

33323130

03020100

13121110

23222120

33323130

03020100

13121110

23222120

33323130

Figure 2·5: 2D Example Motivating an Alignment Network (Gu and Her-

bordt, 2007)

Given an address reference (x,y), the grid points within a 4x4 window, i.e. (x,y), (x,y+1),

. . . , (x+3,y+3), must be accessed. Obviously, 16 independent memory accesses are required

for each interleaved memory access. As shown in Figure 8, when grid points are stored in

16 separate banks marked from 00 to 33, any 4x4 access window contains exactly one

grid points from each bank. The bank’s index is either the same as that of the bank of the

reference address, or the one greater than that in the X and/or Y dimension, respectively.

The outputs from memory banks are shifted (with rotation) in both X and Y based on the

reference address. 3D interleaving memory is analogous.
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Chapter 3

Single-FPGA LR Design

Part of this thesis builds an improved and parameterized LR architecture using resources on

a single FPGA. Figure 3·1 depicts a high-level block diagram of the new LR architecture.

Figure 3·1: Enhanced Single-FPGA LR System Block Diagram

Particle position and charge information are loaded into a particle info memory (analogous

to the particle position cache in Figure 2·2) through a ready-valid handshaking interface

with a ‘last’ indicator to inform the system when the last of the particle information is

transferred. As previously mentioned, this particle info memory is used in the charge map-

ping and force calculation phases of the LR computation. Expanding on (VanCourt and
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Herbordt, 2006a), a 3D-interleaving of BRAMs is used to implement the grid memory.

This 3D interleaving of BRAMs offers up some algorithmic performance enhancements,

details of which can be found in section 3.3. Once mapped, the resulting charge-grid is

transformed into a grid of Coulombic potentials by passing through a 3D FFT, passing

through a Green’s function immediately following the 3D FFT, and lastly passing through

a 3D IFFT. The grid of potentials is then combined with the cached particle position and

charge to calculate the three one-dimensional force vectors acting on each particle. The

final force values are offloaded to the host using a separate ready-valid handshaking inter-

face also equipped with a ‘last’ indicator to inform the host when the last particle’s force

vectors are transferred.

The LR design developed during this thesis leverages Hardware Description Language

(HDL) code used to build the system in Figure 2·2. Upon review of the HDL, it was

found that the Green’s function implementation was incomplete. The new LR design com-

pletes that, adds the two ready-valid handshaking interfaces, implements 3D-interleaved

grid memory, and implements FFT pipelines that complement the structure of this new grid

memory. Only the coefficient generators and force multiply-accumulate (MAC) blocks

were found to be reusable. Though reusable, they were enhanced to reduce the amount of

FPGA resources they consume (see Sections 3.2 and 3.6).

The remainder of this chapter discusses the architectural details of the various sub-

modules that comprise the single-FPGA LR design.

3.1 Particle Info Memory

LR computation begins with the loading of particle position and charge information into

a memory. Information is transferred over a ready-valid interface equipped with a ‘last’

indicator to inform the system when the last of the information is transmitted by an off-

chip host. The particle information transmitted includes the position of particle and its
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charge. A particle’s position relative to neighboring grid-points is illustrated in Figure 3·2.

Figure 3·2: Particle Positioning (Sanaullah et al., 2016c)

The particle’s true position is denoted by the ⋆ but can be broken up into a nearest-floor-

grid-point, φ1 and the offset from that nearest-floor-grid-point, oi. φ1 is stored as an un-

signed integer whose width is dependent on the number of grid-points in the given dimen-

sion. In this design offsets are stored in an unsigned Q27 fixed-point format and charge

values are stored in a signed Q5.27 fixed-point format.

Since LR involves running per-timestep LR computations, the grid memory needs to

be cleared prior to charge mapping. This grid clearing happens, grid-point by grid-point,

as particle information is transferred from the host. This clearing mechanism imposes that

the number of particles to be mapped be greater than or equal to the number of grid-points

in the simulation. Though this is a reasonable assumption, future hardware could leverage

the parallelized nature of grid memory access (see section 3.3) to clear the grid over fewer

particle information transfers.

3.2 Charge Mapping

Charge mapping interpolates charge densities at grid-points using a particle’s charge value

(Sanaullah et al., 2016a). Charge density values are calculated with Equation 3.1.

ρg = ∑
p

Qpφ(|xg − xp|)φ(|yg − yp|)φ(|zg − zp|) (3.1)

These φ functions are a result of plugging in the definition of a particle’s position relative to

its nearest neighbors (see Figure 3·2) into Equation 2.6, resulting in the functions defined
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in Equation 2.7. Expanding across three dimensions, a single particle is mapped to 64 grid-

points. The charge coefficient generator sub-module pipelines this spreading of charge

across all 64 nearest-neighboring grid-points, utilizing the FPGA’s floating point (FP) IP to

perform the arithmetic operations implied by Equations 2.7 and 3.1.

The accumulation of charge densities interpolated from separate particles requires read-

modify-write operations to be performed on data in the grid memory. This requirement,

coupled with the pipelined nature of the charge mapping, introduces the possibility of data

hazards. A read-after-write (RAW) hazard occurs if a grid-point to be updated with accu-

mulated charge data is required to be read out for the mapping of a subsequent particle.

Currently, the hardware stalls the pipeline to avoid these hazards. If particle charge and

position information were to be sorted prior to being cached, such that particles mapping to

overlapping sets of grid-points were spaced out to avoid these RAW hazards, this stalling

could be removed. Alternatively, additional hardware could be implemented to provide a

means of data forwarding where possible. However, to simplify the complexity and veri-

fication of this design in the face of time constraints, it was decided to move forward with

pipeline stalling. It is well known that stalling is detrimental to the pipeline performance.

For this design to be viable, stalling should be replaced with a better hazard resolution

strategy.

As previously mentioned, the coefficient generator block is implemented through partial

reuse of pre-existing HDL files. The sub-module design is enhanced to reduce the number

of FPGA FP resources consumed based on the coefficients of the functions in Equation 2.7

by:

1. Driving pipeline stage outputs to zero when portions of the algebraic equation call

for multiplications by zero.

2. Replacing FP IP with pipeline register stages when portions of the algebraic equation

call for additions of zero.
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3. Replacing FP IP with pipeline register stages when portions of the algebraic equation

call for multiplications by one.

This is performed using SystemVerilog (SV) parameters and generate statements (SVLRM,

2018). Utilizing SV parameters and generate statements allows for easy hardware imple-

mentation updates if the basis functions were to change. It also allows this block to be

reused when mapping particle forces (see section 3.6).

A few notes for anyone that plans to reuse/enhance the charge mapping hardware. Work

was performed to verify the hardware against OpenMM models (OpenMM, 2020). It was

found that the OpenMM modeling utilized the the following third-order basis functions

(when configured for third-order polynomial interpolation):
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This change in interpolation function and therefore all the hardware built around it, simply

required changes to the SV parameters defined in the charge mapping module. The generate

statements process the parameter changes to make up-front hardware optimizations.

3.3 Grid Memory

The storage of grid-point data affects the operation of all phases of LR computation, from

the number of grid-points that can be mapped per clock-cycle (assuming RAW hazards

are taken care of), to the number of FFT pipelines that can run in parallel, to the number

of grid-points that can be read out per clock cycle when performing the force interpola-

tions. Previously explored architectures lent themselves well to performing the 3D FFT,

but often required transposing the stored grid-point values between one or more 1D FFT
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phases to maximize the the number of parallel 1D FFT computations (Humphries et al.,

2014; Sanaullah and Herbordt, 2017; Sanaullah and Herbordt, 2018b). Even an architec-

ture comprised of XG by YG blocks, each with a depth of ZG, where XG, YG, and ZG are

the number of grid-points in the X , Y , and Z dimensions, respectively, requires transposing

stored data. With that in mind, the clustered grid memory is an interleaving of FPGA block

RAMs designed to:

1. Store 64-bits of data for each grid-point in the system. 64 bits are needed to store two

32-bit, single-precision, floating-point values for the real and complex components

of grid-point data.

2. Support the mapping of one particle to its 64 nearest-neighboring grid-points in 3D

per clock cycle.

3. Avoid the need for data reordering prior to performing 1D FFTs over the grid-points

of charge data.

Meeting requirement 1 is trivial. To meet requirement 1 imposes that the memory archi-

tecture have at least 64 two-port (one read, one write) memories. Meeting requirement

3 imposes that the same mechanism used to access grid-points sequentially placed along

any one of the three dimensions be agnostic to the direction of that dimension. Meeting

requirements 2 and 3 is achieved by expanding on (VanCourt and Herbordt, 2006a) making

use of low-order address interleaving.

3.3.1 Clustered Grid Memory

The clustered grid memory is comprised of 64 memory units (neighbors), one unit per

a particle’s nearest-neighbor in 3D, with each unit possibly being comprised of multiple

FPGA BRAMs. The ordered triplet used to specify the location of the grid-point in 3D

space is the address for the data at that grid-point. Partitioning the grid memory into 4x4x4
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neighborhoods, the location of a grid-point can be thought of in terms of a neighborhood

ID and a neighbor ID, where the neighbor ID is used to choose among the 64 memory

units and the neighborhood ID is used to index into each memory unit. The lower two bits

of each coordinate concatenated form the neighbor ID, while upper address bits of each

coordinate concatenated for the neighborhood ID. The following is an example of how the

ordered triplet of a grid-point in a 32x32x32 grid is decomposed into its cluster ID and

neighbor ID.

= 11,23,8

= (010112,101112,010002)

= (0102,1012,0102).(112,112,002)

= (2,5,2).(3,3,0)

In a 32x32x32 grid, grid-point (11,23,8) refers to neighbor (3,3,0) inside of neighborhood

(2,5,2).

The clustered grid memory presents 64 two-port access channels in the form of a cluster

to the rest of the LR system. Figure 3·3 depicts the access cluster access in the context of

the grid memory. The figure depicts how the access cluster moves about to access neighbors

from neighborhoods, thereby accessing grid-points from the grid. Neighbor IDs range from

0-64 and are associated with neighborhoods based on their 3D position. Neighbors ac-

cessed by the access cluster appear as lighter shades of gray or orange. From (a) to (b)

to (c), the access cluster moves along the Y dimension. From (c) to (d) the access cluster

moves along the Z dimension.

