View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Boston University Institutional Repository (OpenBU)

Boston University

OpenBU http://open.bu.edu
Global Studies BU Open Access Articles
2020-11

Adding measurement error to
location data to protect subject
confidentiality while allowing ...

This work was made openly accessible by BU Faculty. Please share how this access benefits you.
Your story matters.

Version Published version

Citation (published version): [ Mahesh Karra, David Canning, Ryoko Sato. 2020. "Adding
measurement error to location data to protect subject confidentiality|
while allowing for consistent estimation of exposure effects." Journal
of the Royal Statistical Society: Series C (Applied Statistics), Volume
69, Issue 5, pp. 1251 - 1268. https://doi.org/10.1111/rssc.12439

https://hdl.handle.net/2144/41989
Boston University

Boston University Libraries

OpenBU


https://core.ac.uk/display/387583536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bu.edu/disc/share-your-open-access-story/

Journal of the Royal Statistical Society

Series C
Appl. Statist. (2020)

Adding measurement error to location data to
protect subject confidentiality while allowing for
consistent estimation of exposure effects

Mahesh Karra
Boston University, USA

and David Canning and Ryoko Sato
Harvard T.H. Chan School of Public Health, Boston, USA

[Received July 2018. Final revision July 2020]

Summary. In public use data sets, it is desirable not to report a respondent’s location precisely
to protect subject confidentiality. However, the direct use of perturbed location data to construct
explanatory exposure variables for regression models will generally make naive estimates of
all parameters biased and inconsistent. We propose an approach where a perturbation vector,
consisting of a random distance at a random angle, is added to a respondent’s reported geo-
graphic co-ordinates. We show that, as long as the distribution of the perturbation is public and
there is an underlying prior population density map, external researchers can construct unbiased
and consistent estimates of location-dependent exposure effects by using numerical integration
techniques over all possible actual locations, although coefficient confidence intervals are wider
than if the true location data were known. We examine our method by using a Monte Carlo
simulation exercise and apply it to a real world example using data on perceived and actual
distance to a health facility in Tanzania.

Keywords: Data privacy; Measurement error; Monte Carlo simulation; Numerical integration;
Tanzania

1. Introduction

Many data sets involving human subjects contain sensitive information and require the pro-
tection of subject confidentiality. This protection of subject confidentiality can, however, limit
access to the data, which in turn may limit the scope for valuable research. A common approach
to addressing this issue is to make available public use data sets that mask, or perturb, informa-
tion that would enable the direct identification of subjects. However, perturbing reported data
introduces measurement error, and it is well known that measurement error in an explanatory
variable in a regression usually biases the estimate of its coefficient towards zero (attenuation
bias) and can render the coefficient estimates on all variables inconsistent (Aigner, 1973; Carroll
et al., 2006; Hausman, 2001). We address the issue of perturbing reported public use data in
a way that protects subject confidentiality while also enabling external researchers to conduct
consistent and unbiased estimations of effects.

Although the general issue is well known, we focus on the important special case of the
geographic co-ordinates of the respondent’s location. Reporting the exact co-ordinates of a
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respondent’s household will clearly identify the individual; however, perturbing the reported
location will introduce measurement error when exposures that depend on location are calcu-
lated. Monte Carlo simulation studies of the effect of using perturbed location rather than actual
locations to measure the effect of distance to a facility have shown a large downward bias in
parameter estimates (Arbia et al., 2015). Comparable results were found in a simulation study
where the actual household location data were known and results by using the actual locations
were compared with those by using perturbed locations (Elkies et al., 2015). Using data from
South Africa, the study found that imposing a scrambling radius of up to 5 km on household
co-ordinates yielded overestimates of average distances from households to the nearest clinic
or school by about 5%, and corresponding regression coefficients on the mismeasured distance
variables were up to 36% smaller than the true effects. In reconciling these results with the exist-
ing empirical literature, the extent to which the evidence of the effect of proximity to services on
service utilization (e.g. healthcare seeking or school attendance) and other outcomes remains
mixed may, to a large degree, be explained by the size of the potential attenuation bias that is
induced by mismeasured distance. On the one hand, studies that have calculated distance to the
nearest health facility by using perturbed location data from data sets like the demographic and
health surveys (DHSs) have found that distance is not significantly associated with outcomes
such as child mortality (Lohela et al., 2012). In contrast, studies that used actual distances to
the nearest health facility found positive and significant effects of increased proximity to care
on both health service utilization (facility delivery or receipt of antenatal care) and mortality
outcomes (Schoeps et al., 2011; Karra et al., 2017).

Existing approaches do not fully solve the problem of estimation of distance effects by using
perturbed location data because of the complexity of the problem. For example, although it can
be shown that the expected measurement error in distances has positive mean and is bounded
when measuring the distance to a single fixed point (Elkies et al., 2015), when measuring distance
to the nearest of a set of facilities, it is possible that the ‘nearest’ facility may change when noise
is added to the household location, and the distribution of the errors that are induced depends
on the precise locations of the facilities. If we assume that the distributions of actual distances
and of the measurement errors in distances that are induced by using perturbed locations are
independent and normally distributed, then we can apply standard regression calibration meth-
ods (Warren et al., 2016). However, none of these assumptions are true (Arbia et al., 2015;
Elkies et al., 2015), which makes this method unlikely to solve the problem. We investigate how
to perturb location data and undertake consistent estimation with this perturbed data for the
case of measuring the relationship between measured distance to facility and subjective dis-
tance. However, our method can be more generally applied to any estimation problem where an
exposure variable varies with the true location of the household.

