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Study on Compressible Low-Reynolds-Number Flow over a Sphere

Takayuki NAGATA

Abstract
Multiphase flow models are basically based on the knowledge of the flow over a sphere at low-Reynolds-

number conditions. In the case of high-speed multiphase flows, the flow over particles becomes the compressible
low-Reynolds-number condition, particularly when the particles pass the shock waves, shear layer, and turbulence.
However, there are few studies on the flow over a sphere in the compressible low-Reynolds-number condition. The
objective of the present study is to investigate the fundamental characteristics of the compressible low-Reynolds-
number flow over a sphere toward the construction of the accurate compressible multiphase flow model. The
numerical and experimental studies were conducted in a wide range of Reynolds numbers.

In the numerical studies, the uniform flow over a stationary adiabatic, stationary isothermal, and rotating
adiabatic spheres and linear-shear flow over a stationary adiabatic sphere were investigated by the direct numerical
simulation of the three-dimensional compressible Navier–Stokes equations. The Navier–Stokes equations were
solved on the body-fitted grid by using the high-order schemes. In the experimental studies, the free-flight and
shock-sphere interaction experiments were carried out by using a ballistic range and a shock tube, respectively.

The uniform flow over a stationary adiabatic sphere was investigated at the Reynolds number ranging from 50
to 1,000 and the Mach number ranging from 0.3 to 2.0. It was clarified that the wake of the sphere is significantly
stabilized as the Mach number increases, particularly at the Mach number of greater than or equal to 0.95. However,
the turbulent kinetic energy in the wake at higher Mach numbers is higher than that at the lower Mach numbers
with a similar flow regime. Also, a rapid extension of the length of the recirculation region was observed around
the transitional Mach number which unsteady flows become steady by compressibility effects. The drag coefficient
increases as the Mach number increases mainly in the transonic regime and its increment is almost due to the
increment of the pressure component. In addition, the increment in the drag coefficient in the continuum regime is
approximately the function of the Mach number and is regardless of the Reynolds number despite the low-Reynolds-
number condition. Moreover, the effect of the Mach and Reynolds numbers on the flow properties such as the drag
coefficient and flow regime can approximately be characterized by the position of the separation point.

The uniform flow over a stationary isothermal sphere was computed and investigated the effect of the surface
temperature of the sphere. The Reynolds number was set to be between 100 and 300, the Mach number was set
to be between 0.3 and 2.0, and the temperature ratio based on the freestream temperature and the sphere surface
temperature was set to be between 0.5 and 2.0. It was clarified that the unsteady vortex shedding is promoted
and suppressed for the heated and cooled spheres, respectively. This trend implies that the unsteadiness of the
flowfield becomes strong and weak depending on the surface temperature of the sphere. It is due to the change in
the kinematic viscosity coefficient in the vicinity of the sphere. A similar effect can be seen in the flow geometry
and drag coefficient. In particular, the drag coefficient decreases and increases when the temperature ratio increases
and decreases. However, the previous drag model cannot predict the effect of the surface temperature on the drag
coefficient. The effect of the surface temperature on the flow geometry and the drag coefficient can be characterized
by the position of the separation point because the kinematic viscosity coefficient in the boundary layer has a
significant effect on the separation. In addition, the difference in the Nusselt number predicted by the previously
proposed models and present DNS becomes large as the temperature difference or Mach number increases.
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The effect of the rotation was investigated at the Reynolds number ranging from 100 to 300, the Mach number
ranging from 0.3 to 2.0, and the non-dimensional rotation rate based on the surface velocity at the equator of the
sphere and the freestream velocity ranging from 0 to 1.0. In the case of the high-rotation rate, the wake is stabilized
due to the compressibility effect even though the Mach number of 0.3. At the supersonic flow, the rotation-induced
lift is reduced. It is due to the influence of the strong compression and deceleration of the fluid caused by the
detached shock wave. Because of those effects, the pressure at the region where the low-pressure is generated under
the shock-free flow becomes increases at the transonic and supersonic flows. The pitching moment in the opposite
direction to the rotation of the sphere at the same rotation rate increases as the Mach number increases.

The linear-shear flow over a stationary adiabatic sphere was calculated. The Reynolds number was set to be
between 50 and 300, the Mach number was set to be between 0.3 and 1.5, and the non-dimensional shear rate based
on the radius of the sphere and the velocity of the freestream was fixed at 0.1. The flow structure at the low-subsonic
condition appears to be similar to that of the incompressible flow. At the high-subsonic and transonic conditions,
the expansion wave and detached shock wave are formed only on the high-speed side due to the difference in the
local Mach number of the mainstream. Hence, the recirculation region in the supersonic conditions is skewed
into the low-speed side which is opposite to the incompressible cases in the investigated Reynolds number range.
Also, the negative shear-induced lift at the compressible flow is larger than that at the incompressible flow, and it
increases as the Reynolds number decreases. This trend is caused by the change in the pressure distribution in the
upstream side of the high-speed side of the sphere surface due to the compressibility effect which is described by
the Prandtl–Glauert transformation and the detached shock wave.

The free-flight experiment of the sphere was conducted, and the time-resolved schlieren images of the flow over
a small sphere (the minimum diameter of 1.5 mm) were acquired at the low-pressure condition. The flow condition
around the sphere was the Mach number between 0.9 and 1.6 and the Reynolds number between 3.9 × 103 and
3.8× 105. The images of the time-averaged flowfield were produced and compared with the numerical results at the
Reynolds number between 50 and 1,000. Also, the time-series schlieren images were analyzed by the singular value
decomposition, and the wake structure was extracted even if the data with low-signal-to-noise ratio. The Mach
and Reynolds numbers effects on the structures of the shock waves, the length of the recirculation region, and the
wake vortices were clarified at the Reynolds number of O(103)–O(105) under transonic and supersonic flows. The
instantaneous schlieren image shows that the oscillation amplitude of the wake was reduced as the Mach number
increases. In addition, the width of the wake at the end of the recirculation region on the time-averaged field is
reduced by increasing the Mach number. Also, the length of the recirculation region increases as the Reynolds
number decreases. This trend is opposite to that at the Reynolds number less than 103, and it suggests the possibility
of the change in the flow regime occurs around the Reynolds number of O(103).

In addition, the flow visualization and drag estimation through the shock-sphere interaction experiment were
carried. In the case of the flow visualization, the Mach and Reynolds numbers based on the relative velocity
between the sphere and the quantities behind the planar-shock wave were ranging from 0.45 to 1.28 and from
4.0× 103 to 1.4× 104, respectively. The experimental scheme to conduct the shock-particle interaction experiment
using a single small particle (the minimum diameter of 0.3 mm) was established, and it was succeeded that the flow
structure not only the shock waves but also the wake structures formed behind the sphere was visualized. Also, the
flow over clustered spheres was visualized and its breakdown process was observed. In addition, the mean drag
coefficient was estimated from the time-position data of the sphere at the Reynolds number ranging from 3.0× 103

to 9.2 × 103 with the Mach number of 0.45. The estimated drag coefficient was higher than that of the drag model
in steady-state as same as the previous experimental results.
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Chapter 1. Introduction

List of Symbols

A = Projected area

CD = Drag coefficient

CL = Lift coefficient

D = Drag force

E , F, G = x, y, and z components of an inviscid flux

Ev, Fv, Gv = x, y, and z components of an viscous flux

I = Interaction term

Kn = Knudsen number

M = Mach number

Pr = Prandtl number

Q = Conservative variable vector

Qt = Amount of transferred heat

St = Strouhal number

T = Temperature of gas

Re = Reynolds number

L = Lift force

a = Sound speed

cp = Specific heat at constant pressure

cm = Specific heat of the particle material

cv = Specific heat at constant volume

d = Diameter

e = Total energy per unit volume of the gas phase

f = Drag factor, frequency

g = Gravity

m = Mass of particle

p = Pressure

q = Heat flux

t = Time
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u = Velocities of fluid, velocity in x direction

v = Velocities of particle, velocity in y direction

Vd = Volume fraction of the dispersed phase

w = Slip velocities between particle and fluid, velocity in z direction

x, y, z = Cartesian coordinates

ϵ = Eddington epsilon

γ = Specific heat ratio

λ = Mean free path length

µ = Dynamic viscosity coefficient

ν = Kinematic viscosity coefficient

π = The ratio of the circumference of a circle to its diameter

ρ = Density

σ = Number of density

τ = Response time

τi j = Viscous stress tensor

ω = Rotation vector

Θ = temperature of the solid phase

Ω = Angular velocity, Total energy per unit volume of the solid phase

Ω∗ = Nondimensional rotation rate

Subscripts

f = Continuum phase, fluid

g = Gas phase

p = Particle

i, j = Index for Einstein summation convention
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Chapter 1. Introduction

1.1 Multiphase Flow

Multiphase flow including dispersed phase appears in various fields, such as biology, engineer-

ing, and air pollution. The properties of flows can be significantly influenced by a dispersed

phase. This flow is subcategorized into a multicomponent and multiphase flow type. A compo-

nent represents a chemical species such as nitrogen, oxygen, or water. A phase denotes the state

of the matter such as solid, liquid or gas. Table 1.1 shows an example of single component or

multicomponent and multiphase flows.

Single component Multicomponent

Singlephase
Water flow

Nitrogen flow

Air flow

Flow of emulsions

Multiphase
Steam-water flow

Freon-Freon vapor flow

Air-water flow

Slurry flow

Table 1.1: Example of single and multicomponent, multiphase flows (Crowe
et al., 2011).

The flow of air is an example of a single-phase multicomponent flow because air is composed

of nitrogen, oxygen, and so on. A single-phase flow of the mixture fluid is commonly treated

as a single component flow with a viscosity coefficient and a thermal conductivity which

represents the mixture. This assumption works except that the major components of the fluid

have significantly different molecular weights or extremely high- and low-temperature conditions

where dissociation or condense out.

Single-component multiphase flows are typically the flow of a liquid with its vapor. The flow

of water with a stream is an example of a single-component and multiphase flow. Steam-water

flow is very common, for example in the industrial field and daily life. If the flow of air including

solid particles or water droplets, the flow becomes a multiphase multicomponent flow.
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Category Example

Gas-liquid flows

Bubbly flows

Separated flows

Gas-droplet flows

Gas-solid flows

Gas-particle flows

Pneumatic transport

Fluidized beds

Liquid-solid flows

Slurry flows

Hydrotransport

Sediment transport

Three-phase flows
Bubbles in a slurry flow

Droplets/particles in gaseous flows

Table 1.2: Categories and example of multiphase flows (Crowe et al., 2011).

The single-phase flow has been studied by numerous researchers for a long time. Navier–

Stokes equations are well accepted and used as the governing equations for single-phase flows

in the continuum regime. Quite a few analytical solutions and numerous numerical simulations

have been conducted. The modeling of turbulence is one of the major issues in the dynamics

of the flowfield. Researchers and engineers are pursuing an accurate turbulence model. On the

other hand, the multiphase flow model is also still in a developing phase and more primitive

than turbulent model.

Table 1.2 shows the example of the multiphase flow and its classification. Multiphase flows

can be subdivided into four categories, which are gas-liquid, gas-solid, liquid-solid, and three-

phase flows. An example of gas-liquid flow is the liquid flow including bubble. In this case, the

liquid and gas phases are the continuum and disperse phases, respectively. A gas flow including

liquid droplets are also gas-liquid flow, but the continuum phase is the gas and the disperse

phase is the liquid in this case. In addition, a separated multiphase flow that both gas and liquid

phases are exist as a continuum phase. Gas-particle and liquid-particle flows are gas and liquid

flows including solid particles, respectively. For example, particle transportation by gas or liquid

5



Chapter 1. Introduction

flows corresponds to gas-particle and liquid-particle flows. Furthermore, the flow consists of

gas, liquid, and solid phases is a three-phase flow. It should be noted that if the particles are not

in motion such as flow in a porous medium, the flow is not a gas- or liquid-solid flow.

1.1.1 Fluid Force on Particles

Particles in fluid flows receive a drag and lift forces. Estimations of those fluid forces are

essential for prediction of the particle motion. Particularly, the drag force is the dominant force

on the motion of the particle in particle-laden flows so that characteristics of the particle drag

have been examined by numerous researchers.

Stokes, 1851 was among the first to derive the analytic solution of the Navier–Stokes equa-

tions for the uniform flow over a stationary isolated sphere at a low Reynolds number of Re ≪ 1.

Basset, 1888; Boussinesq, 1895; Oseen, 1927 attempt to analyze the motion of a falling sphere

in a quiescent fluid. In their honor, the equation of motion for a spherical particle in a fluid

at low-Reynolds-number conditions is called the Basset-Boussinesq-Oseen (BBO) equations.

Tchen, 1974 studied the effect of nonuniformity and unsteadiness of the flow on the particle

motion to extend previous works.

The equation of motion for a small particle in nonuniform, unsteady flow at the low Reynolds

number was derived by Maxey and Riley, 1983,

m
dvi

dt
=

body force︷︸︸︷
mgi +

undisterbed flow︷                ︸︸                ︷
Vd

(
− ∂p
∂xi
+
∂τi j

∂x j

)
+

steady state drag︷                            ︸︸                            ︷
3πµd

[
(ui − vi) +

d2

24
∇2ui

]

+

virtual or apparent mass term︷                                 ︸︸                                 ︷
1
2
ρfVd

d
dt

[
(ui − vi) +

d2

40
∇2ui

]

+

Basset or history term︷                                                         ︸︸                                                         ︷
3
2
πµd2

∫ t

o

[
d/dτ

(
ui − vi + d2/24 × ∇2ui

)
πν(t − τ)1/2

]
dτ

(1.1)

m, vi, and t indicate the mass of a particle, the velocity of a particle, and the time, respectively.

The first term on the right-hand side is the body force due to the gravity acceleration g and

others, and other terms on the right-hand side are the fluid dynamic forces. The second term is
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1.1. Multiphase Flow

the force due to undisturbed flow, which is caused by the gradient of the pressure p and the stress

tensor τi j , where Vd and xi indicates the volume fraction of dispersed phase and the Cartesian

coordinates, respectively. The third term represents the steady-state drag force, which acts on

the particle in the uniform and the steady relative velocity between the particle and the fluid,

where µ, ui, and vi denote the viscosity coefficient, and the velocities of the fluid, respectively.

The fourth and fifth terms are only for unsteady flows. The fourth term represents the virtual

mass force, which is the force related to the acceleration of the fluid caused by the particle

motion, where ρf is the density of the continuum phase. When a particle accelerated through

the fluid, the ambient fluid of the particle is also accelerated and additional work appears. This

additional work related to the virtual mass force and it corresponds to the form drag caused

by acceleration. The last term indicates the Basset force, which is the force due to temporal

delay of the boundary layer development as the relative velocity change with time. This force

corresponds to the additional viscous drag due to acceleration. In addition, lift forces or other

external forces will be included depending on the problem.

In the present study, we focused on the flow over a sphere in the steady flow so that steady

drag and lift forces are introduced in detail below. Figure 1.1 illustrates the schematic diagram

of the steady fluid force acting on the sphere, that are the drag force, the rotation-induced lift

force, and the shear-induced lift force.

Lift forcesDrag force

Rotation-induced lift Shear-induced lift

Re > 50

Re < 50

Figure 1.1: Fluid forces acting on particles in the steady incompressible low-
Reynolds-number flow in the continuum regime.
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Steady Drag Force

Steady drag force depending on the relative velocity wi between the fluid and velocities. The

relative velocity is

wi = vi − ui, (1.2)

and the particle Reynolds number Rep based on the diameter of a particle, the density of fluid,

and the dynamic viscosity is

Rep =
ρf |wi |d
µf

. (1.3)

Stokes, 1851 analytically derived the drag force acting on a stationary isolated sphere in incom-

pressible flows of Rep ≪ 1 and the drag force expressed as follows and known as Stokes’ drag

law:

Dp,i = −3πdµfwi. (1.4)

As eq. 1.4, the drag force is proportional to the relative velocity, and this flow regime called the

Stokes regime. Also, the drag coefficient in the Stokes regime can be written as follows:

CD =
24
Re

. (1.5)

At the flow regime that the inertial force is dominant, on the other hand, the drag coefficient is

proportional to the dynamic pressure.

Dp,i = −1
8
ρf |wi |wiCDid2. (1.6)

Particularly, the drag coefficient at 2.0× 103 ≤ Re ≤ 3.0× 105 is almost constant for CD ≈ 0.45.

The drag coefficient in the intermediate regime between the Stokes and Newton regimes can

be characterized by Re and the drag factor f is introduced taken into account the inertial

effect. Oseen extended the Stokes solution by including first-order inertial effect, and the drag

coefficient by the Oseen approximation is described as follows:

CD =
24
Re

(
1 +

3
16

Re
)

. (1.7)
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1.1. Multiphase Flow

This expression is valid up to Re = 5. In eq. 1.7, the correction function for the inertial effect(
1 + 3

16 Re
)

appears. For further high-Re conditions, several correction functions available as a

function of Re. The correction function by Schiller and Naumann, 1933 is one of the reasonable

one and gives the drag coefficient with less than 5% up to Re = 800.

CD =
24
Re

(
1 + 0.15Re0.687

)
(1.8)

Clift and Gauvin, 1971 proposed a drag model, which can be applied at a wider range of the

Reynolds number (Re < 2.0 × 105).

CD =
24
Re

(
1 + 0.15Re0.687

p

)
+

0.42
1 + 42,500

Re1.16
p

(1.9)

The first term of this equation is the drag model by Schiller and Naumann, 1933 shown in eq.

1.8. The second term is a term for asymptotic to the drag coefficient in the newton regime.

In high-speed flows, a particle Mach number Mp defined as the ratio of the relative velocity

to a sound speed a is also important.

Mp,i =
wi

a
(1.10)

In the high-speed particle-laden flows such as exhaust gas of rocket engines, relative veloci-

ties between particles and fluid become large and compressibility effects are no longer small,

particularly when particles through shock waves, shear layer, or turbulence. Furthermore,

noncontinuum effects appear in the case of small particles in high-M flows. The parameter

characterizing the continuum or non-continuum flows is the Knudsen number Knp defined as

the ratio of the mean free-path length of the gas molecules λ to representative length (particle

diameter for the particle Knudsen number), and it can be rewritten as the functions of M and Re

(Schaaf and Chambre, 1958),

Knp =
λ

d
=

√
πγ

2
Mp

Rep
(1.11)

where γ is a specific heat ratio. The flow regime can be subdivided into the continuum flow

(Knp ≤ 0.01), the slip flow (0.01 ≤ Knp ≤ 0.1), the transitional flow (0.1 ≤ Knp ≤ 1), and the
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Chapter 1. Introduction

free molecular flow as shown in figure 1.2.

Euler
Eqs.

Navier-Stokes Eqs. Burnett

Eqs.

Boltzmann Equation
Collisionless

Boltzmann Eq.

0 0.01 0.1 1 10 �

No-slip           w/ slip

Knp

Continuum
Regime Slip Regime Transitional Regime

Free-Molecular
Regime

Figure 1.2: Flow regime and governing equations.

The effects of M and Kn on the drag coefficient must be considered as well as the Re effect

in the compressible and rarefied regimes.

Steady Lift Force

Lift forces acting on an isolated particle in a continuum regime can be subdivided into two types,

which are the rotation-induced lift and the shear-induced lift. These lift forces are generally

smaller than the drag force, but it has a large impact on the distribution of the particles.

The particle rotation is mainly introduced by the velocity gradient of ambient flow, collision

with a wall, and so on. The particle rotation results in the velocity difference between a certain

side and its opposite side, and it causes a pressure difference. The rotation-induced lift is called

Magnus lift force. The Magnus lift force was derived by Rubinow and Keller, 1961 for Re of

the order of unity

LMagnus,i =
π

8
d3ρf{ϵi j kωp,j(vk − uk)} (1.12)

where ϵ is the Eddington epsilon, ωp is the particle rotation vector. If the rotation velocity vector

is normal to the relative velocity vector, Magnus lift force becomes as follows:

LMagnus,j =
π

8
d3ρfωp(vk − uk). (1.13)

The Magnus lift force can be quantified in the form

10



1.1. Multiphase Flow

LMagnus =
1
2
ρfCLR A|v − u|(v − u), (1.14)

where CLR and A denote the lift coefficient due to particle rotation and the projected area of the

particle. The lift coefficient of the Magnus lift force at Re of the order of unity is

CLR =
dωp

|u − v | = 2Ω∗ (1.15)

where Ω∗ is the nondimensional rotation rate defined as

Ω
∗ =

dωp

2|u − v | . (1.16)

Tanaka, Yamagata, and Tsuji, 1990 suggested the model of the coefficient of the rotation-induced

lift at the higher-Re conditions

CLR = min(0.5, 0.5Ω∗) (1.17)

which is a ramp function up to 0.5.

The velocity gradient also makes a pressure difference on particles. The pressure in the

high-speed side is lower than that of the low-speed side so that the direction of the shear-induced

lift is from the low-speed side to high-speed side at sufficiently low- and high-Re conditions.

The shear-induced lift was derived by Saffman, 1965 at Re ≪ 1 by using Oseen approximation.

This lift force is called as Saffman lift force and he found that the magnitude of the lift force to

be

LSaffman,i = 1.61µd |ui − vi |
√

ReG (1.18)

where ReG is the shear Reynolds number defined as

ReG =
d2

ν

du
dy

. (1.19)

Here, ReG indicates the Reynolds number based on the velocity difference between the top and

bottom of the particle. Saffman’s analysis is based on the Oseen approximation with a strong

shear rate so that his analysis valid in the condition of Rep ≪
√

ReG ≪ 1. McLaughlin, 1991
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extended Saffman’s analysis to include the condition of Rep > ReG, and his analysis clarified

that the shear-induced lift force rapidly decreases as Rep increases. Mei, 1992 proposed the

empirical model based on Rep and ReG by modifying the Saffman’s analysis.

1.1.2 Numerical Simulation of Particle-Laden Flow

There are a number of ways to solve multiphase flows from the viewpoint of the resolution

of the eddies and dispersed phase. The most accurate simulation is the particle-resolved DNS

(finite-size particle approach). All scales of eddies in the flowfield are resolved by DNS of

the Navier–Stokes equations and the flow around particles are also resolved by the immersed

boundary method (IBM). The fluid forces acting on the particles are directly computed by

integrating the fluid stress on the surface of each particle. Also, the wake vortices generated

by the particles can also be resolved. No turbulence and multiphase flow models are required

and all phenomena in the flowfield are directly solved. However, a fine computational grid is

required to resolve the flow over the particles. Therefore, the particle-resolved DNS has applied

to the limited problem settings with a small physical domain.

LES of Gas-Particle Flow

Euler-Lagrange simulation

Euler-Euler simulation

RANS Simulation of Gas-Particle Flow

Euler-Lagrange simulation

Euler-Euler simulation

DNS of Gas-Particle Flow

Immersed boundary-based Euler-Euler simulation

ParticlesVortices

Figure 1.3: Category of gas-particle flow simulations.
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1.1. Multiphase Flow

More practical methods for the multiphase flow simulation is the point-particle approach

combining with large-eddy simulations (LES) or Reynolds-averaged Navier–Stokes (RNAS)

simulations. The sub-grid scale eddies or all of the eddies in the flowfield are modeled, and the

particles are treated as the mass point. The method to treat the particles can be subdivided into

Lagrangian and Eulerian approaches. In any case, the particles are considered to have a sub-grid

scale and a particle model giving the particle effect on the flowfield or the interaction effects

between the continuum and disperse phases are required, but the simulations of the large-scale

problem settings is feasible.

Finite-Size Particle Approach

In the finite-size particle approach, the coupling model obtained by the discrete element method

(DEM) (Cundall and Strack, 1979) and computational fluid dynamics (CFD) Chorin, 1968 is

widely used. This model, i.e., the DEM-CFD model, was proposed by Tsuji, Tanaka, and

Ishida, 1992; Tsuji, Kawaguchi, and Tanaka, 1993. In DEM-CFD coupling, the inter-particle

interaction can be taken into account even if the particles are non-circular or non-spherical.

However, DEM-CFD a coupling is a one-way coupling on the particle-fluid interaction. In

the case of the IBM, the fully-resolved DNS can be realized. In this case, the flow around

each particle can be captured. The IBM has been used to simulate of the unsteady viscous

flow by Udaykumar, Shyy, and Rao, 1996; Ye et al., 1999 and the derived type such as direct

forcing IBM proposed by Uhlmann, 2005. In addition, the IBM is extended to compressible

flow simulations by Ghias, Mittal, and Dong, 2007. In addition, Takahashi, Nonomura, and

Fukuda, 2014; Luo et al., 2016 and proposed the simplified IBM for compressible viscous

flows based on the IBM by Mittal et al., 2008. The immersed boundary-Lattice Boltzmann

method (IB-LBM) was proposed by Feng and Michaelides, 2004. The fully-resolved DNS is

the most accurate way to simulate the multiphase flows. However, a large scale computational

resources are required to compute the particle-laden flow, and thus it is difficult to conduct

the flow simulation by the fully-resolved approach with a large scale physical domain. In the

case of a point-particle approach, which will describe in the next section, on the other hand,

it is capable of the computation of the particle-laden flow with a large physical domain using

coarser computational grids. However, the point-particle approach cannot consider the effect
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of anisotropic in the particle effect. Fukada, Takeuchi, and Kajishima, 2016; Fukada et al.,

2018; Fukada, Takeuchi, and Kajishima, 2019 proposed the finite-size particle approach based

on the local volume averaging. Their method considers the finite-size particles, and particles are

resolved with several grid points. The effect of the particles is considered by the interaction force

based on the surface stress distribution. They succeeded in the consideration of the influence of

the particle with finite-size without computation of the flow over particles.

Point-Particle Approach

A point-particle approach can be subdivided into four types from the point of view of the treat-

ment of fluid-particle interactions. The simplest one is the one-way coupling which considers

only the fluid force acting on the particle. In this case, the particles are transported by fluid,

but particles do not affect the flowfield around them. This approximation is valid for the case

which is the light particle (small Stokes number) with fewer collisions. The second one is the

two-way coupling, which considers the interaction between particles and fluid mutually. In this

case, the momentum and heat exchanges are considered. Both effect of the particles on the

fluid and the effect of fluid on the particles treated as volume average. This approximation is

valid for the case which is the relatively heavy particles with fewer collisions. The last one

is the four-way coupling which considers both fluid-particle and inter-particle interactions. In

this case, the inter-particle collisions between particles are considered by hard-sphere collision

models (Hoomans et al., 1996; Crowe et al., 2011) or the other advanced model of hard-sphere

(e.g., Kosinski and Hoffmann, 2010) or soft-sphere (e.g., Costa et al., 2015) models, and the

collision process are considered.

Multiphase Flow Model based on Point-Particle Approach

The interaction model between particles and fluid are required in finite-size and point-particle

approaches or one-way, two-way, or four-way couplings, except particle-resolved simulation

using IBM. The particle-resolved simulation using IBM requires the very fine mesh to resolve

the flow around the particle so that computational cost becomes extremely expensive for the

simulation of the large-scale multiphase flow such as engineering and industrial scale problems.
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1.1. Multiphase Flow

Therefore, the fluid-particle interaction is typically considered using the particle drag and heat

transfer models. As an example, the two-fluid model (Euler-Euler formulation) is shown below.

Both fluid and solid phases are expressed as the continuum phase. The fluid phase is expressed

by the Navier–Stokes equations, and the solid phase is expressed by the Euler equations.


∂Qf
∂t
+
∂Ef
∂x
+
∂Ff
∂y
+
∂Gf
∂z
=
∂Ev
∂x
+
∂Fv
∂y
+
∂Gv
∂z

− I

∂Qp

∂t
+
∂Ep

∂x
+
∂Fp

∂y
+
∂Gp

∂z
= I

(1.20)

where subscript f and p indicate the fluid and particle, respectively. The vectors Q contains

conservative variables; E , F, and G are the x, y, and z components of the inviscid flux,

respectively,

Qg =



ρg

ρgug

ρgvg

ρgwg

e


, Eg =



ρgug

ρgu2
g + p

ρgugvg

ρgugwg

(e + p)uf


, Fg =



ρgvg

ρgvgug

ρgv
2
g + p

ρgvgwg

(e + p)vg


, Gg =



ρgwg

ρgwgug

ρgwgvg

ρgw
2
g + p

(e + p)wg


(1.21)

where u, v, and w are the x, y, and z components of the velocity, respectively; and ρ, p, and e

are the density, the pressure, and the total energy per unit volume of the gas phase, respectively.

It assumes to be the state of the ideal gas,

e = ρg

(
cvT +

1
2
ρg(u2

g + v
2
g + w

2
g)
)

(1.22)

where cv and T are the specific heat at constant volume and the temperature of gas phase. Also,

vectors Ev, Fv, and Gv are the x, y, and z components of the viscous flux, respectively,

Ev =



0

τxx

τxy

τxz

βx


, Fv =



0

τyx

τyy

τyz

βy


, Gv =



0

τzx

τzy

τzz

βz


(1.23)
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βx = τxxug + τxyvg + τxzwg − qx

βy = τyxug + τyyvg + τyzwg − qy

βz = τzxug + τzyvg + τzzwg − qz

where τ and q are the viscous stress and the heat flux, respectively. For the solid phase,

Qp =



ρp

ρpup

ρpvp

ρpwp

Ω


, Ep =



ρpup

ρpu2
p

ρpupvp

ρpupwp

Ωup


, Fp =



ρpvp

ρpvpup

ρpv
2
p

ρpvpwp

Ωvp


, Gp =



ρpwp

ρpwpup

ρpwpvp

ρpw
2
p

Ωwp


(1.24)

where Ω is the total energy per unit volume of the solid phase as shown below.

Ω = ρp

{
cmΘ +

1
2
ρ(u2

p + v
2
p + w

2
p)
}

. (1.25)

Variables cm and Θ are the specific heat of the particle material and the temperature of the solid

phase, respectively. In addition, I is the interaction term to couple the solid and gas phases.

I =
σ

m



0

Dx

Dy

Dz

Qt + upDx + vpDy + wpDz


(1.26)

m =
1
6
ρpπd3,

D =
1
8
πd2ρg(ug − up)|ug − up |CD,

Qt =
πdµcp

Pr
(T −Θ)Nu.

whereσ, m, and d are the number of density, the mass, of particles, and the diameter of particles;

and Qt and D are the amount of transferred heat between particle and gas and the drag force of
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1.1. Multiphase Flow

particles; and µ, cp, and Pr are the viscosity coefficient, the specific heat at constant pressure,

and the Prandtl number. As shown above, the interaction term includes the drag coefficient CD

and the Nusselt number Nu of particles so that particle drag and the Nusselt number models are

required to solve the equations of the two-fluid model.

In the case of the incompressible regime, there are numerous researches on the low-Re flow

over a sphere (see section 1.2.1), and accurate drag models have been proposed based on that

knowledge (e.g., Clift and Gauvin, 1971). The heat transfer between a sphere and fluid has also

been modeled (e.g., Ranz and Marshall, 1952).

1.1.3 Compressible Multiphase Flow

Multiphase flow has been investigated in various fields, particularly in the incompressible flow

regime. However, the study on the compressible multiphase flow is fewer than that of the

incompressible regime. In aerospace engineering, the compressible multiphase flow appears in

the exhaust gas of rocket engines, high-speed combustion, and so on.

Exhaust Jets of Rocket Engines

The exhaust jet of rocket engines emits strong acoustic waves and could cause critical damage

to the payload in the fairing. Therefore, it is necessary to predict and reduce the acoustic level

at liftoff. Traditionally, the acoustic level has been predicted by semi-empirical method using

either NASA SP-8072 (Eldred, 1971) or static firing tests of sub-scale models (Ishii et al., 2012).

However, NASA-SP8072 is the semi-empirical method based on a large number of launch data

obtained in the United States and so is not suitable to design a new launch pad. In recent years,

computational fluid dynamics (CFD) have been used in the studies of acoustic level prediction

and investigations of acoustic phenomena. Tsutsumi et al., 2008; Tsutsumi et al., 2014 performed

simulations of the jet flow and acoustic field including the influence of the flame deflector plate

and the launch facility. Nonomura et al., 2014 investigated the influence of the difference in the

specific heat ratio of the exhaust gas and the atmosphere. By these studies, acoustic phenomena

in the exhaust jet of the rocket engines have been studied with limited accuracy.
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Acoustic wave

Figure 1.4: Exhaust jet of rocket engines.