Notice that each neighbor ID appears at most once inside of an access cluster. Notice

also that the access cluster is not required to be neighborhood-aligned, that is, the access

cluster can access some neighbors from one neighborhood while accessing neighbors from

other neighborhoods. This lack of alignment requirement means that any neighbor ID
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Figure 3·3: Memory Access Patterns for Charge Mapping in 3D

can appear on any of the ports in the access cluster. This is evidenced by the location of

neighbor 0 (potentially from different neighborhoods) relative to a port within the access

cluster as the access cluster moves around in 3D space. Achieving this flexibility requires

all-access-cluster-port-to-all-neighbor connectivity. Originally, this all-to-all connectivity

was performed in a single clock cycle and proved to be the critical path when attempting to

target the system for a 100MHz operating frequency. To improve performance, this all-to-

all connectivity was pipelined. Figure 3·4 depicts a three-stage, toroidal, shift MUX used

to pipeline the all-to-all connectivity from access cluster ports to neighbor memories.
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Figure 3·4: Three-Stage Toroidal-Shift MUXing Pipeline for Memory Ac-

cess Alignment

The figure depicts how an non-neighborhood-aligned access is aligned in each dimension.

The top row of the figure depicts alignment in the X dimension while the second and third

rows depict alignment along the Y and Z dimensions, respectively. Once control informa-

tion is aligned, the data read from the neighbors is re-unaligned before arriving back at the

access ports so the rest of the system sees the data on the same ports it originally requested

the access over.

Alignment in each dimension is performed in one clock cycle. Alignment in one dimen-

sion involves looking at the appropriate 1D component of the neighbor ID and comparing

it to the appropriate 1D component of the access port ID. If these components match, no
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realignment is required. If these components do not match, a toroidal shift occurs such that

the 1D ID components will match following the next clock edge.

The clustered grid memory was parameterized to handle various 3D grid sizes. Grids

are not required to be cubic, but each dimension of the grid is required to be a power of 2. To

support this flexibility the toroidal shift MUXing was performed using one-hot MUXing.

This one-hot MUXing may not prove to be the best performing MUXing architecture, but

accommodating various grid sizes would require HDL file modification rather than the

overriding of SV parameters.

3.4 FFT/IFFT

Once the mapping of all particle charges is complete, the resultant charge grid is then

transformed into a grid of Coulombic potential energies by:

1. Converting the charge data from the spatial domain to the Fourier domain by running

it through a 3D FFT.

2. Convolving the result of the 3D FFT with the 3D FFT of a Green’s function.

3. Running a 3D IFFT over the results of the convolution.

The 3D FFT (and IFFT) is decomposed into sequential 1D FFTs (IFFTs), one in each di-

mension. The LR design makes use of FPGA DSP resources that stream in FFT inputs into

a pipeline and some number of clock cycles later stream out the FFT results sequentially.

Preservation of 1D FFT (and IFFT) input data is not required, so the clustered grid memory

is used to temporarily store the results of each 1D FFT (and IFFT). Before the results of the

third 1D FFT are written back to the clustered grid memory, they are first convolved with

the 3D FFT of a Green’s function. This convolution equates to a simple multiplication in

the Fourier domain and therefore leverages additional FPGA FP resources.
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With the ability to read and write 64 clustered grid memory addresses simultaneously,

implementing 64 FFT pipelines maximizes data throughput and reduces the overall 1D FFT

execution time. Unfortunately, the access structure of the clustered grid memory supports

accessing a 3D, 4x4x4 set of grid-points where each port is required to access a unique

neighbor. This is not conducive to the FPGA DSP resources, which require FFT points to

be inputted in a specific order. This order is configurable when building the hardware (Intel,

2017) and is chosen to be natural. To work around this limitation, 1D FFTs (and IFFTs) are

performed by staggering 2D slices of the access cluster and mapping these access-cluster

slices to neighbor memories from neighborhoods in different districts, where a district is

an array of neighborhoods in a given dimension. Figure 3·5 illustrates how this staggering

of access cluster slices works on a 4x4x4 grid with a 2x2x2 access cluster.

Figure 3·5: Memory Access Cluster Slice Staggering for Optimum FFT

Throughput

In this figure the x-axis trends positive in a westerly direction, the y-axis trends positive in

a southerly direction, and the z-axis trends positive moving into the paper (this was done

intentionally for illustrative purposes). The FFT access scheme moves from (a) to (f). In
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the first clock cycle (a), access-cluster ports 0-3 are mapped to neighbors-memories 0-3

of neighborhood (0,0,0). In the second clock cycle (b), ports 0-3 are mapped to neighbors

4-7 of neighborhood (0,0,0) while ports 4-7 are mapped to neighbors 0-3 of neighborhood

(0,1,0). When a 2D access slice is accessing neighbor 4-7 of the last neighborhood in of a

district (d and e), it will access neighbors 0-3 of the first neighborhood of a previously unac-

cessed district (e and f). This pattern continues until neighbors 4-7 of the last neighborhood

of the last district are accessed.

Originally it was planned to configure the FFT resources to be bidirectional, but sim-

ulations of the IFFT revealed that the ordering of IFFT outputs were not consistent with

the documentation. To workaround this setback, IFFTs are implemented with forward-

direction FFT resources (Lyons, 2015). Doing so, requires:

1. Modifications to the boundary checking conditions of the access-cluster-slice stag-

gering. This modification is only required in the inverse FFT direction only.

2. Dividing the outputs of the FFT pipeline. Since the IP uses floating-point values

and any dimension of the grid is a power of two, this division is performed by a

subtraction of the exponential bits in the floating-point value.

Later on, it was determined that this subtraction could be removed due to compensations

made inside the Green’s function (see section 3.5).

3.5 Green’s Function

The Green’s function is dependent on the position of the grid-point, the true volume of the

grid, the order of the basis function used to map the particle charges, and a convergence

parameter (Procacci, 2009). Thus, the values of the Green’s function at each grid-point

can be computed offline and programmed into ROM as the rest of the FPGA logic is being

programmed. This Green’s ROM architecture is similar to the clustered grid memory with
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the one exception: the Green’s function value at each grid-point is only 32 bits wide. Since

the Green’s ROM is only ever accessed during the 1D FFT in the Z dimension using the

staggering of 2D access cluster slices, alignment in the X and Y dimensions is guaranteed.

This guarantee does allow for the reduction toroidal shift MUX pipeline stages from 6 to

2, but for developmental expedience, this reduction was not implemented.

When comparisons of this accelerator were compared against OpenMM modeling it

was found that since:

1. The computation of the Green’s function requires multiplication by XGYGZG.

2. 3D IFFTs using FFT require a division by XGYGZG.

3. FFT/IFFTs are linear functions.

the computation of Green’s ROM values could omit the multiplication step allowing for the

removal of the division steps of IFFT using FFT (OpenMM, 2020).

3.6 Force Computation

Computing the forces acting on each particle in each dimension uses the following three

equations:

~Fp,x = ∑
g

ϕg∂φ(|xg − xp|)φ(|yg − yp|)φ(|zg − zp|) (3.3)

~Fp,y = ∑
g

ϕgφ(|xg − xp|)∂φ(|yg − yp|)φ(|zg − zp|) (3.4)

~Fp,z = ∑
g

ϕgφ(|xg − xp|)φ(|yg − yp|)∂φ(|zg − zp|) (3.5)

where p refers to a particle, g refers to a grid-point, and ϕg refers to the subset of elec-

trostatic potential grid-points that map to the particle in question. For completeness, the
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derivative if phi is listed below:
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With that, force computation can be broken into two stages:

1. Coefficient generation - mapping the particle to the grid using the partial derivatives

of the mapping function in each dimension.

2. MAC - Multiplying the results of the mapping function by the subset of electrostatic

grid-points that the particle maps to and summing the products across all grid-points

in that subset.

A couple notes for those that plan to reuse/enhance the force computation sub-modules:

When the interpolation function was changed to verify the design against OpenMM mod-

eling, the the derivative if phi became:
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Again, that hardware change was made made painlessly by changing parameter settings

and having SV generate statements take care of the rest.

3.6.1 Coefficient Generation

Coefficient generation involves the same mapping process that mapped particle charges

to the grid, but uses the derivative of the functions in Equation 2.7 in one of the three

dimensions. To this effect, the same coefficient generator HDL used in charge mapping
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is used to generate the Force coefficients in each of the three dimensions. The coefficient

generator is implemented 3 additional times, but the configuration of each sub-module

instance is fixed at implementation by choosing between the coefficients of 2.7 and 3.6

based on the direction of the force to be calculated.

It should be noted that FPGA DSP resources could be saved by implementing only

3 coefficient generators with one of them being used for both charge mapping and force

coefficient generation. Doing so however, would require a different coefficient generator

architecture that is run-time programmable.

3.6.2 MAC

The MAC stage of force computation involves taking the force coefficients generated and

multiplying them by the electrostatic potentials stored in the clustered grid memory on a

grid-point-by-grid-point basis and then summing across the 64 products. Sequencer logic

was implemented such that the force coefficients and the associated read data from the

clustered grid memory arrive at the inputs of a bank of floating-point multipliers within

the same clock cycle. The products are then fed into a tree of floating-point adders to sum

across all the grid-points.

Once force results are valid they are presented on the particle-force ready-valid interface

and remain there until the host is ready to accept the force information, stalling the entire

force computation pipeline when necessary. This interface also includes a ‘last’ signal to

qualify the final particle-force value to be transferred.

3.7 Hardware Development Summary

Building from previous work, this enhanced LR design performs charge mapping at one

particle per clock cycle, does not require FFT staging transpositions, and also maximizes

FFT throughput given the constraints imposed by the first two features. The ready-valid
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interfaces allow for easy integration of this accelerator into a complete MD system. The

hierarchical partitioning of the LR design into the aforementioned sub-modules allows for

more detailed design introspection. As seen in the next chapter, resource utilization report-

ing is easily partitioned according to sub-module. The flexible nature of the parameterized

design has already proved useful as it allowed for a quick change of interpolation functions

for functional verification. As will be seen in the next chapter, this flexibility results in

quick design turn around time, allowing for the exploration of more design configurations

in parallel, or at the very least requiring little to no changes to the HDL files. These design

configurations include, but are not limited to, grid size and particle ensemble size.
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Chapter 4

Single-FPGA LR Evaluation

This chapter evaluates single-FPGA LR designs and is broken up into three sections. Sec-

tion 4.1 provides details of LR hardware implementations when mapped to FPGA devices

and section 4.2 details the computational run-times of the designs. Section 4.3 discusses

the results, while drawing comparisons to related accelerator hardware where possible and

offering suggestions for improvement.