The issue that we address in this study is very closely related to the general problem of estima-
tion with measurement error in an explanatory variable. Various approaches have been proposed
for dealing with such measurement error, including regression calibration (Hardin et al., 2003;
Spiegelman et al., 1997) maximum likelihood methods (Rabe-Hesketh et al., 2003a, b) and, most
recently, Bayesian Markov chain Monte Carlo algorithms (Goldstein and Shlomo, 2020). Usu-
ally, measurement error is inadvertent and unknown, and the structure of the error is estimated
from replication or validation data. In our approach, as in Goldstein and Shlomo (2020), we
have the advantage that the structure of the measurement error that is added to protect subject
confidentiality is known and can be shared with external researchers. This removes the need for
replication or validation data, provided that the error generation process is replicable.

Perhaps the closest parallel in the literature to our approach is the use of randomized response
or list experiment methods to elicit information on sensitive topics, such as sexual activity or
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health status, where a respondent may not want to reveal information directly to the interviewer.
For example, a respondent can be asked to throw a die privately and to respond ‘no’ on a 1 and
‘yes’ on a 6, but to answer the sensitive question truthfully on other numbers. This randomized
response approach clearly introduces measurement error in the response but helps to maintain
subject confidentiality with respect to their status. If people follow the protocol as described,
the fact that the error structure in the reported variable is known can be used to construct
consistent estimates of the effect of status as an explanatory variable in a regression (Blair
et al., 2015). Similarly, in list experiments, the respondent provides the aggregate number of
‘yes’ answers to a list of questions that may include a sensitive question rather than answer
the sensitive question directly. Comparing this with responses by others to the same list, but
without the sensitive question, provides noisy evidence on the status of the subject with respect
to the sensitive question which can then be used to undertake consistent estimation (Imai et al.,
2015).

Our approach is based on the fact that we can consistently estimate the parameters of a linear
regression so long as we can first obtain the expected value of the true variable of interest given
the perturbed data for each observation. We show that we can construct this expected value by
integrating over all the possible actual values of the true location, weighted by the conditional
probability that the location is correct given the observed perturbed data and other observed
variables in the data set. These conditional probabilities can be derived provided that we know
both how the measurement error is generated, and we have a prior distribution of the true
variable for observations in the data set. Essentially, we replace our perturbed variables with
new variables that contain only Berkson errors that allow consistent estimation in linear models
(Fuller, 2009). Although we obtain consistent estimates, we show that our parameter estimates
are less precise (i.e. have larger confidence intervals) than those estimates that could be obtained
if we knew the true values of the variable in the survey. In addition to knowing the distribution
of the perturbation, our approach requires an independent source for obtaining the underlying
true distribution of the household location data. We require a population density map for the
unconditional probability that an individual resides at a particular location.

In Section 2, we derive our theory that enables consistent estimation based on replacing the
unknown true exposure with the expected value of the exposure given the reported perturbed
location. We describe a method for calculating the expected value of the explanatory exposure
variable based on numerical integration over all possible true locations. We show how the method
can be applied to the case of perturbing household location data by a random distance at a
random angle, and we conduct a Monte Carlo simulation study of the effect of distance to
nearest facility on healthcare utilization to show that our method overcomes the bias in the
estimates that results from using perturbed location data directly.

In Section 3, we apply our method by using survey data from Arusha, Tanzania. In this data
set, we have household locations as well as the locations of family planning health facilities, and
we estimate the association between the measured distance to the family planning facility that is
visited by the respondent (our explanatory variable) and the respondent’s perceived (subjective)
distance to the facility. We first estimate the association by using measured distances that are
calculated with the actual household location data and then using measured distances that are
calculated with perturbed household location data, where we add a uniformly distributed ran-
dom distance at a uniformly distributed random angle to the measured household co-ordinates.
We compare these results with the results from our numerical integration method, which de-
rives consistent estimates with the perturbed data. We also investigate the effect of changing
the maximum possible location perturbation and of changing the grid mesh that is used for the
numerical integration on the estimates.
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In an on-line appendix, we provide three examples that illustrate how our method can be
used in other cases where data are masked to protect confidentiality. We begin with the example
where the respondent’s location is not reported as a point but is coarsened to an area, such as
a zip code, state or region. We also give the similar case where a single continuous variable is
reported as lying within an interval. Our final example is the case in which a normally distributed
noise term is added to a normally distributed underlying variable, and we show that our method
gives results that are the same as using the standard regression calibration approach but with a
known measurement error structure.

The programs that were used to analyse the data can be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets.

2. Theory

We begin with a simple case showing how perturbed data can be used to generate consistent
estimates in general. Suppose that a variable that is reported with error has a true value that is
a real number x drawn from the set X and we wish to estimate a relationship of the form

yi=a+Bg(x;) +vzi+e& 9]

where y; is the outcome, the exposure g(x;) is a known function g of the variable x;, z; is a
covariate (generalization to many covariates is straightforward) and ¢; is a random-error term
with mean 0 and which is uncorrelated with both x; and z;. In thismodel, x; and z; are realizations
of random variables. In what follows, we assume, for simplicity, that the errors ¢; in equation
(1) are independent and identically distributed and follow a normal distribution. In the data, x;
is not observed, but we do observe m;, which is a perturbation of x; and potentially conditional
on z;, where we assume that the probability density function of the error generation process,
which is denoted p(m|x, z), is known.