However, the exhaust jet of the solid rocket motor contains small alumina droplets and

alumina particles, and water droplets are also generated because of water injection during the

liftoff of large liquid-propellant rockets. Attenuation effects by water droplets in the air have

been studied since 1948 (Knudsen, Wilson, and Anderson, 1948). The result of the static firing

tests shows the particles included in the jet attenuate acoustic wave. Zoppellari and Juve, 1998

studied the noise suppression of the supersonic jet by injecting up to several times the mass of the

water jet. Their result showed that the far-field noise of a supersonic jet decreases approximately

10dB. Krothapalli et al., 2003 investigated the noise suppression of the supersonic jet by water

up to 5% mass flow rate of the jet with PIV measurements. The water droplets modified the

turbulence structures of the jet and results in the reduction of the fluctuation of the velocity field

and turbulent shear stress. (Fukuda et al., 2011) studied the noise suppression by water injections

through analytical and numerical investigations. Their result suggested that the effect of the

particle is not a simple scattering of the sound. The attenuation effect due to water injection can

reasonably be evaluated by the specific parameter based on the gas density and turbulent kinetic

energy proposed by them. Ignatius, Sathiyavageeswaran, and Chakravarthy, 2014 conducted the

experiment by a 1:100 scaled-down model that exactly replicates a launch vehicle and launchpad

for simulating the aeronautic environment at the liftoff of rockets. They investigated the noise

suppression effect caused by the water injection on the heated and cooled jets at the single-nozzle

free-jet and impinging-jet by changing the various parameters such as the injection point of the
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water jet, the size of the droplets, and so on. Terakado et al., 2016 conducted the DNS of the

temporally evolving compressible turbulent mixing layer including solid particles simulating

the shear layer of the atmosphere and the exhaust jet of solid rocket motors by solving the three-

dimensional compressible gas-particle-multiphase Navier–Stokes equations in the Euler–Euler

formulation. They investigated the effect of the solid particle on the flowfield and pressure wave

emitted from the shear layer. They found that the fine-scale turbulent structures are attenuated

by the existence of the solid particles, especially for the jet side. Also, the growth rate of the

mixing layer becomes small due to the particle effects. Because of the change in the flowfield,

the Mach-wave-like structure disappear in the multiphase case. This kind of similar problem

setting was also studied by Buchta, Shallcross, and Capecelatro, 2019. They conducted the DNS

of the temporally evolving high-speed free-shear-flow turbulence including droplets or particles

by Eulerian–Lagrangian simulations. The interaction between the turbulence and particles are

considered via the particle drag model and volume displacement, which correspond to the effects

of the local slip velocity between phases and the finite-size particles, respectively. Their result

showed that the emitted noise from the subsonic jet increases with increasing mass loading,

consistent with existing low-Mach-number theory. Conversely, the sound level emitted from the

supersonic jet suppressed with increasing mass, consistent with the trend reported by previous

experimental and numerical studies.

Figure 1.5: Sketch of a burning aluminum droplet in solid rocket motor (Shimada,
Daimon, and Sekino, 2006).
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Toward highly accurate predictions of the acoustic level at the liftoff of the rocket, the

influences of the particles to be examined by accurate numerical simulations. The detailed

aspects of the complex physics should be taken into account, but the size of the aluminum

droplets and alumina particles released from solid rocket motors are approximately 1–200 µm

Shimada, Daimon, and Sekino, 2006, and the exhaust jet is supersonic flow. Therefore, the flow

over each particle experiences the compressible low-Re conditions (e.g., when particles passing

through the shock wave or shear layer).

The flow over each particle appears to be compressible low-Re flows due to the high-speed

flows with small size particles. If the flowfield is uniform, the relative velocity between the

particle and fluid eventually becomes zero even though the supersonic flows. However, there are

the turbulence, shear layer, and shock wave in the actual flowfield. Those phenomena lead to the

velocity difference between the particles and fluid when the particles passed those flow structures.

However, the confidence of models to describe particle effects on the compressible multiphase

flow is not sufficient because the understanding of the characteristics of the compressible low-Re

flow over a sphere is limited due to a lack of the experimental study due to the difficulty of the

experiment.

Drag Model in Steady Compressible Flow

The particle drag model for the steady compressible flow has been proposed by several re-

searchers. These models are based on the experimental data (see section 1.2.1), theoretical

formula, and empirical collections. For example, Carlson and Hoglund, 1964 constructed the

particle drag model for the compressible and rarefied regime. His model is based on the Stokes’

law (Stokes, 1851) and correction terms which taken into accent the inertia, compressibility, and

rarefaction effects. The correction term for the inertia effect is based on the empirical correction

by Torobin and Gauvin, 1959. The correction term for the compressibility effect at continuum

regime is based on the empirical fit using drag data at compressible high-Re flows by Hoerner,

1965. The rarefaction effect at the low-speed regime is considered based on the formula by

Millikan, 1923, and the rarefaction effect at the high-speed regime is considered based on the

constants determined by the theoretical formula by Stalder and Zurick, 1951. The newer particle

drag models for the compressible and rarefied regimes have been proposed by using the similar
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way with the updated sphere drag database (Crowe, 1967; Henderson, 1976; Hermsen, 1979;

Loth, 2008; Parmar, Haselbacher, and Balachandar, 2010). Such drag models can be used in

the simulation of the compressible multiphase flows, for example. However, Saito, Marumoto,

and Takayama, 2003 pointed out that the result of numerical simulations of the compressible

particle-laden flow using the particle drag model is changed depending on the particle drag

model used in the simulations.
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Figure 1.6: Map of the drag coefficient of a sphere at compressible low-Reynolds-
number flows.

The particle drag model for the compressible flow is used not only for the multiphase flow

analysis but also for the correction of the PIV measurement at the compressible flow. When the

particles pass the shock, for example, the velocity of the gas instantaneously decreases and the

particles do not trace the gas because of its inertia. The slip of the tracer particle has been studied

by many researchers (Lang, 2000; Koike et al., 2007; Ragni et al., 2011; Williams et al., 2015;

Chen et al., 2017). For example, Williams et al., 2015 examine the effects of compressibility, slip,

and fluid inertia on the frequency response of the particle image velocity by solving the equation
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of quasi-steady drag for solid spherical particles at the supersonic condition. They showed that

the frequency response for weak disturbance, such as turbulence, is much lower than obtained

from a shock response. This result indicates the particle response frequency is depending on

the strength of the disturbance. In addition, Handa, Koike, and Imabayashi, 2017 estimated

the drag coefficient of the PIV tracer particle in the compressible and rarefied flows through

the measurement of an under expanded jet by PIV and molecular-tagging velocimetry. The

estimated drag coefficients were not agree with the predicted value by a well-known empirical

model including both compressible and rarefaction effects. The data fit a relation similar to the

form of the Stokes drag law rather than the well-known compressible and rarefied models.

1.2 Incompressible and Compressible Low-Reynolds-Number

Flow over Blunt Bodies

1.2.1 Flow over a Sphere

Studies of flow over generic bodies such as a flat plate, cylinder, or sphere have contributed

to a better understanding of the fundamentals of fluid mechanics and the modeling of complex

phenomena. A sphere is the simplest three-dimensional body, but the flowfield is complicated

even such a simple body, and the flow over a sphere varies depending on flow conditions. Tiwari

et al., 2019a; Tiwari et al., 2019b published excellent review paper for flow over a sphere.

The behaviour of flow over a sphere varies with Re. This has been examined by various

researchers experimentally and numerically under incompressible conditions. Taneda, 1956

experimentally examined the wake of a sting-mounted sphere at 5 ≤ Re ≤ 300. He determined

that the critical Re of the formation of an axisymmetric vortex ring behind a sphere is Re ≈ 24.

Also, he observed a very long period oscillation of the axisymmetric vortex ring when Re

reached Re = 130. Magarvey and Bishop, 1961 experimentally examined wake structures of

a falling liquid droplet in liquid at 0 ≤ Re ≤ 2, 500. They observed that asymmetry appears

in the recirculation region at around Re > 210. Nakamura, 1976 also observed asymmetry

in a steady recirculation region at Re > 190. Taneda, 1978 experimentally examined the

wake behind a sphere at Re ranging from O(104) to O(106) using the surface-oil flow, smoke,
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and tuft-grid methods. He observed wave motion in the wake at O(104) ≤ Re ≤ 3.8 × 105

and noted that it forms a pair of streamwise vortices at 3.8 × 105 ≤ Re ≤ 106. Sakamoto

and Haniu, 1990 experimentally investigated the vortex shedding from a sphere in a uniform

flow at 300 ≤ Re ≤ 4.0 × 104. They examined the wake of a sphere by hot-wire and flow

visualization experiments. They showed that the wake vortices change from laminar to turbulent

when Re reached approximately 800. In addition, they found that the higher- and lower-

frequency modes of a Strouhal number (St = f d/u∞) of a vortex shedding frequency f coexist

at 800 ≤ Re ≤ 1.5 × 104. Johnson and Patel, 1999 experimentally and numerically examined

at 20 ≤ Re ≤ 300. They numerically identified the critical Re for a steady axisymmetric

flow (Re ≤ 210), steady non-axisymmetric (planar-symmetric) flow (210 ≤ Re ≤ 270), and

unsteady (periodic) flow (Re > 270) by DNS of the three-dimensional incompressible Navier–

Stokes equations. The higher-Re conditions for flows over a sphere were studied by Tomboulides

and Orszag, 2000 and Rodriguez et al., 2011 for 25 ≤ Re ≤ 1, 000 and Re = 3, 700, respectively.

Kane, 1951 was among the first to investigate the effect of Re on the sphere drag under the

compressible flow. He measured the sphere drag at 2.1 ≤ M ≤ 2.8 and 15 ≤ M ≤ 800 using a

low-density supersonic wind tunnel, and Re effect on the drag coefficient has been confirmed.

Furthermore, he conducted the flow visualization and the photograph indicated that interaction

occurred between the sphere boundary layer and shock wave. May, 1953 measured the drag

coefficients by a free-flight experiment using the pressurized Ballistic range. They used steel

and aluminum spheres 1/4 to 3/4 inch in diameter. The test condition was 0.8 ≤ M ≤ 4.7 and

1.14× 103 ≤ Re ≤ 8.4× 106, and the sphere drag coefficients were obtained from position-time

data. The variation of the drag coefficient was found to be approximately 10% in the range

1.6 < M < 4.7 and 4.0 × 103 < Re < 1.0 × 106. May, 1957 obtained the drag coefficient of

a sphere at further low-Re conditions in 1.5 < M < 3.0 and 350 < Re < 3, 000 by free-flight

experiments using a ballistic range, and they derived a contour map of the sphere drag in M

and Re coordinate by the experimental data. Sreekanth, 1961 measured the drag coefficient of

a sting-supported sphere at M = 2 and 0.1 < Kn < 0.8 in a low-density wind tunnel. The

influence of support interference on the measured drag force was reported. Goin and Lawrence,

1968; Bailey and Hiatt, 1971; Bailey and Hiatt, 1972; Bailey, 1974; Bailey and Starr, 1976

carried out free-flight experiments using a ballistic range and estimated the drag coefficient of
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the sphere for a wide range of Re and M(0.1 ≤ M ≤ 6 and O(10−2) ≤ Re ≤ O(107)). Crowe

et al., 1968 calculated the drag coefficients of micron-size particles through subsonic speed

free-flight experiments by measuring the deceleration of the flight speed of the particle with a

Faraday cage. In addition, Zarin and Nicholls, 1971 conducted wind tunnel experiments with a

sphere at 0.1 ≤ M ≤ 0.57 and 40 ≤ Re ≤ 5, 000. They used a one-component magnetic balance

and suspension system to subtract the support interference. By their studies, the characteristics

of the sphere drag coefficient have been investigated in a wide range of M and Re. However, the

data of the sphere drag in this region is still fewer than that in the incompressible flow. Also,

because these studies only focused on the drag coefficient, the number of studies on the flowfield,

the heat transfer, and the lift coefficient due to the rotation of the sphere and background shear

at compressible low-Re flows remains few.

(a) (b) (c)

Figure 1.7: Visualization image of the flow over a sphere in compressible flows:
(a) M = 0.86 and Re = 9.2× 105 (Dyke, 1982); (b) M = 1.53 and Re ≈ 4.4× 105

(estimated value as standard atmosphere) (Dyke, 1982); (c) M = 0.99 and Re ≈
4.3 × 104(Wagner et al., 2012).

Visualization studies on the compressible low-Re flow are quite difficult because of the small-

sized test model and low-density gases to decrease Re. Particularly, the visualization of the wake

structure is extremely difficult. A number of beautiful pictures of the flow visualization of the

compressible flow over a sphere have been taken. Figures 1.7(a) and (b) are the shadowgraph

images of the flow over a sphere in free flight at Re = O(105) in the transonic and supersonic

speeds (Dyke, 1982). In this Re range, the shock wave and wake structures can clearly be seen,

also even turbulent boundary layer separation. Figure 1.7(c) is the schlieren image of the shock

particle interaction process taken by Wagner et al., 2012. The flow condition based on the

particle and flow behind the incident shock is Re ≈ 4.3 × 104 at M = 0.99. The diameter of the
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test model in this picture is 1 mm. In this Re range, the visualization image is unclear due to

the small size of the model. The outline of the shock structure can be recognized but the wake

structure is cannot be confirmed. It should be noted that the purpose of their experiment was

not the visualization of the wake.

Numerical examinations of the compressible low-Re in the continuum regime have also been

conducted. Meliga, Sipp, and Chomaz, 2010 studied linear dynamics of global eigenmodes in

the wake of compressible axisymmetric flows of the sphere at 0 ≤ M ≤ 0.7 and 270 ≤ Re ≤ 285.

They determine the boundary of the stable and unstable region in the M and Re coordinates, and

showed that an increase in M yields a destabilization of the flow past the sphere. Recently, the

flow over a sphere under compressible low-Re flow have been studied through the fully three-

dimensional numerical simulations by us (since 2016), Riahi et al., 2018, and Sansica et al.,

2018. Riahi et al., 2018 computed the flow over a sphere at 0.3 ≤ M ≤ 2.0 and 50 ≤ Re ≤ 600

using the IBM. They found that the wake structure for M = 0.95 is unsteady flow with alternating

hairpin vortices at Re = 600, and the wake at M = 2.0 is steady flow up to Re of 600. Sansica et

al., 2018 conducted a fully three-dimensional linear stability analysis to investigate the unstable

bifurcations of the compressible flow over a sphere with the low-Re condition in the range of

0.1 ≤ M ≤ 1.2 and 200 ≤ Re ≤ 370. They showed that the flow becomes globally stable

and switches to a noise-amplifier system when reached supersonic conditions. In addition,

they applied a continuous Gaussian white noise forcing in front of the shock and examine the

convective nature of the flow by a Fourier analysis and a dynamic mode decomposition. The

transition in the wake does not observe in the chosen Re and forcing amplitude. Mao et al.,

2019 carried out the DNS of supersonic turbulent flow over a sphere by the three-dimensional

ghost zone IBM with high-order schemes. They showed that the drag coefficient increases as the

inflow turbulence intensity increases, and the increment of the drag coefficient is smaller than

that of the incompressible cases. In addition, both Kolmogorov and Taylor scales decrease after

being compressed by the bow shock, and the both streamwise and transverse Reynolds stress

take peak value at the shock location.

In addition, the particle-resolved DNS by finite-size particle approach have been conducted.

Mizuno et al., 2015; Mizuno et al., 2016 constructed the simple IBM flow solver. The solver has

the capability to solve the three-dimensional compressible particle-laden flow including shock
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waves, and they investigated flow containing multiple moving particles and the shock wave.

They successfully simulate the normal shock-particle interaction by the particle-resolved DNS.

Das et al., 2017; Das et al., 2018 also constructed the IBM flow solver which has capability

to solve the three-dimensional compressible particle-laden flow including shock waves, and

they simulated the interaction of the normal shock and particle cloud. Moreover, they applied

machine learning to develop surrogate drag models for shocked particulate flows. Schneiders

et al., 2016 examined the interaction between the particles and compressible turbulence. They

simulated the modulation of decaying isotropic turbulence by 45,000 spherical particles of

Kolmogorov-length-scale size by particle-resolved DNS using the cut-cell method. By using

the cut-cell method, the exchange of the momentum and energy through the fluid-particle

interface is strictly conserved. Their results showed that the particles absorb energy from

the large scales component of the gas-phase while the motion of small-scale turbulence is

determined by the particle dynamics. The level of dissipation increases locally because of the

intense strain rate generated near the particle surfaces caused by the crossing-trajectory effect.

Hosseinzadeh-Nik, Subramaniam, and Regele, 2018 conducted the particle-resolved DNS of

the normal shock-particle interactions. They studied the unsteady interaction of the wave-wave

and wake-wake interactions, the interaction of the planar-shock with a particle cloud, and the

intensity of the incident wave from the compression wave to impulsive shock wave. Osnes et al.,

2019 investigated the Re effects on the shock-induced flow using ensemble-averaged results

from particle-resolved LES. They showed that the shock-particle cloud interaction produces a

reflected shock wave and its strength increases with a decreasing of particle Re.

1.2.2 Flow over a Circular Cylinder

A circular cylinder is one of the simplest geometry, but the flow field around the circular cylinder

is complex and changes depending on Re. The incompressible flow over a circular cylinder has

been investigated numerically and experimentally for a wide range of Re.

Taneda, 1956 conducted a flow visualization experiment and investigated the flow structure

around a circular cylinder at 0.1 ≤ Re ≤ 2, 000. He showed that the flow over a circular

cylinder is fully attached at Re ≤ 5. The separation occurs at Re = 5, then the length
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of the recirculation region increases as Re increases, and becomes asymmetric recirculation

approximately at Re = 45. Dennis and Chang, 1970 conducted numerical simulations of

the wake of a circular cylinder at 5 ≤ Re ≤ 100 using the finite difference method. Their

results showed that the length of the recirculation region approximately linearly increases as

Re increases. Coutanceau and Bouard, 1977 visualized the wake of a circular cylinder at

5 < Re < 40 and showed that the length of the recirculation region increases linearly with

increasing Re.

For Re > 47, periodic laminar vortex shedding occurs. The Re effect on the St of the

vortex shedding in the unsteady regime was also studied. Roshko, 1954 measured the vortex

shedding frequency of a circular cylinder at 40 < Re < 10, 000. He showed that the St of vortex

shedding increases as Re increases. On the other hand, the St of vortex shedding is independent

from Re at 300 < Re < 10, 000. Williamson, 1988a; Williamson, 1988b; Behara and Mittal,

2010 investigated the three-dimensional effects on the St of vortex shedding and the wake

structures. The three-dimensionality in the wake firstly observed at around Re = 64. There is a

discontinuity in the St of the vortex shedding in the spanwise direction, and the lower frequency

was observed in the region near the sidewall. The frequency spectra of the vortex shedding

make a single and sharp peak at around 64 < Re < 180 (oblique shedding). In this regime,

wake vortices have a slant angle. As Re increases, the discontinuity on the Re–St curve and

the streamwise vortices appear at around Re = 180. The St of vortex shedding discontinuously

decreases due to the vortex dislocation, and this mode is retained at 180 < Re < 230 (mode-A).

As Re further increases, a second discontinuity on the Re–St curve appears, and the St of vortex

shedding discontinuously increases at around Re = 230 (mode-B). In addition, the steady and

unsteady aerodynamic force measurements were conducted over a range of Re from the onset

of the two-dimensional oscillation and the conditions that the boundary layer becomes turbulent

(Delany and Sorensen, 1953; Tritton, 1959; Gerrard, 1961; Norberg, 2001).

In the case of the incompressible flows over a circular cylinder, the flow dynamics can be

characterized by Re. In the case of the compressible flows over a circular cylinder, there is the

effects of M on the flow properties as well as Re. Lindsey, 1938 was among the first to investigate

the effect of Re under the compressible flow. He measured the drag force of a circular cylinder

at 840 ≤ Re ≤ 3.1 × 105 and 0.05 ≤ M ≤ 0.65 and demonstrated the M and Re dependence
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of the drag coefficient through a wind tunnel experiment. Gowen and Perkins, 1953 measured

the pressure distribution around a circular cylinder in the subsonic and supersonic flows and

measured the drag coefficients in the range of 5.0 × 104 ≤ Re ≤ 1.0 × 106 and 0.3 ≤ M ≤ 2.9.

They clarified that there is no Re effect on the drag coefficient under the supersonic conditions

that they investigated. McCarthy and Kubota, 1964 investigated the flow field behind a circular

cylinder at M = 5.7 and 4, 500 ≤ Re ≤ 66, 500 by measuring the Pitot pressure, static pressure,

and total temperature in the wake. They determined the transition from laminar to turbulent

flow based on the velocity profiles and correlated with the result of mass-diffusion and hot-wire

fluctuation measurements. Murthy and Rose, 1978 investigated the vortex shedding frequencies

of a circular cylinder at Re = 3.0 × 104, 1.66 × 105 and 5.0 × 105 and 0.25 ≤ M ≤ 1.2 by wind

tunnel experiments. They showed that the St of vortex shedding at O(104) ≤ Re ≤ O(105)

is approximately 0.18 at M < 0.9 and that there is no detectable vortex shedding at M > 0.9.

Rodriguez, 1984 investigated flow over a circular cylinder at 1.7 × 105 ≤ Re ≤ 3.4 × 105

and 0.4 < M < 0.8 by the high-speed flow visualization synchronized with unsteady surface-

pressure measurements. They clarified the relationship between the distribution of the surface

pressure and the flow patterns in the near wake.

Numerical studies have also been conducted. Canuto and Taira, 2015 performed a two-

dimensional direct numerical simulation (DNS) of the compressible flow over a circular cylinder

at 20 ≤ Re ≤ 100 and 0 ≤ M ≤ 0.5. They found that the compressibility effects reduce the

growth rate and dominant frequency in the linear growth stage. Xu, Chen, and Lu, 2009

investigated the flow around a circular cylinder at Re = 2.0 × 105 and 0.85 ≤ M ≤ 0.95

through a detached-eddy simulation. They showed that the flow at M < 0.9 is an unsteady flow

characterized by moving shock waves interacting with the turbulent wake in the near region of

the circular cylinder and that the flow at M > 0.9 is a quasi-steady flow with nearly stationary

shock waves formed in the near wake. Xia et al., 2016 computed the compressible flow past a

circular cylinder at Re = 4.0 × 104 and 1.0 × 106 and 0.5 ≤ M ≤ 0.95 through a constrained

large-eddy simulation approach. They analyzed the effect of M on the flow pattern and some

flow quantities such as the drag coefficient and pressure coefficient distribution. They showed

that flowfield and flow properties dramatically changed around the high-subsonic and transonic

flows.
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Figure 1.8 shows a map of the condition investigated in the previous studies. The experimen-

tal and numerical studies on the compressible flow over a circular cylinder have been conducted

at O(101) ≤ Re ≤ O(102) and O(104) ≤ Re ≤ O(106). Because it is difficult to investigate

this region through either computation or visualization due to the large computational cost or

the small test model and low-density conditions, respectively, there are few studies at around

Re = O(103), particularly flow visualization studies.

Rodriguez (1984)

Lindsay (1938)

Mcmathy & Kubota (1963)
Kitchens & Bush (1972)

Knowler & Pruden (1944)

Dyment & Gryson (1979)

Xia et al. (2016)

Xu et al. (2009)
Canuto & Taira (2015)

Gowen & Perkins (1953)

Murthy & Rose (1977)

10-1

100

101

M

Re

101 102 103 104 105 106 107

Figure 1.8: Map of the conditions of published studies for a circular cylinder at
compressible low-Re flows. Lindsey, 1938 (exp., drag measurement); Knowler and
Pruden, 1944 (exp., drag and pressure measurement); Gowen and Perkins, 1953
(exp., drag and pressure measurement, shadowgraph); McCarthy and Kubota,
1964 (exp., pitot-pressure, static pressure, and total temperature measurements,
schlieren); Kitchens and Bush, 1972 (exp., hot-wire measurement, shadowgraph);
Murthy and Rose, 1978 (exp., pressure and skin friction measurement); Dyment
and Gryson, 1979 (exp., shadowgraph and schlieren); Rodriguez, 1984 (exp.,
shadowgraph and unsteady pressure measurement); Xu, Chen, and Lu, 2009 (CFD,

DES); Canuto and Taira, 2015 (CFD, DNS); Xia et al., 2016 (CFD, CLES)

1.3 Contributions and Outline

In the present study, the characteristics of the compressible low-Re flow over an isolated sphere

are investigated toward the modeling of the compressible multiphase flows. The flow over a

sphere is investigated by the direct numerical simulation of the Navier–Stokes equations, the

free-flight experiments, and the shock-sphere interaction experiment. The outline of the present

study is shown in figure 1.9.
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In chapter 3, the uniform flow over a stationary adiabatic sphere is investigated by the

direct numerical simulation of the three-dimensional compressible Navier–Stokes equations at

50 ≤ Re ≤ 1, 000 and 0.3 ≤ M ≤ 2.0. The effects of M and Re on the flow regime, flow

geometry, aerodynamic force coefficients are provided.

In chapter 4, the uniform flow over a stationary isothermal sphere is investigated by the

direct numerical simulation of the three-dimensional compressible Navier–Stokes equations at

100 ≤ Re ≤ 300 and 0.3 ≤ M ≤ 2.0. The temperature difference between the freestream and

the surface of the sphere is varied in the range from 0.5 to 2.0, and the effects of the surface

temperature on the flow properties are provided.

In chapter 5, the uniform flow over a rotating adiabatic sphere and the linear shear flow over

a stationary adiabatic sphere are investigated by the direct numerical simulation of the three-

dimensional compressible Navier–Stokes equations. The flow condition for the rotating sphere

is 100 ≤ Re ≤ 300 and 0.3 ≤ M ≤ 2.0. The normalized rotation rate based on the freestream

velocity and the surface velocity at the equator of the sphere is varied in the range from 0 to 1.0,

and the effects of the rotation on the flow properties are provided. The flow condition for the

rotating sphere is 100 ≤ Re ≤ 300 and 0.3 ≤ M ≤ 1.5. The normalized dimensional shear rate

normalized by the freestream velocity and the radius of the sphere is fixed at 0.1, and the effects

of the background shear on the flow properties are provided. In chapter 6, the flow over an

isolated sphere is investigated by the free-flight and shock-sphere interaction experiments. The

flow condition for the free-flight experiment is 3.7 × 103 ≤ Re ≤ 3.8 × 105 and 0.9 ≤ M ≤ 1.6.

The small sphere is launched into the low-pressurized test section by a single-stage light gas

gun, and the flowfield is visualized by the schlieren technique. The effects of M and Re on

the wake structure and flow geometry are provided. The flow conditions for the shock-sphere

interaction experiment based on the shock behind quantities is 1.8 × 103 ≤ Re ≤ 1.4 × 104 and

0.4 ≤ M ≤ 1.3. The sphere drop-off system is constructed and applied to the experiment. The

small sphere is released from the upper wall of the shock tube and interacts with the planar-shock

wave. The flowfield acquired by the schlieren technique and the drag coefficient estimated from

the position-time data of the sphere are provided.
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Re

100 101 102 103 104 105

DNS of NS Eqs.

50 � Re � 1,000

0.3 � M � 2.0

Free-flight tests

3,700 � Re � 380,000

0.9 � M � 1.6

Sphere-shock interaction tests

1,800 � Re � 14,000

0.54 � M � 1.24

Figure 1.9: Outline of the present study.
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List of Symbols

a = sound speed

E , F, G = x, y, and z components of an inviscid flux

Ev, Fv, Gv = x, y, and z components of an viscous flux

L = Length

J = Transformation Jacobian

Q = Conservative variable vector ξ, η, ζ directions

R = Gas constant

T = Temperature

U, V , W = Contravariant velocities in

cp = Specific heat at constant pressure

e = Total energy per unit volume of the gas phase

h = Heat transfer coefficient

k = Thermal conductivity

p = Pressure

q = Heat flux

t = Time

u, v,w = Velocity in x, y, and z directions

x, y, z = Cartesian coordinates

δi. j = Kronecker delta

γ = Specific heat ratio

λ = Second viscosity coefficient

µ = Dynamic viscosity coefficient

ρ = Density

τi j = Viscous stress tensor

ξ, η, ζ , τ = Curvilinear coordinates

Subscripts

cg = center of gravity

∞ = Freestream
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2.1. Numerical Methods

2.1 Numerical Methods

2.1.1 Navier–Stokes Equations

Navier–Stokes Equations in Cartesian Coordinate System

The three-dimensional compressible Navier–Stokes equations were employed as governing equa-

tions. These equations in the Cartesian coordinate system are as follows:

∂Q
∂t
+
∂E
∂x
+
∂F
∂y
+
∂G
∂z
=
∂Ev
∂x
+
∂Fv
∂y
+
∂Gv
∂z

(2.1)

where Q contains conservative variables; E , F, and G are the x, y, and z components of an

inviscid flux, respectively; and Ev, Fv, and Gv are the x, y, and z components of a viscous flux,

respectively.

Q =



ρ

ρu

ρv

ρw

e


, E =



ρu

ρu2 + p

ρuv

ρuw

(e + p)u


, F =



ρv

ρvu

ρv2 + p

ρvw

(e + p)v


, G =



ρw

ρwu

ρwv

ρw2 + p

(e + p)w


(2.2)

Ev =



0

τxx

τxy

τxz

βx


, Fv =



0

τyx

τyy

τyz

βy


, Gv =



0

τzx

τzy

τzz

βz


(2.3)


βx = τxxu + τxyv + τxzw − qx

βy = τyxu + τyyv + τyzw − qy

βz = τzxu + τzyv + τzzw − qz

where q and tau denote the heat flux and viscous stress. Moreover, e is the total energy per unit

volume and assume to be the state of the ideal gas,
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e =
p
γ − 1

+
1
2
ρ(u2 + v2 + w2) (2.4)

where γ denotes the specific heat ratio and it was set to be 1.4 for the air. We assume that the

stress tensor is a linear function of the rate of the strain tensor. The viscous stress tensor τi, j for

a Newtonian fluid is based on the temperature T and velocity,

τi, j = µ(T)
(
∂ui

∂x j
+
∂u j

∂xi

)
+ δi jλ

∂uk

∂xk

p
γ − 1

+
1
2
ρ(u2 + v2 + w2) (2.5)

where the Einstein summation convention is used. The sum of the diagonal component of τ

becomes

∑
τi,i = (3λ + 2µ)∂ui

∂xi
. (2.6)

The second viscosity coefficient λ is determined as this value becomes zero and its average value

is

∑
τi,i

3
= (λ + 2

3
µ)∂ui

∂xi
(2.7)

where the coefficient λ + 2
3 µ is called the bulk viscosity, and assumed to be zero in the Stokes’

hypothesis 1
3 (τxx + τyy + τzz) = 0. The second viscosity coefficient then can be written as

λ = −2
3
µ(T). (2.8)

Therefore, the stress tensor τi, j becomes

τi, j = µ(T)
(
∂ui

∂x j
+
∂u j

∂xi

)
− 2

3
δi, j µ(T)

∂uk

∂xk
(2.9)

where δi, j is the Kronecker delta, which is defined as δi j if i = j and δi, j = 0 if i , j. The

dynamic viscosity µ(T) is given by Sutherland’s law Sutherland, 1893 for air,

µ(T)
µ∞
=

(
T

T∞

) 3
2
(

1 + 110.4/T∞
(T + 110.4)/T∞

)
. (2.10)
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We also assume that the heat-flux vector is proportional to the gradient of the temperature.

The heat-flux vector q is obtained by Fourier’s law,

q j = −k
∂T
∂x j

(2.11)

where k is the thermal conductivity. Here, the thermal conductivity, the heat capacity at the

constant pressure, the sound speed, and the ideal gas law are

k =
µ(T)cp

Pr
, cp =

γR
γ − 1

, a =
√
γRT ,T =

p
ρR

(2.12)

where R is gas constant, and thus, the heat flux is

q j = −
µ(T)Cp

Pr
∂T
∂x j
= − µ(T)

Pr
γR
γ − 1

∂T
∂x j
= − µ(T)

Pr
1
γ − 1

∂a2

∂x j
(2.13)

where Pr is Prandtl number that indicates the ratio of the viscous diffusion and temperature

diffusion. The value set as Pr = 0.72, the same as air.