4.1 Implementation Details

A total for four single-FPGA LR designs were implemented. Table 4.1 enumerates each of

the configurations, highlighting the major architectural differences in each implementation.

Cfg. ID Grid Size Particle Size FFT FP Type Clock Freq.
0 16x16x16 4,096 Hard 211.24MHz
1 32x32x32 32,768 Hard 187.83MHz
2 16x16x16 4,096 Soft 239.29MHz
3 32x32x32 32,768 Soft 191.32MHz

Table 4.1: Configuration Summary of Single-FPGA LR Implementations

Two separately sized designs were each implemented with and without taking advantage

of the hardened floating point resources. Attempts were made to implement a 64x64x64

design with support for 643 particles, but the tool seemed to hang trying to synthesize the

design, sitting at 33% of the way through synthesis after 3 days. These issues were reported

to Intel, but no responses were received upon submittal of this thesis.

Figure 4·1 captures the on-device resource utilization of each design implementation.
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Figure 4·1: Device Resource Consumption per Single-FPGA LR Imple-

mentation

The utilization of all resources increases with the size of the grid and particle ensemble. The

increase in ALM, pin, and memory utilization is easily implied purely from the increase

in the number of grid-points and particles. The increase in DSP utilization is a result

of the reconfiguration of the maximum FFT length for the 64 pipelines. The choice in
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implementation of floating point blocks within the FFT pipelines results in the trade-off

between DSPs and a combination ALMs and M20Ks. Memory bit utilization refers to the

number of memory bits that are functionally used in LR computation. Most functionally

used memory bits are physically implemented using 512x40 BRAMs (M20Ks). However,

not all bits of implemented M20Ks are functionally used, thereby wasting memory bits

on the device. As one would expect, the memory bit utilization, M20K utilization, and

memory bit waste increase with the size of the design. When preventing the use of hardened

floating point units inside the FFT pipelines, the increase in M20K utilization nearly triples

as the design size increases, but is mostly wasted.

Considering the number of resources each design consumes, Figure 4·2 breaks down the

actual number of resources utilized by the major portions of the design. The particle info

memory, the clustered grid memory, and FFT pipelines are largely dependent on the size

of the grid and the number of particles in the system. The resource consumption increase

in the FFT pipelines can be traced back to the configuration of the IP. In Configurations 0

and 2, the FFT IP is configured to support a maximum FFT length of 16 points, whereas

Configurations 1 and 3 support a maximum of 32. The control sequencer also depends on

the grid size a particle count, but to a much lesser extent. Additional ALMs are consumed

when the the number of particles and grid-points cross power-of-two boundaries, requir-

ing additional address bits to be generated when storing/retrieving data to/from the particle

info memory, grid memory, or Green’s ROM. The same scan be said about the ALM uti-

lization of the Green’s ROM and the clustered grid memory: ALM usage will increase as

the address bits used to access grid-points increase.

The amount of resources consumed by the charge coefficient generator, charge accumu-

lation, convolution, force coefficient generators, and force trees depend upon the number

of 3D nearest-neighbors a particle has and should therefore be constant as the number of

grid-points and particles increase. Not readily implied by the graphs in the figure are the
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Figure 4·2: Per-Implementation LR Design Resource Consumption Break-

down

differences in the resource consumption of these modules as the size of the grid and particle

ensemble increases. These noted increases can probably be attributed to the logic optimiza-
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tion of the FPGA implementation software. Similar optimizations can be observed when

reviewing the resource consumption of the force coefficient generators in each configura-

tion. These modules are nearly identical, with the only differences being the one dimension

that uses the coefficients of Equation 3.6, but most of the resources are consumed by the

force coefficient generator in the X-dimension.

On the surface, one would think that the resources consumed by the Green’s ROM

would be directly dependent on the size of the grid. However, in the 16x16x16 configura-

tions, the Green’s ROM is implemented with ALMs only. In the 32x32x32 configurations

the Green’s ROM is implemented with a mix of ALMs and M20Ks, but not to the same

extent as the Clustered Grid memory. This may be attributed to the read-only nature of

Green’s ROM and the potential for ROM-bit reuse across addressable data values.

The amount of memory bit waste is attributed largely to the FFT pipelines. Across all

configurations, most of the memory bits that are implemented and serve a true functional

purpose are found in the particle memory, clustered grid memory, and in the 32x32x32 con-

figurations, the Green’s ROM. However, more than 50% of the M20Ks consumed reside in

the FFT pipelines, meaning that the FFT pipelines only functionally make use of a fraction

of each M20K they consume.

Using the information above and assuming:

1. XG = YG = ZG = gsize1D

2. XGYGZG = gsize3D = nparticles

3. The resource consumption of the coefficient generators, accumulators, FFT pipelines,

convolution, and force trees remains relatively constant.

4. The Green’s ROM consumes half the amount of resources as the clustered grid mem-

ory.

5. The growth in ALM consumption is negligible as gsize1D increases.
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6. FFT pipelines make use of hardened FP resources.

the main concern in resource consumption is with the IO pins and block memory bits. IO

pin consumption as a function gsize1D is expressed below:

pins = 3
⌈

log2(gsize1D)
⌉

+3bo +4bq f +2
⌈

log2(gsize3D)
⌉

+7 (4.1)

where bo is the number of bits used to specify a particles offset in one dimension, bq f is the

number of bits used to specify a charge or 1D force value. The additional 7 pins account for

the design’s clock and two ready-valid-last interfaces. The particle info memory’s block

memory bit consumption can be calculated with the following equation:

pmembits = (3
⌈

log2(gsize1D)
⌉

+3bo +bq f )nparticles (4.2)

The consumption of block memory bits of the clustered grid memory and the Green’s ROM

can boils down to 96 bits per grid-point. Figure 4·3 plots IO pin and memory bit consump-

tion as functions of gsize1D. Under these assumptions, the maximum cubic, power-of-2

grid size a single Stratix-10 FPGA can support is a 64x64x64. The maximum number of

block memory bits contained in any Stratix-10 device is 240,046,080. A 101x101x101 grid

consumes 237,249,470 and a 102x102x102 grid consumes 244,358,080 and that is assum-

ing block RAM bits are not wasted during mapping. Larger designs come nowhere near

consuming all the 912 IOs available on the device. Considering that the Green’s ROM

consumes nowhere near half the resources the clustered grid memory does, due to design

optimization, it may be possible that a 128x128x128 design could fit on a single-FPGA.

However, attempts at even a 64x64x64 design supporting 643 particles have seemingly

generated tool issues.

The replacement of hardened floating point units inside the FFT pipelines with ALMs,

did increase the operational frequency of the design for both the 16x16x16 and 32x32x32

grid sizes at the cost of ALM and M20K utilization. With this performance trade-off, the
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Figure 4·3: LR Design Hardware Resource Consumption vs. gsize1D

increase in ALM consumption becomes a concern as the size of the grid increases. This

is due largely in part to the dependence of ALM consumption on the number of points the

FFT pipelines need to operate over. Unfortunately, ALM consumption cannot be easily

captured as a function of grid size. Attempts were made to implement a 64x64x64 grid

based LR design, but failed to synthesize. Projecting the reported ALM consumption of

Configuration 2 and Configuration 3 outwards, a 64x64x64 configuration, if synthesized,

may run into routing issues. If it can be routed, it can be assumed that the operating

frequency would drop further.

4.2 Computation Details

In this section the computation time is first characterized into a series of equations derived

from the architecture of the system. These equations are then used along with the intrinsic

properties of the hardware and the results from 4.1 to calculate the wall clock time of the
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computation.

4.2.1 System Equations

Overall computation time is the sum of the run-time of all the phases of LR, that is, charge

mapping all particles, five 1D FFTs, one 1D FFT coupled with convolution of the Green’s

function, and force computation of all particles:

tLR = tCMAll +2tFFT 1DX
+2tFFT 1DY

+ tFFT 1DZ
+ tFFT 1DZNG + tFCAll (4.3)

Due to its pipelined architecture, the run-time of charge mapping particles is governed

by the following equation:

tCMAll = nparticles +dCM −1 (4.4)

where dCM is the latency of the charge mapping pipeline. This assumes that no pipeline

stalls occur, which is not the case for the hardware as presently constructed, but can be

assumed here as viable methods to remove pipeline stalls when charge mapping do ex-

ist. The latency of the charge mapping pipeline is further broken down into the latencies

of one fixed-point-to-floating-point converter, 5 floating-point multipliers, 3 floating-point

adders, the readback latency of the particle memory, and the latency to store values into the

clustered grid memory:

dCM = 1+dToFP +5dFPMul +3dFPAdd +5 (4.5)

The staggered access cluster slicing during 1D FFTs allows for 64 FFT pipelines to

run simultaneously once all access cluster slices are operational, resulting in the following

run-time equations:

tFFT 1DX
=

XGYGZG

NNN3D
+dFFT 1DX

+NNN1D−1−4 (4.6)
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tFFT 1DY
=

XGYGZG

NNN3D
+dFFT 1DY

+NNN1D−1−4 (4.7)

tFFT 1DZ
=

XGYGZG

NNN3D
+dFFT 1DZ

+NNN1D−1−4 (4.8)

where XG, YG, and ZG are the number of grid-points in the X,Y, and Z dimensions, re-

spectively, NNN1D is the bumber of nearest-neighbors in 1D, NNN3D is the number of

nearest-neighbors in 3D, and dFFT 1D is the latency of performing the 1D FFT on one grid

district. In this equation NNN1D− 1 is the latency of filling the pipeline. The latency of

running a 1D FFT on one district is governed by the following equations:

dFFT 1DX
= 7+XG −1+dFFT IPX

+5 (4.9)

dFFT 1DY
= 7+YG −1+dFFT IPY

+5 (4.10)

dFFT 1DZ
= 7+ZG −1+dFFT IPZ

+5 (4.11)

where dFFT IPX
, dFFT IPY

, and dFFT IPZ
are the latencies of the FFT computations in the X ,

Y , and Z dimensions, respectively. The 7 clock cycles up front account for the read-back

latency of the clustered grid memory and the 5 clock cycles at the end account for the

storage of the FFT result in the clustered grid memory.