It is well known that simply replacing x; with m; will typically make the results estimates of
equation (1) inconsistent and biased. However, suppose that we can calculate the expected value

E[g(xi)lmi,zz‘]=/X9(X)P(XImz',Zi)dx.
Now set

ui=g(x;) — E[g(xi)|m;, z;].
Here, u; is the gap between the true value g(x;) and our calculated expected value.
Since g(x;) = E[g(x;)|m;, z;] + u;, we can rewrite the estimating equation as
yi=a+BE[g(x)|mi, zi]+7zi +vi, v = [u; +&;. 2

For the linear model this regression calibration approach, replacing the perturbed exposure
with the expected value of the true exposure given the perturbed measure, is known to produce
unbiased and consistent estimates (Carroll et al., 2006). To see this, we note that, by the law of
iterated expectations, we have for any m; and z;

Elg(x)|m;, zi]= E[{ E[g(x;)Im;, zi] +u; } |m;, zi]1= E[g(x;)|m;, z;]+ E[uilm;, z;].

Hence, we have E[u;|m;, z;]=0 for all m; and z;, and we see that u; is an error term with expected
value 0 for all values of m; and z; and is therefore uncorrelated with both m; and z;. Similarly
for all m; and z;,
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E[u;i|E[g(xi)Im;, zi]]= E[{g9(x;) — E[g(x))|m;, z:]}| E[g(xi)|m;, zi]]
= E[g(x;)|m;, zi] — E[g(x;)|m;, zi] =0.

Hence, the error term in equation (2), v; = Su; + €;, is mean 0 and uncorrelated with either of
the explanatory variables, E[g(x;)|m;, z;] or z;. It follows that, by replacing the unknown g(x;) in
the regression with E[g(x;)|m;, z;], we can estimate equation (2) by using standard ordinary least
squares methods to obtain consistent and unbiased estimates of «, 5 and . Moreover, since all
of the classical assumptions of ordinary least squares are satisfied following the correction, the
standard errors of the parameter estimates will also be unbiased and consistent.

Although we have unbiased and consistent estimates, the variance of the error term v;, using
our calculated expected values of the explanatory variable, will be larger than the variance of the
error term &; when estimating using the true values. This will make our estimates less precise, and
we would expect to obtain larger standard errors than if we used the true explanatory variable.
However, although our estimates are less precise, the standard errors will be correctly estimated,
and hypothesis tests will be correctly sized and will have the correct type 1 error rate.

Our results depend on the fact that the underlying relationship that we want to estimate is
linear. There is a large literature applying this regression calibration approach in non-linear
models when the consistency and unbiasedness results do not hold, though in practice the bias
in non-linearity is often found to be small (Buonaccorsi, 2010; Carroll et al., 2006).

To calculate E[g(x;)|m;, z;], we can use Bayes rule to give

p(milx, zi) p(x|zi)

g(x) dx. 3)
/Xp(milx, zi) p(x|z;)dx

ElgCx)|mi, zi] = / 900 p(xlmi, zi)dx = /
X X

We can calculate this expectation, provided that we know the exposure at each possible true
value x given by g(x), the mechanism that was used to induce the error structure, p(m;|x, z;),
and the underlying probability density function of the true values x given z;, given by p(x|z;).
It is important to condition the expectation on covariates when they are present since they may
affect how the perturbed variables are generated. Again, by Bayes rule, we have

_ p(X) p(zilx)
pxlzi)=——"
p(zi)

and hence

p(mi|x, z;) p(zilx) p(x) d. @

E[g(xi)|miszi]=/ g(x)
X /X p(mi|x, zi) p(zi|x) p(x)dx

This reduces the issue of knowing p(x|z;) to knowing the unconditional population density at
each point x, and knowing the probability of observing the covariate z; conditionally on being
at that location.

In what follows, we assume for notational simplicity that we estimate a model without co-
variates so that we have

Elg(ep)my]= /X 900 p(xlmy)dx = /X pimil)p(x)

g(x)
/X p(mi|x) p(x)dx

dx. ®)

Although this can be calculated in principle, it may be difficult to calculate analytically if the
functions are complex. For complex cases, suppose that we divide the range of x, given by
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the interval [Xmin, Xmax], into an evenly spaced grid with S+ 1 points and S intervals, at x; for
s=0,...,8, where x) = xpj, and xg = xmax. Let the mesh of the grid be denoted as

Xmax — Xmin
S
Then, we have that, for all ¢ > 0, there is an &g > 0 such that, for 4 < h(, we have

h= |xx+1 —X5| =

. S—1 .
A p(m;il|x)p(x) dx— Z 9(xs) S_Ii(mt |x5) p(xs)h

g(x)
/X pmlOp@dx 0N e e

s=0

by the definition of the Riemann integral, provided that the functions g(x), p(m;|x) and p(x)
are continuous almost everywhere, i.e. the set of points at which there are discontinuities is of
Lebesgue measure zero. For example, functions with any finite set of discontinuities are con-
tinuous almost everywhere (Rudin, 1976). If the range of x is infinite, then we can replace the
summation with fixed limits [xin, ¥max] and we can sum over a wider range as S increases, i.c.
[*min (S), xmax (S)]. Provided that this range goes to oo, while the mesh converges to 0, then,
as § increases, we shall obtain the same result. It therefore follows that we can approximate
the continuous integral arbitrarily closely through numerical integration by taking a large
number of grid points §, with sufficiently small mesh /4, over all possible values of x. There
are many algorithms, such as importance sampling and those available through R functions
stats::integrate and cubature: :hcubature, to approximate the integral by numer-
ical integration in equation (5). We code our approach in Stata and apply it to a spatial data
example below.