Non-Dimensionalization of Navier–Stokes Equations

Navier–Stokes equations are non-dimensionalized by introducing the freestream quantities ρ∞,

a∞, and µ∞) and the reference length LR

xi =
x∗i
L∗

R
, t =

t∗

L∗
R/a∗∞

, ρ =
ρ∗

ρ∗∞
, ui =

u∗i
a∗∞

, e =
e∗

ρ∗∞a∗∞
2 , (2.14)

p =
p∗

ρ∗∞a∗∞
2 =

p∗

γp∗∞
, µ =

µ∗

µ∗∞
, τi j =

τ∗i j

µ∗∞a∗∞/L∗
R

, qi =
q∗

µ∗∞a∗∞
2/L∗

R

, (2.15)

where the asterisk denotes dimensional quantities. The non-dimensional Navier–Stokes equa-

tions in the Cartesian coordinate system can be obtained by substituting these non-dimensional

physical properties into eq. (2.1).

∂Q
∂t
+
∂E
∂x
+
∂F
∂y
+
∂G
∂z
=

1
Re

(
∂Ev
∂x
+
∂Fv
∂y
+
∂Gv
∂z

)
(2.16)
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where Re is the Reynolds number. which can be interpreted as the ratio of inertial and viscous

forces, the definition follows:

Re =
ρ∗∞a∗∞L∗

R
µ∗∞

, Re =
1

M∞

ρ∗∞a∗∞L∗
R

µ∗∞
, M∞ =

u∗∞
a∗∞

(2.17)

Navier–Stokes Equations in Carvilinear Coordinate System

In the present study, the governing equations were solved on the body-fitted grid. Therefore,

the Navier–Stokes equations in the curvilinear coordinate system were solved. The governing

equations of eq. 2.1 are transformed from those in the Cartesian coordinate system to the general

curvilinear coordinate system. Each coordinate system is related as follows:



x = x (ξ, η, ζ , τ)

y = y (ξ, η, ζ , τ)

z = z (ξ, η, ζ , τ)

t = τ

⇐⇒



ξ = ξ(x, y, z, t)

η = η(x, y, z, t)

ζ = ζ(x, y, z, t)

τ = t

(2.18)

The differential form of the Cartesian coordinate system (x, y, z, t) is



dx

dy

dz

dt


=



xξ xη xζ xτ

yξ yη yζ yτ

zξ zη zζ zτ

0 0 0 1





dξ

dη

dζ

dτ


(2.19)

where tξ = tη = tζ and tτ. Similarly, the differential from of the curvilinear coordinate system

(ξ, η, ζ , τ) is 

dξ

dη

dζ

dt


=



ξx ξy ξz ξt

ηx ηy ηz ηt

ζx ζy ζz ζt

0 0 0 1





dx

dy

dz

dt


(2.20)

where τx = τy = τz = 0 and τt = 1. Consequently, the relations between the Cartesian coordinate

system and the curvilinear coordinate system can be derived from eqs. 2.19 and 2.20. From this

38



2.1. Numerical Methods

relationship, we obtain the metrics ξx , ξy, ξz, · · · with the derivatives xξ , xη, xζ , · · · as follows.



ξx ξy ξz ξt

ηx ηy ηz ηt

ζx ζy ζz ζt

0 0 0 1


=



xξ xη xζ xτ

yξ yη yζ yτ

zξ zη zζ yτ

0 0 0 1



−1

= J



yηzζ − yζ zη zηxζ − zζ xη xηyζ − xζ yη

yζ zξ − yξ zζ zζ xξ − zξ xζ xζ yξ − xξ yζ

yξ zη − yηzξ zξ xη − zηxξ xξ yη − xηyξ

0 0 0

−xτ
(
yηzζ − yζ zη

)
− yτ

(
zηxζ − zζ xη

)
− zτ

(
xηyζ − xζ yη

)
−xτ

(
yζ zξ − yξ zζ

)
− yτ

(
zζ xξ − zξ xζ

)
− zτ

(
xζ yξ − xξ yζ

)
−xτ

(
yξ zη − yηzξ

)
− yτ

(
zξ xη − zηxξ

)
− zτ

(
xξ yη − xηyξ

)
1


(2.21)

where J is the transformation Jacobian from the Cartesian coordinate system (x, y, z, t) to the

curvilinear coordinate system (ξ, η, ζ , τ):

J ≡ ∂(ξ, η, ζ)
∂(x, y, z) =

(
∂(x, y, z)
∂(ξ, η, ζ)

)−1
=

1

det
©«

xξ xη xζ

yξ yη yζ

zξ zη zζ

ª®®®®¬
=

1
xξ yηzζ + xηyζ zξ + xζ yξ zη − xξ yζ zη − xηyξ zζ − xζ yηzξ

(2.22)
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To be summarized, the coordinate transformation metrics are obtained as follows:

ξx = J
(
yηzζ − yζ zη

)
, ξy = J

(
zηxζ − zζ xη

)
, ξz = J

(
xηyζ − xζ yη

)
,

ηx = J
(
yζ zξ − yξ zζ

)
, ηy = J

(
zζ xξ − zξ xζ

)
, ηz = J

(
xζ yξ − xξ yζ

)
,

ζx = J
(
yξ zη − yηzξ

)
, ζy = J

(
zξ xη − zηxξ

)
, ζz = J

(
xξ yη − xηyξ

)
.

(2.23)

Since the computational grids do not deform, the Jacobian is constant with time in the present

study. Equation 2.23 are the conventional forms of metrics, so-called "nonconservative metrics".

The expressions of eq. 2.23 are analytically true, but the use of the high-order finite-difference

scheme on their discretization generally causes a numerical error due to violation of the geometric

conservation law, which is called freestream preservation error.

The transformation of each terms of the governing equations is based on the following Chain

rule:
∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
+ ζx

∂

∂ζ

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
+ ζy

∂

∂ζ

∂

∂z
= ξz

∂

∂ξ
+ ηz

∂

∂η
+ ζz

∂

∂ζ

∂

∂t
= ξt

∂

∂ξ
+ ηt
∂

∂η
+ ζt
∂

∂ζ
+
∂

∂τ

(2.24)

The non-dimensionalized three-dimensional compressible Navier–Stokes equations in the

curvilinear coordinate system can be written as follows:

∂Q̂
∂t
+
∂Ê
∂x
+
∂F̂
∂y
+
∂Ĝ
∂z
=

1
Re

(
∂Êv
∂x
+
∂F̂v
∂y
+
∂Ĝv
∂z

)
(2.25)

where

Q̂ =
1
J



ρ

ρu

ρv

ρw

e


, Ê =

1
J



ρU

ρuU + ξx p

ρvU + ξyp

ρwU + ξzp

(e + p)U − ξt p


, F̂ =

1
J



ρV

ρuV + ηx p

ρvV + ηyp

ρwV + ηzp

(e + p)V − ηt p
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Ĝ =
1
J



ρW

ρuW + ζx p

ρvW + ζyp

ρwW + ζzp

(e + p)W − ζt p


, Êv =

1
J



0

ξxτxx + ξyτxy + ξzτxz

ξxτyx + ξyτyy + ξzτyz

ξxyzx + ξyγzy + ξzτzz

ξxβx + ξyβy + ξzβz


, (2.26)

F̂v =
1
J



0

ηxτxx + ηyτxy + ηzτxz

ηxτyx + ηyτyy + ηzτyz

ηxτzx + ηyτzy + ηzτzz

ηxβx + ηyβy + ηzβz


, Ĝv =

1
J



0

ζxτxx + ζyτxy + ζzτxz

ζxτyx + ζyτyy + ζzτyz

ζxτzx + ζyτzy + ζzτzz

ζxβx + ζyβy + ζzβz


.

U, V , and W are so-called contravariant velocities in the ξ, η, and ζ directions as follows:

U = ξxu + ξyv + ξzw,

V = ηxu + ηyv + ηzw,

W = ζxu + ζyv + ζzw.

(2.27)

2.1.2 Computational Methods

Simulations were performed by DNS of the Navier–Stokes equations on a body-fitted coordinate

(BFC). The Navier–Stokes equation was non-dimensionalized by the freestream density, the

sound speed, and the diameter of the sphere. The convection term was evaluated by the sixth-

order adaptive central and upwind weighted essentially non-oscillatory scheme (WENOCU6-

FP) proposed by Nonomura et al., 2015, and the viscous term was evaluated by the sixth-order

central difference method. The time integration was conducted by the third-order total variation-

diminishing Runge–Kutta method proposed by Gottlieb and Shu, 1998. In the present study,

the central difference in WENOCU6-FP was replaced by one of the splitting types proposed by

Pirozzoli, 2011 for more stable calculation. In particular, the WENO numerical flux Fweno for

the convective term can be rewritten as the following expression:
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Fweno = Fcentral−div + Fweno−dissipation (2.28)

where Fcentral−div and Fweno−dissipation are the numerical fluxes corresponding to the sixth-order

central difference and the sixth-order dissipation term for the sixth-order WENOCU method,

respectively. Even though Fcentral is usually written in the divergence form, here it is replaced

by the splitting form Fcentral−split of Pirozzoli, 2011.

2.1.3 Computational Grids

Computational Grid for Uniform Flow Cases

A computational grid around the sphere was generated as a body-fitted grid. The coordinate

system and generated grid are shown in figures 2.1, 2.2 and 2.3, respectively.

z

x

yξ

η
ζ

Sphere

Figure 2.1: Coordinate system.

(a) (b)

Figure 2.2: Base grid. (a) Close-up view; (b) far view.
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(a) (b)

Figure 2.3: Wake-fine grid. (a) Close-up view; (b) far view.

Figure 2.4: Distribution of the grid width of the wake-fine gird.

In the uniform flow cases, the two kings of types of computational grids, which are a base

grid and wake-fine grid, were used. In the case of the wake-fine grid, the resolution of the

computational grid was retained in the downstream of the sphere in the diameter of 4d. The

region of 0.5d ≤ x ≤ 15d and
√
(y2 + z2) ≤ 4d is the high-resolution region to capture the wake

structures. The grid size in the ζ direction ∆ζ was spread by 1.03 times from the minimum grid

size, and the grid size became constant when the grid width reached ∆ζmax = 0.05d in the region

in ζ ≤ 15d for the case of Re ≤ 300. It is noted that the computational grid for Re = 300 was

used for the case of Re ≤ 300. The minimum grid width in ζ direction for the case of Re > 300

is determined as follows:

∆ζmax = ∆ζmax_ref

√
Reref√
Re

. (2.29)
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The minimum grid size in the ζ direction was calculated using the following formula adopted

by Johnson and Patel, 1999:

∆ζmin =
1.13

√
Re × 10.0

. (2.30)

Re ξ direction η direction ζ direction Total

Base grid ≤ 300 107 48 177 909,072

Wake-fine grid

≤ 300 127 62 358 2,818,892

500 165 82 444 6,007,320

750 201 98 529 10,420,242

1,000 231 110 601 15,271,410

Table 2.1: Number of grid point (computational grids for uniform cases).

From 15d outward, the grid size is increased by 1.2 times toward the outer boundary as a

buffer region to prevent pressure wave reflection. Note that the diameter of the analysis region

was 100d so that the distance between the surface of the sphere and the outer boundary was

much larger (the ) than that in previous incompressible studies. The minimum grid size for the

ξ and η direction was also determined as same as eq. 2.29. Table 2.1 shows the summary of the

number of grid points for each Re condition.

Computational Grid for Linear Shear Flow Case

In the linear shear flow cases, an overset grid consists of the non-uniform Cartesian grid (zone

1) and the O-type body-fitted grid (zone 2), because there is no numerical scheme that can be

satisfied the freestream preservation on the linear shear flow with a curvilinear grid. Figure 2.5

shows the computational grid for the linear shear flow. The domain size of zone 1 shown in

red in figure 2.5 was (−30d ≤ x ≤ 50d,−30d ≤ y ≤ 30d,−30d ≤ z ≤ 30d) and the number

of grid point of zone 1 was x × y × z× = 212 × 207 × 207. The grid width in each direction

of |x | = |y | = |z | ≤ 3d was fixed in ∆x = ∆y = ∆z = 0.05d and increases by 1.1 times at

|x | = |y | = |z | > 3d. The domain size of zone 2 was 0.5d ≤ ξ ≤ 2.5d and the grid width in ζ
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direction was spread by 1.03 times from the minimum grid width (eq. 2.30) and is limited at

∆ζ = 0.05d. The total number of grid point of zone 2 was ξ × η × ζ× = 127 × 118 × 81. It is

noted that the computational grid for Re = 300 was used for all simulations.

(a) (b)

Figure 2.5: Computational grid for linear shear flow cases. (a) Close-up view;
(b) far view.

Figure 2.6: Ballistic range and shock tube installed in the Institute of Fluid
Science.
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2.2 Experimental Equipment

The experimental studies were conducted at the Institute of Fluid Science, Tohoku University.

The free-flight experiment and the shock-sphere interaction experiment were carried out using

the ballistic range (left hand side of figure 2.6) and shock tube (center of figure 2.6), respectively.

2.2.1 Ballistic Range

A ballistic range was used to conduct free-flight experiments. Figure 2.7 is a schematic diagram

of the ballistic range used in the present study in the single-stage light gas gun mode. Three

types of launchers, a single-stage light gas gun, a powder gun, and a two-stage gas gun, can be

used. The velocity ranges for each launchers are 100–700 m/s, 400–2,400 m/s, and 2,000–7,000

m/s, respectively. The single-stage light gas gun was used in the present study. In this case, the

test model is accelerated by the high-pressure gas discharged from a high-pressure driver gas

chamber through a launch tube approximately 6 m long.

2.2.2 Shock Tube

A shock tube was used to conduct shock-sphere interaction experiments. Figure 2.8 is the

schematic diagram of the shock tube used in the present study. This shock tube is a non-

diaphragm type shock tube with a total length of approximately 22 m long. Between the

high-pressure chamber and low-pressure channel is separated by a piston which is supported by

the high-pressure gas-charged in the sub-high-pressure chamber. Between the sub-high-pressure

chamber and its leak section is separated by the intermediate-pressure chamber formed by two

membranes. The intermediate-pressure chamber is implausibly pressurized, and membranes are

broken at the execution, and the piston is then pushed and the high-pressure gas goes into the

low-pressure channels. Pressure waves are formed behind the piston and the planar-shock wave

is formed during propagation in the long distance. In the present study, the flow of high-pressure

gas into the intermediate-pressure chamber was controlled by a solenoid valve, and there is the

high-pressure source with a regulator in the upstream of the solenoid valve. The solenoid valve

is opened by TTL signals.
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ows High-
driver ga

Figure 2.7: Overview of the ballistic range at the Institute of Fluid Science.

Leak section

Quick opening valve

Low-pressure channnel

Test section

Dump tank

Vacuum pump

High-pressure chamber

Figure 2.8: Overview of the shock tube at the Institute of Fluid Science.
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List of Symbols

CD Drag coefficient

CDP Pressure drag coefficient

CDv Viscous drag coefficient

C f Friction coefficient

CL Lift coefficient

CP Pressure coefficient

∆CD Difference from the incompressible standard drag curve

Lr Separation length

Ls Shock standoff distance

M Mach number

Q Q-criterion

Re Reynolds number

St Strouhal number

a Sound speed

d Diameter of the sphere

f frequency

t Time

u Velocity vectors

u, v,w Velocity in x, y, and z directions

uξ Velocity in ξdirection

x, y, z Cartesian coordinates

δ Boundary layer thickness

δD Boundary layer thickness

µ Dynamic viscosity coefficient

θ Angle from x-axis

θs Separation point

ρ Density

ξ, η, ζ Curvilinear coordinates
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r.m.s. Root-mean-square
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3.1 Introduction

Studies of flow over generic bodies such as a flat plate, cylinder, or sphere, have contributed to a

better understanding of fluid mechanics and the modeling of complex phenomena. Particularly,

a sphere is the simplest three-dimensional body, but flow over a sphere is complicated and varies

depending on flow conditions.

The behaviour of flow past a sphere also varies with a Reynolds number (Re = ρ∞u∞/µ∞)

based on the freestream density ρ∞, the velocity u∞, the viscosity coefficient µ∞, and the

diameter of the sphere d. This has been examined by various researchers experimentally and

numerically under incompressible flows. Taneda, 1956 experimentally examined the wake of a

sting-mounted sphere at 5 ≤ Re ≤ 300. He determined that the critical Re of the formation of

an axisymmetric vortex ring behind a sphere is Re ≈ 24. Also, he observed a very long period

oscillation of the axisymmetric vortex ring when Re reached 130. Magarvey and Bishop, 1961

experimentally examined wake structures of a falling liquid droplet in liquid at 0 ≤ Re ≤ 2, 500.

They observed asymmetry in the recirculation region at approximately Re > 210. Nakamura,

1976 also observed an asymmetry in a steady recirculation region at Re > 190. Taneda,

1978 experimentally examined the wake behind a sphere at Re ranging from O(104) to O(106)

using the surface-oil flow, smoke, and tuft-grid methods. He observed wave motion in the

wake at O(104) ≤ Re ≤ 3.8 × 105 and noted that it forms a pair of streamwise vortices at

3.8× 105 ≤ Re ≤ 106. Sakamoto and Haniu, 1990 experimentally investigated vortex shedding

from a sphere in a uniform flow at 300 ≤ Re ≤ 4.0×O(104). They examined the wake of a sphere

by hot-wire and flow visualization experiments. They showed that the wake vortices change

from laminar to turbulent when Re reached ≈ 800. In addition, they found that the higher- and

lower-frequency modes of the Strouhal number (St = f d/u∞) of the vortex shedding frequency

f coexist at 800 ≤ Re ≤ 1.5 × 104. Johnson and Patel, 1999 experimentally and numerically

examined 20 ≤ Re ≤ 300. They numerically identified the critical Re for a steady axisymmetric

flow (Re ≤ 210), steady nonaxisymmetric flow (210 ≤ Re ≤ 270), and unsteady (periodic)

flow (Re > 270) by DNS of the Navier–Stokes equations. Further more, numerical studies at

higher-Re conditions of flow over a sphere were studied by Tomboulides and Orszag, 2000 and

Rodriguez et al., 2011 for 25 ≤ Re ≤ 1, 000 and Re = 3, 700, respectively.
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For compressible low-Re flow, drag coefficients of a sphere have been investigated by

several researchers. Data for the sphere drag coefficient in the compressible low-Re flow have

been used for the construction of particle drag models (Carlson and Hoglund, 1964; Crowe,

1967; Henderson, 1976; Loth, 2008; Parmar, Haselbacher, and Balachandar, 2010). Such drag

models can be used in the simulation of compressible multiphase flows, for example. However,

Saito, Marumoto, and Takayama, 2003 pointed out that the result of the numerical simulation

of the compressible particle-laden flow using the particle drag model is changed depending

on the drag model. In the aerospace field, compressible multiphase flows appear in exhaust

jets of rocket engines and other combustion flows. Recently, particle-resolved simulations of

compressible viscous particle-laden flow using the immersed boundary method (IBM) were

conducted by (Mizuno et al., 2015; Schneiders et al., 2016; Das et al., 2017). However, because

flow properties around a sphere have not been understood sufficiently, the examination of the

flow physics of a compressible low-Re flow over a single isolated sphere will be helpful for

modeling and understanding the compressible multiphase flow and extending the knowledge of

fluid mechanics.

May, 1957 obtained the drag coefficient of a sphere at 1.5 < M < 3.0 and 350 < Re < 3, 000

by free-flight experiments using a ballistic range. Sphere drag coefficients were obtained from

the position-time data under supersonic low-Re conditions using a low-pressure test section and

a small sphere. Sreekanth, 1961 measured the drag coefficient of a sting-supported sphere at

M = 2 and Knudsen numbers of 0.1 to 0.8 in a low-density wind tunnel. The influence of support

interference on the measured drag force was also reported. Bailey and Hiatt, 1971; Bailey and

Hiatt, 1972; Bailey, 1974; Bailey and Starr, 1976 also carried out free-flight experiments using

a ballistic range at 0.1 ≤ M ≤ 6 and O(10−2) ≤ Re ≤ O(107), and estimated the sphere rag

coefficient for a wide range of Re and M . Crowe et al., 1968 calculated the drag coefficients

of micron-size particles in subsonic free-flight experiments by measuring the deceleration of

the flight speed with a Faraday cage. In addition, Zarin and Nicholls, 1971 conducted wind

tunnel experiments with a sphere at 0.1 ≤ M ≤ 0.57 and 40 ≤ Re ≤ 5, 000. They used a

one-component magnetic balance and suspension system to subtract the support interference.

However, because these studies only focused on the drag coefficient, the number of studies on

the flowfield at compressible low-Re flows remains few.
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Numerical examinations of the compressible low-Re in the continuum regime have also been

conducted. Meliga, Sipp, and Chomaz, 2010 studied linear dynamics of global eigenmodes in

compressible axisymmetric wake flows of the sphere at 0 ≤ M ≤ 0.7 and 270 ≤ Re ≤ 285. They

determine the boundary separating the stable and unstable domains in the M and Re coordinates,

and showed that an increase in M yields a destabilization of the flow past the sphere. They

clarified that the destabilization effect due to compressibility is caused by a significant increase of

the backflow velocity of recirculation region. Recently, the flow past a sphere under compressible

low-Re flow has numerically been studied through the fully three-dimensional simulation by

us (since 2016), Riahi et al., 2018, and Sansica et al., 2018. Riahi et al., 2018 computed the

compressible flow-Re flow over a sphere at 0.3 ≤ M ≤ 2.0 and 50 ≤ Re ≤ 600 by the IBM

flow solver. They found that the wake structure for M = 0.95 is unsteady (alternating hairpin

wake) at Re = 600 and the wake for M = 2.0 is steady at Re ≤ 600. Sansica et al., 2018 carried

out the global stability analysis (GSA) at 0.1 ≤ M ≤ 1.2 and 200 ≤ Re ≤ 370. They examined

the effects of Re and M on the unsteadiness of the flowfield and drew a stability map based on

the bifurcation boundaries for various Re and M . These studies showed that the flow behind a

sphere is considerably stabilized when M increases, and unsteady flow patterns have not been

observed at supersonic flow in the numerically investigated Re ranges.

In this chapter, the fundamental properties of flow past an isolated stationary adiabatic

sphere at 50 ≤ Re ≤ 1, 000 and 0.3 ≤ M ≤ 3.0 is investigated by DNS of the three-dimensional

compressible Navier–Stokes equations. Flow regime maps for various Re and M values are

drawn. Also, characteristic parameters of flow geometries, such as the length of the recirculation

region, the position of the separation point, and the shock standoff distance and aerodynamic

force coefficients, are examined.

3.2 Computational Setup

3.2.1 Flow Conditions

In this chapter, uniform flows over a stationary adiabatic sphere were computed. A Reynolds

number was set to be between 50 and 1,000 and M was set to be between 0.3 and 2.0. Summary
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of the flow conditions are given in table 3.1.

M

0.3 0.7 0.8 0.95 1.05 1.2 1.5 2.0

Re

50 A A A A

100 A A A A

150 A A A A

200 A A A A

250 C C B B A A

300 C A C C C C C C

500 B B B B B B

750 B B B B B B

1,000 B B B B B B B

Table 3.1: Flow conditions for an stationary adiabatic sphere.

Flow conditions for an stationary adiabatic sphere. A: computed on the base gird; B: computed

on the wake-fine grid; C: computed on the base and wake-fine grids.

Also, the resolution of the computational grid was retained in the downstream region 4d in

diameter. Result of the grid convergence study is shown in appendix A.2.1.

3.2.2 Boundary Conditions

The boundary at the sphere surface was no-slip and adiabatic conditions. At the surface of the

sphere, the velocity was fixed to zero, the density was extrapolated from the one point inside the

boundary, the pressure was calculated from the momentum normal to the surface. The periodic

boundary condition with the six overlapped grid points was imposed at the boundaries in the

ξ and η directions. The inflow and outflow boundary conditions were imposed at the outer

boundary where the flow goes inside and outside at one point inside the boundary, respectively.

All flow variables were fixed to their freestream values at the subsonic and supersonic inflow

boundaries. All the variables were extrapolated from one point inside of the boundary at the

supersonic outflow boundaries. The density and the velocities were similarly extrapolated and
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the pressure was fixed to its freestream values in the subsonic outflow condition. On the singular

point of the x-axis, all the variables were set to be an average of the nearest surrounding nodes.

3.3 Results and Discussion

3.3.1 Far-Field Properties

Figure 3.1 illustrates M and Re effects on the wake structure visualized by the isosurface of the

second invariant of velocity gradient tensor (Q-criterion). The thresholds of Q-criterion was

5.0× 10−4 which is normalized value by the freestream velocity. Several kinds of wake structures

appear at M ≤ 2.0 and Re ≤ 1, 000, and the wake structures become complex and simple as Re

and M increase, respectively. Streamwise steady vortices are generated at the downstream of

sphere at Re = 250 and M = 0.3. At Re = 300 and 500, hairpin vortices are generated in the

recirculation region and the wake becomes unsteady flow. When Re further increases to 750 and

1,000, the wake vortices form a helical structure with a high mode and a low mode. The size of

the recirculation region at M = 0.8 becomes large compared to that at M = 0.3, and the pressure

coefficient distribution changes. The Re evolution of the flow patterns is similar to M = 0.3 in

figure 3.1, but the wake structure at M = 0.8 seems to be more complicated compared to that at

M = 0.3. Thus, the critical Re for each flow pattern might be different between M = 0.3 and

0.8. However, the details cannot be discussed due to the lack of DNS data in the Re direction.

The compressibility effect on the wake vortices becomes obvious for M ≥ 0.95. The pressure

coefficient distribution is drastically changed and a recompression wave can be observed around

the end of the recirculation region at M = 0.95. In this case, there is only a steady recirculation

region, and no unsteady wake vortices are formed downstream of the sphere up to Re = 300. At

Re = 500, streamwise vortices can be observed, similar to those at Re = 250 and M = 0.3, and

the wake becomes helical at Re ≥ 750, as at M = 0.3 and 0.8, but its structure is more complex

than that under subsonic conditions. A detached shock wave is formed upstream of the sphere

at M ≥ 1.05, and those waves including expansion and recompression waves become stronger

as M increases. The flow behind the sphere remains steady flow up to Re = 500, and hairpin
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structures appear at M = 1.05 and Re ≥ 750. Stabilization effects of the wake by compressibility

become strong as M increases, and the wake is steady at M ≥ 1.5 and Re ≤ 1, 000.

M = 0.3

Re = 250 Re = 300 Re = 500 Re = 750 Re = 1,000

M = 0.8

M = 0.95

M = 1.05

M = 1.2

M = 1.5

M = 2.0

CP

-0.54 1.1 0 1.0

Figure 3.1: Instantaneous wake structures. The structures are identified by the
isosurface of the normalized second invariant value of the velocity gradient tensor,
which is normalized with respect to the freestream velocity (Q/u2

∞ = 5.0 × 10−4).
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Re = 300

M = 1.05 M = 1.2M = 0.95

Re = 500

Re = 750

Re = 1,000

M = 0.8

Figure 3.2: Distribution of absolute values of density gradient.

Figure 3.2 shows schlieren-like images for 300 ≤ Re ≤ 1, 000 at around the transonic

condition. At M = 0.8, there is a small white region, the λ-shock, around θ = 90 deg, and

it becomes clearer as Re increases. The flow structure behind the sphere becomes different

from the incompressible flow because the λ-shock changes the position of the separation point.

Hence, it seems that the wake structure at M = 0.8 is more complicated compared to that at

M = 0.3, as shown in figure 3.2. The λ-shock becomes clearer and a wake shock wave is formed

downstream of the sphere at M = 0.95. Also, those shock waves become clearer as Re increases

because the viscous dissipation decreases. For Re ≥ 500, the wake becomes unsteady and wake

vortices appear to be generated around the wake shock wave. This trend is similar to that under

the higher-Re conditions with similar M values. It will be discussed in chapter 6. In that case,
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Re is 1.9× 105, which created a completely different flow regime, but a large-scale oscillation of

the wake is generated around the wake shock wave. A detached shock wave is formed upstream

of the sphere, and a recompression wave is formed around the root of the wake shock wave at

M ≥ 1.05. The oscillation of the wake generated around the recompression wave is observed

also at 8.1 × 103 ≤ Re ≤ 1.0 × 105 with a similar M .

0

0.05

0.10

0.15

0.20

0.5 1.0 1.5 2.0

S
t

M

Re = 300
Re = 500
Re = 750
Re = 1,000

Figure 3.3: Effect of M on the St of vortex shedding.

Figure 3.3 shows the influence of M on the St of vortex shedding. The St of vortex shedding

for Re = 300 and Re > 300 were computed by the time variation of the lift coefficient and

the velocity fluctuation at the maximum TKE point in the downstream, respectively. Overall,

St of vortex shedding increases as Re increases, and the critical M , at which St of vortex

shedding becomes zero, move to the higher-M side as Re increases. The St of vortex shedding

at Re = 300 decreases as M increases under the subsonic conditions and rapidly approaches

zero around M = 0.95 because there is no vortex shedding at Re = 300 and M ≥ 0.95. The

trend of the St of vortex shedding at Re = 500 is similar to that at Re = 300, but the St

of vortex shedding does not decrease up to M = 0.95 and sharply approaches zero at around

M = 1.0. The St of vortex shedding decreases at 0.3 ≤ M ≤ 0.8 and there are no M effects

on the St of vortex shedding at 0.8 ≤ M ≤ 1.05. The decrease in the St of vortex shedding at

0.3 ≤ M ≤ 0.8 corresponds to the change in the wake structure. As shown in figure 3.1, the

wake structure at M = 0.8 and 0.95 for Re = 750 is more complicated (resembling a higher-Re

condition) compared to that at M = 0.3 or at incompressible flow, because the weak shock wave

formed near the separation point and the flow separation is promoted by the effect of the weak
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shock wave. This results in the unsteadiness of the recirculation region and complicated vortex

structure. However, the flowfield is strongly stabilized under the supersonic regime as the same

as the lower-Re cases, and then the St of vortex shedding becomes zero at M ≤ 1.2. Under the

sufficiently high-Re conditions, for example, Re ≥ O(105), the λ-shock wave is formed and the

flow separation is induced at approximately θ = 90 deg. However, under lower-Re conditions,

for example, Re < O(103), the boundary layer becomes thicker and attenuates the λ-shock wave

on the surface of the sphere; thus, the effect of the λ-shock wave becomes weak.

3.3.2 Flow Regime

According to studies of incompressible flow at the low-Re conditions by Taneda, 1956; Magarvey

and Bishop, 1961; Sakamoto and Haniu, 1990; Johnson and Patel, 1999, the flow structure at

Re ≤ 1, 000 can be classified into six regimes. At Re < 24, the flow is attached-laminar

flow over the entire surface (fully attached flow). Laminar separation occurs and a steady

axisymmetric vortex ring forms behind the sphere at 24 < Re ≤ 210 (steady-axisymmetric

flow). At 211 ≤ Re ≤ 275, the flowfield is still steady, but axisymmetrical breakup occurs

and the vortex ring assumes an asymmetric shape (steady planar-symmetric flow). The flow

over an isolated sphere becomes unsteady and hairpin vortex shedding begins at Re ≥ 275.

The hairpin vortex is periodically generated in the recirculation region at 275 ≤ Re ≤ 420. In

this Re range, the vortex shedding is highly organized (hairpin wake). The hairpin vortices are

periodically generated up to Re ≤ 800, but the direction of the heads of the hairpin vortices

roll in an azimuthal direction at 420 ≤ Re ≤ 800 (hairpin wake with azimuthal oscillation).

At Re ≥ 800, the wake vortices become complicated and strongly random. The wake consists

of low-mode and high-mode structures and large-scale vortex structure forms and rolls in the

azimuthal direction (helical wake).