The only difference between tFFT 1DZ
, which accounts for the IFFT in the Z dimension

and tFFT 1DZNG, which accounts for the 1D FFT in the Z dimension along with the convo-

lution, is latency of the floating point multiplication that takes place before the write-back

to the clustered grid memory:

dFFT 1DZNG = dFFT 1DZ
+dFPMul (4.12)

Due to its pipelined architecture, the run-time of the force computation phase is gov-

erned by the following equation:

tFCAll = nparticles +dFC −1 (4.13)



42

where dFC is the latency of the force computation pipeline. The latency of the force compu-

tation pipeline is further broken down into the latencies of one fixed-point-to-floating-point

converter, 6 floating-point multipliers, 8 floating-point adders, the readback latency of the

particle memory:

dFC = 1+dToFP +6dFPMul +8dFPAdd (4.14)

It should be noted that this latency equation assumes that the host is always ready to accept

valid data from the accelerator when presented for transfer.

4.2.2 Computation run-time

The latency of all floating-point IP used is dependent on its configuration (Intel, 2020a).

The same can be said for the FFT IP (Intel, 2017). Substituting those values into the

equations above and applying the achievable clock frequencies of each design, Figure 4·4

breaks down the wall-clock run-time of a single LR iteration according to Equation 4.3.

The run-times for a single LR iteration for the four configurations are 43.63µs, 371.89µs,

38.49µs, and 364.20µs, respectively. Recalling that one timestep simulates roughly 2fs of

reality, these designs can simulate 3.96µs, 464.65ns, 4.49µs, and 474.46ns of reality per

day for their respective particle ensembles.

4.3 Evaluation Discussion

Drawing comparisons to previous work where possible, it is noted that the 3D FFT run-

times of Configuration 1 and 2 are 10.2242µs and 10.2713µs, respectively. These results

beat out the best single-FPGA, 323 FFT, run-time reported by (Humphries et al., 2014).

This improvement is largely due in part to the difference in the number of FFT pipelines

and the difference in FPGA technology nodes. This single-FPGA LR accelerator’s 3D FFT

run-time is slightly less than double the run-time proposed in (Sheng et al., 2014) and less

than three times the run-time of the original Anton network (Young et al., 2009), both of



43

Figure 4·4: LR Design Performance Breakdown

which utilize multi-FPGA clusters.

Analyzing the results across the four configurations, the resource consumption penalty

paid for a performance increase, by switching to soft floating-point resources in the FFT
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pipelines, is much too severe. The ALM utilization jumps 22% in for a 16x16x16 design,

while adding hundreds of nanoseconds of simulated reality per day. For a 32x32x32 design,

ALM consumption jumps 36% only adding approximately 10ns of simulated reality per

day. Not only that, ALM consumption is heavily dependent on the size of the grid, which

could lead to routing issues for design larger than 32x32x32. Not to mention that all the

FP resources offered by the device are unused. One could argue that the waste of FP

resources may suggest that a different device should be used, unfortunately devices with

large amounts of block memory bits include a large number of hardened FP resources.

Breaking down the computational run-times of these designs according to architectural

latencies and operational phases, it is blatantly obvious that the run-times are dominated

by the number of particles in the system. The percentages of run-time due to the number

of particles in the system for configurations 0, 1, 2, and 3 are 88.99%, 94.24%, 89.04%,

and 94.21%, respectively. Taking full advantage of the hardened FP resources inside the

FFT pipelines offers up the potential of implementing a 128x128x128 design on a single

FPGA. However, even with the potential offered by the capacities of these large FPGAs,

and despite only having two data points, it’s safe to assume that as the grid size continues to

increase, the operational frequency of the system will decrease. That said, the only options

to reduce this dominant run-time component are to:

1. Have the charge mapping and force computation run at higher clock frequencies.

Considering that all LR computational phases use the same clustered grid memory,

this is impossible.

2. Parallelize the mapping and force computation. That is, map multiple particles per

clock cycle and compute the forces acting on multiple particles per clock cycle.

The parallelization of charge mapping and force computation can be achieved by break-

ing out the grid into multiple clustered grid memories and adding one charge mapping and

force computation pipeline per added clustered grid memory. With this restructuring of
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grid memory, arbitration would be required to account for a particle that maps to multiple

clustered grid memories. The dynamic throughput of particle mapping and force compu-

tation will decrease when arbitration is taking place, but with large enough clustered grid

memories, the need for active arbitration should minimal. Breaking up the grid into four

rectangular prisms and assuming 25% of throughput is lost due to arbitration, a single LR

iteration would take about 124µs to complete leading to in 1.39µs of simulated reality per

day. The added resource consumption of this parallelization should not be a problem as-

suming the design makes use of hardened floating point resources.

Considering the disparity between the charge mapping and force computation run-times

when compared to the FFT run-times, performance gains offered by parallelization can be

achieved through the redistribution of resources currently being utilized. Said differently,

resources taken from the DSP pipelines may offer more impactful performance increases in

particle mapping while taking small performance hits in FFT-phase run-times. Rewriting

Equation 4.4 in terms of hardware resources results in:

tCMAll =
nparticles

rCMBase+rCMAdd

rCMBase

+dCM −1 (4.15)

where rCMBase is the base set of resources the charge mapping pipeline utilizes and rCMAdd

is the number of resources added to charge mapping pipeline following the redistribution of

FFT-pipeline resources. Similarly, Equation 4.13 can be rewritten in terms of the hardware

resources it uses as:

tFCAll =
nparticles

rFCBase+rFCAdd

rFCBase

+dFC −1 (4.16)

where rFCBase is the base set of resources the force computation pipeline utilizes and rFCAdd

is the number of resources added to force computation pipeline following the redistribution

of FFT-pipeline resources. Modeling the run-times of each 1D FFT/IFFT phase in terms

of hardware utilization is slightly more complex because of the nested pipelining. The

NNN1D in Equations 4.6, 4.7, and 4.8 stems from the fact that there ate NNN3D FFT
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pipelines and that the NNN3D pipelines are initiated in a staggered fashion NNN2D after

another. With that in mind, the increase in run-time for FFT/IFFT phases in terms of

resources lost is as follows:

tFFT1D
=

XGYGZG

γ
+dFFT1D

+
γ

3
√

γ2
−1−4 (4.17)

where:

γ = NNN3D
rFFT Base − rFFT Sub

rFFT Base
(4.18)

and rFFT Base is the base set of resources the FFT pipelines and rFFT Sub is the number of

resources taken from the FFT pipelines to be distributed among both the charge mapping

and force computation pipelines. Figure 4·2 reveals that DSP resources limit potential

hardware distribution. That said, Figure 4·5 plots the performance of the single-FPGA LR

accelerator, as defined in Configuration 1, as resources are taken from the FFT pipelines

and redistributed among the charge mapping and force computation pipelines. The dif-

ferent curves plotted are the result of varying the charge-mapping-to-force-computation

distribution ratio. The amount of resources traded off varies from 0 to 2016, the maximum

number of DSP resources that can be taken from the FFT pipelines while still retaining 1

FFT pipeline. From this plot it can be observed that there is a point where the FFT run-

times start to dominate the overall run-time of a single LR iteration. This is simply due

to the lack of parallelization offered by the reduced number of FFT pipelines. Of the 12

curves, the 40:60 charge-mapping-to-force-computation redistribution of FFT DSPs offers

the best performance. In reality, this performance model is a 2D function operating over

the DSP resources traded off and redistribution ratio. Table 4.2 highlights some of the best

resulting run-times of this 2D function. The first 12 entries of this table list the minimum

of each of the curves in Figure 4·5. The next entry captures the global minimum of the 2D

function. Realistically, only integer numbers of pipelines can be implemented, so true
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Figure 4·5: LR Run-Times vs. DSP Tradeoffs

performance lies somewhere in the middle of all these results. Again, it should be men-

tioned that this model does not account for the contention introduced when parallelizing

the charge mapping and force computation pipelines, so real hardware performance will be

slightly less than what is approximated here.
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Ratio DSP Count Run-Time CM Pipelines FC Pipelines FFT Pipes
Figure 4·5 Curve Minima

100% CM 940 240.88µs 5.5854 1 34
90:10 1,123 222.78µs 5.9302 1.1462 28.90625
80:20 1,206 208.06µs 5.7063 1.3141 26.3125
70:30 1,248 197.26µs 5.2615 1.4875 25
60:40 1,273 189.99µs 4.7259 1.6630 24.21875
50:50 1,290 186.03µs 4.1463 1.8398 23.6875
40:60 1,304 185.61µs 3.5444 2.0187 23.25
30:70 1,317 189.65µs 2.9273 2.2004 22.84375
20:80 1,327 200.66µs 2.2946 2.3823 22.53125
10:90 1,319 225.58µs 1.6434 2.5457 22.78125

100% FC 1,206 208.06µs 1 2.5703 26.3125
205:768 1,326 199.01µs 2.3628 2.3628 22.5625

Global Minimum
839:1177 1,690 132.55µs 4.42 2.29 11.1875

Table 4.2: Run-Times Following DSP Resource Redistribution

Lastly, recall that LR is just one portion of MD simulation. Considering that each

of these MD phases are run on their own FPGA, it’s not unreasonable to consider the

distribution of LR acceleration across multiple FPGAs. Similar arbitration issues to the

grid-partitioning solution above will need to be addressed, but the main advantages of a

multi-FPGA network would be the increase in parallelization and the speed of the the net-

work.
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Chapter 5

Extending Single-FPGA LR Designs: Off Chip

Memory

As MD grid sizes increase, the need for more FPGA resources, especially BRAMs, be-

comes evident. As the number of resources increases, so does the routing difficulty. Keep-

ing that in mind, is there an opportunity to keep the accelerator design all on a single board

making use of off-chip memories? High bandwdith memory (HBM) is the latest offering

from semiconductor memory companies attempting to bridge the gap between processor

latencies and memory latencies (Samsung, 2019; AMD, 2020). More and more FPGAs

are being packaged with on-board HBMs to alleviate the memory bandwidth bottleneck

that many FPGA-accelerated applications encounter (Xilinx, 2020a; Intel, 2020b). HBMs

have already been used inside of MD acceleration applications (Stewart et al., 2020). This

chapter discusses the plausibility of leveraging HBM inside of the LR design. There are

two main areas of the LR design where HBM could alleviate resource consumption inside

the FPGA and potentially offer better system performance: particle mapping and FFT. The

remainder of this chapter discusses the use of HBMs in each area and the discusses the

overall viability of HBMs in an LR design.