This approach generalizes straightforwardly to the case of multiple variables measured with
error. In the case of perturbed location data, there are two spatial co-ordinates (x;1, x;2) measured
with error where we observe only the reported co-ordinate pair (m;1,m;2). To make things
explicit, suppose that the actual exposure at the true location is g(x;1, x;2) and

yi=a+Bg(xi,x2) +&. (6)

Let p{(m;1,m;2)|(x1,x2)} be the known distribution of the reported measurement given the true
co-ordinate pair (x;1,x;2). For each observed pair (m;;,m;»), we wish to calculate

E[Q(Xl,m)l(mil,miz)]:/x/Xg(X1,Xz)P{(xl,)Q)I(mil,mz'z)}dmdX2 N
2 1

=/ / g(x1,x2)
X, J X1 /
X>

We need to know the underlying joint distribution p(xj,x>), a population density map, to
calculate this expectation. Given these expectations, we can then estimate

yi=a+BE[g(x1,x2)|(m;1, m)]+ v; &

where, as before, the expectation is uncorrelated with the error term v;, so this equation can be
estimated by standard methods.

We propose to perturb the location data by adding a random distance at a random angle.
Suppose that we have true location data for an individual i given by a pair of co-ordinates
(xi1,x;2). These co-ordinates will exactly identify the location of the individual. To protect

p{(mi1,mp)|(x1,x2)} p(x1,x2)
/XP{(mil,mz'z)l(m,m)}l?(xl,X2)dX1dX2
1

dxpdx;.
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respondent confidentiality, we perturb these co-ordinates by a random angle that is uniformly
distributed over 0 to 27 rad and by a random distance that is uniformly chosen between 0 and
6 km. The resulting displaced co-ordinates for this respondent are given by (m;,m;>), which are
then shared with the external researcher. It is straightforward to see that the probability density
function of the perturbed data given the true data is

p{mi,m)|(xj1,x2) }
0 if o/{(mi1 —xi1)* 4 (min —xi2)*} > 6, )

= 1 : N (2
278/ {(mi1 — xi1)% + (miz — x2)2} if /{(m;1 —x;1)* + (mjpp — x;2)"} <6.

Now suppose that we have a set of W facilities at locations ry, = (ryy1, ry2) forw=1,..., W. These
may represent W health facilities or other locations that may affect the outcome of interest. The
function g is given by the Euclidean distance from the individual to the nearest exposure unit
(e.g. the nearest health facility), which is defined as follows:

g(xi,xi2) =min D[(xit, xiz), (rut, ru)] =min it =)’ + i =rw2)?}. - (10)

We have chosen the function g(x;1, x;2) as the Euclidean distance between the household location
and the nearest health facility. However, the exposure g(x;1, x;2) can be defined by the researcher
as any function of the true location, e.g. the shortest distance by road to a facility, or a measure
of air pollution at the location (x;1, x;») if the researcher were investigating environmental effects.

We wish to estimate the relationship between the true minimum distance to a facility and some
outcome y; given by equation (6). If we have the true location data, we can run this regression
and produce the coefficient estimates &, and 3,. A naive estimation of the equation above would
use the reported location data (m;1,m;7) and run the following regression:

Yi=0om + Bng(mii,mp) +v; (1)

where the function g(m;j,m;>) is the minimum distance from a reported location (m;1,m;?)
to a facility. The estimates ¢&,, and Bm based on this approach have been shown to be biased
and inconsistent. Using our method, we take each possible true location for the individual and
calculate the minimum distance from this location to a facility. We then calculate the expected
minimum distance on the basis of the probability that each location is the true location given
the observed perturbed location.

Exact calculation of this integral is not possible. However, we can approximate this expectation
by using our numerical integration method by taking a grid of points (x’;, x,) for j=0,...,§
and k=0, ..., S that covers the complete (x;1, x;») space. Let values of eacfl co-ordinate lie in the
range [0, X]; then we have {x(; =0,...,x; =X} and {x;, =0,...,x%, = X}. With equal spacing
h on each axis, that covers all possible locations of the individual, we can calculate

S=18-1 p{(mil»mi2)|(x/'lax;(z)}p(x/'pxl/cz)hz
E[g(x1,x)|(mit,m)]~ 3 30 9(x1, X0) <=1 =57 L
j=0 k=0 Zj:() Zk:O P{(mil,miz)|(Xj1,xk2)}17(xj1»xk2)h

(12)

where the approximation becomes arbitrarily good as the mesh size 4 declines to 0. Given this
expectation for each individual, we can calculate the effect of the expected minimum distance
on the outcome given by equation (8). Our theory implies that these corrected estimates &, and
/3, will be consistent.
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We demonstrate the advantage of this approach by using a Monte Carlo simulation. We
first generate a 100 x 100 grid space over which 100 health facilities and 1000 respondents are
randomly located. In particular, we generate 100 facilities at locations ry, = (r,,1, Fy2) for w=
1,...,100 where each co-ordinate is randomly and uniformly distributed in the range (0, 100),
1.e. ryt, w2 ~ U(0, 100), and we similarly generate 1000 respondents to be at their true locations
x; = (xi1, x2), where x;1, x;2 ~ U(0, 100).

We calculate the minimum distance from each facility to the true respondent location g(x;q,
x;2), and we then generate an outcome variable y;, which we define by equation (6), by the fol-
lowing relationship:

vi=1+1xg(xi,xp)+& (13)

where &; ~ N(0, 1) is a randomly drawn error term, i.e. we generate the data on the assumption
that the true values of the parameters are «=1 and g=1.