Figure 3.4 shows the map of the flow regime in the Re–M plane under compressible con-

ditions. Riahi et al., 2018 and Sansica et al., 2018 are shown for comparison with those of the

present study. Riahi et al., 2018 used three-dimensional DNS with IBM, and Sansica et al., 2018

used fully three-dimensional GSA. In this plot, the six different flow regimes described above are
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indicated as follows: fully-attached flow (FA), steady-axisymmetric flow (SA), steady planar-

symmetric flow (SP), hairpin wake (HaW), hairpin wake with azimuthal oscillation (HaWAO),

and helical wake (HeW). However, in the study of Riahi et al., 2018, fully attached flow and

hairpin wake with azimuthal oscillation did not appear. It seems that those flow regimes are

included in steady-axisymmetric flow and unsteady periodic flow (HaW in this thesis) in their

articles, respectively. Figure 3.4 illustrates that the flow regime under the low subsonic flow up

to M = 0.3 is similar to that of incompressible flows. The region of steady-axisymmetric flow,

steady planar-symmetric flow, and hairpin wake are slightly shifted to the higher-Re side under

high subsonic flows. This means that the steady regime expands to the higher-Re side. Under the

transonic and supersonic conditions, the relationship between flow regime and Re is drastically

changed, and the flowfield is significantly stabilized. Particularly, even non-axisymmetric flow

does not appear for Re ≤ 1, 000 at M ≥ 1.5.
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Figure 3.4: Distribution of flow regimes.

3.3.3 Turbulent Kinetic Energy

Figure 3.5 shows the distribution of the turbulent kinetic energy (TKE) in the wake. Here, the

TKE in figure 3.5 was normalized by the freestream kinetic energy as follows:

u′ =

√���u2 − u2
��� (3.1)

TKE =
1
2

u′
2
+ v′

2
+ w′2

u∞
(3.2)
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where u′, v′, and w′ is fluctuation components of velocity. Also, the TKE was calculated in the

high-resolution region (0.5d ≤ x ≤ 15d and
√
y2 + z2 ≤ 4d), and we determined the volume

average for every ∆x = 0.2d. Figure 3.5(a) illustrates that the TKE increases approximately up

to x = 2.5d because the end of the recirculation region in the unsteady case exists at around

x = 2.0d. The TKE gradually decreases as the distance from the sphere increases. Also, the

TKE increases as M increases up to M ≤ 0.95 and is less than 10−4 at M > 0.95 because the

wake becomes a steady flow. At Re = 1, 000 (figure 3.5(b)), the trend of spatial distributions of

the TKE is similar to that at Re = 500 and its value is higher than that at Re = 500. Figure 3.5(b)

illustrates that the TKE increases and decreases as M increases at M ≤ 0.95 and M ≥ 1.05,

respectively. Therefore, it was confirmed that the TKE downstream of the sphere under the

higher-M conditions is larger than that under the lower-M conditions with the same flow regime.

In contrast, the TKE decreases as M increases at M ≥ 1.05 and Re = 1, 000 due to a change

in the flow regime from helical wake to hairpin wake, and the TKE becomes less than 10−4 at

M > 1.2 because of the steady wake. Hence, the compressibility effect not only leads to the

stabilization of the flowfield but also leads to the unsteadiness of the wake under an unsteady

flow regime. In particle-laden flow, the wake vortices generated by particles have a impact

not only on the turbulent structure of the continuum phase but also on the distribution of the

particles themselves (Kajishima and Takiguchi, 2002). Therefore, it is suggested that the relative

M between particles and the gas phase might be effective for forming particle clusters.

Figure 3.5: Normalized TKE distribution in the wake region: (a) Re = 500; (b)
Re = 1, 000.
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3.3.4 Near-Field Structure

Separation Point and Recirculation Region

Figure 3.6 shows the schematic diagram of the definition of the position of the separation point

and the separation length. In the present study, the position of the separation point was defined

as the angle from the upstream stagnation point, and the separation length was defined as the

distance between the downstream stagnation point and the end of the recirculation region.

Figure 3.7 shows the M and Re effects on the position of the separation point. Figure 3.7(a)

illustrates the effect of M , which moves the position of the separation point upstream as M

increases up to M = 0.8 because the flow separation is enhanced due to the λ-shock formed at

around θ = 90 deg. In contrast, the position of the separation point moves downstream as M

increases at M > 0.8 due to the expansion wave. The flow direction behind the expansion wave

changes to the direction toward the recirculation region, which reduces the flow separation, and

its effect becomes strong under the higher-M conditions. Figure 3.7(b) depicts the Re effect,

which moves the position of the separation point upstream as Re increases for all M values

investigated in the present study. Also, the Re effect on the separation point is similar in each

M , and thus there is no clear influence of Re on the M effect on the separation point position.

θs

Lr

d

Figure 3.6: Schematic diagram of the flow geometry.
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Figure 3.7: Dependence of separation point position on M and Re: (a) M
dependence; (b) Re dependence.

Figure 3.8 shows the effects of M and Re on the separation length. Figure 3.8(a) shows the

influence of M and illustrates that the separation length increases and decreases as M increases

under subsonic and supersonic conditions, respectively, creating an inflection point in the M

evolution. The behaviour of the separation length is linked with the separation point position.

However, the increment of the separation length rapidly increases at around the transonic regime,

except at Re = 1, 000. The inflection point moves towards the higher-M side as Re increases

because the separation length increases to its maximum value at around the critical M , which

is the point at which the flow regime transitions from steady to unsteady. Also, the maximum

value of the separation length decreases as Re increases. Figure 3.8(b) depicts the Re effect on

the separation length and the M effect on the separation length. The separation length increases

as Re increases at Re ≤ 1, 000 and M = 0.3. However, at M = 0.8, the separation length

increases and decreases as Re increases for Re ≤ 300 and Re ≥ 300, respectively. Also, a

similar inflection point of the separation length exists at Re = 750 and M = 1.2, again because

the inflection point appears when the flow transitions from steady to unsteady. Therefore, it is

considered that the inflection point for M = 2.0 will appear at Re ≥ 1, 000.
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Figure 3.8: Dependence of length of the recirculation region on M and Re: (a)
M dependence; (b) Re dependence.

Shock Standoff Distance

Figure 3.9(a) shows the relationship between M and shock standoff distance Ls. The study

by Sugimoto (1944) (see Hida, 1953) and Heberle, Wood, and Gooderum, 1950 produced

experimental results. The dotted line represents the value predicted by the empirical expression

proposed by Ambrosio and Wortman, 1962. This empirical model was constructed using the

experimental data of a cone-sphere model. The position of the detached shock wave was

identified by the local streamwise velocity ulocal and the local sound speed alocal on the x-axis as

follows:

ulocal − alocal > 0 outside,

ulocal − alocal = 0 shockwave,

ulocal − alocal < 0 inside.

(3.3)

Figure 3.9(a) illustrates that the present computation at Re = 300 agree with the previous

experimental results and empirical expression. Figure 3.9(b) illustrates the relationship between

Re and shock standoff distance Ls. The empirical expression by Ambrosio and Wortman,

1962 does not include Re, because the experiment was conducted under sufficiently high-Re

conditions. However, the DNS results show the Re dependence. The shock standoff distance

increases as Re decreases at Re ≤ 300 due to an increase in the displacement thickness. The
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difference between the empirical expression and DNS results becomes small as Re increases.

However, the Re dependence is still observed at Re > 300 and the shock standoff distance further

decreases as Re increases. At M = 1.2, the shock standoff distance converges to the value of

the empirical expression at around Re = 1, 000. At M = 2.0, conversely, there is a larger

difference compared to that at M = 1.2 even when Re = 1, 000. It seems that the influence of

the displacement thickness becomes more effective due to the smaller shock standoff distance.
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Figure 3.9: Shock standoff distance: (a) effect of M; (b) effect of Re.

Figure 3.10 depicts the relationship between the displacement thickness and the change in

the shock stand-off distance. Here, the change in the shock stand-off distance was calculated to

be the difference between that of the results at low-Re condition Ls and that predicted value by

the empirical model by Ambrosio and Wortman, 1962 for a limit of inviscid flow Ls_ref . The

displacement thickness δD was calculated as follows:

δD =

∫ δ

0

(
1 −

uξlocal

uξedge

)
dζ (3.4)

Here, uξlocal and uξedge denote the local velocity in ξ direction and the velocity in the ξ direction

at the boundary layer edge, respectively. Figure 3.11 depicts the distribution of the tangential

velocity at around the upstream side stagnation point. The velocity profiles of uξ in ζ direction are

shown in figure 3.11. The displacement thickness at around the stagnation point was estimated by

eq. 3.4 and the velocity distribution (see B.1. Specifically, the boundary layer edge was assumed

to be the local maximum point of the velocity in the ξ direction at M = 1.2. However, the edge

of the boundary layer at M = 2.0 was identified by the change in the velocity gradient because
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of the influence of the detached shock wave. Figure 3.10 illustrates that the shock stand-off

distance increases as the displacement thickness increases because the displacement thickness

decrease by decreasing Re. Consequently, the shock stand-off distance increases because of

the increase in the effective size of the sphere. Since the boundary layer is thicker at low-Re,

the shock stand-off distance is more significantly influenced than that at high-Re. Also, 3.12

shows the relationship between the normalized displacement thickness and change in the shock

stand-off distance. The first and second axes are normalized by the shock stand-off distance

predicted by Ambrosio and Wortman, 1962. This figure indicates that the change ratio in the

shock stand-off distance seems to be in the clear relationship with the ratio of the displacement

thickness to the shock stand-off distance, though the limited data.
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Figure 3.10: Relation of the displacement thickness and the change quantity of
the shock stand-off distance around the stagnation point.
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Figure 3.11: Distribution of the normalized ξ-direction velocity at θ = 1.74 deg
from the stagnation point: (a) M = 1.2 and (b) M = 2.0.
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Figure 3.12: Relationship between the normalized change quantity of shock
stand-off distance and normalized displacement thickness.

Pressure Coefficient Distribution

Figures 3.13 and 3.14 show the distribution of pressure and friction coefficients, respectively,

at Re = 300 and 1,000 for various M . The pressure and friction coefficients were calculated

in the time-averaged field and were averaged around the x-axis. Figure 3.13(a) illustrates that

the pressure coefficient increases as M increases. Discontinuity due to the shock wave is not

observed. The minimum value of CP exists at around θ = 90 deg, and its position moves

downstream by increasing M increases. Also, the minimum value of CP decreases and increases

as M increases in the subsonic and supersonic flows, respectively. The minimum value of CP at

M = 2.0 is almost the same as CP at the downstream stagnation point. The trend of the M effect

on the CP distribution under the subsonic conditions is similar to that of a cylinder at Re = 20

and 40 for M ≤ 0.5, as reported by Canuto and Taira, 2015. Also, at M ≤ 0.8, the position

where the CP value is minimized moves downstream as M increases, even though the position of

the separation point moves upstream. The influence of M on the CP distribution at Re = 1, 000

is similar to that at Re = 300, but the influence of M on the CP minimum becomes more clear

as shown in figure 3.13(b).

Figure 3.14 shows the distribution of C f at Re = 300 and 1,000 for various M . The value

of C f at Re = 300 is maximized at around θ = 70 deg as shown in figure 3.14(a), and the peak

position moves downstream by increasing M . Also, the peak value of C f increases and decreases

as M increases in the subsonic and supersonic flows, respectively. The maximum value of C f

under the higher-M conditions of the upstream side is smaller than that of the lower-M cases,
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particularly under supersonic conditions, due to the detached shock. The dynamic viscosity

coefficient at the subsonic flows also increases because of aerodynamic heating, but the effect

of the deceleration of the flow by the detached shock wave is more effective. In contrast, C f

under the higher-M condition is larger at the downstream region where C f becomes maximum

because the position of the separation point moves downstream as M increases at M ≥ 0.8.

Figure 3.14(b) illustrates that a similar trend can be observed at Re = 1, 000.
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Figure 3.13: Pressure coefficient distribution on the sphere surface: (a) Re = 300;
(b) Re = 1, 000.
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Figure 3.14: Friction coefficient distribution on the sphere surface: (a) Re = 300;
(b) Re = 1, 000.

3.3.5 Drag Coefficient

Figure 3.15 shows the M effect in the drag coefficients at Re = 100, 300, 750, and 1,000.

The total drag coefficient CD increases as M increases, and its increment under the transonic

69



Chapter 3. Flow over a Stationary Adiabatic Sphere

conditions is greater than that under the subsonic and supersonic conditions due to the increased

wave drag. The increment of the drag coefficient becomes almost zero under the supersonic

conditions, and is independent of M at around M > 1.5. This trend is well known as Oswatitsch’

s Mach number independence principle. The increment of the total drag coefficient by the effect

of M is almost equivalent to the increase of the pressure component CDP , as shown in figure

3.15(b). The M effect on the pressure drag coefficient can be predicted by the Prandtl–Glauert

transformation shown by the dotted lines up to the high-subsonic conditions. In addition, the

increment of the pressure component at M > 0.9 is mainly according to the increment of the

wave drag. However, the influence of M on the viscous component CDv is smaller than that

of the pressure component. The viscous component slightly decreases as M increases under

the subsonic conditions because the separation point moves upstream as M increases. Under

the transonic conditions, the separation point moves downstream, and the velocity gradient on

the sphere surface increases, particularly behind the attached shock wave. Thus, the viscous

component increases as M increases. In contrast, the viscous component is almost constant under

the supersonic conditions, despite the separation becoming delayed as M increases, because of

the decrease in the velocity gradient on the sphere surface due to the deceleration of the flow at

the detached shock wave. In this case, the fluid viscosity increases due to increasing temperature,

but the decrease in the velocity gradient is more effective, as shown in figure 3.14.

Figure 3.16 depicts the relationship between Re and CD at 0.3 ≤ M ≤ 2.0, and the present

results are compared to the drag curves predicted by the Loth, 2008 model and the experimental

drag data acquired by Sreekanth, 1961; Goin and Lawrence, 1968; Zarin and Nicholls, 1971;

Bailey and Starr, 1976. Figure 3.16 illustrates that CD increases as Re decreases for each M .

The drag coefficients predicted by the drag model, observed in experiments, and present DNS

show good agreement at M = 0.3. At M = 0.8, the present result agrees well with some

experimental data at Re > 600, but the drag coefficient by the Loth model is slightly lower than

that from the experiments and DNS. The difference between the experiment, model, and DNS

becomes large as M increases under the transonic conditions at 0.95 ≤ M ≤ 1.2, particularly

in the low-Re regime. However, the difference between the experimental and DNS data also

becomes large at further high-M conditions in the lower-Re regime. At M = 2.0, the drag

model and experimental data show good agreement, but DNS overestimates the drag coefficient
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compared with the drag model and experimental data, particularly in the low-Re regime. The

overestimation by DNS is due to the influence of the no-slip boundary condition, and thus the

difference between DNS and other data becomes small as Re increases because the rarefaction

effect weakens. However, the Knudsen number at M = 2.0 is less than 0.001 at Re > 250 so

that the rarefaction effect is sufficiently small in that region, but there is the difference between

the predicted value of the drag model and the experimental and DNS data.
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Figure 3.15: Effect of M on CD: (a) total drag coefficient; (b) pressure drag
coefficient; (c) viscous drag coefficient.

Loth, 2008 introduced the "Nexus" point (CD ≈ 1.63 at Re = 45 for all M and Kn)

to connect the two equations which for the compression-dominated regime (Re > 45) and

rarefaction-dominated regime (Re < 45). However, the "Nexus" point does not base on the

numerical or experimental data, and it was clarified that the drag coefficient at Re = 45 is not

constant at around CD ≈ 1.63. The recent study using by the direct simulation Monte Carlo

of the Boltzmann equation and DNS of the Navier–Stokes equations clarified that the drag

coefficients at Re = 45 in the subsonic and supersonic flows are CD ≈ 1.63, but it is larger
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than that of the subsonic and supersonic conditions at the transonic condition. In the continuum

regime, the drag coefficient under the supersonic conditions is larger than that under the subsonic

conditions, but the increment of the drag coefficient caused by the M effect decreases at a rarefied

regime due to rarefaction effects. Thus the drag coefficient under the supersonic conditions of

Re = 45 is the same level as that of the subsonic conditions. On the other hand, the rarefaction

effect is still weak at transonic conditions of Re = 45, so that the drag coefficient around the

transonic condition at Re = 45 is larger than that under the subsonic and supersonic conditions.

The detailed discussions will be published as a journal paper, which is now preparing. Other

compressible drag models are compared with DNS data in figure A.4 at appendix A.1.

Figure 3.17 shows the increment of the total drag coefficient with an increasing M . In the

present study, ∆CD was defined as follows:

∆CD = CD(Re, M) −CD(Re, 0) (3.5)

where CD(Re, M) indicates the drag coefficient predicted by the present DNS or previous

experiments and CD(Re, 0) indicates the drag coefficient under incompressible flow, which was

predicted by the drag model proposed by Clift and Gauvin, 1971. Figure 3.17(a) illustrates that

∆CD increases as M increases at M ≥ 0.3. In addition, ∆CD appears to be only a function of M ,

and Re has no clear influence on ∆CD. The increment of ∆CD under the transonic conditions

is particularly larger than that under the subsonic and supersonic conditions. The increment of

∆CD under the subsonic conditions is a compressibility effect, which can be explained by the

Prandtl–Glauert transformation, and the pressure drag increase due to a decrease of the attached

region, as illustrated in figure 3.15(b) and figure 3.7(a). The increment of the wave drag is almost

constant at M > 1.5 and moderate Re; hence, the increment of ∆CD becomes small under the

higher-M conditions but also under the low-Re conditions. At M = 0.3, ∆CD is negative because

CD at M = 0.3 is slightly smaller than that under the incompressible flow, due to the position

of the separation point existing upstream compared with that under incompressible flow. In

addition, the position of the separation point under the lower-Re conditions exists downstream

compared with that under the higher-Re conditions, and thus the decrements of ∆CD are larger

under the lower-Re conditions.
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Figure 3.16: Relationship between Re and CD: (a) M ≈ 0.3, (b) M ≈ 0.8, (c)
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Figure 3.17: Increment of CD by M effects: (a) present study, (b) published
experimental results.

Figure 3.17(b) shows∆CD as calculated using published experimental data. In this case,∆CD

is approximately characterized by M at M < 1.5, but the Re dependence appears at M = 2.0. At

M = 2.0, ∆CD for the lower-Re conditions, particularly at Re ≤ 200, decreases as Re decreases,

because the Knudsen number based on the freestream and the sphere diameter is greater than

0.01 at Re ≤ 200 and M = 2.0. Hence, the slip effect on the wall caused by the rarefaction

effect gradually strengthens as Re decreases.

3.3.6 Characterization of Drag Coefficient and Flow Regime by Position

of Separation Point

Figure 3.18 shows the relationship between the position of the separation point and the drag

coefficient. Figures 3.18(a)–(c) illustrate that the total, pressure, and viscous drag coefficients

become small when the position of the separation point moves upstream at Re ≤ 1, 000. Also,

the θs − CD curve for each M value has a similar shape. The position of the θs − CD curve for

each M condition and the gradient of curve depends on M . However, a different trend can be

seen in the pressure component, as shown in figure 3.18(b). For the pressure component, the

shape of the θs −CDP curve is different the under subsonic, transonic, and supersonic conditions.

Under the subsonic conditions, the θs–CDP curve has nonlinearity. In contrast, nonlinearly in the

θs −CDP curve under the supersonic conditions is relatively weak. In addition, the trend of the
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θs–CDP curves for the transonic conditions are different from the trend under the subsonic and

supersonic conditions. In particular, the gradient of the θs–CDP curve at M = 0.95 is negative.

Therefore, the behaviours of the pressure field and the flow geometry is different from those

under the subsonic and supersonic conditions due to the formation of shock waves. Regarding

M , CDP increases as M increases, but the position of the separation point is approximately the

same up to M = 1.05. The increment of CDP with increasing M in this regime is caused by the

compressibility effects, which can be explained by the Prandtl–Glauert transformation and the

wave drag. At M ≥ 1.05, in contrast, the increment of CDP with increasing M is smaller and the

position of the separation point moves downstream as M increases. Regarding CDv , as shown in

figure 3.18(c), the trend of the θs–CDv curves is similar at each M , and M does not have a large

impact on CDv , despite the position of the separation point moving downstream as M increases,

particularly under the supersonic conditions. This trend is caused mainly by the detached shock

wave. Under the supersonic low-Re flow, the flow separation is reduced and the position of the

separation point moves downstream as M increases. Moreover, the flow is decelerated at the

detached shock wave, and thus the normalized velocity gradient on the surface of the sphere

normalized by the freestream velocity is lower than that in the subsonic cases. Because of this

reducing the lower wall shear stress, CDv does not increase when M increases.

Under the incompressible flows at Re ≤ 1, 000, the position of the separation point moves

from downstream to upstream as Re increases, and the flow pattern transitions from fully attached

flow to helical wake through steady-axisymmetric, steady planar-symmetric, and hairpin wake

regimes. In other words, the flow pattern appears to depend on the position of the separation

point. Figure 3.19 characterizes the flow regime according to the position of the separation

point. This figure illustrates that the flow regime can be characterized by the position of the

separation point for every M investigated in the present study. For all values of M , the flow

pattern transitions to an unstable wake as the position of the separation point moves upstream;

hence, the relationship between the flow regime and the position of the separation point under

the compressible flow is similar to that under the incompressible flow. However, the effect of M

on the flow regime still remains, even when characterized using the position of the separation

point. For example, the separation point at M = 0.3 and 0.8 shifts upstream, and the separation

point for each flow pattern also shifts upstream with increasing M . This indicates that the flow
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pattern change with increasing M is not merely a change in the separation point position. As M

increases, a certain flow pattern appears when the position of the separation point exists relatively

upstream up to M = 0.95. This means that the flow becomes stable despite the separation point

existing relatively upstream (resembling a higher-Re condition) compared to the position under

the lower-M conditions. However, the situation under the supersonic conditions is different

from that under the subsonic and transonic conditions because the separation angle is different

due to the expansion wave even if the separation point exists in the same location. For the same

separation point with different M values, Re of the flow in the supersonic case is higher than

that in the subsonic cases, and thus the wake in of the supersonic case appears to be less stability

compared to subsonic flows.
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Figure 3.18: Characterization of the drag coefficients by the position of the
separation point: (a) total drag; (b) pressure component; (c) viscous component.
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Figure 3.19: Characterization of the flow regime by the position of the separation
point.

3.4 Conclusions

In chapter 3, the compressible low-Re flow over a stationary adiabatic sphere was investigated

by DNS of the three-dimensional compressible Navier–Stokes equations using a body-fitted grid

with high-order schemes. The flow conditions were 50 ≤ Re ≤ 1, 000 and 0.3 ≤ M ≤ 2.0. It

was clarified that the effect of M and Re on the far-field flow properties and the near-field flow

properties.

The computational results showed that the wake is significantly stabilized as M increases.

In the case of M = 1.2, for example, steady axisymmetric, steady-planar symmetric, and hairpin

wakes were observed at Re = 500, 750, and 1,000, respectively. These flow regimes appear at

24 ≤ Re ≤ 210, 211 ≤ Re ≤ 275 and 275 ≤ Re ≤ 420, respectively, in the incompressible

flow. Thus, the critical Re for compressible cases is shifted into the higher-Re side that at the

incompressible cases. The difference in the wake behavior between the low-speed and high-

speed flows that wake instability under transonic and supersonic conditions appears near the

wake shock. This characteristic is the same as that under higher-Re conditions of Re ≤ O(104)

in a similar M range (see chapter 6).
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The position of the separation point moves upstream and downstream as M increases under

subsonic and greater-than-transonic conditions, respectively. Also, the separation point moves

upstream as Re increases, and the magnitude of the change is almost the same for each M; hence,

the interaction of M and Re effects do not change the position of the separation point. In contrast,

the effects of M and Re interact to change in the length of the recirculation region, which is a

steep peak at around the transonic condition. The peak value of the length of the recirculation

region decreases as Re increases, and the point at which the length of the recirculation region

increases to its maximum value is shifted to higher M values as Re increases. The recirculation

length becomes the maximum value at around the critical M which the flow regime becomes

steady flow due to the compressibility effect.

The drag coefficient increases as M increases and it increases mainly under transonic con-

ditions due to the compressibility effect described by the Prandtl–Glauert transformation and

the wave drag. The Reynolds number also affects the drag coefficient, but the increment of the

drag coefficient due to compressibility effects can be characterized by only M in the continuum

regime despite the low-Re conditions. Since few data are available for the drag coefficient

under compressible low-Re conditions, particularly under transonic conditions, it seems that the

accuracy of the previous drag model for transonic conditions was relatively low compared to

that for subsonic and supersonic conditions.

Finally, the drag coefficient and the distribution of the flow regime were discussed based on

the position of the separation point. The drag coefficient can be characterized by the position of

the separation point for each M . This result suggests that the effect of Re on the drag coefficient

can be characterized by the position of the separation point regardless of the compressibility

effect. However, although the influence of M is not characterized completely, characterization

using the position of the separation point works well compared to characterization using Re and

M .
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List of Symbols

A = Area

CD = Drag coefficient

CDP = Pressure drag coefficient

CDv = Viscous drag coefficient

CL = Lift coefficient

CP = Pressure coefficient

CY , CZ = Aerodynamic force coefficients in y and z directions

Kn = Knudsen number

Lr = Length of recirculation region

Ls = Shock standoff distance

M = Mach number

Nu = Nusselt number

Q = Q-criterion, amount of heat

Re = Reynolds number

St = Strouhal number

T = Temperature

T R = Temperature ratio between freestream and sphere surface

a = Sound speed

d = Diameter of the sphere

h = heat transfer coefficient

k = Thermal conductivity

t = Time

u, v,w = Velocity in x, y, and z directions

µ = Dynamic viscosity coefficient

ν = kinematic viscosity coefficient

θs = Separation point

ρ = Density

ξ, η, ζ = Curvilinear coordinates
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Subscripts

local = Local values

r.m.s. = Root-mean-square

surf = Surface of sphere

∞ = Freestream
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4.1 Introduction

The temperature difference in the fluid and particle has a large impact on the flow over a sphere.

In the compressible multiphase flows, it is considered that there is a temperature difference

in the particle and the fluids when the particles across the shock wave, for example. Under

the incompressibe flow, Mansoorzadeh et al., 1998 numerically investigated the flow over a

heated/cooled sphere by solving the three-dimensional incompressible Boussinesq equations

in the primitive variable form by a Galerkin finite element method. They showed that the

drag coefficient is significantly influenced by the heat of the sphere. Kurose et al., 2012

investigated the characteristics of the flow over a heated/cooled sphere at 50 ≤ Re ≤ 400 under

the incompressible conditions, examining the effect on the flow properties of the temperature

ratio between the sphere to that of the freestream. They clarified that the drag coefficients of the

heated and cooled spheres are larger and smaller than that of the adiabatic sphere, respectively.

Also, the Nusselt number of the heated and cooled spheres are smaller and larger than that of

the predicted values by the widely used empirical models. The flow structure such as the the

separation point, the length of the recirculation region, and St of vortex shedding also strongly

influenced by the temperature difference in the sphere and ambient fluid.

For compressible cases, Salimipour and Anbarsooz, 2019 investigated the surface tempera-

ture effect on the flow over a rotating cylinder for Re = 200 and 0.1 ≤ M ≤ 0.4. They revealed

that the lift coefficient of the rotating cylinder decreases as surface temperature increases. Also,

the vortex shedding pattern and the mean Nusselt number are influenced by the surface tem-

perature as reported in the previous incompressible studies. The Nusselt number at M = 0.3

significantly increases as a rotation rate increases, but at M = 0.2, the increment of the Nusselt

number is quite smaller than that of M = 0.3. Therefore, there are significant compressibility

effects on the influence of the surface temperature despite low-subsonic flows.

The heat transfer between objects and ambient fluids is one of the most important issue

so that several researchers proposed the Nusselt number model of spherical objects (Ranz and

Marshall, 1952; Sauer, 1951; Fox, Rackett, and Nicholls, 1978). Sauer, 1951 suggested the

Nusselt number model for the sphere by extending the theoretical formula for the heat transfer oft

flat plates, and Ranz and Marshall, 1952 and Fox, Rackett, and Nicholls, 1978 proposed Nusselt
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number models based on the estimated amount of heat transfer through experiments on the

evaporation of liquid droplets and the shock wave ignition of magnesium powders, respectively.

The drag and Nusselt number model for the sphere is essential for the simulation of mul-

tiphase flow by point-particle approach. In addition, the surface temperature effects on the

presence or absence of the wake vortices might have a large impact on the energy dissipa-

tion of the flowfield of multiphase flows because there is the turbulent modulation caused by

the interaction of the turbulence and generated vortices by particles. However, there are few

studies that investigated the influence of the temperature difference between the sphere surface

and freestream, particularly there is no numerical examination under the compressible regime.

Hence, an examination of the flow properties such as the drag coefficient, the Nusselt number,

and the flow structure is essential to improve the the compressible multiphase flow model. In this

chapter, we investigate the influence of the temperature difference in the sphere and freestream

on the flow characteristics under compressible low-Re flow and the applicability of previous

drag models by performing the DNS of flow over a stationary isothermal sphere.

4.2 Computational Setup

4.2.1 Flow Conditions

In the present chapter, uniform flows over a stationary isothermal sphere was computed for

100 ≤ Re ≤ 300, 0.3 ≤ M ≤ 2.0, and 0.5 ≤ T R ≤ 2.0. Here, T R is defined as follows:

T R =
Tsurf
T∞

, (4.1)

where Tsurf and T∞ is the temperature of the sphere and the temperature of the freestream,

respectively. The summary of the flow conditions is given in table 4.1. The present study is

focusing on the particles in a high-speed multiphase flow, and thus the relative M of the flow

over a particle is considered to be less than 2.0 except for those particles passing through the

quite strong shock waves.
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M

0.3 0.8 1.2 2.0

100 A A A A

150 A A A A

Re 200 A A A A

250 B B A A

300 B B A

Table 4.1: Flow conditions for a stationary isothermal sphere. A: T R = 0.5, 0.9,
1.1, 1.5, and 2.0 computed by the base gird; B: T R = 0.5, 0.9, 1.1, 1.5, and 2.0
computed by the base gird and T R = 0.5, 1.0, and 2.0 computed by the wake-fine

grid.

Also, the resolution of the computational grid was retained in the downstream of the sphere

for the diameter of 4d. Computational grid that used in chapter 3 for Re = 300 was used. Result

of the grid convergence study is shown in appendix A.2.2.

4.2.2 Boundary Conditions

The boundary at the sphere surface was no-slip and isothermal conditions. At the surface of

the sphere, the velocity was fixed to zero, the density was fixed to the value computed from

the pressure and the temperature at the surface of the sphere, the pressure was calculated from

the momentum normal to the surface. The periodic boundary condition with the six overlapped

grid points was imposed at the boundaries in the ξ and η directions. All the variables on the

singular point on the x-axis were set to be an average of the nearest surrounding nodes. The

inflow and outflow boundary conditions were imposed at the outer boundary where the flow

goes inside and outside at one point inside the boundary, respectively. At the inflow boundaries,

all flow variables were fixed to their freestream values. All the variables were extrapolated from

one point inside of the boundary at the supersonic outflow boundaries. The velocities and the

density were similarly extrapolated and the pressure was fixed to its freestream values in the

subsonic outflow boundaries.
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4.3 Results and Discussion

4.3.1 Flow Regime
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Figure 4.1: Instantaneous wake structures. The structures are identified by the
isosurface of the normalized second invariant value of the velocity gradient tensor,
which is normalized with respect to the freestream velocity (Q/u2

∞ = 5.0 × 10−4).
(a) Re = 250; (b) Re = 300.

Figure 4.1 depict the wake structure visualized by the isosurface of the Q-criterion. The threshold

is normalized with respect to the freestream velocity. At Re = 300, hairpin vortices are generated

by the sphere at M = 0.3 and 0.8 of T R = 1.0. At Re = 250, on the other hand, the hairpin

vortices disappear and the wake structure transitions to a double-threaded structure at M = 0.3

and T R = 1.0. The wake vortices disappear at Re = 250 and M = 0.8 and further low-Re

flows. This trend is similar to that of incompressible flows up to Re = 300. In the case of a

cooled sphere (T R = 0.5) at Re = 250, the wake has hairpin structures. Conversely, in the case

of a heated sphere (T R = 2.0), no hairpin structures are observed. In other words, the wake
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structures of the cooled and heated spheres are similar to the wake structure in high- and low-Re

conditions, respectively. Therefore, the wake structure becomes similar to that of high-Re flows

as T R decreases and becomes similar to that of low-Re flows as T R increases. Under supersonic

conditions, on the other hand, the wake structure does not change even if Re or T R changes in

the investigated conditions.