5.1 HBMs for Particle Mapping

When it comes to particle mapping, HBMs can be used in isolation inside the particle

information memory the grid memory to alleviate on-FPGA resource consumption in hopes

that the resource savings equate to higher system clock frequencies. Building off of this
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isolated usage of HBMs in the two memory subsystems, there is potential to increase the

throughput of particle mapping to something higher than one particle per clock cycle.

5.1.1 HBMs for Particle Information Memory

Using the per-particle data storage requirement derived in Equation 4.2 163, 323, 643, and

1283 grid-point designs require 62.5KB, 512KB, 4.08MB, 33.5MB, respectively, of par-

ticle information memory. Currently, FPGA vendors are offering FPGAs packaged with

8GB-16GB HBMs (Xilinx, 2020a; Intel, 2020b). With more than enough storage offered

by HBMs, the main issue becomes performance. Even when the HBM subsystem can op-

erate at frequencies higher than the rest of the system and access the HBM over multiple

channels, the latency penalty is too high (Wang et al., 2020b). That coupled with the burst

size requirement of HBM controllers, results in the need for ping-pong particle informa-

tion caching. These caches need only be large enough to amortize the latency penalty paid

when accessing the HBMs while also fulfilling the burst requirements of the HBM access

controller. During charge mapping and force interpolation particle information is only ever

read out and can be accessed sequentially by simply incrementing the memory address. So

this caching does not require any complex replacement or write-back schemes.

5.1.2 HBMs in the Grid Memory

With 64 bits of data storage per grid-point, the current HBM offerings by FPGA vendors

provide more than enough storage capacity. Not only is latency an issue here, the random

and parallelized memory access nature of charge mapping and force interpolation present

another issue: access flexibility.

HBM access controllers currently provided by FPGA vendors offer access to 16 phys-

ically independent HBM structures, but by isolating address regions within each HBM

structure, accesses can be spread out over 32 64-bit pseudo channels (Wang et al., 2020b;

Intel, 2020b). Charge mapping and force interpolation require 64 64-bit parallel accesses.
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Therefore another type of grid-point cache clustering would be required. This cache must

only store subsections of the entire grid, otherwise it defeats the purpose of using HBMs.

The caching of grid-point information will require write-back and replacement logic to

account for cache-misses when particles map to grid-points not currently located in the

cache. These cache misses penalize charge mapping and force interpolation performance,

but can be mitigated by sorting the particle information off-line. However, misses cannot

be avoided due to the inherent capacity issue of the caching architecture. To compensate

for the random access nature of a particles mapped grid-points, all of which existing in the

cache, the idea would be to implement a smaller-sized clustered grid memory than in the

lone-FPGA LR design.

5.1.3 Better Particle Mapping Bandwidth with HBMs

By strategically combining the caching methodologies of the particle information memory

and the grid memory, it may be possible to map more than one particle per clock cycle. The

particle information caching can pull information of more than on particle per HBM access.

If multiple grid memory caches are made, and particles are sorted ahead of time to reduce

grid-point cache misses, it may be possible to achieve a higher average particle mapping

bandwidth. This increased mapping bandwidth can be used both in charge mapping and

during force interpolation, the latter provided there are enough parallel force-tree pipelines

to support it.

5.2 HBMs for FFTs

With most of the grid-point storage in HBMs and with enough HBM capacity to store grid

values many times over, this can allow for the use of a different memory architecture for

the running of the FFT stages. The clustered grid memory in the lone-FPGA design was

shared by all portions of the LR computation, thus limiting the number of FFT pipelines
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to 64. However, with more on-FPGA resources available in this off-chip memory solution,

following charge mapping and 5 of the 6 FFT stages of LR computation, grid-point infor-

mation could be streamed into a separate memory units allowing for more FFT paralleliza-

tion. For example, information could be stored in a XSxYS matrix of ZG-deep memories

(where XS < XG,YS < YG) allowing XSYS FFTs to happen in parallel. Now to complete the

FFT in one dimension multiple iterations of parallelized XSYS FFTs would be required, but

with the ease-of-predictability of these FFT grid-point subset accesses, ping-pong buffering

can be employed to hide the latency of loading the FFT memories. With enough HBM ca-

pacity the FFT results could be transposed as they are written into a separate HBM address

region. Writing to a separate HBM space prevents the corruption of data required to com-

plete the 1D FFT in the current dimension while allowing for the storage of data required

for the 1D FFT in the next dimension. The transpose would account for the re-purposing of

the FFT memory architecture from an XSxYSxZG-deep to a YSxZSxXG-deep, for example.

Considering that the Green’s ROM requires half the storage of the grid memory, current

HBM offerings easily meet the needs of the LR system. Again, with latency being the

issue, a caching subsystem would need to be developed to absorb that penalty but also

accommodate the FFT memory architecture. Using HBMs as ROM does require a one-time

programming of the Green’s function values prior to running any LR iterations. This is not

necessarily a drawback from a performance perspective as it is a system configuration task,

but it sure is convenient to have all the Green’s ROM values simply provided via FPGA

programming.

5.3 Viability Discussion

There are multiple opportunities for the usage of HBMs when accelerating the LR portion

of MD. Though its implementation does not free up all the memory resource requirements

of the particle information memory, the grid memory, and the Green’s ROM, the savings
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can be significant depending on the caching methodologies deployed to mitigate latency

and access flexibility issues. However, if these resource savings do not result in a signif-

icant increase in the operational clock frequency of the LR system, then using HBMs to

accelerate the LR computation is assumed to be not viable. Storing the particle information

can free up some memory resources but it does not directly allow the charge mapping or

force interpolation to run faster. Storing the grid-point data inside of HBMs offers simi-

lar benefits, but also does not increase the mapping bandwidth its own. It also introduces

performance penalties upon cache misses. Putting together the particle information and

grid-point caches may still save the number of resources consumed, but performance is

heavily dependent on the locations of particles in the ensemble. Also the throughput of

particle information mapping gets halved when each particle requires more than 128-bits

of storage. HBM usage for FFT throughput improvement has the potential to be helpful

as FFT computation time is not insignificant, but overall LR computation is dominated by

particle mapping.

With the use of HBMs seemingly offering limited particle mapping bandwidth improve-

ment and with particle mapping bandwidth accounting for over 85% of LR computation

time, the use of HBMs to further improve LR computation performance is viable, but may

not be entirely worthwhile. A better solution may be to split the grid over multiple FPGAs,

allowing for the particle mapping run-time to be nearly divided by the number of FPGAs

in the network.
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Chapter 6

Beyond Single-FPGA: FPGA Clusters

With larger MD grid sizes consuming more FPGA resources while reducing system clock

frequency and off-chip memories seemingly offering little performance improvement, an

obvious choice is to spread LR computation across multiple FPGAs. With portions of the

grid mapped to individual FPGAs, particle mapping run-times can be nearly divided by the

number of FPGAs in the system. However spreading LR across multiple FPGAs requires

inter-node communication when performing the 1D FFTs and when a particles map to

grid-points spread across multiple FPGAs.

Leveraging the results of the single-FPGA LR implementations, that is, without mul-

tiple charge mapping and force computation pipelines, this chapter evaluates three FPGA

network architectures: a direct-connect toroid, an all-to-all connection switching network,

and bidirectional ring. It describes the architectures of each topology and the inter-FPGA

communication methods as they pertain to the various phases of LR in an attempt to char-

acterize the performance of the system. The chapter concludes with a trade-off discussion

between the various systems.

6.1 Direct-Connect Toroid

This section evaluates the 3D MD grid overlaid onto a direct-connect toroidal network of

FPGAs.
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6.1.1 Architecture

Figure 6·1 depicts the toriodal network. Each FPGA is directly connected to each of its

Figure 6·1: 2D Direct-Connect Toroidal FPGA Cluster Network

neighbors in 2D via bidirectional communication links. This requires each FPGA to sup-

port four bidirectional links. Such devices are offered by both Xilinx and Intel (Intel,

2020b; Xilinx, 2020b). The idea with this network is that each FPGA is mapped to a subset

of grid-points in the shape of a rectangular prism (a grid-prism) as shown in Figure 6·2.

Each grid-prism at least spans all the grid-points in a single dimension while typically only

spanning subsets of grid-points in the other two. This grid-prism construction constraint

allows each FPGA to perform a 1D FFT over its entire grid-prism without the need for inter-

FPGA communication. Thus, the run-time of the 1D FFT over the entire grid is equal to the

run-time of the 1D FFT over the grid-prism in this one dimension, where as 1D FFTs in the

other two dimensions will require inter-FPGA communication. This grid-prism structuring

governs the 2D toroidal network requiring only 4 network links. If a grid-prism did not
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Figure 6·2: FPGA Cluster Node Grid-Prism

span all the grid points in one dimension, a 3D toroidal network would be required for this

direct-connect architecture.

6.1.2 Inter-FPGA Messaging

In all multi-FPGA LR systems, data movement needs to be quantified. The following

subsections describe the various data movement patterns in order to spell out a network

messaging topology that can be used to assess system performance.

Particle Information Transmission

With the underlying grid-prism memory structuring warranting a 2D toroidal network, each

particle only maps to a subset of grid-points that could exist on at most 4 FPGAs. Therefore,

the particle information may need to be relayed over multiple FPGAs before it arrives at

all its destinations. Figure 6·3 depicts how particle information traverses a 4x4 2D toroidal

network.

Figure 6·3: Direct-Connect Particle Info Messaging
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From left to right, a message is first transmitted from a host to the host-node of the network.