We then simulate perturbed location co-ordinates to their new location m; = (m;1,m;). We
displace the respondent co-ordinates by a random distance d that is uniform in the interval
[0, 5] and by a random angle that is uniform on the interval [0, 27]. This displacement algorithm
implies that the probability density function of the perturbed data given the true data is defined
by equation (9), with 6 = 5. Since our population is uniformly distributed on the grid and the
mesh is uniform across the 100 x 100 space, the prior probability P(x/jpx,;(z) and mesh terms
cancel and our expectation of the minimum distance (equation (12)) simplifies to

S—15—1 p{mi,mip)| (X}, x5}
E[g(x1,x)[(mi,m)]~ 37 37 9(¥j1, X)) 5757 ’ TS
=0 k=0 120 2okmo PLmin,min) (X1, x30) }

Table 1 presents summary statistics of the estimated parameters from this simulation exercise,
in which we run 1000 iterations over a grid mesh length of =1 (a 100 x 100 mesh space) to
generate empirical distributions for the parameter estimates. The distributions of the estimated
values of ( for the three approaches are shown in Fig. 1. We begin with regressions using the true
location data. As expected, the mean of the estimates &, and BX based on the actual minimum
distance data are very close to the true values of « =1 and = 1. Variation in the estimates in each

Table 1. Distance to nearest facility effect estimates: Monte Carlo simulation

resultst
Parameter ~ Mean  Standard ~ Minimum  Maximum  Typel RMSE
deviation error

[;’X 0.9997 0.0094 0.9703 1.0301 0.052  0.0094

Ax 1.0004 0.0587 0.8193 1.1965 0.042 0.0587

Om 0.8604 0.0151 0.8112 0.9085 1.00 0.1404

Gm 1.7238 0.0951 1.4458 2.0546 1.00 0.7300
- 0.9920 0.0170 0.9427 1.0460 0.054  0.0188

Qe 1.0524 0.0945 0.7785 1.3634 0.029 0.1080

N 1000

+Based on 1000 replications. The x-subscript refers to estimates based on the actual
location data; the m-subscript to estimates based on perturbed location data. The
c-subscript gives estimates based on the corrected data, the expected distance to
the nearest facility. The column type 1 error reports the proportion of simulated
iterations for which a hypothesis test rejects the true parameter value (a=1or 5=1)
at the nominal 5% confidence level.
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Fig. 1. Empirical distributions of parameter estimates for 3 from Monte Carlo simulation, 1000 iterations:
, distribution of 5 based on the true explanatory variable; , distribution of /3 based on the per-
turbed explanatory data; , distribution of 3 based on the expected value of the explanatory data; |, true
parameter value, 5 =1

simulation is because we are estimating with a finite sample of 1000 household observations.
The standard deviation of the estimates is small and Fig. 1 shows that the range of the estimates
is small and is fairly symmetrical around the true value. We reject the null hypothesis that 3=1
at a 5% confidence level close to 5% of the time, which indicates that the hypothesis tests are
correctly sized.

We then use simulated data in which the reported locations are perturbed by a 5-km random
distance at a random angle. When we run regressions using the perturbed location data to
construct minimum distances, we find that the estimate 3,, is biased downwards. The mean of
the estimate is well below the true value of 3= 1; in fact, the estimated value is below 1 in all 1000
simulations that we run. The estimate of the intercept &,, is correspondingly biased upwards.
We always reject the null hypothesis 5=1 at a 5% confidence level in all 1000 simulations in
spite of the fact that it is true, thereby indicating that this naive model may be very misleading
for inference.

Finally, we apply our numerical integration method in each simulation to construct the ex-
pected distance to the nearest facility given the perturbed household location. When we use this
expected value as a regressor, the mean of the estimates by using these corrected data, &, and
(3. are again close to the true values of =1 and 3= 1. However, the standard deviations and
the ranges of the estimates are somewhat larger than what are observed for the true minimum
distance data, which are expected given the greater noise in the regression error when using the
corrected explanatory variable. We again reject 5 =1 at a 5% confidence level close to 5% of
the time, which suggests that we have valid confidence intervals and correctly sized tests when
using our corrected data.

The final column of Table 1 presents the root-mean-square error (RMSE) for each estimator,
showing that using the true data gives the smallest RMSE whereas our corrected estimator has a
somewhat larger RMSE. Moreover, estimates with the naive estimator with the perturbed data
have a much larger RMSE. Fig. 1 shows the empirical distributions of the estimated values of 3
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for our three estimators. Fig. 1 shows graphically that the estimates based on the actual data are
centred on the true value 5 =1, whereas those estimates that are based on the perturbed locations
give systematically lower estimates of the effect size. When using our corrected data, however,
the estimates are again, on average, close to the true value g =1, although the distribution of
the coefficient estimates is wider than with the true data.

3. Application: respondents’ perceived (subjective) distance to facility and
measured distance to facility in Tanzania

We apply our method to real spatial data. Our location data on respondents were gathered as
part of an evaluation project that was conducted with women of childbearing age in two areas of
the Arusha region of Tanzania in 2017 and 2018. As part of the project, a complete household
census of each area was taken, and then a random sample of households with at least one
woman aged 1644 years was selected for the survey. As part of the data collection process for
the evaluation, interviewers asked respondents to estimate the distance from their household
to the family planning health facility that they used. In addition, interviewers recorded the
Global Positioning System co-ordinates of each sampled household by using hand-held tablets.
We match these household location data with facility census data that were collected by the
Ministry of Health in Tanzania, which included Global Positioning System co-ordinates of
all the family planning health facilities in Tanzania in 2016 (Tanzania Ministry of Health,
Community Development, Gender, Elderly, and Children, 2018). Using the household survey
data and the health facility census data, we measure the distance from respondents’ households
to the family planning facility that they report using.