The type of flow pattern was categorised based on the normalized TKE normalized by the

freestream kinetic energy and the deviation of the separation point. Here, u′, v′ and w′ are the

fluctuation components of the fluid velocity. Under the conditions in which the calculations were

conducted in the this study, the flow regimes can be classified into three types: a fully attached

flow (black symbols), a steady axisymmetric flow (blue symbols), a steady planar-symmetric

flow (light blue symbols), and a hairpin wake (green symbols). The type of the flow pattern for

each T R and for adiabatic conditions is shown in figure 4.3. The classification criteria are given

in table 4.2. Here, the hairpin wake is the case in which the maximum normalized TKE in the

wake is greater than 0.5% and periodic variation of the lift forces can be observed. The steady

planar-symmetric flow is the case in which bias of the separation point can be observed and the

maximum normalized TKE in the wake is less than 0.5%. The steady axisymmetric flow is the

case in which no deviation in the separation point is observed and the maximum normalized

TKE in the wake is less than 0.5%. The fully attached flow is the case in which no separation is

observed. In this study, the TKE was averaged up to the section of x ≤ 2.5d from the surface

of the sphere on the downstream side of the x-axis. Under adiabatic and incompressible flow

conditions, the flow regime is the steady axisymmetric flow at 50 ≤ Re ≤ 210. The type of

flow pattern becomes steady planar-symmetric flow at Re < 280. As Re further increases, the

flow pattern becomes hairpin wake at Re ⪆ 280. The results at M = 0.3 agree with those of

a previous incompressible study (Johnson and Patel, 1999). It should be noted that Johnson

and Patel, 1999; Magarvey and Bishop, 1961 reported the steady planar-symmetric flow by

numerical and experimental studies at incompressible flows. Those studies showed clearly that

the steady planar-symmetric flow is a solution of the Navier–Stokes equations of the flow over

a sphere. A similar solution was obtained in our DNS at M = 0.3 and 0.8 of T R = 1.0 for

Re = 250. The trigger for the asymmetry that appears at Re = 250 is a tiny disturbance. In

numerical studies, Johnson and Patel, 1999 pointed out that the trigger for non-axial symmetry
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is possibly a round-off error in the computation.

In low-Re or supersonic cases, the TKE is almost zero because no hairpin vortices are

generated. Figure 4.2 shows the distribution of the TKE in the downstream of the sphere at

M = 0.3 and 0.8 for Re = 300. The TKE is calculated as pointwise values on the x-axis in the

downstream of the sphere. In addition, the TKE is normalized relative to the freestream kinetic

energy. Figure 4.2 illustrates that the peak in the TKE in the vicinity of the sphere decreases as

T R increases. This is due to the increase in viscous dissipation with the increase in the molecular

viscosity. In addition, the TKE in the wake is changed by the properties of the hairpin vortices.

In unsteady cases, hairpin vortices are generated periodically in the recirculation region. Under

subsonic conditions, the recirculation region becomes large as M increases. For the same T R in

subsonic flows, therefore, it is consider that the hairpin vortices at M = 0.8 are larger than these

for M = 0.3. Hence, the maximum value of the TKE at M = 0.8 is greater than that at M = 0.3

for each T R, and the peak position of the TKE depends on M .
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Figure 4.2: Distribution of TKE in the wake for unsteady cases (Re = 300).

Effects of T R appear on the type of flow pattern. Under high-T R conditions, the flowfield

becomes stable. Conversely, under low-T R conditions, the flowfield becomes unstable. As

shown in figure 4.3(e), there are no hairpin wake at T R = 2.0. In addition, the steady axisym-

metric flow can be observed up to Re = 250 at M = 0.3, and the flow regime at Re = 300 is the

steady planar-symmetric flow. However, the steady axisymmetric flow appears up to Re = 150.

In addition, at Re = 250, the flow becomes the unsteady periodic flow. Therefore, the flow

regimes under high- and low-T R conditions are similar to those of lower- and higher-Re flows
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with the adiabatic sphere. This trend can also be seen at M = 0.8. It is thought that this trend is

caused by changes in the power balance of the inertial and viscous forces due to changes in the

density and the viscosity coefficient (i.e., a change in the kinematic viscosity coefficient) in the

boundary layer. However, the type of flow pattern under the supersonic conditions investigated

in this study is the steady axisymmetric flow. Accordingly, we cannot discuss the effect of

temperature on the type of flow pattern under supersonic conditions. However, the manner in

which the temperature affects the flow pattern is considered to be similar to that for subsonic

flows because the effect of T R is mainly in the change of the kinematic viscosity coefficient in

boundary layer. The characterization of the effect of the temperature on the flow properties is

discussed in section 4.3.4.

Flow regime Flow properties

Steady axisymmetric flow
Maximum normalized TKE in the wake < 0.5%

Axisymmetric separation point

Steady planar-symmetric flow
Maximum normalized TKE in the wake < 0.5%

Planar-symmetric separation point

Hairpin wake
Maximum normalized TKE in the wake > 0.5%

Periodic vibration of the fluid force

Table 4.2: Classification criteria of flow regime.
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Figure 4.3: Flow regime for each set of thermal boundary conditions.
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4.3.2 Near-Field Structure

Pressure Coefficient Distribution

Figure 4.4: Pressure coefficient distribution and streamlines at Re = 250 in
time-averaged field (x − z plane).
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Figure 4.4 shows the pressure coefficient distribution and the streamlines at Re = 250 of M = 0.3

and 1.2. These snapshots were taken from the time-averaged field. The calculations were carried

out for durations longer than 10 vortex-shedding periods in the unsteady cases, from which the

time-averaged fields were obtained. Figure 4.4 illustrates that T R affects the flow structure in the

near-field of the sphere. The shape of the recirculation region at M = 0.3 is non-axisymmetric

for T R = 0.5, 0.9, and 1.1. As the temperature of the sphere increases, the recirculation region

becomes axisymmetric at T R = 1.5 and 2.0. In the case of M = 1.2, conversely, the symmetric

shape of the recirculation region hardly changes.

Separation Point and Recirculation Region

Figures 4.5 and 4.6 show the separation point and the length of the recirculation region for

Re = 100 and 200, respectively. The values in these figures were acquired in the time-averaged

field. However, in the case of the hairpin wake and the planar-symmetric flows, the separation

point and the recirculation region vary around the x-axis so that the error bars in these figures

indicate the maximum and minimum values of each quantity. The flowfield for Re < 200 is

axisymmetric at 0.3 ≤ M ≤ 2.0 and 0.5 ≤ T R ≤ 2.0. The separation point is identified based

on the sign of the velocity gradient in the temporally and azimuthally averaged flowfield. Figure

4.5 illustrates that the separation point moves upstream and downstream sides as T R decreases

and increases, respectively. In addition, it moves toward upstream and downstream sides as Re

increases and decreases for adiabatic cases up to Re = 300 as discussed in chapter 3. For the

separation point, therefore, the effect of the increasing T R is similar to that of decreasing Re.

It is thought that this behavior results from the change in the kinematic viscosity coefficient

in the vicinity of the sphere. Under high-T R conditions, for example, the kinematic viscosity

coefficient in the vicinity of the sphere becomes lower than that in the adiabatic cases. This

implies that the viscous force becomes more influential than it is in the adiabatic cases. Under

low-T R conditions, conversely, the kinematic viscosity coefficient in the vicinity of the sphere

becomes lower than that in adiabatic cases, and the inertial force becomes more influential than

it is in the adiabatic cases. The characterization of the effect of the temperature on the flow

properties is discussed in section 4.3.4.
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Figure 4.5: Effect of T R on the position of the separation point. (a) Re = 100;
(b) Re = 200

Figure 4.6 illustrates that the recirculation region shortens as T R increases at Re = 100 under

supersonic conditions. Under subsonic conditions, conversely, the length of the recirculation

region hardly changes even if T R changes. At Re = 200, however, it stretches and shortens as T R

increases under subsonic and supersonic conditions, respectively, even though the separation

point moves toward the downstream side. In the case of a free jet, the potential core of a

cooled jet is longer than that of a hot jet because the momentum of the cooled jet is larger than

that of the hot jet (Lau, 1981). This difference in momentum is due primarily to the different

densities of the fluid. However, the length of the recirculation region at Re = 200 under subsonic

conditions increases as T R increases, even though the density of the fluid in the recirculation

region decreases. This trend is the opposite trend to that for a free jet. Kurose et al., 2012

reported a similar trend with the present study under incompressible conditions. According to

their paper, the recirculation region for the heated and cooled spheres at Re = 100 is longer

and shorter than that in the adiabatic case, respectively. Conversely, at Re = 50 for both the

heated and cooled cases, the recirculation region is shorter than that in the adiabatic case. In

addition, the recirculation region for the heated sphere at Re = 50 is shorter than that in the

cooled case as shown in table 4.3. In other words, the effect of temperature on the length of

the recirculation region differs for Re = 50 and 100. In the case of supersonic conditions, the

aerodynamic heating and the Prandtl–Meyer expansion influences the near wake of the sphere.

Hence, the effect of T R on the length of the recirculation region in the compressible flows is

more complex than it is in incompressible flows.
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Figure 4.6: Effect of T R on the length of the recirculation region. (a) Re = 100;
(b) Re = 200.

Flow condition
Length of recirculation region

(compared with adiabatic case)

Incompressible flow

((Kurose et al., 2012))

Re = 50
Heated Larger

Cooled Smaller

Re = 100
Heated Larger

Cooled Smaller

Compressible flow

(Present study)

M ≤ 1.2

Re = 100

Heated Hardly changed

Cooled Hardly changed

M ≥ 1.2

Re = 100

Heated Smaller

Cooled Larger

M ≤ 1.2

Re = 200

Heated Larger

Cooled Smaller

M ≥ 1.2

Re = 200

Heated Smaller

Cooled Larger

Table 4.3: Behavior of the length of the recirculation region compared with
adiabatic cases.
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Shock Standoff Distance

Figure 4.7 shows the absolute value of the density gradient in the time-averaged field. The

position of the detached shock wave is influenced not only by M but also by Re and T R.

Figure 4.8 shows the T R dependence of the shock standoff distance; the shock standoff distance

increases as T R increases. In adiabatic cases under low-Re conditions, the shock standoff

distance increases as Re decreases because of the change in the displacement thickness as

discussed in chapter 3. Hence, the effect of T R on the shock standoff distance is the influence of

the change in the displacement thickness due to the change in the kinematic viscosity coefficient

in the boundary layer.
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Figure 4.7: Schlieren-like images of time-averaged fields (x − z plane). (a)
Re = 100; (b) Re = 300.
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Figure 4.8: Effect of T R on the shock standoff distance (Re = 100).
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4.3.3 Aerodynamic Force Coefficient

Time Variation of Lift Coefficient

Figure 4.9 shows the time variation of the lift coefficient, which in this study is defined as the

square root of the sum of the squares of the hydrodynamic force coefficient in y and z directions:√
CY

2 +CZ
2. Because of the periodically released hairpin vortices, the lift coefficient oscillates

in the case of the hairpin wake. Also, in the case of Re = 300, M = 0.8, and T R = 0.5 (blue

line in figure 4.2(d)), a low-frequency mode appears in the time variation of the lift coefficient.

This low-frequency mode is caused by the azimuthal rotation of the head of the hairpin vortices.

Makita, 2007 reported such a helical mode appearing in incompressible flows at Re = 2, 000.

However, in the case of Re = 300, M = 0.8, and T R = 0.5, the rotation frequency of that

azimuthal direction is considerably lower than that observed in the previous incompressible

study. We presume that this was due to compressibility or temperature effects, but it was

difficult to identify the actual cause in this study because of a lack of DNS data.
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Figure 4.9: Time history of lift coefficient. (a) Re = 250 and M = 0.3; (b)
Re = 250 and M = 0.8; (c) Re = 300 and M = 0.3; (d) Re = 300 and M = 0.8.

Figure 4.10 show the CLr.m.s. and St of the vortex shedding for subsonic flows at Re = 300,
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respectively. The figure indicates that the lift coefficient of the subsonic flow oscillates at low

smaller T R. However, CLr.m.s. and St of the vortex shedding decrease as T R increases. In several

cases, hairpin vortices are generated from the sphere, and in these cases, the TKE is larger than

it is in steady cases. The presence or absence of the wake vortex discussed in the previous

section affects the dissipation of energy in the flow field. Therefore, it is valuable to investigate

the modulation caused by the wake vortices generated by the particles.
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Figure 4.10: Effect of T R on the time variation of the lift coefficient at Re = 300.
(a) St; (b) CLr.m.s.

Drag Coefficient

Figure 4.11 shows the total, pressure, and viscous drag coefficients at Re = 300, respectively.

The drag coefficient increases as T R increases, and this trend is also exhibited by the pressure

and viscous drag coefficients. However, the pressure drag coefficient does not increase much

in supersonic flows because the separation point is on the quite downstream side compared

to subsonic cases under the same Re. Conversely, as T R is changed at M = 0.3 and 2.0

from 0.9 to 0.5, the viscous drag coefficient increases. Figures 4.12 and 4.13 show the mean-

normalized-velocity gradient and the mean-viscosity coefficient on the entire surface of the

sphere, respectively. Here, the velocity gradient in figure 4.12 was calculated as a derivative

x component in the ζ direction which contributes to the viscous drag coefficient. Figure 4.12

indicates that the velocity gradient decreases as T R increases. Also, the viscosity coefficient

increases as T R increases, as shown in figure 4.13. The effect of the change in the viscosity

coefficient is more influential than is the change in the velocity gradient at M = 0.8 and 1.2;
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however, for M = 0.3 and 2.0, the effect of the change in the velocity gradient is more influential

than is the change in the viscosity coefficient. Therefore, the trends in T R dependence on the

viscous drag coefficient are opposite in these cases at T R less than unity.
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Figure 4.11: Effect of T R on the time variation of the lift coefficient at Re = 300.
(a) Total; (b) pressure component; (c) viscous component.
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In the present study, the drag coefficient calculated by DNS is compared to the predicted

values by three previous drag models proposed by Crowe, 1967; Henderson, 1976; Hermsen,

1979. These relations are valid under the conditions investigated in the present study and include

T R in the models. It should be noted that the drag model by Loth, 2008, which is one of the

newest models, is not compared herein because the model includes T R in only the formula

for the rarefaction-dominated regime. That is because the term including T R is derived from

the formula of the free-molecular limit (see Schaaf and Chambre, 2017). Figure 4.14 shows

comparisons of the predicted values of the previous relations and the present results. The drag

coefficient is influenced by T R; however, the predicted values by the drag model hardly change,
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except in the Henderson, 1976 model at supersonic flows. These behaviors are likely due to

the way in which the previous models were constructed. Under high-M and low-Re conditions,

measurement tests of the aerodynamic forces (e.g., wind tunnel tests) are difficult. Therefore,

the drag models were constructed by combining the experimental data obtained under limited

conditions, theoretical formulas, and empirical corrections. Because the effect considered in

each term is clear, we focus on the drag mode of Henderson, 1976 to investigate the characteristics

in the following.

0.5

0.6

0.7

0.8

0.9

1.0

0.5 1.0 1.5 2.0

C
D

TR

(a)

M = 0.3
M = 0.8

Henderson (1976)

Crowe (1967)

M = 0.3
M = 0.8

Hermsen (1979)

M = 0.3
M = 0.8

Present study

M = 0.3
M = 0.8

1.0

1.1

1.2

1.3

1.4

1.5

0.5 1.0 1.5 2.0

C
D

TR

(b)

M = 1.2
M = 2.0

Henderson (1976)

Crowe (1967)

M = 1.2
M = 2.0

Hermsen (1979)

Present study

M = 1.2
M = 2.0

M = 1.2
M = 2.0

Figure 4.14: Comparison with previous drag models at Re = 300. (a) Subsonic
condition; (b) supersonic condition.

Figure 4.15 shows the T R dependence of the drag coefficient as predicted by the drag model

of Henderson, 1976 at subsonic flows. Figure 4.15 illustrates that the effect of T R on the drag

coefficient of M = 0.3 and 0.8 clearly appears at Re less than 2.0 and 5.0, respectively. This

means that T R effect appears in the Henderson model at slip or more rarefied regime (i.e.,

0.1 ≥ Kn). In the Henderson model, T R is included in the first term (see Henderson, 1976),

which is simplified to the formula of free-molecular regime (Kn ≥ 1) that was proposed by

Epstein, 1924; Langevin, 1905 at Re = 0. In other words, the Henderson model does not have

a background for the effect of T R on the drag coefficient in the continuum regime (Kn ≤ 0.01).

This property is the same in the other models. Consequently, a correction to the drag model is
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necessary for the prediction of the drag coefficient of heated/cooled particles in the continuum

regime.
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4.3.4 Characterization of Temperature Effect

Nusselt Number

The Nusselt number Nu is defined as the ratio of convective to conductive heat transfer at the

boundary in the fluid:

Nu =
hd
k

(4.2)

Here, h, d, and k indicate the heat transfer coefficient, the diameter of the sphere, and the thermal

conductivity, respectively. The heat transfer coefficient is as follows based on Newton’s law of

cooling:

h =
Q

A(Tsurf −T∞)
(4.3)
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where A, Q, Tsurf , and T∞ represent the heat transfer surface area, the amount of heat transferred,

and the surface and freestream temperatures, respectively. The amount of heat transferred is

calculated by integrating the heat flux at each cell. In eq. 4.3, when the temperature difference is

small, Nu is strongly affected by a change in the amount of heat transferred. This effect becomes

large for aerodynamic heating due to detached shock wave.
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Figure 4.16: Comparison with the previous Nusselt number models. (a) M = 0.3;
(b) M = 0.8.

Figure 4.16 show the variations in Nu for M = 0.3 and 0.8, respectively. Several Nusselt

number models for a sphere have been proposed by Ranz and Marshall, 1952; Sauer, 1951; Fox,

Rackett, and Nicholls, 1978; however, few have been proposed that are a function of only the

Prandtl number, M , and Re. In figure 4.17(a), the predicted values by the models show good

agreement with DNS result T R ≈ 1.0 for M = 0.3; however, the difference increases as T R

increases. This reflects the influence of the variation of the kinematic viscosity coefficient in the

vicinity of the sphere. For the case of large temperature differences, the state of the fluid around

the sphere differs from that of the freestream. Therefore, the differences between the predicted

values of the models and the DNS results become large when the temperature difference is large.

At low-T R, Nu of the present DNS is larger than that of the predicted values of the previous

models. Conversely, under high-T R conditions, Nu of the present DNS is less than that of the

predicted values of the previous models. The values of Nu under high- and low-T R conditions

are similar to the predicted values of the previous models under lower- and higher-Re conditions.
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It is considered that the amounts of forced-convection heat transfer and the heat conduction are

due to changes in the kinematic viscosity coefficient. This trend was reported previously by

Kurose et al., 2012 for incompressible flows. Furthermore, the aerodynamic heating has an

apparent effect on Nu.

Figure 4.17 show the T R dependence of Nu at Re = 300. Here, Re in the Fox, Rackett, and

Nicholls, 1978 model for supersonic flows should be based on the diameter of the sphere and the

shock-behind conditions along the stagnation streamline. In the present study, the Re behind the

detached shock was estimated as that of the normal shock, and the shock-behind conditions were

calculated using the Rankine–Hugoniot relations. Figure 4.19 illustrates that Nu is changed

significantly when T R close to 1.0 at M = 0.8 due to the aerodynamic heating. For the heat

transfer coefficient calculated using eq. 4.3, the effect of the aerodynamic heating on Nu is large

at T R close to 1.0 in high-speed flows because heat due to aerodynamic heating is not considered

in eq. 4.3. Also, Nu is negative for T R = 1.1 under supersonic conditions. In that case, the heat

transfer direction determined by the temperature of the freestream and the surface of the sphere

is into the fluid. However, the direction of the heat transfer determined by the temperatures

in the vicinity of the sphere and the surface of the sphere is into the sphere. Therefore, Nu

becomes negative as the heat transfer coefficient becomes negative, and thus it is necessary to

consider T R when estimating Nu because of the aerodynamic heating. Traditional multiphase

flow models assume that the fluid is heated by the difference in kinetic energy between the

particles and the fluid and that the particles are then heated via the heat transfer. In such models,

the heating of the fluid is considered to be the average in each cell. Consequently, the estimated

temperature increase is smaller than that estimated from a microscopic perspective. Therefore,

it is considered that the heat transfer is larger than that predicted by the previous multiphase

flow models. Such an effect was not considered in the previous multiphase flow models, but it

was confirmed to be important in this study. Hence, it is necessary to consider the aerodynamic

heating in sub-grid-scale models used to analyze supersonic multiphase flows.
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Figure 4.17: Effect of T R on Nu at Re = 300. (a) Subsonic conditions; (b)
supersonic conditions.

Summary of Temperature Effect on Boundary Layer Properties

In the previous sections, we discussed the effect of the temperature on the flow properties, and

it is clear that T R affects the flow properties. For the ultimate goal of our study, it is necessary

to characterize the effects of T R. Firstly, we postulate that the temperature of the sphere mainly

affects the kinematic viscosity coefficient in the vicinity of the sphere because it is a function

of temperature. Secondly, the flow properties can be characterized by Re based on the sphere

diameter and the freestream quantities for incompressible flows.

Figure 4.18 shows the local Reynolds number Relocal based on the local kinematic viscosity

coefficient, the freestream velocity, and the diameter of the sphere as a function of the distance

from the surface of the sphere. Figure 4.18 illustrates that Relocal which is calculated using

the local density ρlocal and the local viscosity coefficient µlocal around the sphere. Here, Relocal

was averaged around the sphere at the point equidistance from the surface of the sphere in the

time-averaged field. Herein, the velocity and length scales are chosen as the freestream velocity

and the diameter of the sphere, respectively, because the heat of the sphere does not have a large

impact on the characteristic velocity and length scales of the flow over the sphere. The velocity

distribution in the boundary layer is influenced by T R, but this seems to be caused mainly
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by the change in the kinematic viscosity coefficient. Since the kinematic viscosity coefficient

decreases, Relocal increases as T R decreases.
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Figure 4.18: Profile of averaged Relocal in the vicinity of the sphere at Re = 300
and M = 0.3.
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Figure 4.19: Effect of T R on the averaged kinematic viscosity coefficient at the
sphere surface for Re = 300.

However, the kinematic viscosity coefficient around the sphere is influenced not only by

T R but also by M as shown in figure 4.19. It is due to the change in the density at the

vicinity of the sphere by compressibility effects (figure 4.20). Therefore, the effect of T R

cannot be characterized as the function of T R alone. The effect of the temperature appears

in the boundary layer, and the separation point is considered to be particularly influenced.

Accordingly, we discuss the effective characterization of the various data under isothermal and

adiabatic conditions based on the position of the separation point, which is strongly affected by
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the state of the boundary layer. If this characterization works well for each M condition, the

results would imply that the effect of T R could be described by the fluid properties in the vicinity

of the sphere. In addition, such a discussion can examine the effect of T R on the flow properties

and its Re and M dependencies. In the following section, the data under the adiabatic condition

are those of chapter 3.
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Figure 4.20: Effect of T R on the averaged density at the sphere surface for
Re = 300.

Separating Compressibility and Temperature Effects through an Examination of the Sep-

aration Point

In adiabatic cases, the flow properties can be characterized by Re or Re and M in incompressible

or compressible flows. However, as discussed in the previous sections, the flow properties are

influenced by the temperature of the sphere because of the change in the kinematic viscosity

coefficient of the fluid in the vicinity of the sphere due to the temperature difference between

the freestream and the surface of the sphere. For example, figure 4.21 shows the relationship

between Re and the drag coefficient for adiabatic and isothermal cases. As discussed in chapter

3, the drag coefficient in the compressible flow can be characterized by Re in each M . However,

there is also T R dependence in the isothermal conditions, and thus the drag coefficient cannot

be characterized by only Re even though the same M . It is considered that the position of the

separation point appears to be most sensitive to the influence of the temperature of the sphere

surface. Thus, the relationship between the position of the separation point and various flow

properties will be discussed in this section.
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Figure 4.21: Relationship between the separation point and the drag coefficient
of the isothermal and adiabatic cases.

Figure 4.22 shows the relationship between the separation point and the drag coefficient. In

figure 4.22(a), a very clear trend can be seen between the separation point and the drag coefficient

under the adiabatic condition in each M condition. This illustrates that the Re dependence of the

drag coefficient in each M is linked primarily to the change in the separation point. Conversely,

in figure 4.22(b), the M dependence of the drag coefficient is more complex than is the Re

dependence. If M changes, several flow properties also change, such as the strength of the

shock waves, the separation point, and the size of the recirculation region. The trend of the M

effect on the flow properties differently under subsonic and supersonic conditions. In addition,

the interaction among these parameters is complicated, particularly in the transonic region.

Therefore, the M dependence of the drag coefficient cannot be characterized by the separation

point alone. Figure 4.22(c) shows a comparison of the drag coefficient in the adiabatic and

isothermal cases. In this figure, the effect of T R on the relationship between the separation

point and the drag coefficient is clear under subsonic conditions. However, the T R dependence

of the drag coefficient becomes complex as M increases. This effect is due to the aerodynamic

heating, but the effect of T R can approximately be characterized by the separation point for

each M . In this comparison, the drag coefficient under isothermal conditions agrees with that

under adiabatic conditions. In other words, the effect of the temperature difference on the drag

coefficient can be characterized by the position of the separation point. It is considered that

several flow properties including the drag coefficient can be characterized by the separation point
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because the position of the separation point reflects the state of the boundary layer.
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and (c) viscous drag coefficients of the isothermal and adiabatic cases.

The clear trend can be seen in the drag coefficient even though plotted separately by compo-

nent as shown in figure 4.23. This result implies that the position of the separation point reflects

the temperature effects on the drag coefficients, including physical meaning. The pressure drag

coefficient in this Re range at each M is dominated by the position of the separation point

because it depends on the backpressure related to the size of the recirculation region (see 3 in

108



4.3. Results and Discussion

detail). Figure 4.23 illustrates that the effect of the temperature on the pressure drag coefficient

for the isothermal case is the effect of the change in the position of the separation point same

as the adiabatic case. In addition, the viscous drag coefficient is determined by the area of the

attached flow region and the dynamic viscosity coefficient, and area of the attached flow region

is the function of the dynamic viscosity coefficient in this Re range. Hence, the viscous drag

coefficient in the adiabatic case can be characterized by the position of the separation point.

Simultaneously, the change in the viscous drag coefficient due to the temperature effect is driven

by the same mechanism with the adiabatic case, and the dynamic viscosity coefficient in the

isothermal case depends on the surface temperature of the sphere. Hence, the characterization

by the position of the separation point is capable of the evaluation of the temperature effect on

the viscous drag coefficient.

0

0.5

1.0

1.5

2.0

2.5

3.0

100 120 140 160 180

L
r/
d

�s deg

Re = 100, M = 0.3 (iso.)
Re = 200, M = 0.3 (iso.)
Re = 300, M = 0.3 (iso.)

M = 0.3 (adia.)

Re = 100, M = 0.8 (iso.)
Re = 200, M = 0.8 (iso.)
Re = 300, M = 0.8 (iso.)

M = 0.8 (adia.)

Re = 100, M = 1.2 (iso.)
Re = 200, M = 1.2 (iso.)
Re = 300, M = 1.2 (iso.)

M = 1.2 (adia.)

Re = 100, M = 2.0 (iso.)
Re = 200, M = 2.0 (iso.)
Re = 300, M = 2.0 (iso.)

M = 2.0 (adia.)

Figure 4.24: Relationship between the separation point and the length of recircu-
lation region.

Figures 4.24–4.26 show the relationships between the separation point and the other flow

properties, namely the length of the recirculation region, the shock standoff distance, and the

type of flow pattern. The lines show the results of the adiabatic cases, while the symbols show the

results of the isothermal cases. Figure 4.24 shows the relationship between the separation point

and the length of the recirculation region. The T R dependence differs between subsonic and

supersonic conditions in the length of the recirculation region. In supersonic flows, the difference

between the isothermal and adiabatic cases is not large; however, the difference becomes large

as the separation point moves toward the upstream side. Under subsonic conditions, on the
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other hand, the T R dependence of the length of the recirculation region does not agree with the

characterization using the separation point. For the length of the recirculation region, there is

the effect of the mixture of the fluids between the freestream and the vicinity of the sphere, and

its effect seems to become large at the subsonic regime.
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Figure 4.25: Relationship between the separation point and the shock standoff
distance.
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Figure 4.26: Distribution of flow regime characterized by M and the position of
the separation point.
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Figure 4.25 shows the shock standoff distance, which can be characterized by the separation

point. Under low-Re conditions, the shock standoff distance is influenced by Re due to the

change in the displacement thickness as discussed in chapter 3. Therefore, the T R dependence

of the shock standoff distance can be characterized by the position of the separation point, which

is associated with the state of the boundary layer.

Figure 4.26 shows the distribution of the type of flow pattern. In subsonic cases, the T R

dependence of the type of flow pattern corresponds to the separation point. Also, it can be

seen that the type of flow pattern is influenced not only by the separation point but also by M .

However, in supersonic conditions, we cannot discuss the applicability of using the separation

point to characterize the T R dependence of the type of flow pattern because of a lack of DNS

data.

4.3.5 Conclusions

In chapter 4, the compressible low-Re flow over a stationary isothermal sphere was investigated

by DNS of the three-dimensional compressible Navier–Stokes equations using a body-fitted

grid with high-order schemes. The flow conditions were 100 ≤ Re ≤ 300, 0.3 ≤ M ≤ 2.0,

and 0.5 ≤ T R ≤ 2.0. It was clarified that the effect of the temperature difference between the

freestream and particles on the flow properties, and the effects of M and Re on the characteristics

of the heat transfer between the sphere and fluids.

In the subsonic regime, the unsteady wake of the sphere becomes steady under high-T R

conditions, and the separation point moves downstream as T R increases. Conversely, the

flowfield becomes unsteady by decreasing T R in a part of the flow conditions which is steady

flow in adiabatic condition, and the separation point moves upstream as T R decreases. These

trends are caused by a change in the power balance of the inertial and viscous forces that is due

to a change in the kinematic viscosity coefficient in the vicinity of the sphere. The length of

the recirculation region at the steady flow conditions, the influence of T R is different between

the subsonic and supersonic conditions. The length of the recirculation region decreases and

increases as T R increases and decreases, respectively. In addition, the detached shock wave
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moves upstream as the temperature of the sphere increases. It implies that the increase of the

displacement thickness at the upstream stagnation point as showed in chapter 3.

The drag coefficient increases as T R increases, an effect that was not considered in previous

drag models despite those models include the terms of T R. The included terms for T R in the

previous drag model are based on the terms for the rarefied regime, and thus the effect of T R

does not consider in the continuum regime. Hence, it is required that the construction of the

terms to consider the effects of T R on the drag coefficient at the continuum regime. Also, there

are large differences in the predicted Nusselt number by the previous Nusselt number model

and obtained by the present computation, particularly at high-M flows or with large temperature

differences. It seems that the decrease in the accuracy of the previous Nusselt number model

is due to the change in the flow characteristics caused by the change in the kinematic viscosity

coefficient in the vicinity of the sphere and the aerodynamic heating due to the detached shock

wave. The conversion from the momentum energy to thermal energy, which is calculated using

the drag and Nusselt number models, is very important in supersonic multiphase flow analyses

that use the multiphase flow model. Therefore, further investigations and the construction of a

new relation or correction to the previous relations are necessary to construct a highly accurate

model for supersonic multiphase flows.