The particle then traverses the network until it finds a home-node, that is, the closest node

to the host-node that contains grid-points to which a particle will be mapped. Part of the

message that gets passed is the particle’s nearest-floor-grid-point. Each node in the network

is aware of where in the overall grid its grid-points are located. It reviews the nearest-floor-

grid-point in the message to determine whether it is the home-node. If it is not, it passes

the message along to the node nearest to the home-node. When a node identifies itself

as the home-node for the particle information message, it locally stores the information

and relays the message to other nodes when a particle maps to grid-points spread across

multiple nodes. When appropriate, one of the two relay messages will be again relayed in

order for the particle information to be mapped to all its respective nodes. If the self-aware

nodes identify the port in which the information is passed over and combine it with the

particle location information in the message, only one message type is required to transmit

particle information.

Each node in the network needs to know when it can start its localized processing of

particle information. With a particle mapping to a minimum of one node, the message

used to map the last particle should be relayed to all nodes to signify the end of particle

information transmittal. Figure 6·4 shows how this additional message type is related across

a 4x4 2D toroidal network.

Figure 6·4: Direct-Connect Last Particle Info Messaging

The last particle’s information message is first relayed by the host-node to all its 2D neigh-

bors. Then, each self-aware node relays the message in a predetermined direction to avoid

unnecessary message duplication while minimizing the time for all nodes to receive the
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last-particle message.

Lastly, it should be noted that the grid-prisms need to be cleared out before each itera-

tion. This clearing is performed as particle information is being sent over to each FPGA.

FFT

In this network of grid-prisms, FFT in one dimensions is performed completely on chip.

FFTs in the other two dimensions require inter-FPGA communication. Figure 6·5 depicts

FFT messaging in the second dimension assuming a 4xY toroid.

Figure 6·5: Direct-Connect Second Dimension FFT Messaging

From top to bottom, the messaging for each node in a horizontal line is shown, message

traversal is shown from left to right. In step 0 each node possesses an FFT point that needs

to be passed to all other nodes. In step 2 each node passes its FFT point to its two nearest

horizontal neighbors. In step 3 the message passed horizontally forward is then relayed to

the last node in the line.

This two-forward-one-back messaging style is repeated until all nodes transfer all of

their points in a given FFT pencil to all the remaining in-line nodes. Each node contains

FFT-pencil ping-pong buffers to store the FFT points for a given pencil until all of them

have been received. Once the complete pencil has been received it can then enter an FFT

pipeline. The messaging of points for the next FFT pencil happens concurrent to the run-

ning of each node’s FFT pipeline. Each node duplicates the same FFT operation but only

stores results applicable to the subset grid-points it houses. Each node is assumed to have
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enough FFT pipelines and FFT pencil buffers to keep the network saturated while generat-

ing and storing FFT results.

Given the 2D toroidal connectivity of the network, FFTs in the second and third di-

mension can follow the same pattern, albeit transposed. Assuming that grid-point location

information is passed alongside the FFT-point data, the self-awareness of each node, and

the ability of each node to identify the optical port in which the information was passed

over, FFTs in the second and third dimensions result in the addition of one message type.

Force Computation

With a maximum of four nodes containing force information, Figure 6·6 captures the force

computation messaging of a 4x4 toroidal network.

Figure 6·6: Direct-Connect Force Computation Messaging

Partial force interpolation and summation is performed on each node that a particle maps

to. Next, each non-home-node transmits its partial force sum in the direction of the home-

node, performing additional summations along the way, when appropriate. The home-node

performs the last round of force summation, having received all partial sums from all non-

home-nodes, then transmits final sum in the direction of the host-node. Assuming particle

location information is passed along with the force data in each message, the self-aware

routing logic can use link identifiers to limit the amount of messages required to send force

information to one.
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6.2 All-to-All

This section evaluates a 3D MD grid distributed over multiple FPGAs connected through

an optical switch, covering scenarios where:

1. Each FPGA node supports one optical link.

2. Each FPGA node supports two optical links.

6.2.1 Architecture

In these two multi-FPGA network scenarios, each FPGA can support either one or two

bidirectional optical links. All links are connected up to an optical switch. Such FPGA

clusters are currently in active deployment (Plessl, 2018). Messages sourced by one FPGA

enter the switch and are routed to their appropriate destination.

Each node in this network is assumed to be mapped to a set of MD grid-points in the

form of the previously described grid-prism. In these network topologies the use of grid-

prisms only cuts down on the amount of inter-FPGA communication during the 3D FFT

phase of LR.

6.2.2 Inter-FPGA Messaging

The following sub sections describe the messaging strategies employed for all phases of

LR computation to allow for later performance analysis.

Particle Information Transmission

Figure 6·7 captures particle information messaging for the all-to-all network assuming that

the 3D grid is mapped to a 4x4 matrix of grid-prisms and two network links per node.



61

Figure 6·7: All-to-All Two-Link Particle Info Messaging

Much similar to the direct-connect toroidal network, a particle’s information is transmitted

from a host to the host-node, then to the particle’s home-node, then spread to additional

nodes when applicable. Alternatively, the host-node could transmit a particle’s information

to all nodes that a particle would map to sequentially, but doing so wastes the network’s

bandwidth potential, creating an unnecessary network bottleneck at the host-node. The

all-to-all connectivity allows for one-hop message transmittal from the host-node to the

home-node, allowing the message to arrive at its destination sooner.

Cluster synchronization by relaying the ’last particle’ message is also performed in a

similar fashion to the 2D toroidal network. Figure 6·8 shows one way the message can be

relayed.

Figure 6·8: All-to-All Two-Link Last Particle Info Messaging

Even with half the communication links as a 2D toroid, the system can be synchronized

after 4 relays.

Figure 6·9 captures particle information messaging for the all-to-all network with a

one-link-per-node constraint.
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Figure 6·9: All-to-All One-Link Particle Info Messaging

With the one-link-per-node constraint, a particle’s information cannot be locally broadcast

from its home-node. However, with slight hardware modifications, mapping data from the

home-node to the remainder of nodes mapped to a particle can happen in the same amount

of hops. The same can be said for system synchronization using the ‘last particle’ message,

details of which are shown in Figure 6·10.

Figure 6·10: All-to-All One-Link Last Particle Info Messaging

Four relays is all that is needed to synchronize the entire cluster even with each node sup-

porting one communication link.

The need for grid clearing is agnostic to network topology. Again, assuming that the

number of particles equals the number of grid-points and localizing that assumption to each

node, grid clearing can be performed as particle information is being distributed.

It should noted that there are current FPGA clusters where each node supports more

than two communication links (Plessl, 2018). Since particle information is stored at unique

addresses on each node, arbitration logic can be added to make multi-port particle infor-

mation memories, thereby doubling the bandwidth to both map particles to nodes and to

synchronize the cluster.
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FFT

Again, with the grid-prism-based node mapping 1D FFTs in one dimension can be per-

formed by all nodes individually in parallel, requiring only FFTs in the second and third

dimensions to require inter-node communication. Despite the all-to-all connectivity, max-

imizing throughput requires the inter-node FFT communications to follow the same topol-

ogy as shown in 6·5, in the two-link-per-node case. An all-to-all connected network with

one-link-per-node requires a slightly different messaging. Figure 6·11 details this method

for a 4xY matrix of nodes.

Figure 6·11: All-to-All One-Link Second Dimension FFT Messaging

From top to bottom, the messaging for each node in a horizontal line is shown, message

traversal is shown from left to right. In step 0 each node possesses an FFT point that

needs to be passed to all other nodes. Steps 1 to 3 relays the FFT points in a forward,

toroidal fashion. Doing so maximizes throughput while avoiding node contention, but ends

up requiring one additional relay than the two-link, all-to-all and direct-connect toroidal

networks.

Assuming that each node has enough ping-pong buffering and FFT pipelines, FFTs can

be run over a pencil of points while points for another pencil are being transmitted.

Force Computation

Force computation messaging for the all-to-all network with one or two links per FPGA is

very similar that of the direct-connect toroidal network, as seen in Figure 6·12.
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Figure 6·12: All-to-All Force Computation Messaging

The only difference with this messaging method and the one presented with the direct-

connect toroidal network is that once the home node sums together the forces acting on a

single particle, the sum is sent to the host-node in one hop.

In both the two-link-per-node all-to-all network and for all-to-all networks with more

than two links per node force computation could be parallelized, by additional summation

pipelines to take advantage of traffic over the additional network links. However, additional

hardware would need to account for the possibility of node contention when computing and

transmitting the forces on more than one particle in parallel.

6.3 Bidirectional Ring

For FPGA clusters without an optical switch, but with nodes that can support at least two,

but not four, links per node, the 3D MD grid can be overlaid onto a 2D matrix of nodes

connected in a ring.

6.3.1 Architecture

Again, mapping each node to a grid-prism subset of grid-points, as defined in Figure 6·2,

allows for the 3D grid to be mapped to a 2D matrix of network nodes. As shown in Figure

6·13, node connectivity snakes along the nodes primarily along one dimension, only
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Figure 6·13: Ring-Connected 2D Matrix FPGA Cluster Network

making orthogonal connections after reaching the final node in along the primary direction.

The last node is then lopped back to the first node to complete the ring.

6.3.2 Inter-FPGA Messaging

Without a network switch and with only two network links per node, inter-node commu-

nication is vastly different from the previous two architectures. The following subsections

describes the messaging methods for all phases of LR computation.

Particle Information Transmission

With two bidirectional links per node, there are two viable particle information messaging.

Figure 6·14 captures one of them. When a particle is mapped to one node, messages will

travel along the ring in the direction requiring the least amount of hops.

Figure 6·14: Ring Unidirectional Particle Info Messaging

The same can be said when a particle is mapped to multiple nodes. Figure 6·15 accounts
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for the other type of particle information messaging.

Figure 6·15: Ring Bidirectional Particle Info Messaging

With this type of message traversal it is determined that a particle maps to multiple nodes

and can be mapped in the least number of hops by broadcasting that message in both direc-

tions.

FFT

Once again, FFTs in one dimension can be performed on each node simultaneously tak-

ing advantage of the grid-prism organization of grid-points mapped to each node. The 1D

FFT performed along the primary dimension-traversal of node connectivity can follow the

method as described in Figure 6·5. The 1D FFT performed along the dimensional orthog-

onal to the primary dimension-traversal of node connectivity is a bit more complex. Figure

6·16 depicts message patterns for some of the nodes in the network as they relay their data

points to other nodes in a line orthogonal to the primary dimension traversal of the ring.