Fig. 2 shows the location of health facilities and respondents’ distances to their facilities
on a 100m x 100m grid of locations in our two areas of Arusha. Descriptive statistics of our
sample are presented in Table 2. The average perceived distance to a facility is 3.6 km, though
the range of perceived distances to the family planning facility varies considerably, with some
respondents reporting perceived distances of up to 45 km. The average measured distance from
a respondent’s household to her visited family planning facility is 2.5 km. We again observe

libor

b . >

A
| N
i S

. TR
T ' .o ihd

# oo wedt, — .
9 een M Usha
»;—fi——."" .o & .
.

- High : 5.4

. i -Low:0

Naberera-Road

Fig. 2. Map of distances to health facilities in Arusha, Tanzania: the dots represent family planning health
facilities, and the heat map presents the distance from a household to the family planning facility (in kilometres)
on a 100m x 100 m grid
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Table 2. Descriptive statistics on perceived and measured distance to a family planning facility, Tanzaniat

Variable N Mean  Standard ~ Minimum — Maximum
deviation

Subjective distance to family planning facility (km) 820  3.561 5.119 0.250 45.000

Measured distance to family planning facility (km) 820  2.437 2.060 0.042 9.956

log(subjective distance to family planning facility) (km) 820  0.609 1.165 —1.386 3.807

log(measured distance to family planning facility) (km) 820  0.533 0.902 —3.161 2.298

TThe unit of observation is a woman’s household.

variation in the range of measured distances, but to a lesser degree than with perceived distance,
with a maximum measured distance of almost 10 km.

We estimate a linear regression model of the relationship between the logarithm of the mea-
sured distance from a respondent’s household to her visited family planning facility, our explana-
tory variable, and the logarithm of the respondent’s perceived distance to the facility (equation
(6)) as follows:

yi=a+fdi+ e

where y; is respondent i’s logarithmic reported (subjective) distance to her family planning
facility (in kilometres), and d; is the logarithm of measured distance to the reported facility
(in kilometres). We specify the function as logarithmic in both perceived and actual distances,
which we find to be a better fit than a simple linear model. Both actual and subjective distances
are always positive, and taking logarithms is therefore always feasible. If people were correct,
on average, in their subjective expectations, we would expect the coefficient « to be 0 and 3 to
be 1.

To demonstrate the validity of our approach, we compare our estimation results from calculat-
ing measured distances to the family planning facility that use the true (unperturbed) household
location data, the perturbed household location data and our correction approach that estimates
the expected measured distance to the family planning facility given the perturbed household
locations. Unlike the simulation experiment above, we do not know the true parameter value
even when using the actual household location data since we obtain only an estimate of the true
parameter that includes sampling variation. To account for this variation, we run 1000 itera-
tions of a parametric bootstrap to obtain an empirical distribution of the estimated regression
coefficient 3 given the actual location data. The first row of Table 3 presents these bootstrapped
results based on the actual location data. We estimate a value for § of 3, =0.503, which indicates
that the perceived distance increases with measured distance but much less than proportionately.
The 95% confidence interval, which is constructed by using the 0.025- and 0.975-quantiles of
the bootstrap replicates, is 0.429-0.576 and the coefficient is significantly different from 0 at the
5% confidence level.

We then displace household locations by adding a perturbation vector that is generated by
selecting a random angle uniformly between 0 and 27 rad and a random distance ¢ uniformly
between 0 and either 2 km or 5 km. We then re-estimate the regression coefficients by using
these perturbed household location data to calculate mismeasured distances. The second and
third rows of Table 3 present our results with a perturbed household location of up to 2 km or
5 km respectively. Again, we conducted 1000 replications for each set of perturbations. For each
bootstrap iteration, we constructed the 95% confidence interval and then counted the number
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Table 3. Coefficient estimates on distance to a family planning facility: an application in Tanzaniat

Coefficient on d;, 3 Mean Standard Bootstrapped 95% confidence
deviation standard error interval
Lower Upper

bound bound

With actual locations, By 0.503 0.046 0.045 0.429 0.576
With perturbed locations: § =2 km error, (3, 0.426 0.031 0.049 0.372 0.477
With perturbed locations: § = 5km error, [, 0.275 0.045 0.056 0.198 0.348
With correction, § =2 km error: h=100m, (3, 0.528 0.023 0.053 0.491 0.565
With correction, 6 =5km error: h=100m, 3, 0.481 0.047 0.075 0.403 0.556
With correction, 6 =2 km error: h=500m, 5, 0.544 0.029 0.060 0.492 0.590
With correction, § =5 km error: 2 =500m, (. 0.428 0.078 0.099 0.296 0.552

tEstimates for 3y by using actual location data are generated by using a parametric bootstrap with 1000 replica-
tions. Estimates for (3, by using perturbed location data are generated with 1000 replications with the location
perturbed at a random distance and at a random angle. Estimates for 3. by using the numerical integration
method are calculated for the expected logarithm of the measured distance d; given the perturbed location data
for a 500m x 500 m grid and a 100m x 100 m grid and with 1000 replications.

of coefficient estimates that are significantly different from 0. In the current application, all
measures of distance are significant predictors of subjective distance, and hence we do not
report this measure. As expected, the coefficient on the distance to the family planning health
facility by using the perturbed location data is, on average, attenuated towards 0, and the size of
the attenuation increases with larger perturbations. These results are shown graphically in Fig.
3, which plots the distribution of estimates obtained with 1000 replications of the perturbed
data under the two levels of displacement (2 km and 5 km) compared with the estimate based
on using the actual household location data.

We finally implement our correction to the perturbed data by using our numerical integration
method. Given a perturbed data point, we calculate the expected value of the logged distance
d; over a grid of S x § points on a mesh of size 4. In calculating the expectation, we define the
exposure function (equation (10)) to be g(x;.1 Xpp) = D[(x’j1 . X1p), (r1,72)], which is the logarithm
of the distance from a respondent’s household location (x’jl,x;(z) to the respondent’s family
planning health facility, where facilities are at locations (r1, r;). We define the probability density
function to be given by equation (9), with the respondent’s household co-ordinates given by
(x/jl,x;(z). For this probability density function, we also require the term p(x;.],xiz): a prior
population density function at the point (x’/l,x;cz). We obtain this for the WorldPop database
(World Bank, 2015), which produces population density maps for each country. The data that
we use are calculated by using census, survey, satellite and geographical information system
data sets in a flexible machine learning framework that produces population density estimates
on a 100m x 100 m grid for Tanzania in 2015. Fig. 4 presents this population density map over
the two areas of Arusha, Tanzania, where we conducted our survey. We note that the health
facility locations are clustered in areas of high population density; the expected distance to the
nearest facility is therefore lower by using the population density map than if we simply assumed
a uniform distribution of population over the area.