The temperature difference between the surface of the sphere and the freestream changes the

flow properties, and the influences are due to the change in the kinematic viscosity in the vicinity

of the sphere. In addition, the compressibility effects also have a large impact on the kinematic

viscosity coefficient so that there is the interaction between the effects of T R and M . However,

the effects of T R on the drag coefficient, the length of the recirculation region, the shock standoff

distance, and the flow pattern can be characterized by the position of the separation point. It is

because the change in the kinematic viscosity in the boundary layer has a significant effect on

the flow separation, and the separation point reflects the local Re in the boundary layer.
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List of Symbols

CD = Drag coefficient

CDP = Pressure drag coefficient

CDv = Viscous drag coefficient

CL = Lift coefficient

CMY = Moment coefficient around y-axis

CP = Pressure coefficient

Kn = Knudsen number

M = Mach number

Q = Q-criterion

Re = Reynolds number

St = Strouhal number

Utheta = Velocity along the equator of sphere

d = Diameter of the sphere

r = Radius of sphere

u, v,w = Velocity in x, y, and z directions

ub = Flow velocity of uniform component

us = Flow velocity of shear component

x, y, z = Cartesian coordinates

α = Normalized shear rate

ϕ = Angle from y-axis of upstream

µ = Dynamic viscosity coefficient

Ω = Angular velocity

Ω = Normalized angular velocity

θ = Angle from x-axis of upstream

θs = Separation point

ρ = Density

ξ, η, ζ = Curvilinear coordinates

Subscripts
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incomp. = Incompressible flow

r.m.s. = Root-mean-square

surf = Surface of sphere

∞ = Freestream
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5.1 Introduction

A lift force acting on particles plays a major role on the particle motion following drag force,

in the particle-laden flow, and thus the prediction of the lift force is important for modeling of

the particle behavior in the particle-laden flow. The lift force can be divided into a rotation-

induced lift and shear-induced lift. The rotation-induced lift is the lift force due to the rotation

of particles, and the shear-induced lift is the lift force due to a velocity gradient of background

flows.

Rotation-Induced Lift Rubinow and Keller, 1961 derived the lift coefficient, CL , of a trans-

versely rotating sphere in the Stokes regime at a low rotation rate (Re = ρu∞/µ∞ ≤ 0.1 and

Ω∗ = Ωd/2u∞ ≤ 0.1). Here, Re and Ω∗ are the Reynolds number and the rotation rate based

on the diameter of the sphere d, the freestream velocity u∞, the freestream density ρ∞, the

freestream viscosity coefficient µ∞, and the angular velocity Ω. Their results showed that the

lift coefficient is expressed as CL = 2Ω∗ in the Stokes regime. Also, Rubinow and Keller, 1961

found that the drag coefficient in the Stokes regime under the low-Ω∗ condition is not a function

ofΩ∗, and its value is equal to a stationary sphere Stokes drag. In the range Re > 1, an empirical

CL model for a rotating sphere at Re ≤ 120 is derived by force measurement experiments in the

uniform flow by Tri, Oesterle, and Deneu, 1990; Tanaka, Yamagata, and Tsuji, 1990.

Numerical simulations have also been used for the investigation of the flow properties of

transversely rotating spheres. Kurose and Komori, 1999 examined the drag and lift coefficients

of a rotating sphere at 1 ≤ Re ≤ 500 and 0 ≤ Ω∗ ≤ 0.25 using DNS (they also examined

the effects of a linear shear by DNS and experiments). They provided the aerodynamic forces,

flow structures, and variation frequency of the lift coefficient. Their result shows that the lift

coefficient at Re = 1 is only half of that theoretically determined by Rubinow and Keller, 1961.

The lift coefficient at Re > 1 provided by Niazmand and Renksizbulut, 2003 is also only half of

the theoretical value by Rubinow and Keller, 1961. Moreover, You, Qi, and Xu, 2003 examined

this problem at 0.5 ≤ Re ≤ 68.4 and 0 ≤ Ω∗ ≤ 5. In contrast to Kurose and Komori, 1999;

Niazmand and Renksizbulut, 2003, the lift coefficient obtained by You, Qi, and Xu, 2003 at

Re < 1 shows good agreement with the theoretical value obtained by Rubinow and Keller,
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1961, and the lift coefficient decreases as Re increases for Re > 100. Giacobello, Ooi, and

Balachandar, 2009 and Poon et al., 2014 comprehensively provided the flow properties over a

wide range of Re and Ω∗: 100 ≤ Re ≤ 300 and 0 ≤ Ω∗ ≤ 1.0 and 500 ≤ Re ≤ 1, 000 and

0 ≤ Ω∗ ≤ 1.2, respectively. Their results show that the unsteady vortex shedding is suppressed

at medium Ω∗ at Re = 300, and Kelvin–Helmholtz type instability of the shear layer appears at

high-Ω∗. Also, at high-Re, the vortex structures become more complex compared with those

up to Re = 300. Dobson, Ooi, and Poon, 2014 provided the flow properties at further high-Ω∗

conditions at 1.25 ≤ Ω∗ and 100 ≤ Re ≤ 300.

On the other hand, there are few cases on the study of the Robins–Magnus lift force in

compressible flows. Teymourtash and Salimipour, 2017 examined the flow around a rotating

cylinder under the subsonic conditions. Their results show that the compressibility effects

appear in the lift coefficient and the flow structure behind the cylinder. Volkov, 2011 studied

the three-dimensional transitional flow of a rarefied monotonic gas over a spinning sphere using

the direct simulation Monte Carlo (DSMC) at 0.03 ≤ M ≤ 2 and 0.01 ≤ Kn ≤ 20. They

found that the direction and magnitude of the transverse Magnus effect in rarefied flow depends

upon Kn and M . Also, the torque is a function of M and Ω∗. However, the flow properties

of a transversely rotating sphere in compressible and low-Re continuum flow have not been

studied even though the Robins–Magnus lift force has a large impact on the particle-laden

flow. Therefore, the examination of the Robins—Magnus lift force in the compressible flow

is necessary for modeling the compressible particle-laden flow such as the exhaust gas of the

rocket engine.

Shear-Induced Lift Interest in the motion of small particles in the flow that has velocity

gradient has been stimulated, particularly in the Poiseuille flow (Poiseuille, 1836). In the case of

blood, for example, blood corpuscles in the capillaries tend to keep away from the vessel wall.

Although Goldsmith and Mason, 1962 has pointed out that the deformation of non-rigid particles

will produce a lift force, and Bretherton, 1962 has shown that rigid particles of an extreme shape

may produce a lift force. In addition, Segré and Silberberg, 1962 has demonstrated that the

neutrally buoyant sphere of various sizes in the Poiseuille flow through a tube slowly migrate
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laterally to a position distant 0.6 tube radius from the axis. Their result demonstrated the

existence of a lateral force on a rigid spherical particle in the shear flow.

Saffman, 1965 firstly derived the shear-induced lift force in the Stokes regime based on the

Ossen-type approximation. It should be noted that the fact that using Ossen-type approximation

implies the importance of the inertia force on the shear-induced lift. Dandy and Dwyer, 1990

conducted DNS of the linear shear flow over a sphere at 0.1 ≤ Re ≤ 100. The results indicate

that the coefficient of the shear-induced lift is approximately constant at a fixed shear rate over

a wide range of intermediate Re, and the drag coefficient is also approximately constant when

normalized by the sphere drag in uniform flow. The equation by Saffman, 1965 including an

assumption, the shear velocity is large. McLaughlin, 1991 extend the theoretical expression by

Saffman, 1965 and he proposed a more general expression, which valid in conditions of small

shear velocities. By summarizing these studies, Mei, 1992 proposed a lift model for a stationary

isolated sphere in a linear shear flow at Re ≤ 100. Based on the knowledge provided by these

studies, the direction of the lift force due to linear shear flow acting on a stationary isolated sphere

is from the low-speed side to the high-speed side. Kurose and Komori, 1999 investigated the

linear shear flow over a sphere by numerical simulation of the three-dimensional incompressible

Navier–Stokes equations at 0.5 ≤ Re ≤ 500 and 0 ≤ α∗ ≤ 0.4. Here, α∗ = r/ub · du/dz

indicates the nondimensional shear rate normalized by the radius of the sphere r and the velocity

of the base flow ub. They investigated a linear shear flow over a sphere and they clarified that the

direction of the lift force due to shear flow becomes opposite, which means from high-speed side

to low-speed side, at Re ≈ 60. This fact has also been confirmed by the experiment conducted

by them. The result of DNS illustrated that the reverse of the shear-induced lift is caused by

the asymmetry of the recirculation region form in the downstream of the sphere. In chapter 3,

we discussed the effect of M on the recirculation region of the sphere in the uniform flow, and

the recirculation region is significantly stabilized by increasing M , particularly at the supersonic

condition. Combining with the result at the incompressible study by Kurose and Komori, 1999,

therefore, it is considered that the strength and the direction of the shear-induced lift appear to

be strongly influenced by M .

In the present chapter, the uniform flow over a transversely rotating sphere and the linear shear

flow over a stationary sphere are independently investigated by DNS of the three-dimensional
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compressible Navier–Stokes equations. In the rotating case, an isolated rigid sphere transversely

rotates up toΩ∗ = 1.0 under conditions at 100 ≤ Re ≤ 300 and 0.2 ≤ M ≤ 2.0, and an stationary

isolated rigid sphere is placed in the linear shear flow of 100 ≤ Re ≤ 300, 0.3 ≤ M ≤ 1.5, and

α = 0.1. The effect of M upon the flowfield and aerodynamic force coefficients are investigated

by comparing it with the previous incompressible studies.

5.2 Computational Setup

5.2.1 Flow Conditions for Rotating Case

Flow conditions that simulated in the study for the rotating case are shown in table 5.1. In this

study, the freestream Re based on the quantities at far-field and the diameter of the sphere was set

between 100 and 300, the freestream M was set to be between 0.2 and 2.0 andΩ∗ defined by the

ratio of the freestream velocity and the surface velocity above the equator was set to be between

0 and 1.0. Also, the resolution of the computational grid was retained in the downstream region

of the sphere for the diameter of 4d. Result of the grid convergence study is shown in appendix

A.2.3.

5.2.2 Flow Conditions for Linear Shear Flow Case

Flow conditions that simulated in the study for the liner-shear case are shown in table 5.2. In this

study, the freestream Re based on the quantities at the far-field and the diameter of the sphere

was set to be 50, 100, and 300, the freestream M was set to be between 0.3 and 1.5, and the

normalized shear rate α∗ which is normalized by the freestream velocity and the radius of the

sphere was set to be 0.1.
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M

0.2 0.3 0.8 1.2 2.0

Ω∗

0.0 Re = 300
Re = 250 Re = 250

Re = 300 Re = 300
Re = 300 Re = 300

0.2 Re = 300
Re = 250 Re = 250

Re = 300 Re = 300

0.3 Re = 300

Re = 100 Re = 100 Re = 100 Re = 100

Re = 200 Re = 200 Re = 200 Re = 200

Re = 250 Re = 250 Re = 250 Re = 250

Re = 300 Re = 300 Re = 300 Re = 300

0.6 Re = 300

Re = 100 Re = 100 Re = 100 Re = 100

Re = 200 Re = 200 Re = 200 Re = 200

Re = 250 Re = 250 Re = 250 Re = 250

Re = 300 Re = 300 Re = 300 Re = 300

0.8 Re = 300
Re = 250 Re = 250

Re = 300 Re = 300

1.0 Re = 300

Re = 100 Re = 100 Re = 100 Re = 100

Re = 200 Re = 200 Re = 200 Re = 200

Re = 250 Re = 250 Re = 250 Re = 250

Re = 300 Re = 300 Re = 300 Re = 300

2.0, 3.0 Re = 300 Re = 300

Table 5.1: Flow conditions for rotating case.

M = 0.3 M = 0.8 M = 0.95 M = 1.05 M = 1.2 M = 1.5

Re = 50 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1

Re = 100 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1

Re = 300 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1 α∗ = 0.1

Table 5.2: Flow conditions for linear shear flow case.
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5.2.3 Boundary Conditions for Rotating Case

The boundary condition at the surface of the sphere is adiabatic; also, the velocity on the surface

is given as follows to simulate a rotating sphere:

usurf = Ω
∗u∞

2z
d

, vsurf = 0,wsurf = −Ω∗u∞
2x
d

, (5.1)

where usurf , vsurf and wsurf are the x, y and z components of surface velocity, respectively, and

x and z are the position vectors of the x and z components. In this study, the axis of rotation

was y direction. Also, the position and velocity coordinates in the polar coordinate along the

equator of the sphere is defined in x − z plane at y = 0, as shown in figure 5.1. Here, θ and

Uθ denote the angle from the x-axis of upstream and the velocity along the equator of the

sphere, respectively. The density at the surface was calculated at the extrapolated value from the

one point inside the boundary, the pressure was calculated from the momentum normal to the

surface. At the boundaries in the ξ and η directions, the periodic boundary condition on the six

overlapped grid points was imposed. The inflow and outflow boundary conditions were imposed

at the outer boundary where the flow goes inside and outside at one point inside the boundary,

respectively. All flow variables were fixed to their freestream values at the inflow boundaries.

All the variables were extrapolated from one point inside of the boundary at the supersonic

outflow boundaries. The density and the velocities were similarly extrapolated and the pressure

was fixed to its freestream values in the subsonic outflow condition. All the variables on the

singular point on the x-axis were set to be an average of the nearest surrounding nodes.

Figure 5.1: Velocity and position coordinates along the equator of the sphere.

121



Chapter 5. Effect of Sphere Rotation and Background Shear

5.2.4 Boundary Conditions for Linear Shear Flow Case

To enforce the linear shear flowfield in the mainstream, numerical approaches of the sponge

layer proposed by Mani, 2012; Freund, 1997 were employed for the boundary conditions of the

zone 1. The density, the velocity, and the pressure were gradually enforced into the mainstream

values from the 10 points inside of the outer boundaries. Here, the velocity in the streamwise

direction was calculated as follows, and the velocity in the streamwise distribution is linear shear

flow as shown in figure 5.2.

Uniform component Shear component Liner-shear flow

2r

Sphere

Figure 5.2: Velocity distribution of the linear shear flow.

u(z) = ub + α
∗zub (5.2)

where

α∗ =
r
ub

du
dz

(5.3)

In zone 2, the boundary on the sphere surface was no-slip and adiabatic conditions. At

the surface of the sphere, the velocity was fixed to zero, the density was extrapolated from the

one point inside the boundary, the pressure was calculated from the momentum normal to the

surface. At the boundaries in the ξ and η directions, the periodic boundary condition on the six

overlapped grid points was imposed. All the variables on the singular point on the x-axis were

set to be an average of the nearest surrounding nodes. All the variables on the grid point at outer

boundaries of the zone 2 were determinant by the interpolation from the zone 1.
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5.3 Results and Discussion for Rotating Case

5.3.1 Far-Field Flow Properties

Under incompressible flows for Re ≤ 300, wake structures are classified into four types Giaco-

bello, Ooi, and Balachandar, 2009, namely the steady wake, the steady double-threaded wake,

the hairpin wake and the one-sided Ω-shaped wake. The flow patterns are changed along with

Re and Ω∗. For the low-Re and low-Ω∗ conditions, the flow pattern is the steady wake (e.g.,

Re = 100 and Ω∗ = 0). As Re or Ω∗ increases, the flow pattern transitions to the steady double-

threaded wake (e.g., Re = 100 and Ω∗ = 0.3). In this flow pattern, the two streamwise vortices

are generated around the rotation axis of the sphere. For Re ≥ 250, the hairpin wake appears.

In this flow pattern, the hairpin vortices are periodically generated from the recirculation region

behind the sphere (e.g., Re = 250 and Ω∗ = 0.3 and Re = 300 and Ω∗ = 0.3). As Ω∗ further

increases, the vortex shedding is reduced, and the flow pattern transitions back to the steady

double-threaded wake (e.g., Re = 300 and Ω∗ = 0.6). For Re = 300 and Ω∗ = 0.8 and 1.0,

the flow pattern transitions to the one-sided Ω-shaped wake. In this flow pattern, the Ω-shaped

vortices are generated at the downstream of the sphere. Figures 5.3–5.6 visualize the wake

structures according to the isosurface of the second invariant value of a velocity gradient tensor

(Q-criterion). Here, the Q-criterion is calculated by the definition in the incompressible flows

in order to visualize except shock waves region, and it is normalized by the freestream velocity.

The Q-criterion threshold was set at Q/u∞2 = 5.0 × 1.0−4. For these figures, the wake structure

is influenced not only by Re and Ω∗, but also by M . Also, a map of flow pattern type is shown

in figure 5.7.
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Figure 5.3: Isosurfaces of the second invariant value of a velocity gradient tensor
(Q/u2

∞ = 5.0 × 1.0−4) at Re = 300.
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Figure 5.4: Isosurfaces of the second invariant value of a velocity gradient tensor
(Q/u2

∞ = 5.0 × 1.0−4) at Re = 250.
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Figure 5.5: Isosurfaces of the second invariant value of a velocity gradient tensor
(Q/u2

∞ = 5.0 × 1.0−4) at Re = 200.

Ω
*
 = 0 Ω

*
 = 0.2 Ω

*
 = 0.3 Ω

*
 = 0.6 Ω

*
 = 0.8 Ω

*
 = 1.0

M = 0.3

M = 0.8

M = 1.2

M = 2.0

Figure 5.6: Isosurfaces of the second invariant value of a velocity gradient tensor
(Q/u2

∞ = 5.0 × 1.0−4) at Re = 100.

At Re = 300 and M = 0.2, the types of flow pattern shows a trend similar to that for

incompressible flows. In the case of the one-sided Ω-shaped wake, the Ω-shaped vortices form
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at downstream of the sphere, and their generation position approaches the sphere asΩ∗ increases.

The flow pattern clearly transitions from the low-mode to high-mode in the order of the steady

flow, the steady double-threaded wake, the hairpin wake, the steady double-threaded wake and

the one-sided Ω-shaped wake as Re and Ω∗ increase for each M . For Re = 300 and M = 0.3,

the type of flow pattern is similar to that of the incompressible flow for Ω∗ ≤ 0.6. However, the

flow pattern does not transition to the one-sided Ω-shaped wake for Ω∗ ≤ 0.8. This is thought

to be caused by the compressibility effect due to rotation. For the high-Ω∗ cases, the fluid

velocity at the retreating side (y < 0) and the relative velocity between the freestream and the

surface of the sphere at the advancing side (y > 0) is larger than in stationary cases. Hence, the

compressibility effect appears in rotating cases, even in low-M flows. Also, for Re = 300 and

M = 0.8, the hairpin wake appears for Ω∗ ≤ 0.8, and transitions to the steady double-threaded

wake for Ω = 1.0. From this result, we believe that the transition of the wake structure to the

high mode is suppressed by the compressibility effects. This trend has already been reported on

the study of the flow past a rotating cylinder under compressible low-Re flows (40 ≤ Re ≤ 200,

0.05 ≤ M ≤ 0.4 and 0 ≤ Ω∗ ≤ 12) by Teymourtash and Salimipour, 2017.

For Re = 300 and M = 1.2 and 2.0 in all cases calculated in this study, only the steady wake or

steady double-threaded wake appears. In other words, no periodic vortex shedding occurs under

the supersonic conditions despite Re = 300. It seems that the flow pattern mode is significantly

lower than that in the incompressible or subsonic cases due to the strong compressibility effects

as discussed in chapter 3. Also, the mode of the flow pattern for M = 2.0 is lower than that of

M = 1.2 for the same Re. This trend is similar in the case for Re ≤ 250 as shown in figures

5.3-5.7.

Figure 5.8 shows the distribution of volume-averaged turbulent kinetic energy (TKE) normal-

ized by the freestream kinetic energy in the wake. The TKE is calculated in the high-resolution

region (0.5 ≤ x ≤ 15 and
√
y2 + z2 ≤ 4.0) by following formula:

u′ =

√���u2 − u2
��� (5.4)

TKE =
1
2

u′
2
+ v′

2
+ w′2

u∞
(5.5)
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Figure 5.7: Map of flow regime: (a) Re = 100; (b) Re = 200; (c) Re = 250; (d)
Re = 300. Giacobello, Ooi, and Balachandar, 2009 (open symbol); present study
(closed symbol). Steady-axisymmetric wake (square); steady double-threaded

wake (circle); hairpin wake (triangle); one-sided Ω-shaped wake (diamond).

It is also volume-averaged for every ∆x = 0.05d. Figure 5.8 illustrates that the TKE is large

in cases that have an unsteady wake. Furthermore, the TKE peak is significantly large in the

case of an unsteady wake with rotating cases, even though the wake structure is similar to that

of the stationary cases (the hairpin wake). On the other hand, the TKE for the rotating case

asymptotically becomes the stationary case in the far-field (x ≈ 15d). Moreover, the TKE for an

Ω-shaped wake (e.g., M = 0.2 andΩ∗ = 1.0) is relatively small compared with the hairpin wake,

even though the wake is unsteady and the peak-TKE position occurs farther from the sphere than

the hairpin wake. This is due to the difference between the vortex generation processes of the

wake in each case. In the case of the hairpin wake, such vortices are generated in the vicinity of

the sphere such as the boundary layer and recirculation region. Therefore, the TKE peak occurs

in the near-field of the sphere. For an Ω-shaped wake, conversely, the vortices are generated

due to the instability of the shear layer. Hence, the TKE peak occurs relatively far downstream
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compared with the hairpin wake. Furthermore, the TKE peak moves upstream as Ω∗ = 1.0

increases. In terms of M , for rotating cases of M = 0.8, the peak of TKE is larger than M = 0.2

and 0.3. It seems that this is due to the effect of the disturbance caused by the attached shock

wave formed at the retreating side, as will be discussed in the next section.
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Figure 5.8: Normalized TKE distribution behind the sphere at Re = 300: (a)
M = 0.2; (b) M = 0.3; (c) M = 0.8.
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5.3.2 Near-Field Flow Properties

Figure 5.9 shows the pressure coefficient distributions and streamlines in the time-averaged

fields obtained over duration longer than 10 vortex-shedding periods in unsteady cases. In

stationary cases, the recirculation region in the subsonic and supersonic flows is asymmetric

and symmetric, respectively, in the x − z plane. This asymmetry in the time-averaged field is

caused by the vortex shedding and the steady nonaxisymmetric recirculation region. On the

other hand, the symmetric recirculation region appears in the supersonic flows because no vortex

shedding occurs. Also, the size of the recirculation region expands (shrink) as M increases under

subsonic (supersonic) flows. This trend has already been reported in chapter 3. For example,

the stationary sphere at Re = 300, the recirculation region expands as M increase for M ≤ 0.95.

On the other hand, it shrinks as M increases for M ≥ 1.05.

In the case of rotating cases under the subsonic conditions, an attached shock wave is formed

on the retreating side, and its strength increases along with M . As a result, the recirculation

region expands as M increases. By the effect of rotation, the flow structure behind the sphere

becomes asymmetric under all conditions calculated in the present study. For M = 0.3, the

recirculation region disappears for Ω∗ ≥ 0.3. At M = 0.8, however, this region is retained for

Ω∗ ≤ 0.6. This difference is caused by the separation encouragement due to the disturbance

induced by the attached shock wave formed on the retreating side. This effect also appears at

M = 1.2 and Ω∗ = 0.3. For the supersonic cases, however, the recirculation region disappears

at M = 1.2 and Ω∗ ≥ 0.6 and M = 2.0 and Ω∗ ≥ 0.3, even though the attached shock wave

is formed, because the recirculation region in the supersonic flows at the same Re is smaller

than that in the subsonic cases due to the influence of the expansion wave behind the sphere. It

seems that the occurrence of the attached shock has a large impact on the change in the flow

properties. Owing to the effect of the attached shock, the flow induced by the rotation effect is

decelerated by the shock, and particularly effects on the recirculation region. It means that the

effect of the rotation is attenuated by the attached shock. For this effect, the transition of the

type of flow pattern due to rotation is suppressed by increasing M as discussed in section 5.3.1.

In addition, it will be discussed in section 5.3.3, the increment of drag and lift coefficients by

rotation becomes small as M increases.
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Figure 5.9: Pressure coefficient distributions and streamlines of the time-averaged
field at Re = 300 (x − z plane).

Figure 5.10 shows snapshots of the divergences of velocity vectors, u, in the time-averaged

field. These snapshots are normalized by the freestream velocity and the diameter of the sphere.

For this figure, the configuration of the attached shock waves is significantly influenced by Ω∗

for each M . For stationary cases, the attached shock wave appears symmetric under supersonic

conditions. For rotating cases, the strength of the attached shock wave formed at the retreating

(advancing) side becomes strong (weak) as Ω∗ increases. Also, the angle of the attached shock

wave formed at the retreating side becomes similar to that under high-M conditions as Ω∗

increases. This is due to acceleration and deceleration of fluid on the retreating and advancing

sides, respectively. Also, for M = 0.8, a normal shock wave is formed at the retreating side and

its strength increases along with Ω∗.
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Figure 5.10: Schlieren-like images on a time-averaged field at Re = 300 (x − z
plane).

5.3.3 Aerodynamic Force Coefficient

Lift Coefficient—Rotation-Induced Lift

Figure 5.11 shows the relationship between Ω∗ and CL . In the case of the rotating sphere in

incompressible flows, it is well known that the lift force is mainly generated by the pressure

difference between the retreating and advancing sides caused by the velocity difference. In the

figure, the results of the incompressible flows by Kurose and Komori, 1999; Niazmand and

Renksizbulut, 2003; Giacobello, Ooi, and Balachandar, 2009; Dobson, Ooi, and Poon, 2014

are shown in gray symbols. Figure 5.11 illustrates that CL increases as Ω∗ increases, and the

CL dependence for M = 0.3 agree with the result of the incompressible flows. However, the

increment of CL due to rotation decreases as M increases. This trend is similar even though

Re < 300, but the increment of CL becomes larger at the low-Re conditions. Those M and

Re effects on CL are similar to the result of the rotating cylinder under the compressible flow

reported by Teymourtash and Salimipour, 2017. In addition, according to the results at the

incompressible and 1.0 < Ω∗ ≤ 3.0 by Dobson, Ooi, and Poon, 2014, CL due to rotation
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saturates at approximately Ω∗ = 1.0 and CL = 0.6. However, in the case of the supersonic

conditions, CL continuously increases for 1.0 < Ω∗ ≤ 3.0. It is considered that the upper bound

of CL due to rotation and the critical Ω∗ which the increment of CL becomes saturates are

influenced by M due to the pressure rise and deceleration of fluid by the detached shock wave.

The normalized lift coefficient CL/CL,incomp. is shown in figure 5.12, where CL is mono-

tonically decreases as M increases. The Ω∗ dependence on CL/CL,incomp. is changed at around

M = 0.8. Under rotating high-subsonic conditions, M ≥ 0.8 and Ω∗ ≥ 0.2, the normal shock

wave is formed on the retreating side because the flow velocity surpasses the sonic speed in a

limited region. Hence, the lift force caused by the rotation becomes smaller than in the incom-

pressible cases because of the decrease of the velocity difference (pressure difference) between

the retreating and advancing sides.
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Figure 5.11: Time-averaged CL at Re = 300 as a function of Ω∗.
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Figure 5.13 shows the aerodynamic stress distribution in the lift direction in the time-averaged

field. For M = 0.3, the lift force is generated over a wide area of the retreating side, and its

area shrinks and the position moves downstream side as M increases. On the other hand, the

distribution of the aerodynamic stress in the lift force direction hardly changes with rotation

at M = 2.0. The lift force by rotation is mainly due to the pressure component. To quantify

and analyze the lift force distribution, the pressure coefficient distributions on the surface of the

sphere above the equator for Ω∗ = 0 and 1.0 in each M is shown in figure 5.14. For this figure,

the pressure coefficient distribution is drastically changed by rotation, and its variation along the

equator becomes small as M increases. In the case of M = 0.3, a peak of the negative pressure

at around θ/π = 0.25 becomes large as Ω∗ increases. On the other hand, the negative pressure

region at around θ/π = 0.75 moves toward θ/π = 0.6 as Ω∗ increases. Also, a stagnation point

moves slightly toward the advancing side and the pressure coefficient at around 0.75 ≤ θ/π ≤ 1.0

increases as Ω∗ increases. Thus, the lift coefficient increases due to rotation. For M = 0.8 and

1.2, the negative pressure region at around θ/π = 0.3 moves downstream side and sharply

recovers compared with the case of M = 0.3 due to the influence of the attached shock wave.

Also, the negative pressure becomes small as M increases. In addition, there is no large impact

of rotation on the pressure coefficient distribution at M = 2.0. This results in a decrease in the

increment of the lift coefficient caused by the rotation under the high-M conditions.

Kajishima, 2004 numerically showed that the particle cluster is formed by the influence of

the wake vortices generated by particles, and the lift force due to particle rotation suppresses the

formation of particle clusters. The particle rotation is caused by the relative velocity difference

inside and outside of the particle cluster at the edge of the cluster. However, for the present

results, the lift force caused by the particle rotation is suppressed by the compressibility effect

than that of the incompressible flows. In the compressible multiphase flow, therefore, the particle

cluster breakdown due to the particle rotation seems to be suppressed by the compressibility

effects. On the other hand, the wake vortices released from the particle are reduced as M

increases, so that the formation of the particle cluster is also suppressed by the compressibility

effects. Hence, the effect of the compressibility on the lift force due to the particle rotation and

wake vortices generated by the particles are opposite regarding the formation of the particle

cluster. The particle distribution is possibly influenced by the relative M of the particles and
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fluid, but flow simulation using particle-resolved DNS is necessary to discuss the compressibility

effect on the behavior of the particle clusters.

Figure 5.14: Pressure coefficient distribution at the surface of the sphere above
the equator at Re = 300: (a) Ω∗ = 0; (b) Ω∗ = 1.0.

Figures 5.15 show the Strouhal number St and the root-mean-square (RMS) amplitude of

the lift coefficient CLRMS at Re = 300, respectively. The results under the compressible flows

are compared with the results under the incompressible flows by Kurose and Komori, 1999;

Niazmand and Renksizbulut, 2003; Giacobello, Ooi, and Balachandar, 2009. For figure 5.15(a),

St in the incompressible flows and M ≤ 0.3 increases with Ω∗ for Ω∗ ≤ 0.3. As Ω∗ further

increases, St becomes temporary zero because the flow becomes steady double-threaded wake

(i.e., steady wake). For Ω∗ ≥ 0.8, the flow pattern becomes the one-sided Ω-shaped wake in

the incompressible flow and M = 0.2. In this flow pattern, the vortex shedding occurs more

frequently than in the case of the hairpin wake, and St is from double to 4 times that for the
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hairpin wake. On the other hand, a different trend can be seen in the compressible flows. In the

case of M = 0.3 andΩ∗ = 0.6, St becomes zero, as in incompressible flows. However, it remains

zero even thoughΩ∗ = 0.8 and 1.0. Also, for M = 0.8, St is not zero atΩ∗ = 0.6 and 0.8. These

different trends are caused by the differences in the flow pattern due to compressibility effects.

For figure 5.15(b), the RMS-amplitude of CL for M = 0.3 has a peak at Ω∗ = 0.2 similar to the

incompressible flow.
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Figure 5.15: Comparison of a time variation of lift coefficients with the incom-
pressible results at Re = 300: (a) Strouhal number; (b) RMS amplitude.

On the other hand, for M = 0.8, the peak RMS amplitude of CL appears at Ω∗ = 0.6 and its

value is approximately 1.5 times larger than that of the incompressible cases.

Figure 5.16 compares St and CLRMS calculated at Re = 250 and 300 and M = 0.3 and 0.8.

This figure indicates that St is almost the same for each M except Ω∗ = 0. In other words, for

the same flow pattern, Re is not effective upon the St of the vortex shedding. Conversely, CLRMS
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becomes small as Re decreases. Thus, the frequency of vortex shedding is barely not affected

by Re, but strength of the oscillation of the wake weakens as Re decreases.
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Figure 5.16: Effect of Re on the time variation of lift coefficients with (a) Strouhal
number and (b) RMS amplitude: square symbols (M = 0.3); circles symbols

(M = 0.8); dotted lines (Re = 250); solid lines (Re = 300).

Drag Coefficient

Figure 5.17 shows the relationship between Ω∗ and the drag coefficient CD at Re = 300. Figure

5.17 illustrates that the trend of CD at M = 0.3 is very similar to the previous incompressible

studies. The total drag coefficient basically increases as Ω∗ increases. Also, this increment of

CD with Ω∗ becomes small as M increases. This trend is similar to the result of the rotating

cylinder under the compressible flows by Teymourtash and Salimipour, 2017. Also, at M = 0.8,

increment of the drag coefficient starts to level off at 0.8 ≤ Ω∗ ≤ 1.0. It seems that the increment

of the drag coefficient is attenuated when the shock becomes strong enough by Ω∗ increases.