Regardless of the node’s location or messaging direction, it can to relay its FFT points to

two other nodes in the same orthogonal FFT line in 8 relay stages. This will be known

henceforth as a long message. A short message has only one destination requiring less than

8 relay stages. The exact number of relay stages of a short message is dependent on the

source node’s location in the ring and the direction of the messaging.
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Figure 6·16: Ring Orthogonal FFT Messaging

Through simulation, it was found that by:

1. Priming each node to send long messages in one direction while sending short mes-

sages in the other.

2. Configuring each node to prioritize the relay of information from other nodes over

transmitting its own information.

3. Toggling the type of message transmitted each time a new FFT point is sourced by a

node (for each direction).

That the the system achieved a steady state of repetitive system-wide message patterning.

Details of this patterning are depicted in Figure A·1 in the appendix. This repetitive pat-

terning means that nodes stay relatively in sync when it comes to what FFT pencils they

are actively operating over and temporarily storing. With adequate ping-pong buffering to

accommodate:

1. How far ahead certain nodes can be with regards to FFT processing relative to one

another.

2. The ratio of operational clock frequency between the network and the node.
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It’s possible to keep the network saturated while simultaneously running FFTs on each

node.

Force Computation

Figure 6·17 depicts how force computation messages traverse the network.

Figure 6·17: Ring Force Computation Messaging

When mapped partially to one node, the three dimensional forces are partially summed on

that node and then passed to next node closest to the host-node in a snaking fashion. This

inter-node partial summing is repeated until the second to last partial sum arrives at the

home-node for that particle. The last summation for that particle’s forces is then performed

inside the home-node and the final force values for that particle are then relayed to the

host-node.

6.4 Performance Analysis

The three aforementioned networks are evaluated by mapping an LR design that accom-

modates a 64x64x64 grid and 643 particles to a 4x4 matrix of nodes. Each node utilizes the

same amount of data precision as the single-FPGA LR design, that is, bo and and bq f are

the same in both cases. Again, the only differences between the networks are the number

of links supported by each node which lead to different interconnection strategies. Each

link is assumed to support a 100Gbps serial link. These assumptions, combined with the

measured performance of single-FPGA LR implementations, are then used in first order

approximations of system performance.
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After particle information is transmitted to all nodes, charge mapping and 1D FFT/IFFT

in one dimension are identical across all three networks. To that effect, the performance

of charge mapping and the 1D FFT and IFFT in that one dimension are analyzed here.

The remaining sections analyze each of the three networks with respect to particle infor-

mation messaging, FFTs/IFFTs in the second and third dimensions, and force information

messaging.

Once the information is cached, particle mapping to intra-node clustered grid memory

can begin. With 16,384 particles stored on each node, using the the same pipeline latencies

as the single-FPGA LR design, and assuming a 200MHz operating frequency, mapping can

be completed in 82.12µs.

FFT/IFFT in the one dimension can all be performed intra-node, but that FFT must be

along the longest the longest dimension of the 16x16x64 grid-prism each node is mapped

to. Making use of the equations derived for single-FPGA 1D FFTs, assuming that the

latency of the FFT IP in this longest intra-node dimension increases from what it was in

the 32x32x32, single-FPGA design (+64 clock cycles), and a 200MHz clock frequency, the

FFT and IFFT along this long dimension each consume 2.46µs of wall-clock time.

Direct-Connect Toroid

The direct-connect toroidal network architecture defined four unique message types, thus

each message must contain two bits for message type identification. The need for message

identification becomes more evident considering the variability in data being sent across

all message types. Now all messages require that grid-point information be transmitted for

message routing, but the true data fields for particle information messaging, FFT messag-

ing, and force messaging are 113 bits wide, 64 bits wide, and 96 bits wide, respectively.

For particle information transmission it is assumed that on average each particle mes-

sage arrives at its destination after 2.5 hops, 3.5 considering the 1 hop from the host to the

host-node. However, network traversal can be pipelined, therefore the time it takes to dis-
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tribute all particle information is equal to the number of particles multiplied by the one-hop

network latency, plus the network latency of mapping the last particle to all nodes minus the

latency of one hop. With one particle message per particle, and 2 message ID bits, 18 grid-

point ID bits, and 113 offset-charge-data bits per message, it takes about 348.659817µs to

transmit all the particle information. Considering the potential for node contention when

particles that map to multiple nodes, the link throughput can be halved to roughly account

for this network contention. Doing so, doubles the particle messaging time to 697.31634µs.

FFT/IFFT in the second and third dimension are transposes of each other, but are identi-

cal in terms of run-time. FFT messages contain 2 bits for message ID, 18 bits for grid-point

ID and 64 bits for complex data. With two relay stages until a message reaches all destina-

tions and 16 messages required for all nodes to start an FFT, all data for an FFT-pencil can

be delivered to all nodes in 26.88ns. With the FFT latency data captured from the single-

FPGA design, it takes 1.025µs to write the FFT results back to the clustered grid memory.

With 64 FFT pipelines per node, there is enough hardware to parallelize FFT computations

alongside of FFT message transmission. This FFT messaging scheme is also pipelined in

nature: as one message is located in a later relay stage, a newer message can be found at

an earlier relay stage. Following the basic pipeline equation, the time it takes to get all

messages to their destination is as follows:

tFFT MSGDCT23
= nnodegps ·d1hop +2d1hop −1d1hop

= nnodegps ·d1hop +1d1hop

(6.1)

or in words, equal to the latency of transmitting all messages one-hop plus the two-hop

latency of the network minus one hop. Knowing that FFT computations overlap with mes-

saging transmission, the overall 1D FFT/IFFT time needs to account for the latency of
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computing the last FFT/IFFT-pencil. Putting that all together results in:

tFFT DCT23
= tFFT MSGDCT23

+dinodeFFT 1D23

= nnodegps ·d1hop +1d1hop +dinodeFFT 1D23

= 16,384 ·
84

100 ·109
+

84

100 ·109
+1.185 ·10−6

= 14.9484µs

(6.2)

14.9634µs when accounting for the convolution following the FFT in the third dimension.

Force computation messaging is a bit more complicated to characterize. Assuming

there is one particle for every floor-grid-point means that 9,216 of the 643 particles forces

require two-staged relayed summing and 79,872 of the 643 particle forces sums require

single-staged relayed summing (see Figure 6·6). Halving the network throughput to ac-

count for contention, 116-bit force messages require 2.32ns to complete 1 hop. With a max-

imum hop count of 5.5 to account for the additional summation hops and for the average

message traversal from home-node to host, that results in 12.76ns for a partial sum message

to become a complete sum message and make its way to the host. With each node oper-

ating at 200MHz, this summation time can be thought of as an addition of three 200MHz

pipeline stages to the messaging latency per relay stage, call it ten 200MHz pipeline stages

to account for additional on-node latencies to retrieve potentially stored force information.

This pipelined nature of messaging allows network traversal to overlap with the each node’s

partial force computation. Plugging values into the classic pipeline performance equation,

the force messaging run-time is calculated to be 38.07364µs.

All-to-All

The all-to-all network topology, in both the one link per node and the two link per node

case, four unique message types are required. For particle information transmission, each

particle message arrives at its destination after 1 hop to the home-node. However network
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traversal can be pipelined, therefore the time it takes to distribute all particle information

is equal to the number of particles multiplied by the one-hop network latency, plus the

network latency of mapping the last particle to all nodes minus the latency of one hop.

With the same number of hops required to distribute the last particle message to all nodes

as the direct-connect 2D toroid network, the one link per node network takes the same

time to distribute all particle information, 348.65817µs, 697.31634µs, when accounting for

network contention. This messaging time can be halved in the two-link-per-node case,

assuming that the host can send particle information for two particles simultaneously.

In the two-link-per-node case, FFT/IFFT in the second and third dimensions is the same

as with the direct-connect 2D toroidal network, 14.9484µs, 14.9634µs when accounting for

the convolution following the FFT in the third dimension. The one-link-per-node case adds

an additional hop to transmit pencil data to all nodes, thereby adding 840ps of to the wall-

clock time of the two-link-per-node case for a total of 14.94924µs, 14.96424µ accounting

for the convolution following the FFT in the third dimension.

Force computation in the all-to-all network is similar to that of the direct-connect toroid

network except that each partial sum requires 3.5 hops to get to the host. This results in

an overall force messaging run-time of 38.069µs. In both the one-link-per-node and two-

links-per node it is assumed that each node can only output one force value per clock cycle,

offering no options to further parallelize the force computation messaging.

Bidirectional Ring

The bidirectional ring network comes with the need for 7 message types, thus requiring one

additional message ID bit per message.

Particle information messaging is similar to the other networks, only differing in the

number of hops required to distribute the last particle message to all nodes (7) and in the

number of bits per message (134). These slight differences result in a particle message run-

time of 351.28234µs. With this ring network there is no possibility for network contention.
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FFT/IFFT in the dimension parallel to the primary dimensional-traversal of node con-

nectivity matches the that of the direct-connect 2D toroidal network, but requires an extra

message-type bit, thus taking 15.11225µs to complete. FFT/IFFT in the dimension orthog-

onal to primary dimensional-traversal of node connectivity is similarly parallelized like the

other two networks, but 8 hops are required to get all pencil points to all applicable nodes.

That coupled with the addition of one message ID bit, FFT along this third dimension re-

quires 15.1182µs to complete, 15.1332µs when accounting for the convolution following

the FFT in the third dimension.

Force computation messaging for the ring network is again similar to that of the direct-

connect 2D toroid, except that the average hop count to the host-node is 10 hops and with

117 bits in a force computation message, each network hop takes 2.34ns, resulting in an

force computation messaging time of 38.41196µ.