The final four rows of Table 3 present estimates of the coefficient on the expectation of the
logged distance d;-variable, (3, based on a maximum perturbation distance of 2 km and 5 km
by using our numerical integration approach for 1000 replications. We report results for mesh
sizes of & =100m (the fourth and fifth rows of Table 3) and 2 =500m (the sixth and seventh
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Fig. 3. Empirical distributions of parameter estimates for (3 by using the perturbed Tanzanian location data,
1000 iterations: comparison of the estimate for 5 with actual location data ((7) with estimates for 3 based
on perturbed location data with perturbations of up to 2 km (1) or 5 km (m); simulations are based on 1000
iterations
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Fig.4. Population density map in Arusha, Tanzania: the heat map presents the population density in people
per 100m x 100m grid square (the data on population density were obtained from the WorldPop database
for Tanzania)

rows of Table 3) for the numerical integration. Using a grid mesh of 100 m x 100 m, the mean
of the estimates with our correction are closer to the estimate with the actual location data of
0B =0.503. With a larger mesh, the correction appears to be close, but not quite as accurate. Our
results of the empirical distributions of the parameter estimates for [ are presented graphically
in Fig. 5, which plots the distributions of the coefficient estimate under 1000 replications by
using the actual location data, perturbed data for a perturbation of up to 5 km and corrected
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Fig. 5. Empirical distributions of parameter estimates for 8 from the Tanzania analysis, 1000 iterations:
comparison of estimates of the unadjusted correlation between the logarithm of the measured distance to the
family planning facility, d;, and the logarithm of perceived distance to the facility with actual location data ((J)
with estimates based on perturbed location data (m) and with corrected distance estimates (); replications
with actual data are generated by using a parametric bootstrap; replications with perturbed data use a random
angle and random distance up to 5 km; replications with corrected distance estimates are calculated for the
expected logarithm of measured distance d; by using numerical integration over a 100m x 100m grid; all
results are generated by using 1000 iterations

estimation through numerical integration using a 100 m x 100 m mesh. Whereas the averages of
the estimates with corrected data are close to the estimates by using the actual location, showing
unbiasedness, the standard errors and confidence intervals are wide because of the large size of
perturbation in the location data. The results show that our correction can produce unbiased
results; however, with a large perturbation, the confidence interval is also very large. With an
average distance to a family planning health facility of around 2.4 km, and a maximum distance
of just under 10 km, a perturbation of up to 5 km in the household location considerably reduces
the signal-to-noise ratio in the data and generates wide confidence intervals for our corrected
estimates.

Our results indicate that our numerical integration method works well in a real world example
by producing unbiased estimates with perturbed location data that are close to estimates that
are obtained with the actual location data, although the confidence intervals that we estimate
are wider than if the actual location data were used. For simplicity, we report results without
covariates, although we find very similar results when we adjust for covariates such as women’s
age and education level.

The Stata code that we use to run our numerical integration approach for the Tanzania
data and for the Monte Carlo simulation exercise is publicly available to researchers from
https://www.hsph.harvard.edu/david-canning/data-sets/. To run the code,
researchers are required to specify a grid mesh, to provide the values for the exposure func-
tion g(x’jl,x,’(z) over this grid space, to specify the maximum location perturbation distance §
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and to provide a prior population density distribution over the grid space, p(x’jl,x;d). Given
these inputs, the expected value E[g(x1,x2)|(m;1,m;)] will be calculated for the set of observed
perturbed locations (m;1,m;7).

4. Recommendations and conclusions

In this study, we propose an approach for consistent inference under circumstances where
location data are deliberately reported with error. Our approach is based on calculating the
expected value of the true exposure variable given reported perturbed data. Our approach relies
on knowing how the measurement error is constructed and also requires knowledge of the
underlying probability density function (e.g. a population density map). We conduct a Monte
Carlo simulation and use spatial data from Tanzania to demonstrate that replacing exposure
data that are based on perturbed locations with the expected exposure yields improved coefficient
estimates. Our study contributes to the literature on estimation and inference with perturbed
location data and improves on existing regression calibration methods that assume normality
of the induced distance errors, which is unlikely to be true.

Although our method is an improvement on existing approaches, it has some weaknesses.
First, our two-stage approach in calculating the expected exposure and using this in the re-
gression of interest is consistent only in linear regressions. Consistent estimation in non-linear
models will require a maximum likelihood approach as suggested by Fuller (1993) and Little
(1993). Secondly, our estimation approach also requires that researchers have access to a prior
distribution (in the case of our examples, a population density map), which may not always
be so.

Our approach does, however, enable us to make a series of recommendations for holders of
data sets who wish to create pubic use versions that mask subject locations. There is a key conflict
between fulfilling our dual responsibilities as researchers to making high quality inferences on
data that are meaningful for policy and social welfare while simultaneously ensuring that the
data are protected to preserve the confidentiality of the respondents who have consented to
our use of their (potentially sensitive) information. These two objectives are intricately linked,
given that the preservation of respondent confidentiality by the researcher, in addition to being
a legal requirement, is also essential for the preservation of trust between the researcher and
respondent, which in turn is linked to data accuracy (Charest, 2010; Reiter, 2012). As the
amount of microdata continues to increase, there is a commensurate increase in the need for
privacy protecting methods of data analysis that simultaneously minimize loss of information
(Armstrong et al., 1999; Brand, 2002). It is therefore important that we, as researchers, take into
account the extent to which our proposed method may be used to make inferences on the data
such that the original privacy guarantees to respondents are preserved; this criterion speaks
to the extent to which differential privacy, which is considered to be the de facto standard for
privacy preservation, is upheld following the application of our method to masked data (Dwork
and Lei, 2009; Dwork and Smith, 2009).