Hence, the occurrence of the attached shock has a large impact on CD.
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Figure 5.17: Time-averaged CD with respect to Ω∗ at Re = 300: (a) total; (b)
pressure component; (c) viscous component.
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Figure 5.18: Distribution of the aerodynamic stress coefficient in the drag direc-
tion at the time-averaged field at Re = 300 (view from −y).

Figure 5.17(b) illustrates that the pressure drag coefficient CDP increases as Ω∗ increases

except at M = 2.0. A low-pressure region behind the sphere expands and the pressure further

decreases at the high-Ω∗ conditions because of the formation of the streamwise vortices. Due to

this behavior, the pressure drag coefficient becomes large at the high-Ω∗ conditions. On the other

hand, the pressure around the stagnation point on the upstream side decreases and its position

moves toward the advancing side due to the stream generated by the rotation of the sphere. This

behavior contributes to a decrease in the pressure drag. Under the subsonic flow, CDP increases

along with Ω∗. Conversely, under the supersonic conditions, the stream generated by rotation

is more effective than in the subsonic cases because the main freestream around the sphere is
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decelerated by the detached shock wave. Therefore, the stream generated by the rotation of the

sphere becomes relatively effective at the high-M conditions. In particular, at M = 2.0, CDP

becomes small as Ω∗ increases because the phenomenon on the upstream side is more effective

than that on the downstream side. Additionally, the decrements of the pressure drag caused by

the stream generated by rotation increases at low-Re conditions because the velocity boundary

layer thickness is thicker.

Figure 5.18 shows the aerodynamic stress distribution in the drag direction at the time-

averaged field. The drag force generated on downstream side increases as Ω∗ increases, and

its increment decreases as M increases. On the other hand, the drag force generated on the

upstream side decreases as Ω∗ increases, and its increment increases as M increases. These

trends reflect the pressure coefficient distribution shown in figure 5.14. For supersonic flows,

the freestream is decelerated at the detached shock wave. Hence, the effective rotation rate

considered in the fluid velocity behind the detached shock wave and the rotation speed of the

sphere is faster than that of the shock-free cases. The flow in the drag direction is strongly

reduced due to the stream generated by the rotation of the sphere under supersonic flows. Also,

the drag coefficient increases as Ω∗ increases due to the movement of the negative pressure

region at around θ/π = 0.7. These trends are similar, even if M increases, but the effect of

Ω∗ upon the pressure coefficient distribution is weaker under the high-M conditions. Also,

the pressure coefficient distribution itself drastically changes as M increases. In addition, the

decrease (increase) of the pressure coefficient at the region on at around 0 ≤ θ/π ≤ 0.25

(0.5 ≤ θ/π ≤ 0.75) caused by rotation increases (decreases) as M increases. For this behavior,

the increase of the drag coefficient due to rotation becomes small under the high-M conditions.

The viscous drag coefficient CDv is hardly changed by rotation for subsonic cases. In the

supersonic cases, on the other hand, CDv increases as Ω∗ increases because the friction stress

increases on the advancing side due to the change in the velocity gradient and the viscosity

coefficient at the surface of the sphere. The viscous drag coefficient increases as Ω∗ increases

in supersonic flows. Figure 5.19 shows the distribution of the velocity gradient in θ-direction

velocity Uθ for the r direction on the surface of the sphere above the equator. The velocity

gradient was normalized by the freestream velocity and the diameter of the sphere. This figure

illustrates the velocity gradient decreases as Ω∗ increases in the most areas of the retreating and
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advancing sides. This trend is similar between the subsonic and supersonic flows, but under

the supersonic condition, change in the distribution of the velocity gradient due to rotation is

influenced by the shock waves. For example, the sign of the velocity gradient changes sharply

at around θ/π = 0.25 by the attached shock wave for M = 0.8 and 1.2. Also, the shock wave

moves downstream side as M increases. For M = 0.3, the velocity gradient on the most of the

retreating side is positive, so the friction stress on the retreating side acts to promote rotation.

For M ≥ 0.8, conversely, the region with a negative velocity gradient on the retreating side is

expanded by the effect of the attached shock waves. Moreover, for M ≥ 1.2, the peak velocity

gradient on the retreating side becomes small as M increases. This trend is caused by the

influence of the detached shock wave which decelerates the flow around the sphere. This results

in the relative velocity between the surface of the sphere and the freestream become small as M

increases.

The viscosity coefficient distribution on the surface of the sphere above the equator is shown

in figure 5.20. Because of the influence of rotation, the viscosity coefficient decreases (increases)

at the retreating (advancing) side. Also, the velocity gradient at the surface of the sphere on the

retreating (advancing) side becomes small (large), due to the influence of rotation. Hence, the

viscous drag and moment coefficients around rotational axis are larger than that in the stationary

cases for the high-M and high-Ω∗ conditions. The viscosity coefficient mainly increases around

the upstream stagnation point due to compression, and behind the attached shock wave and the

advancing side in the downstream side due to rotation. The effects of the shock waves become

strong as M increases. The large aerodynamic heating occurs on the advancing side because

the relative velocity on the advancing side between the fluid and surface is larger than that on

the retreating side. Thus, the viscosity coefficient on the advancing side increases remarkably

under the high-M condition of rotating cases.
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above the equator at Re = 300: (a) Ω∗ = 0; (b) Ω∗ = 1.0.
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Figure 5.20: Normalized viscosity coefficient distribution at the surface of the
sphere above the equator at Re = 300: (a) Ω∗ = 0; (b) Ω∗ = 1.0.

Moment Coefficient around Rotation Axis

Figure 5.21 shows the moment coefficient around the rotation axis: compressibility effects

appear in the moment coefficient. In rotating cases, the moment coefficient is a negative value,

meaning that moment opposes the rotation of the sphere and its strength increases along with

Ω∗. Also, the increment of the moment coefficient by rotation becomes large as M increases,

and this effect increases along with decreases Re.
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Figure 5.22 shows the distribution of the aerodynamic stress coefficient which contributes

to the moment (local moment coefficient). This coefficient is calculated as the product of

aerodynamic stress tangential to the surface for the ξ direction and the moment arm and is

normalized by the diameter of the sphere and the dynamic pressure based on the freestream

quantities. In stationary cases, the local moment coefficient around the y-axis is symmetry

on the retreating and advancing sides. However, as Ω∗ increases, the distribution of the local

moment coefficient becomes asymmetric distributions. Thus, the relative fluid velocity between

the vicinity of the sphere and the surface of the sphere on the retreating (advancing) side becomes

small (large) asΩ∗ increases. Also, the difference between the absolute value of the local moment

coefficient on the retreating and advancing sides becomes large as M increases because of the

deceleration of the fluid velocity at the detached shock wave, and the relative velocity between

the surface and fluid in the vicinity is smaller than that under the subsonic conditions. As a

result, the local moment coefficient on the retreating side in the supersonic conditions is smaller

than that of at subsonic flows for the same Ω∗. Conversely, on the advancing side, the local

moment coefficient for high-M flows is larger than that of the low-M flows due to the increase

of the viscosity coefficient, as shown in figure 5.20. Also, the negative local moment coefficient

appears on the retreating side for M = 0.8 and 1.2 under the influence of the attached shock

wave. By forming this shock wave on the retreating side, the fluid in the vicinity of the sphere

is decelerated. Therefore, the friction stress on the surface behind the attached shock wave

increases due to the increase of the velocity gradient and the viscosity coefficient, and its effect

becomes large as M and Ω∗ increase. Thus, the attached shock wave formed on the retreating

side has a braking effect on the particle rotation. From the above results, the particle rotation

in the compressible particle-laden flow is easy to stop compared with that in the incompressible

case.
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CL CD CMY St

When Ω increases increases increases increases increases

(except steady cases)

(a) Effect of Ω on each parameter.

∆CL ∆CD ∆CMY ∆St

When M increases decreases decreases increases not effective

(b) Effect of M on increment of each parameter due to rotation.

Table 5.3: Summary of the effect of Ω∗ and M on each parameter.

The summary of the Ω∗ effect on CL , CD, CMY and St and the M effect on the increment of

CL , CD, CMY and St due to rotation are shown in table 5.3. The Ω∗ effect on each parameter

is the same between the incompressible and compressible flows. The increment of CL and CD

becomes small as M increases. On the other hand, the increment of CMY becomes small as M

increases. Also, the increment of St is not influenced by M .

5.4 Results and Discussion for Linear Shear Flow Case

5.4.1 Near-Field Properties

Velocity Distribution

Figure 5.23 and 5.24 shows the distribution of the streamwise velocity, which is normalized by

the velocity of the uniform component, at Re = 50 and 300, respectively. The asymmetry of

the flowfield due to the velocity gradient can be observed even in Re = 50. The flowfield of

the uniform flow over a sphere at Re = 50 is steady-axisymmetric flow as discussed in chapter

3. The recirculation region of the linear shear Flow at Re = 50 of M = 0.3 is almost the

symmetric shape so that the effect of the shear on the velocity distribution is weak. However,

the asymmetry of the flowfield becomes strong as M increases. The detached shock wave and

expansion wave are formed on only the high-speed side at the transonic regime. In addition,
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the symmetry breakdown of the recirculation region occurs and the asymmetry becomes strong

as M increases. The end of the recirculation region is formed on the low-speed side in those

cases. The asymmetry of the recirculation region is related to the expansion wave formed on the

high-speed side. Such flow that the expansion wave is formed, the flow direction is changed into

the direction tangential to the surface due to the influence of the expansion wave as discussed in

chapter 3. In the case of the linear shear flow, such kind of the effect appears only on the high-

speed side at the transonic regime, and thus the asymmetry of the recirculation region appears,

despite the Re range of the axisymmetric flow in the uniform case. As M further increases, the

shock waves are formed on both of the high-speed and low-speed sides, but the asymmetry of the

recirculation region becomes further strong. The asymmetry of the recirculation region remains

even though the whole of the flow over a sphere becomes supersonic conditions, because of the

difference in the local M on the high-speed and low-speed sides. It notes that the present result

includes not only the effect increase in M but also the effect increase in the absolute value of the

shear velocity.

At Re = 300, on the other hand, the recirculation region is skewed due to the velocity gradient

even though M = 0.3. Kurose and Komori, 1999 reported that the negative shear-induced lift

is generated in this Re range of the incompressible flow. The reverse of the shear-induced lift

is caused by this kind of skewed recirculation region. The flowfield at M = 0.3 seems to be

similar to the incompressible flow, but it cannot confirm because the previous incompressible

studies have not provided the visualization of the flowfield. It notes that the compressibility

effect seems to appear particularly in the high-speed side even though M = 0.3 due to shear

velocity. Under subsonic conditions, the end of the recirculation region exists in the high-speed

side and the length of the recirculation region increases as M increases. The detached shock

and expansion waves are formed only on the high-speed side due to the difference in the local M

between the low-speed and high-speed sides. The shape of the recirculation region is basically

the same up to M = 0.95. The detached shock wave and the expansion wave becomes more

strong at M ≥ 1.05, and the shear layer between the recirculation region and freestream at the

high-speed side is bend due to the expansion wave formed in the high-speed side, but the end of

the recirculation region still exist in the high-speed side so that flow pattern in the downstream

is similar to incompressible one. However, the end of the recirculation region exists in the
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low-speed side so that flow pattern in the downstream is drastically changed. This change is due

to the strong expansion wave formed on the high-speed side. Although the detached shock wave

and the expansion wave are formed in also the low-speed side, the strength of those waves in

the high-speed side is significantly strong, and thus the flow pattern of the recirculation region

is drastically changed. Based on the incompressible study, the direction of the shear-induced

lift might be changed at M = 1.5. The M effect on the shear-induced lift will be discussed in

section 5.27.
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Figure 5.23: Streamwise velocity distribution in x − z plane (Re = 50).
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Figure 5.24: Streamwise velocity distribution in x − z plane (Re = 300).
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Position of the Separation Point

Distributions of the position of the separation point were investigated. The coordinate system

for the discussion of the distribution of the separation point is shown in figure 5.25. The position

of the separation point in the streamwise direction θs is defined as the angle from the upstream

stagnation point, the range of thetas is 0 ≤ θs ≤ π. The upstream and downstream sides are

θs < π/2 and θs > π/2, respectively. The position in the transverse direction was defined as the

angle from the x − y plane, the range of ϕ is π/2 ≤ ϕ ≤ π/2. The high-speed and low-speed

sides are ϕ < 0 and ϕ > 0, respectively.
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�s = 0 �s = π
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Figure 5.25: Coordinate system for the position of the separation point. The
range of θs and ϕ are 0 ≤ θs ≤ π and π/2 ≤ ϕ ≤ π/2, respectively.

Figure 5.26 shows the distribution of the separation point. Circular symbols represent the

separation point of the uniform flow cases discussed in section 3 (averaged around x-axis), lines

represents the distribution of the separation point of the shear cases.

The position of the separation point has an asymmetry distribution due to the velocity gradient

in the mainstream, and the trend in the distribution of the separation point is different in each M

range. Also, the separation point moves upstream and downstream at approximately M < 0.95

and M > 0.95, respectively, as M increases (see in details in section 3). At M = 0.3, the

separation point in the high-speed side exists in the upstream side compared with the low-speed

side because the separation point moves upstream as M increases at subsonic conditions. At

M = 0.8, on the other hand, the difference in the position of the separation point is smaller than
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M = 0.3. The separation point in the high-speed and low-speed sides exist slightly downstream

compared with the center of the sphere. The inflection point of the M effect on the separation

point at M ≈ 0.95 so that the position of the separation position the high-speed and low-speed

sides exist relatively downstream and upstream compared with that of the center of the sphere

because of higher- and lower-M of the critical M regarding the separation point, respectively.

The separation point in the high-speed side moves downstream because of the expansion wave

formed in the high-speed side. The position of the separation point on the high-speed side exist

in downstream compared with the low-speed side at M ≥ 0.95 so that the inflection point of the

trend on the separation point at Re = 300 and α∗ = 0.1 is M ≈ 0.8. The separation point in the

high-speed side moves downstream because the separation is delayed due to the stream, which

bends toward the x-axis.
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Figure 5.26: Distribution of separation point (Re = 300).

5.4.2 Aerodynamic Force Coefficient

Lift Coefficient—Shear-Induced Lift

Figure 5.27 shows the Re evolution of the shear-induced lift at each M . The compressible cases

are compared with the results at the incompressible flow by Kurose and Komori, 1999. The

shear-induced lift for the incompressible case is negative at a higher-Re side and decreases as Re

decreases. The shear-induced lift is asymptotic to zero at around Re = 10 and becomes positive

at further lower-Re conditions. The trend of the shear-induced lift at M = 0.3 is almost the
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same as the incompressible case. At M = 0.8, however, Re dependence on the shear-induced

lift is quite small and the shear-induced lift decreases as Re decreases, and the Re effect on the

shear-induced lift becomes opposite at M ≥ 0.8 compared with M ≤ 0.3.

Figure 5.28 shows the M effect on the coefficient of shear-induced lift. The symbols at M = 0

indicates the result of the incompressible study (Kurose and Komori, 1999). At Re = 300, the

negative shear-induced lift at M = 0.3 is larger than that of the incompressible flow due to

the M effect. Owing to the shear component in the mainstream, the M effect appears even

though M = 0.3. The negative shear-induced lift increases as M increases up to M ≈ 1, and

it decreases as M increases at M > 1 so that there is the inflection point in the M effect. At

lower-Re conditions, the negative shear-induced lift at the subsonic condition is smaller than

that of higher-Re conditions because the negative lift at the incompressible flow decreases as

Re decreases at Re ⪅ 50. At transonic and supersonic conditions, conversely, the negative lift

at lower-Re conditions is larger than that of higher-Re conditions. As a result, there is a cross

point of the M–CL curve at around M = 0.8. The mechanism of the change in the shear-induced

lift will be discussed below based on the surface stress coefficient in the lift direction.

Figure 5.29 shows the surface stress distribution in the lift direction. The region where

positive/negative C fL + CPL generates the positive/negative lift. The lift force are zero if the

stress distribution in the lateral direction is symmetry, but the flowfield is the asymmetry in the

present case so that the lift force is generated. At M = 0.3, the positive and negative lift forces

are mainly generated at the top and bottom sides of the sphere due to the negative pressure

around there. In addition, there is a velocity difference in the top and bottom sides of the sphere

due to the shear component and the asymmetry of the flow field so that there is a difference

in the absolute value of the generated lift forces on the high-speed and low-speed sides. As a

result, the total lift force becomes non-zero value. The shear-induced lift at Re = 300 is the

negative value for the incompressible flow due to the asymmetry of the recirculation region

(Kurose and Komori, 1999). As M increases, the negative lift force is generated on the sphere

surface in the upstream of the upper side. The negative lift in there increases as M increases.

Also, the generated lift force at the top and bottom sides of the sphere decreases as M increases.

In addition, the positive lift becomes large in the upstream of the lower side of the sphere. The

trend can be seen in figure 5.29.
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Figure 5.27: Effect of Re on the shear-induced lift coefficient.
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Figure 5.28: Effect of M on the shear-induced lift coefficient.
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CfL + CPL
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Figure 5.29: Distribution of the surface stress coefficient in the lift direction.

Figure 5.30 shows the distribution of the surface stress coefficient of the lift direction in the

streamwise direction. The surface stress is separately averaged around x-axis in the upper and

lower sides. The variable θ indicates the angle from the upstream stagnation point around y-axis.

Here, θ = 0, 360 and θ = 180 correspond to the upstream and downstream stagnation points,

respectively. Figure 5.30 illustrates that the surface stress in the lift direction decreases and

increases as M increases at upstream and downstream sides, respectively. In the upper upstream

side, the negative lift is generated due to compression and it increases as the M increases. At the

top side, conversely, the positive lift is generated due to the low pressure caused by accelerated

fluids and it decreases as M increases at M > 0.8. The effects of M in the stress coefficient

in the lift direction are different in the upper upstream side and topside. In the case of the top

side, the M effect on the pressure coefficient works to decrease and increase at subsonic and

supersonic conditions, respectively. The pressure in the top side at M ≤ 0.8 decreases due to the

compressibility effect described by the Prandtl–Glauert transformation. At M > 0.8, conversely,

the pressure increases due to the pressure rise at shock waves and strong compression in the

upstream side. This trend is antisymmetric on the lower side, but local M in the lower side

is lower than that of the upper side so that stress coefficient distribution in the lift direction is

non-axisymmetric. Also, on the downstream side, the effect of M is quite weak because of the
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separated flows.
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Figure 5.30: Distribution of the surface stress coefficient in the lift direction
(averaged round x-axis for upper and lower sides).

Figure 5.31 shows the distribution of the stress coefficient in the lift direction averaged

around x-axis. In the upstream side, the negative lift is generated due to the difference in the

local M . At subsonic conditions, the negative lift in the upper upstream side increases but

the positive lift in the lower side does not increase, because the local M in the lower side is

lower than the upper side and the effect M is quite small. The increment of the negative lift in

the upstream side saturates around transonic conditions, and the negative lift decreases as M

increases at supersonic conditions. At high-subsonic and transonic conditions, the increment of

the surface stress due to the M effect appears both upper and lower sides of the sphere so that the

increment of the negative lift saturates due to the increment of the positive lift in the lower side.

At supersonic conditions, the negative lift in the upstream decreases as M increases because the

increment of the stress coefficient saturates in the supersonic conditions. The increment of the

negative lift in the upper sides becomes small due to the conditions of the higher-M supersonic

flow, but the increment of the positive lift is still large in the lower side due to the lower local M .

At θ′ = 90 deg, the generated lift is almost zero but the small positive lift is generated due to the

larger velocity in the upper side. The stress coefficient in the lift direction at M ≤ 1.05 becomes

negative again in the downstream. At supersonic conditions, conversely, the positive lift appears

in the downstream area corresponding to the recirculation region. Hence, the reverse of the lift
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direction due to M effects occurs in the limited region corresponding to the recirculation region,

but the M effect in the negative lift generated in the upstream is dominant. Hence, there is no

reverse of the integrated value of the shear-induced lift caused by M effect, despite the drastic

change in the flow pattern of the recirculation region.

The negative lift in the compressible flow is due to the compression in the upstream of the

high-speed side so that the negative lift in the compressible flow seems to become strong in

the following conditions: (1) higher-M conditions, (2) higher-shear rate conditions, and (3)

lower-Re conditions. The surface stress at the upstream side becomes strong as M increases,

and compression in the high-speed side becomes stronger than that of the low-speed side. The

higher shear rate leads to the stronger compression in the upstream of the high-speed side. The

pressure coefficient due to compression increases as Re decreases because of the larger viscosity.

Therefore, it is clear that the conditions listed above appear to lead the larger negative lift in the

continuum regime.

-0.15

-0.10

-0.05

0

0.05

0 30 60 90 120 150 180

C
fL

 +
 C
P
L

�' deg

M = 0.3
M = 0.8
M = 0.95
M = 1.05
M = 1.2
M = 1.5

Figure 5.31: Distribution of the surface stress coefficient in the lift direction
(averaged round x-axis).

Drag Coefficient

Figure 5.32 shows the effect of M on CD. The diamond, squired, and circular symbols represent

the results of Re = 50, 100, and 300, respectively. The red symbols represent the shear flow

cases, the gray symbols represent the uniform flow cases described in chapter 3. Figure 5.32(a)

illustrates that the total drag coefficient monotonically increases as M increases for both uniform
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and shear cases. However, there is the difference in the transonic region. The total drag

coefficient rapidly increases for uniform cases. In the shear cases, conversely, the increment

of CD due to an increase of M is almost constant for all M range investigated in the present

study. In other words, the gradient of M–CD curve for the shear flow case is smaller than that

of the uniform flow case. This trend is similar in the pressure component CDP , and the pressure

component is dominant in the M evolution of CD.

The increment of CDP by the M effects is due to the compressibility effects which are

described by the Prandtl–Glauert transformation in the subsonic flow, and also the wave drag

in the transonic and supersonic flows (see chapter 3). In particular, the drag coefficient rapidly

increases in the transonic flow because of the wave drag. The difference in the increment of CD

at the transonic regime can be described by the local M . In uniform flow cases, the distribution

of the local M normal to the streamwise direction is uniform so that the flow over the sphere

changes simultaneously, and the increment of CD clearly different between each flow regime. In

the shear flow cases, on the other hand, the local M is different in the direction normal to the

freestream, and thus the detached shock does not appear in the low-speed side at the transonic

regime as discussed in 5.4.1. The drag coefficient for the shear flow case in the subsonic flow is

higher than that of the uniform flow case because of the wave drag due to the partially formed

shock waves in the high-speed side. Conversely, CD for shear flow case in the high-transonic

or low-supersonic flows are lower than that of the uniform flow cases. The effect of M on the

increment of CD is reduced as M increases in the supersonic regime (Oswatitsch’s Mach number

independence principle). Thus, the increment of CD at the high-speed side is reduced at this

flow regime. In addition, the drag force in the low-speed side is smaller than uniform flow cases

so the total drag of the shear flow case in the high-transonic and low-supersonic flows is smaller

than that of the uniform flow cases.

Figure 5.32(c) shows the viscous drag coefficient CDv . Effects of the shear flow on the M

effect in CDv is similar to that of the effect on CDP . The increment of the viscous drag coefficient

for uniform flow cases is due to the movement of the position of the separation point, and the

position of the separation point rapidly moves downstream at the transonic flows so that CDv at

the transonic regime rapidly increases as M increases. In the shear flow case, however, the local

M is different in the high-speed and low-speed sides, and thus the movement of the position of
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the separation point gradually occurs from the high-speed side to the low-speed side. Hence,

CDv gradually increases as M increases in the shear flow case.
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Figure 5.32: Effect of M on the drag coefficients: (a) total drag; (b) pressure
component: (c) viscous component.
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Moment Coefficient

Figure 5.33 shows the effect of M on the pitching moment coefficient (around y-axis). The

pitching moment is generated due to the velocity difference in the high-speed and low-speed

sides. It notes that the present computation does not consider the equation of motion so that the

sphere is completely fixed. Figure 5.33 illustrates that the small pitching moment is generated,

and it variates because of the effects of Re and M . At M = 0.3, the moment coefficient is

positive at Re = 50 because the wall shear stress on the high-speed side is larger than that on

the low-speed side. However, the moment coefficient decreases and becomes negative as Re

increases. This trend in the moment coefficient is due to the change in the separation point. At

lower-Re conditions, the flow over a sphere is close to the fully attached flows, and thus the wall

shear stress on the high-speed side surpasses that of the low-speed side. Conversely, at higher-

Re conditions, the separated area on the high-speed side is larger than that on the low-speed

side because of the skewed recirculation region (see figure 5.26). The moment coefficient at

the transonic and supersonic flows is negative and positive values, respectively, regardless of

M . The negative value at the transonic regime is due to the shock waves formed only on the

high-speed side. Because of the shock waves, the fluid on the high-speed side is decelerated and

the wall shear stress in the low-speed side surpasses that of the high-speed side. As a result, the

negative moment is generated. At the supersonic conditions, the strength of the shock waves is

stronger than that on the low-speed side, but the attached flow region and the dynamic viscosity

coefficient on the high-speed side are wider and larger than that of the low-speed side. As a

result, the moment coefficient takes positive values.
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Figure 5.33: Effect of M on moment coefficient (around y-axis).

5.5 Conclusions

In chapter 5, the compressible low-Re flow over a rotating adiabatic sphere and the linear

shear flow over a stationary adiabatic sphere were investigated by DNS of the three-dimensional

compressible Navier–Stokes equations using a body-fitted grid with high-order schemes.

In the simulation of flow past a rotating sphere, the flow condition was 100 ≤ Re ≤ 300,

0.2 ≤ M ≤ 2.0, and 0 ≤ Ω∗ ≤ 1.0. It was clarified that the vortex structure behind the

sphere is influenced by Re, Ω∗, and M . In particular, vortex shedding is significantly reduced in

supersonic flows. Also, under the subsonic and high-Ω∗ conditions, the compressibility effect

on the vortex structure appears strongly compared to the stationary cases. It is due to that the

fluid velocity and the relative velocity between the fluid and the surface of the sphere is large

in the retreating and advancing sides, respectively. The rotation-induced lift becomes large as

Ω∗ increases in each M . However, the increment of the lift coefficient becomes small as M

increases. This is caused by the deceleration of the fluid velocity due to the attached shock waves

formed on the retreating side. Also, the position of the stagnation point formed in the advancing

side is influenced by M , moves downstream side as M increases. Hence, the rotation-induced

lift becomes small as M increases. In addition, the moment coefficient around the rotation axis,

which brakes rotation, increases along with M due to the effect of the attached shock wave on

the retreating side and the increase of the viscosity coefficient around the sphere. These results
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mean that the effect of the particle rotation on the lift coefficient under compressible flows is

smaller than that of the incompressible cases. To be summarized, at the higher-M conditions,

the influence of the rotation on the wake, the lift and drag coefficients is reduced, and the rotation

is easy to stop. Hence, it seems that the rotation effect is significantly reduced in supersonic

conditions.

In the simulation of flow past a rotating sphere, the flow condition was 100 ≤ Re ≤ 300,

0.3 ≤ M ≤ 2.0, and α∗ = 0.1. The simulation results clarified that the significantly different

characteristics of the shear-induced lift compared with that of the incompressible flows. In the

case of the incompressible flows, the reverse of the shear-induced lift occurs at Re ≈50 due

to the change in the stress distribution on the sphere surface in the downstream side caused

by the asymmetry of the recirculation region. Although a similar change in the flowfield was

observed in the compressible regime, there is no reverse of the shear-induced lift for all M cases

investigated in the present study. In the compressible case, the change in the stress distribution

occurs in the dowsntream side and positive lift was generated in the downstream side despite

Re = 300, but the larger negative lift is generated in the upstream side of the sphere at higher-M

cases and it increases as M increases and becomes dominant in the shear-induced lift. The

compressibility effect described by the Prandtl–Glauert transformation and the detached shock

wave contribute to increase the negative lift on the sphere surface in the upstream side. These

effects due to the influence of the compressibility increase the pressure coefficient in the upstream

side of the sphere and the effects increases as M increases. Since the difference in the local

M in the high-speed and low-speed sides, the lift force is generated in the direction from the

high-speed side to the low-speed side. The negative lift becomes the maximum value at around

the sonic speed because effect of the local M difference in the high-speed and low-speed sides

is maximized at the transonic regime, and the M effect saturates at the supersonic conditions.

The difference in the local M causes the change in the M evolution of the drag coefficient.

The drag coefficient rapidly increases around the transonic regime in the uniform flow because

of the wave drag and compressibility effect described by the Prandtl–Glauert transformation.

However, the increment of the drag coefficient in the transonic regime is rounded in the linear

shear flow because of the difference in the local M at the high-speed and low-speed sides.

The reverse in the pitching moment coefficient in the Re evolution occurs at M = 0.3 because
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of the change in the area of the attached region. The negative pitching moment is generated

at higher-Re conditions. At the supersonic conditions, on the other hand, the pitching moment

is positive regardless of Re because the position of the separation point in the high-speed side

exists relatively downstream due to the stronger expansion wave. Also, the pitching moment at

the transonic flow is negative with regardless of Re, despite the position of the separation point

that exists relatively downstream side compared with the low-speed side. The negative pitching

moment in this region seems to be caused by the detached and attached shock waves formed

only on the high-speed side.
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List of Symbols

A = Data matrix

CD = Drag coefficient

∆CD = Difference from drag model

Dw = Wake diameter at the end of the recirculation region

Fx = Force in the streamwise direction

M = Mach number

Mp = Particle Mach number

Ms = Shock Mach number

Lr = Length of recirculation region

Ls = Shock standoff distance

P = Pressure

Re = Reynolds number

Rep = Particle Reynolds number

S = Singular value matrix

U = Matrix composed by left singular vectors

V = Matrix composed by right singular vectors

a = Sound speed

an = Data vectors

d = Diameter of sphere

f = Focal length

s = Singular value

t = Time

u = Left singular vector

up = Particle velocity

v = Right singular vector

x = Position in streamwise direction

µ = Focal length

θs = Separation point
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ρ = Focal length

Subscripts

atm = Atmospheric quantities
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6.1 Introduction

A sphere is one of the simplest three-dimensional body, but the flowfield and its properties of

a sphere, such as wake structures, change in a complex manner with changing flow conditions.

The flow over an isolated sphere has been studied experimentally (Taneda, 1956; Taneda, 1978;

Sakamoto and Haniu, 1990; Magarvey and Bishop, 1961) and numerically (Johnson and Patel,

1999; Rodriguez et al., 2011) because it is interesting from the fluid physics point of view. In

addition, knowledge of the flow over a sphere at low-Re has been utilized in multiphase flow

models which are employed in numerical simulations of particle-laden flows (e.g., Schlichting

and Gersten, 1960; Clift and Gauvin, 1971). For example, particle drag models based on

experimental data were proposed in previous studies. In addition, the vortex structure produced

by particles causes turbulent modulation and affects the particle distribution. Kajishima, 2004

showed that particle clusters are formed due to wake vortices produced by such particles in

a numerical simulation of the incompressible flow regime. Hence, the effects of the wake

vortices generated by particles might be important for accurate multiphase flow simulations.

The studies of the flow over a sphere have contributed to the understanding of fundamental

of flow dynamics and the modeling of complex problems. In chapter 3, we clarified the flow

properties at Re ≤ 1, 000, but the transitional Re from steady to unsteady flows at supersonic

conditions have only been found at M = 1.2. Studies on the compressible flow over a sphere

have been investigated by free-flight experiments and wind tunnel experiments as described in

chapter 3. Because of the difficulty of the experimental measurement due to the size of the test

model and low atmospheric density, the drag coefficient was mainly investigated at compressible

low-Re conditions and there is no visualization of the wake structure at Re ≤ O(104).