6.5 Discussion

Figure 6·18 compares the best performing single-FPGA LR design that supports a

32x32x32 grid and 323 particles against the four multi-FPGA cluster LR designs that each

support a 64x64x64 grid and 643 particles. The rest of this section highlights some of the

results, discussing trends and oddities, then it goes on to discuss the cluster approach as a

whole.
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Figure 6·18: Single-FPGA and Multi-FPGA LR Design Performance Com-

parisons

Particle messaging was touched upon briefly when evaluating single-FPGA design, but
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not truly analyzed. With the prevalence of inter-node communication in the FPGA cluster

deployments of LR acceleration, it’s important to compare the performance messaging of

particle information across all LR deployments. Particle messaging is purely based on the

number of particles in the ensemble. The 32x32x32 design supports only 323 particles, so

naturally the overall particle messaging runs in less time than the FPGA cluster designs,

each of which support 643 particles. Even supposing that a single-FPGA design supporting

a 64x64x64 grid and 643 particles could run at the same frequency as the best performing

32x32x32 LR design implementation, it would take 1.372ms to transfer all particle infor-

mation into that single-FPGA. So as LR designs get larger, the benefits of FPGA cluster

networks are obviated.

A couple additional notes on the particle messaging comparisons:

1. The all-to-all network with two-links-per node offers the best particle messaging

solution because the flexibility in connectivity combined with the number of links

allows for the doubling of network bandwidth.

2. The data suggests that the bidirectional ring architecture performs better than most,

despite having less links and longer average messaging distances. The ring architec-

ture removes the possibility for contention allowing for the full network bandwidth

to be used in particle messaging performance approximations. The potential for con-

tention in other networks resulted in halving the bandwidth numbers when approxi-

mating particle messaging performance. Considering the assumption of one particle

mapped to each grid-point, approximately 34% of all particles to be mapped will map

to multiple nodes resulting in the potential for contention. That said, the halving of

bandwidth to account for contention seems overly pessimistic.

The benefits of FPGA cluster deployments are emphasized with respect to charge map-

ping. This LR phase is dominated by the number of particles in the system and though
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the analysis for FPGA clusters considers eight times the number of particles as the single-

FPGA analysis, the clusters outperform. This is due to the parallelism the cluster offers:

once particle information is distributed to all nodes, each node only maps 16,384 particles,

dividing the single-FPGA charge mapping run-time by the number of nodes in the system.

The downside of LR designs mapped to FPGA clusters can be seen when comparing

the run-times of the FFT phases. The partitioning of the 64x64x64 grid into a 4x4 matrix

of 16x16x64 grid-prisms allows 1D FFTs/IFFTs in the X dimension to be parallelized

without the need for inter-node communication. This parallelism coupled with the smaller

geometry of the grid-prism allows for comparable run-times for 1D FFT/IFFT in the X

dimension across all design deployments. FFTs/IFFTs in the other dimensions expose the

real drawback, but the pipelined nature of running the FFTs/IFFTs limits the detriment.

Despite the accommodation for more particles, the FPGA cluster deployments outper-

form the single-FPGA deployment with regards to force computations. The distribution of

the most force calculations is the driving force behind this improvement. Each cluster node

performs force computations over smaller, partial particle ensembles, while the network

essentially serializes all the messages generated in parallel at higher clock frequencies. On

the contrary, the single-FPGA deployment needs to account for all particles in the ensemble

while the messaging bandwidth is limited by the single force computation pipeline.

FPGA cluster based deployments are clearly the best strategy to accelerate LR com-

putations. The faster network speeds coupled with the distributed nature of the network

allows particle information to get transferred faster. The distribution of particles divides

charge mapping run-time by the number of nodes in the network. It also divides up the

force computation to almost the same degree. The only drawback is the inter-node commu-

nication requirement during FFT phases. However, the loss in performance is on the order

of tens of microseconds where as the benefits in other areas are on the order of 100s of mi-

croseconds. It should be mentioned that the per-node resource consumption can be smaller
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when compared to single-FPGA deployments, potentially resulting in higher operational

clock frequencies. The dominance of particle information on LR run-times can only be al-

leviated by providing more bandwidth: either higher-speed networks, more links per node,

more interconnection flexibility, or a combination thereof. Force computation messaging

also contributes largely to the LR run-times and are dominated by the bandwidth capabil-

ities of each node. Additional force computations per node has the potential to divide this

run-time by the number of pipelines. Outside of messaging, charge mapping is the next

most dominant components of LR run-times. Parallelizing charge mapping into multiple

pipelines could also reduce the run-times by similar factors.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

In this thesis LR accelerators of varying size were implemented using commercially off-

the-shelf FPGAs, with some of them capable of enabling MD simulations of hundreds of

nanoseconds of reality per day of wall-clock time. This was made possible by:

1. Developing a custom memory architecture and controller to transpose 3D memory

access topologies with each memory access. Doing so removes the need for whole-

sale data transposition between the several 1D FFT/IFFT phases of LR computation.

2. Developing a novel FFT pipeline strategy that exploits the full parallelism offered by

the aforementioned custom memory architecture.

This single-FPGA architecture was then extended to FPGA cluster-based architectures to

overcome both the capacity constraint inherent to a single-FPGA design and the perfor-

mance constraints of FPGA design in general.

While full ASIC implementations of LR accelerators easily outperform their FPGA

counterparts, they are cost-prohibitive when considering the technology nodes targeted for

better performance and their associated mask cost. Not to mention the engineering effort

required to build custom-sized memories, floorplan the design, implement Design for Test

(DFT) logic, run design rule checks, verify the implemented design against the simulated

design intent, and all the tool licensing costs associated with all these ASIC design tasks.

FPGAs also have the flexibility of being reprogrammed, allowing for design enhancements
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and re-configurations without having to spin new silicon or at the very least incur the long

turnaround times typical of ASIC design flows. With FPGA clusters becoming more pub-

licly available, the cost of mapping designs to pre-existing FPGA networks is much more

viable than creating a custom network whether choosing to use ASIC-based nodes or com-

mercially available FPGA-based nodes.

The implementation and analysis of single-FPGA LR designs exposes areas critical to

both performance and resource consumption, allowing for the identification of solutions in

both of these areas, with the main solution being the distribution of the computation. To

be clear, the distribution of computation does result in a many-fold increase in hardware

consumption. Solutions that reduce hardware consumption do so at a per-FPGA level.

Moving to FPGA cluster based deployments reduces the run-time of certain LR phases via

parallelization, but is also cuts down on data transmission time to and from the accelerator

hardware.

Analyzing different FPGA clusters in terms of network architectures also identifies so-

lutions for performance enhancement of distributed LR acceleration. Better operational

clock frequencies and network bandwidth can come in the form of newer, smaller, faster

technologies or hardware with more features becoming commercially available. Additional

performance increases can come in distributing the computation over more nodes, but it’s

the transmission of data to and from these nodes that dominates the run-time of LR itera-

tions. The amount of data that needs to be transmitted can only be counteracted with more

bandwidth.

7.2 Future Work

Building off of what was developed in the context of this thesis, the following is a list of

future work that can be performed:

1. The charge mapping hardware needs to be updated to achieve near one-particle-per-
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clock-cycle mapping performance. Currently the hardware stalls the pipeline which

is detrimental to performance. At the very least, the stall logic can be removed under

the assumption that particles are presorted to avoid pipeline hazards when mapping.

2. The grid clearing mechanism of the LR design should be enhanced to divide the

time required to clear the grid by the number of access ports on the clustered grid

memory. Doing so will no longer require LR iterations to have at least as many

particles as there are grid-points. Such a constraint becomes more cumbersome when

considering that distributed LR computation networks could have nodes where the

localized number of particles is less than the localized number of grid-points. The

resultant 1:64 particle-to-grid-point ratio constraint seems reasonable. If not, then

grid clearing must be somehow serialized inside LR iterations, thereby increasing

computational run-times.

3. As grid sizes increase, the MUXing inside of the clustered grid memory and Green’s

ROM may find itself on the critical path. The one-hot MUXing employed in both

those sub-modules may need to be replaced with faster MUX implementations.

4. To reduce the amount of resources consumed by the Green’s ROM, the need for

toroidal shift MUXIng in the X and Y dimensions should be removed. The Green’s

ROM is only ever accessed along the Z dimension, always in an aligned fashion.

5. The single-FPGA hardware should be integrated into a complete MD system, either

on a single-FPGA (for demonstration purposes) or as part of a network of FPGAs

(for more practical purposes). Doing so may result in architectural changes to ease

integration or even fix real, previously unobserved issues with the design.

6. The FFT pipelining hardware should be updated to not constrain the configurability

of the RTL such that the minimum grid size be the 16, four times the number of

nearest-neighbors a particle has along one dimension.
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7. The addition of charge mapping pipelines to the single-FPGA LR design should be

explored. This has the opportunity to divide charge mapping run-times by the num-

ber of pipelines, but it does introduce issues when particles in each pipeline map to

overlapping subsets of grid-points.

8. As with charge mapping pipelines, similar can be said for the force computation

pipelines.
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Appendix A

Ring Network Orthogonal FFT Messaging

Figure A·1 captures the results of simulating the orthogonal FFT messaging of the LR

cluster described in Section 6.3. Each row in the table lists the result of the message relay

in both the forward and reverse directions for all nodes in the ring. Each cell in the table

contains a message identifier with the following format: N#M#[L|S]. N# is the source node

identifier. M# is the message identifier respective to the source node. L refers to the long

message type which gets transmitted to two nodes in the FFT line orthogonal to the primary

dimension traversal of the ring. S refers to the short message type which gets transmitted

to one node in the FFT line orthogonal to the primary dimension traversal of the ring.

Not shown, but implied from the third row of the table, are the types of messages

each node sources initially. Messages that traverse the ring traverse the table diagonally,

wrapping at node 1 in the reverse direction and 15 in the forward direction. Once the

message arrives at its final destination, the destination node can then inject its next data

point into the ring. After 8 message relay stages, the system reaches a steady-stage message

pattern that repeats every 24 relays stages. It is observed that at the start of every repetitive

pattern series, the range of message IDs across the system is 1. This maximum range limit

means that no one node is contains any more incomplete FFT pencils than any other node

and that each node is performing an FFT over the same message set within a couple of relay

stages of each other. This relative synchronicity means that each node can be configured

with the same adequately sized buffer for FFT points and that the network can be saturated

with messages while each node is computing FFT results.
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Figure A·1: FFT Messaging Table for Ring-Connected 2D Matrix FPGA

Cluster
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