With these considerations in mind, we make five recommendations to data holders when
perturbing location data for public use data sets:

(a) to make the perturbation process simple and replicable,

(b) to make transparent the methods that were used to generate and add the perturbations
to location data,

(c) to ensure access to, or to make available, a population density map for the population
from which the sample is drawn,
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(d) to make available a covariate intensity map for key covariates that were used in the per-
turbation process, particularly if the range of location perturbations is large, and

(e) to assess the trade-off between larger measurement error, and more masking of subjects,
against the larger confidence intervals in estimates that result.

On recommendation (a) we suggest a perturbation based on adding a random distance at a
random angle; however, any process that is simple and replicable would be acceptable. In the on-
line appendix, we examine the case of reporting an administrative area of residence, e.g. zip code.
Provided that this process is made transparent in line with recommendation (b), the researcher
can use the process to perform the correction that we suggest. Population density maps for the
world are widely and publicly available; for example, a gridded map of the world’s population
can be found through the Center for International Earth Science Information Network (Center
for International Earth Science Information Network—CIESIN—Columbia University, 2018),
whereas country level population density data can be obtained through the World Bank’s World-
Pop database (World Bank, 2015). Aslongas the data holder clearly defines the geographical area
from where the sample was selected, the researcher should be able to construct a suitable prior
population density. Alternatively, the data holder could construct their own smoothed popula-
tion density map based on their sample and release this map in accordance with recommendation
(c). Our model suggests that knowing the geographical distribution of a covariate can improve
the calculated expected exposure. For example, if we know the ethnicity of the respondent, and
the distribution of ethnic groups varies geographically, we can improve the location estimate
by adjusting for this variation. In principle, the data holder could follow recommendation (d)
by producing maps showing the relative frequency of different ethnic groups in different areas
based on their sampling strategy. However, it seems overly onerous to do this for every possible
covariate and, for small perturbations, the assumption that the relative frequency of covariates
across the range of possible locations is uniform might be a reasonable approximation. Finally,
recommendation (e) illustrates the key trade-off that is faced by data holders; increases in the
size of the geographic perturbation provides for greater masking and increased confidentiality
but at the cost of increased noise in the corrected estimation and less precise confidence intervals
for estimates. We present some evidence of this trade-off in our examples with Tanzanian data.

The choice of perturbation process and the amount of noise to add raises the issue of the
extent to which it is possible to reverse the perturbation process and to identify subject locations
(Xiao and Xiong, 2015; Zandbergen, 2014). The random perturbation mask that we advocate
for location data has been shown to be a robust type of mask in protecting respondent con-
fidentiality (Qardaji et al., 2013; Rushton et al., 2006; Zandbergen, 2014), although the issue
of designing an optimal mask that maximizes confidentiality while minimizing induced errors
in estimation has not been fully resolved. Current studies of this issue have often focused on
the issue of subject identification based on masked location data alone; however, a particularly
concerning development is that a combination of several masked variables may jointly enable
subject reidentification. For example, recent studies with US data have shown that knowledge of
an individual’s age in months, gender and five-digit zip code were sufficient for the reidentifica-
tion of many individuals in anonymized data (Sweeney, 2015; Sweeney et al., 2017, 2018). These
findings illustrate that ensuring confidentiality in public use data sets may be more complex than
simply ensuring lack of identification based on location data alone.

Recommendation (a) may not be as easy to implement as it appears. For example, the DHSs
are nationally representative cross-sectional surveys that cover a range of demographic, social
and health topics (USAID and ICF Macro International, 2014). To protect the identity of
interviewed households, the DHS masks the precise location data of the cluster that are collected
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as part of the survey (Burgert et al., 2013; Perez-Heydrich et al., 2013). The process that is used
to mask the location data is publicly available. Reported location co-ordinates in the DHS are
perturbed by adding a randomly generated distance, at a randomly generated angle, to the true
location. Urban locations are perturbed by up to 2 km at a random angle, whereas most rural
locations are perturbed by up to 5 km, a randomly selected 1% of rural locations are perturbed
by up to 10 km. These conditional perturbations can be controlled for, since the urban or rural
nature of the cluster is reported. However, if the displaced location is outside the administrative
region that the cluster is in, the DHS takes a new draw of the displacement. This redrawing of
the perturbation is repeated until a location within the region is obtained. This final condition
may involve an arbitrarily large number of redraws, conditionally on the outcome of the draws
made and exact shape of the regional border near the location. This potentially infinite process
can be shown to have a convergent probability limit and, in theory, can therefore be modelled
by researchers; however, its complexity makes practical applications difficult.

Our approach can resolve a key issue of conducting consistent inference with perturbed
location data. However, the procedure requires that the holder of the data implement the per-
turbation in a way that is transparent and replicable while continuing to maintain respondent
confidentiality. In addition, the researcher would require auxiliary information to be able to
form a prior distribution of the true locations as well as any additional information of the geo-
graphical distribution of covariates that were used as part of the perturbation process. For this,
we recommend that this auxiliary distributional information be made available along with the
perturbed data. Further investigation is needed to assess the extent to which our method enables
the preservation of differential privacy for data protection while simultaneously enabling the
researcher to conduct consistent inference.
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