The sphere drag has also been investigated through interaction experiment between a planar-

shock wave and sphere. Tanno et al., 2003; Sun et al., 2005 studied the interaction process

of the planar-shock wave and sphere by the numerical simulations and the experiments using

a vertical shock tube. They measured the time history of the drag force acted on the wire-

suspended sphere in the vertical shock tube from the time-series data of the accelerometer.

Jourdan et al., 2007 conducted the shock-particle interaction experiment with a small sphere

suspended by thin wires taken from a spider web, and they estimated the sphere drag coefficient
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from the time-position data of the sphere. Wagner et al., 2012 reassessed the historical drag

coefficient. The particle drag coefficients were measured by tracking the trajectories of 1-mm

spheres in the shock-induced flow by the planar-shock at M = 1.68, 1.93, 2.04. However, studies

on compressible low-Re flows are still much fewer than those on incompressible low-Re flows.

The flow conditions of former studies by Jourdan et al., 2007 and Wagner et al., 2012 were at

around O(102) ≤ Re ≤ O(104) and Re = O(104), respectively. However, they focused on the

drag coefficient so that the flow dynamics have not been clarified at O(103) ≤ Re ≤ O(104) in

compressible flows, particularly supersonic flows.

It is important that the investigation of M and Re effects on the flow structure around a generic

body such as a sphere to understanding fluid mechanics under compressible low-Re conditions.

In this chapter, the flow over an isolated sphere is investigated at O(103) ≤ Re ≤ O(105) in the

subsonic to supersonic conditions. The experiments are carried out using a ballistic range and

shock tube, and flow visualizations are conducted by the schlieren technique at the low-pressure

conditions with small test models to archive the compressible low-Re conditions. Also, the

modal decomposition is applied to extract the characteristic mode of the wake structure. In the

free-flight experiments, the effects of M and Re on the flow structures, such as the recirculation

region, wake structure, and so on, are investigated. In the shock-particle interaction experiments,

the development of the flowfleld is observed, and the time-averaged drag coefficient is estimated.

6.2 Experimental Methods

6.2.1 Free-Flight Experiments

Optical System

The experimental setup for the free-flight experiments is shown in figure 6.1. The distance

between the exit of the blast tube and optical windows used for schlieren visualization was 5.0

m. The light source was a metal-halide lamp (LS-M210, Sumita) or xenon flash lamp, and its

light beam was narrowed to a point light source of 4.0 or 5.0 mm in diameter by an optical

diaphragm. The diameter of the point light source was larger than that typically used in order to

increase the image intensity. The light beam was parallelized by a concave mirror with a focal
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length of 3,000 mm, and the light beam was converged by the same concave mirror. The bottom

40% of the converged light beam was horizontally cut by a knife-edge placed at the focal point

and imaged by a convex lens with a focal length of 250, 500, or 600 mm. The pixels per diameter

of the sphere (ppd) in the original image was 8–28 depending on the combination of the focal

length of the imaging lens and the diameter of the sphere. Also, the test duration is depending

on the focal length f of the imaging lens and the free-flight M . For example, the field of view

in the streamwise direction for f = 600 mm was 75 mm, and thus the duration for imaging

was approximately 155 µs at M = 1.4 in that optical setup. A high-speed camera (HPV-X,

Shimadzu) was used to take time-series schlieren images. The frame rate was 100,000–500,000

fps and the exposure time was 300–500 ns. The high-speed camera and the light sources were

triggered by a signal from a pressure transducer (603B, Kistler) installed in front of the gas

chamber. However, because the pressure change produced by a detached shock wave was small

for a small sphere, a laser-cut measurement system installed at the exit of the blast tube was used

for the case of d ≤ 2.0 mm.

Blast tube

Sabot stopper

Light source

Concave mirror

(f = 3000)

Catch tank

High-speed camera

Convex lens (f = 250 or 600)

Knife edge

Optical diaphragm(Φ = 5.0 mm)

Gas chamberPressure sensor

Optical window

1
.7

 m
12 m

Mylar membranes

Concave mirror

(f = 3000)

Figure 6.1: Schematic diagram of the optical system for free-flight experiments.

The sabot was separated from the test model by the sabot stopper, which was placed 50 cm

downstream of the exit of the blast tube. Also, a gas chamber with optical windows was installed

in the test section and flow visualization under low-pressure conditions was conducted inside of

the gas chamber, so that the compressible low-Re condition could be achieved. The upstream
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and downstream apertures were sealed by Mylar membranes, which are broken during the flying

test model.

The driver gas of the single-stage light gas gun was Helium gas of normal temperature and

its pressure was up to 25 MPa. The dominant parameters on the launch velocity of the sabot are

the pressure of the driver gas and the total mass of the sabot and projectile. In the present study,

the mass of the projectile is sufficiently smaller than that of the sabot, thus, the pressure of the

driver gas was determined by only the target launch velocity.

Experimental Conditions

Bearing balls 1.5–10.0 mm in diameter was used as the projectile. The surface roughness of

the projectile was less than 0.04 µm. The sphere was launched with a cylindrical splitting sabot

made from ultrahigh-molecular-weight polyethylene, as shown in figure 6.2. The test conditions

are shown in table 6.1. In the present study, M and Re were changed by changing the free-flight

speed, the pressure in the visualization section, and the diameter of the sphere. The conditions

investigated in this experiment were 3.9 × 103 ≤ Re ≤ 3.8 × 105 and 0.9 ≤ M ≤ 1.6. The

temperature in the visualization section was assumed to be the same as that of the test section

due to the structure of the experimental equipment. However, the volume of the gas chamber

was sufficiently small and there was more than 30 minutes of the temperature stabilization time

due to the experimental procedure so that the temperature in the test section and the visualization

section seems to be equivalent.

Sabot

Projectile

Figure 6.2: Projectile and sabot.
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Mach number
M = u/a

Diameter of sphere
d mm

Pressure at
visualization section
P/Patm

Reynolds number
Re = ρud/µ

0.9 9.53 1.0 186,700
0.97 9.53 1.0 201,700
1.04 10.0 1.0 222,300
1.13 1.5 0.1 3,900
1.14 9.53 0.2 52,300
1.15 1.5 0.2 7,400
1.18 2.0 0.2 10,100
1.18 2.0 0.34 18,500
1.2 2.0 0.1 5,600
1.21 2.0 1.0 56,900
1.21 9.53 1.0 251,200
1.21 2.0 0.34 18,100
1.23 10.0 1.0 325,700
1.26 2.0 0.1 5,700
1.32 2.0 0.2 12,300
1.39 3.0 1.0 102,600
1.39 9.53 0.1 35,500
1.4 3.0 0.34 31,500
1.4 3.0 1.0 89,300
1.41 1.5 0.1 4,400
1.41 9.53 0.2 58,300
1.41 9.53 0.34 106,100
1.41 9.53 0.2 73,100
1.42 1.5 0.2 9,500
1.42 3.0 0.34 28,700
1.44 2.0 1.0 68,900
1.45 2.0 0.34 24,700
1.45 3.0 0.34 30,000
1.45 9.53 0.34 100,600
1.45 9.53 0.34 103,900
1.45 9.53 1.0 311,000
1.48 2.0 0.1 8,100
1.48 2.0 0.2 15,400
1.49 10.0 0.34 101,400
1.51 9.53 0.1 31,500
1.54 6.5 0.34 65,300
1.55 6.5 0.34 72,100
1.55 10.0 1.0 360,600
1.58 10.0 1.0 381,500

Table 6.1: Flow conditions for free-flight experiments.
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Image Processing

Time-averaging

Background image subtraction

Moving frame

SVD

Figure 6.3: Image processing procedure.

The size of the sphere and the atmospheric pressure were reduced to decrease Re. In such

situations, the sensitivity of schlieren visualization becomes low because the wake width and

the density fluctuations of the gas decrease. Therefore, the image processing procedure shown

in figure 6.3 was applied to investigate the flow structure, particularly the wake vortices. The

test model crosses the visualization section during a free-flight measurement test so that the

test-model fixed-visualization images were acquired using a moving frame based on image

correlations. The image around a sphere excluding the bow shock and wake, which were

cropped from instantaneous visualization images, was used as the template image. In addition,

the background image subtraction was conducted to remove scratches on the optical window from

the visualization images. The background image was the averaged image in the visualization
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section before the projectile arrived. The mage resolution enhancement was carried out by the

bicubic method (Keys, 1981).

Time-averaging and singular-value decomposition (SVD) (Golub and Loan, 1983) were

applied to investigate the effect of M and Re on the mode of the wake structure, respectively.

In the time-averaged image, the effect of the M and Re on the shock standoff distance Ls,

the position of the separation point θs, the length of the recirculation region Lr, and the wake

diameter at the end of the recirculation region Dw were investigated as shown in figure 6.4. Here,

the position of the separation point and the length of the recirculation region are expressed as the

angle from the upstream stagnation point and the distance between the downstream stagnation

point and the end of the recirculation region, respectively. The position where the separated

shear layer and the expansion wave are generated on the surface of the sphere is almost the same

for high-Re conditions. Therefore, in the present study, the position of the separation point

was determined by the position of the expansion waves in the time-averaged schlieren image.

Also, the end of the recirculation region was determined as the position with a minimum wake

diameter. All the length scales were normalized based on the diameter of the sphere.

In the SVD analysis, data matrix A is decomposed to left singular vectors U , the singular

value matrix S, and right singular vectors V . In turn, these denote the time variation of each

mode as follows:

A = USVT (6.1)

where for n mages,

A =
[
a1 · · · an

]
,U =

[
u1 · · · un

]
, S =



s1 0 · · · 0

0 . . . 0
...

... 0 . . . 0

0 · · · 0 sn


,V =

[
v1 · · · vn

]
(6.2)

where u and v are the left and right singular vectors for each mode, which is the eigenvectors

of AAT and ATA, respectively, and s represents the singular values, which are the absolute

values of the eigenvalues of matrix A. These values represent the square root of the energy of
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each mode. In the present study, the number of frames acquired for obtaining the time-averaged

field and SVD mode was more than 15 frames, which includes more than two periods of the

low-frequency wake oscillation. Note that the number of frames is depending on the framerate,

angle of view (focal length of imaging lens), and velocity and diameter of the sphere. The effect

of data length in the time direction on the extracted SVD modes is shown in Appendix B.2.

Wake

Recirculation region

Bow shock Expansion wave Recompression wave

Lr
�s

Ls
Dw

Figure 6.4: Schematic diagrams of flow structures.

6.2.2 Shock-Particle Interaction Experiments

Optical System

Figure 6.5 shows the optical system for the schlieren visualization of the shock-particle interaction

experiments. The point light source was generated by a xenon flash lamp or metal-halide lamp

(LS-M210, Sumita) with an optical diaphragm with a diameter of ϕ = 4 mm. The light beam

was collimated by a concave mirror with a focal length of f = 3, 000 mm and converged by

the same concave mirror. The bottom 40% of the light beam was horizontally cut by a knife-

edge placed at the focal point of the concave mirror. A imaging lens was a convex lens with

a focal length of f = 1, 000 or 1,500. A high-speed camera (HPV-X, Shimadzu) was used

for visualization experiments, and a high-speed camera (SA-X2, Photron) was used for drag

estimation experiments. Table 6.2 shows the camera settings. The frame rate was set to be

sufficiently high to capture the instantaneous flow structures, particularly wake structure. In the

case of the drag estimation experiment, on the other hand, longer recording times with wide

view angle images are required so that the different camera was used for each experiment.
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Optical window

Light sourceConcave mirror

Concave mirror
High-speed camera

Convex lens

Flat mirror

Optical diaphragm

Flat mirror

Knife edge

Driver

chamber
Dump tank Coil

Pressure sensor

Figure 6.5: Schematic diagram of the optical system for shock-particle interaction
experiments.

Flow visualization Drag estimation

Visualization method Schlieren method Shadow graph

Light source Xenon flash lamp Metal-halide lamp

Focal length of imaging lens f [mm] 1,000 1,500

Camera HPV-X SA-X2

Exposure time [µs] 0.4 50

frame rate [fps] 100K–1M 12K–20K

Number of pixels 400 × 250
1024 × 888

1024 × 512

Spatial resolution 100 µm/pixel 34.5 µm/pixel

Table 6.2: Settings for optical system of the shock-sphere interaction experiments.

Sphere Drop-Off System

Figure 6.6 shows the sphere drop-off system immersed in the upper wall of the shock tube. The

sphere drop-off system was consists of a drop-off port, coil, and electric circuit for the coil. The

sphere was held on the drop-off port by magnetic forces generated by the coil. Here, the sphere
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was placed in the small hollow on the drop-off port for the stability of its position. Also, the iron

core of the coil and sphere was separated to minimizing the effect of the residual magnetic field

and to retain airtightness. Figure 6.7 shows the flowchart of the execution sequence. The master

trigger was generated by the function generator. The two TTL signals which were for the coil

and for the solenoid valve of the shock tube were generated with a certain time difference. The

normally-opened and normally-closed relay circuits were included in the electric circuits of the

coil and normally-closed solenoid valve. The solenoid valve was for the operation of the shock

tube. The electric circuit of the coil and solenoid valve were closed and opened by the trigger

TTL signals generated by the function generator. In the present study, the electrical circuit for

the coil was cutoff first, and then the electrical circuit for the solenoid valve was connected with

a certain delay to adjust the interaction position of the shock and sphere. The imaging system

was consists of a high-speed camera and light source. The light source for the flow visualization

(xenon flash lamp) and a high-speed camera were triggered by the pressure rise caused by the

incident shock captured by a pressure transducer (Type 603B, Kistler), and the trigger signal

was generated by an scopecorder (DL750, Yokogawa). In addition, two pressure transducers

were mounted on the upper wall of the shock tube in the upstream of the test section with known

clearance, and thus the shock speed can be calculated.

Upper wall of 
shock tube

Sphere Extended iron core

CoilDrop-off port
(brass)

Free fall
Incident shock

Figure 6.6: Schematic diagrams of the drop-off system of a sphere.

175



Chapter 6. Experimental Investigations at Higher-Reynolds-Number Conditions

Camera

Function generator

Pressure transducer

Solenoid valve

Oscilloscope

Xenon flash lamp

Delay generator

Coil

Manual Trigger

Shock wave

TTL signal

TTL signal

Figure 6.7: Flowchart of experimental sequence of shock-sphere interaction ex-
periments.

Experimental Conditions

Experimental conditions for the flow visualization and the drag estimation are shown in tables

6.3 and 6.4, respectively. The flow visualization experiments were conducted at the subsonic,

transonic, and supersonic conditions behind the incident shock. The drag estimation experiments

were conducted at the subsonic condition behind the incident shock. The driver gas of the shock

tube was Nitrogen and Helium for the subsonic and the transonic and supersonic conditions,

respectively.
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Shock Mach number Ms 1.42, 2.02, 2.64

Particle Mach number behind incident shock Mp 0.53, 0.98, 1.24

Pressure behind incident shock P/Patm 0.72, 0.79, 0.43

Diameter of sphere d [mm] 1.0, 1.5

Particle Reynolds number behind incident shock Rep 4,000–14,000

Table 6.3: Experimental conditions for flow visualization of shock-sphere inter-
action experiments.

Shock Mach number Ms 1.42

Particle Mach number behind incident shock Mp 0.53

Pressure behind incident shock P/Patm 0.72

Diameter of sphere d mm 0.5, 0.7, 1.0, 1.5

Particle Reynolds number behind incident shock Rep 3,000–9,200

Table 6.4: Experimental conditions for drag estimation through shock-sphere
interaction experiments.

Test models are shown in figure 6.8. Spheres 0.5 ≤ d ≤ 1.5 in diameter made of high-carbon

chromium steel (SUJ2) and tungsten carbide were used as a test model. The surface roughness

was less than 0.04 µm.

0.3   0.5   0.7   1.0   1.5 mm

1-yen coin (Φ 20 mm)

Figure 6.8: Test model for shock-sphere interaction experiments.
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6.3 Results and Discussion of Free-Flight Experiments

6.3.1 Instantaneous Flowfield

The wake of a sphere in an incompressible flow (Sakamoto and Haniu, 1990; Johnson and Patel,

1999) is unsteady, with hairpin vortex shedding at around Re ≥ 280, and large-scale oscillation

in the wake appears at around Re ≥ 700. High-Re condition produce the wake oscillation and

hairpin vortices called the“ low mode”and“ high mode”, respectively (Makita, 2007). The

Strouhal number for the low mode is constant at approximately 0.2 and the frequency of the high

mode increases as Re increases.

In the present study, conditions with high-M and low-Re conditions were realized using a

small test model and a low-pressure visualization section. However, the sensitivity of schlieren

visualization decreases as the atmospheric density decreases. Also, the image resolution against

the flow structure decreases as the size of the test model decreases. Figure 6.9 shows the

influence of the gas density at the visualization section on the instantaneous schlieren images for

M ≈ 1.4. This figure demonstrates that the density at the visualization section has a large impact

on visualization. Note that the density effect includes not only a decrease in the sensitivity of

schlieren visualization but also a decrease of Re. In figure 6.9(a), the bow shock, the expansion

wave, the recompression wave, the recirculation region, and the wake structure are visualized.

Particularly, the hairpin (high-mode) structure in the wake can be observed in the low-mode

structure in the near field. Conversely, in figure 6.9(b), the high-mode structure cannot be

observed, but the low-mode structure can be. In figure 6.9(c), the low-mode structure can be

observed in the near field, but the wake structure is not noticeable in the schlieren image farther

from the sphere. In figure 6.9(d), the wake structure cannot be seen. Moreover, the edge of the

recirculation region, the bow shock, and the recompression wave also become unclear in this

low-density condition.

178



6.3. Results and Discussion of Free-Flight Experiments

(a)

(b)

(c)

(d)

Figure 6.9: Influence of gas density in the visualization section the on instan-
taneous schlieren images at M ≈ 1.4: (a) P/Patm = 1.0 (Re = 3.1 × 105), (b)
P/Patm = 0.34 (Re = 1.0 × 105), (c) P/Patm = 0.21 (Re = 7.3 = ×104), and (d)

P/Patm = 0.10 (Re = 3.6 × 104).

Figure 6.10 shows the influence of the image resolution in terms of ppd in instantaneous

schlieren images for M ≈ 1.45 and the pressure at the visualization section of P/Patm = 0.34.

In this figure, images were produced with an imaging lens focal length of f = 250 mm and

sphere diameters of d = 9.53, 6.5, and 3.0 mm. Note that figure 6.10 shows the case with the

lowest resolution in this study, that is, ppd = 8. It can be seen that the small test model makes

it difficult to visualize fine-scale structures due to reduced image resolution against the size of

flow structures. However, the main flow structure can be visualized even at a resolution as low

as ppd = 8, as shown in figure 6.10(c). Note that the effect of decreasing the size of the test

model includes not only a decrease in the image resolution but also a decrease in Re.
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(a)

(b)

(c)

Figure 6.10: Influence of pixels per diameter (ppd) on the instantaneous schlieren
images at M ≈ 1.45 and P/Patm = 0.34: (a) ppd = 25 (Re = 1.0 × 105), (b)

ppd = 17 (Re = 7.2 × 104), and (c) ppd = 8 (Re = 2.9 × 104).

6.3.2 Effect of Mach and Reynolds numbers on Instantaneous Flowfield

Mode decomposition using SVD analysis was applied to the time-series visualization images

to investigate the wake structure. The instantaneous flowfield and reconstructed images for

M = 0.9 and Re = 1.9 × 105 are shown in figure 6.11 as an example. Figure 6.11(a) is the

instantaneous image, figure 6.11(b) is the reconstructed image for the first SVD mode, and

figures 6.11(c)–(f) are the spatial mode for the second to fifth SVD modes. The first mode

is similar to the time-averaged field, and characteristic modes of the fluctuation component

are decomposed into higher SVD modes. In the present study, SVD analysis was applied to

the time-series schlieren images and with the knife edge placed in a horizontal orientation, so

that the low- and high-intensity regions are inverted at the horizontal centerline even though

the flowfield is symmetric. Therefore, symmetric (asymmetric) flow modes in the horizontal

direction are decomposed as asymmetric (symmetric) SVD modes. In figure 6.11, the oscillation
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of the separated shear layer and the recompression wave are extracted in the second mode. Also,

the large-scale helical mode and the symmetric mode are decomposed in the third and fourth

modes, respectively. The characteristic and lower modes were chosen for each case in figures

6.12 and 6.13.
(b)

(d)

(f)

(a)

(c)

(e)

Figure 6.11: Example of the result of mode decomposition using SVD. (a)
Instantaneous flowfield and (b)–(f) reconstructed images for M = 0.9, Re =
1.9 × 105. Reconstructed images for the first mode and spatial mode for modes

2–5 are shown in (b) and (c)–(f), respectively.

The instantaneous flow structures for M = 0.9, 1.21 and, 1.39 are shown on the left-hand side

of figure 6.12. For M = 0.9, weak shock waves are formed on the surface of the sphere. Also,

recompression waves are formed downstream of the sphere and these shock waves are almost

vertical. In addition, a change in the wake structure occurs near the recompression waves and a

large-scale oscillation can be seen in the wake. As M increases, a detached shock wave is formed

upstream of the sphere and the angle of the expansion and recompression waves decreases. In

addition, the oscillation of the wake structure decreases as M increases. The right-hand side of

figure 6.12 shows an image of the characteristic and energetic modes computed by SVD. The

oscillation of the wake structure and recompression wave can be seen in the right-hand side of

figure 6.12. For M = 0.9 and 1.39, the helical and alternating modes are extracted at the wake,

and the oscillation is related to that of the recompression wave. The helical mode is extracted
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also at M = 1.21, but it seems to have an intermediate structure between helical and alternating

modes and thus the helical modes ware not observed in higher-M conditions. These results show

that the mode of the wake structure is significantly changed by M , and different wake structures

can be identified by SVD. The change in the wake structure due to the M effect seems to be

caused by the expansion wave because the direction of the flow near the recirculation region is

forced by the flow directed by the effect of the expansion wave. In addition, the effect of the

expansion wave becomes strong as M increases so that the wake seems to be stabilized.

(c) M = 1.39

(a) M = 0.9

(b) M = 1.21

Figure 6.12: Influence of M on the instantaneous flowfield and the spatial mode:
(a) M = 0.9, Re = 1.9 × 105 (P/Patm = 1.0), (b) M = 1.21, Re = 5.7 × 104

(P/Patm = 1.0), and (c) M = 1.39, Re = 1.0 × 105 (P/Patm = 1.0).

182



6.3. Results and Discussion of Free-Flight Experiments

(e)

(a) Re = 1.0 × 105

(b) Re = 6.9 × 104

(c) Re = 2.5 × 104

(d) Re = 1.5 × 104

(e) Re = 8.1 × 103

Figure 6.13: Influence of Re on instantaneous flowfield and spatial mode for
1.39 ≤ M ≤ 1.48: (a) Re = 1.0 × 105, M = 1.39 (P/Patm = 1.0), (b) Re = 6.9 ×
104, M = 1.44 (P/Patm = 1.0), (c) Re = 2.5 × 104, M = 1.45 (P/Patm = 0.34),
(d) Re = 1.5 × 104, M = 1.48 (P/Patm = 0.21), and (e) Re = 8.1 × 103, M = 1.48

(P/Patm = 0.1).

The left-hand side of figure 6.13 shows instantaneous flowfields for the different Re at

M ≈ 1.4. The low-frequency oscillation of the wake and the hairpin structures in the large-scale

structures can be seen in the case of Re = 1.0 × 105 and Re = 2.5 × 104. However, the low-

frequency oscillation of the wake structure cannot clearly be seen in the cases of Re = 6.9× 104

and Re = 1.5 × 104. In addition, the wake structure was not noticeable due to the low-density

condition for Re = 8.1 × 103. The spatial modes are shown on the right-hand side of figure

6.13, which permits us to investigate Re effect on the wake structure. By using the SVD,

we can visualize the characteristic structures and the effect of Re on the mode of the wake

structure. A similar structure, which is the alternating mode, can be seen in all cases except
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Re = 1.5 × 104, but the scale of the structure is different. The difference in the scale of the

wake for the same M seems to be caused by the difference in the frequency of the oscillation of

the low-mode structure. The scale in the structure on the extracted mode for Re = 1.0 × 105 is

large compared to other cases because the low-frequency oscillation of the wake is dominant.

However, finer-scale structures can be seen in the lower modes at Re = 6.9× 104, because there

is no low-frequency wake oscillation. Also, the scale of the wake structure for Re = 2.5 × 104

is smaller than that for Re = 1.0 × 105 but larger than that for Re = 6.9 × 104. However, the

characteristic mode, such as that the extracted from other cases, does not appear up to 5th mode

in the case of Re = 1.5× 104. This means that the noticeable periodic mode does not exist when

Re = 1.5× 104. In the case of Re = 8.1× 103, the reconstructed image is noisy because density

fluctuation is smaller than other cases due to lower-density conditions and small diameter of the

sphere. However, the alternating mode can be found even though such unclear schlieren images.

We investigated the effect of M and Re on the wake vortices at 0.3 ≤ M ≤ 2.0 and

50 ≤ Re ≤ 1000 in chapter 3. These studies showed that the wake for at the supersonic and

transonic conditions for Re =≤ 300 is stable compared with that of the incompressible flow.

For example, the wake structure under incompressible flows for Re = 1, 000 is a helical wake.

Under supersonic flow, in contrast, the wake structures for M = 1.2 and M = 2.0 at Re = 1, 000

were a hairpin wake and a steady axisymmetric wake, respectively. These wake structures

are similar to those of 270 ≤ Re ≤ 420 and 20 ≤ Re ≤ 210 under incompressible flows,

respectively (Sakamoto and Haniu, 1990; Johnson and Patel, 1999). This fact suggests that the

wake structure for Re ≤ O(104) in supersonic flows is similar to that of incompressible flows

for lower Re. In the present study, the gas density in the visualization section was reduced to

decrease Re so that the smaller-scale structure disappears from the schlieren image as the gas

density (Re) decreases shown in figure 6.9. It is due to the decrease in the sensitivity of the

schlieren method. However, the SVD results indicated that the smaller scale becomes dominant

instead of the low-frequency wake oscillation as Re (gas density) decreases. Therefore, we

considered that the change in the wake structure is due to the effect of Re.

184



6.3. Results and Discussion of Free-Flight Experiments

6.3.3 Time-Averaged Flowfield

The main structure of the flowfield and its characteristic parameters were investigated with the

time-averaged field. Numerical results discussed in chapter 3 indicated that the shock standoff

distance, the separation point, and the length of the recirculation region are influenced not

only by M but also by Re for Re ≤ 1, 000. In the present study, those three parameters were

extracted from the time-averaged images and compared to the previous result in the different Re

conditions.

The time-averaged field obtained in this study for M ≈ 1.45 is shown in figure 6.14. Here,

the image resolution with respect to the diameter of the sphere is different in each image: figures

6.14(a) ppd = 25, figure 6.14(b) ppd = 17, and figure 6.14(c) ppd = 8. In figure 6.14, the main

flow structures are clearly visualized even in low-ppd cases. The effect of Re can be seen in the

length of the recirculation region and the position of the recompression wave. The positions

of the end of the recirculation region and the recompression wave moved downstream as Re

decreases.

(a) (b) (c)

Figure 6.14: Time-averaged near-field structures for M ≈ 1.45atP/Patm = 0.34:
(a) Re = 1.0 × 105 (ppd = 25), (b) Re = 7.2 × 104 (ppd = 17), and (c) Re =

2.9 × 104 (ppd = 8).

Figure 6.15 shows the relationship between M and the shock standoff distance. The present

results are compared to the empirical formula by Ambrosio and Wortman, 1962, which is based

on experimental results using a cone-sphere model. Figure 6.15 indicates that the trend of M

dependence obtained by the present study shows good agreement with the empirical formula.

For Re ≤ 103, the shock standoff distance changes not only with M but also with Re due to the

influence of the change in the boundary layer (displacement) thickness as discussed in chapter 3.
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In contrast, figure 6.15 illustrates that the Re has no clear influence at 103 ≤ Re ≤ 105 because

the boundary layer is sufficiently thin under the conditions used in this study.

Ambrosio & Wortmann (1962)
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Figure 6.15: Effect of M on the shock standoff distance.

Figures 6.16 and 6.17 show the Re dependence on the position of the separation point and

the length of the recirculation region. The results were compared with previous numerical

studies of incompressible (Johnson and Patel, 1999; Rodriguez et al., 2011) and compressible

flows (chapter 3). Figure 6.16 shows that the position of the separation point strongly depends

on Re at Re ≤ O(103). However, the Re dependence becomes weak at Re ≥ O(103). The

influence of M is also weak under supersonic conditions, but the difference between transonic

and supersonic conditions appears because the flow separation is induced by the expansion wave,

and its position is different under transonic and supersonic conditions.

Figure 6.17 illustrates that the length of the recirculation region increases as Re increases at

Re ≤ O(103), but decreases as Re increases at Re ≥ O(103). Hence, an inflection point exists at

around Re = O(103), which seems to change the flow regime. Also, the inflection point and the

maximum length of the recirculation region strongly dependent on M as discussed in chapter

3. It is considered that the M dependence is due to a change in the stability of the mixing layer

between the recirculation region and the outer flow of the recirculation region, together with a

change in the properties of the expansion wave.
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Figure 6.16: Effect of Re on the position of separation point.
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Figure 6.17: Effect of Re on the length of the recirculation region.
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Figure 6.18: Effect of Re on the wake diameter at the end of the recirculation
region.

Taneda, 1978 found that the wake of the sphere in incompressible flows begins wave motion

for O(104) ≤ Re ≤ 3.8× 105. In contrast, the wake structure in compressible flows is influenced

not only by Re but also by M . Particularly, the oscillation of the wake structure is suppressed

under supersonic conditions. This study indicated that the diameter of the wake at the end

of the recirculation region is related to the amplitude of the wake oscillation. The effect of

M on the wake diameter at the end of the recirculation region Dw in the time-averaged field

is shown in figure 6.18. The figure indicates that the diameter of the wake at the end of the

recirculation region becomes small as M increases. The shape of the recirculation region under

supersonic and lower-speed conditions are different because the behavior of the separated shear

layer released from the sphere surface is different due to the presence or absence of the expansion

wave formed near the separation point. For high-M conditions, the flow in the direction along

the sphere surface is introduced by the expansion wave and it creates a recirculation region

with a conical shape. Hence, the wake diameter at the end of the recirculation region decreases

and the wake oscillation is reduced as M increases. Also, figure 6.19 illustrates that the wake

diameter at the end of the recirculation region decreases as Re decreases. The same trend can be

seen for the lower-Re conditions of Re ≤ 300 in the supersonic flow as discussed in chapter 3.

The shape of the recirculation region at Re ≤ 300 is conical for steady flows in 0.3 ≤ M ≤ 2.0.
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Conversely, a barrel-shaped recirculation region was observed, particularly in the case of flows

with large-scale wake oscillation, such as the helical wake structure shown in figure 6.12. Hence,

it is considered that the wake diameter at the end of the recirculation region reflects the stability

of the wake, regardless of Re and M .
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Figure 6.19: Effect of Re on the wake diameter at the end of the recirculation
region.

6.4 Results and Discussion of Shock-Particle Interaction Ex-

periments

6.4.1 Instantaneous Flowfield

Figures 6.20–6.25 show the time series schlieren images of the interaction process of the planar-

shock wave and a free-falling sphere at Ms = 1.42, 2.02, and 2.64. Figures 6.20 and 6.21 show

the time-series schlieren images at Ms = 1.42. The relative Mach number between the sphere

and the flow behind the planar-shock wave is a transonic condition (Mp ≈ 0.53). Until t = 10

µs, regular and Mach reflections occur on the surface of the sphere (transition angle is around 40

deg (Sun et al., 2005)). In addition, the curved Mach stem forms a ring shape and it is converged

at the rear stagnation point of the sphere. The converged Mach stem also forms a ring shape

wave (t = 10 µs), and those two ring shape waves propagate to the far field. Also, vortices are

formed at downstream of the sphere at t = 35 µs and it grows up and released to downstream of

the sphere.
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t = -5 �s

t = 5 �s
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t = 85 �s

t = 105 �s

Incident shock

Refrection waves

Leg of a hairpin  vortex

Figure 6.20: Time-series schlieren images of the shock-sphere interaction process
at Ms = 1.42 (d = 1.5 mm).

t = 5 �s

t = 10 �s

t = 85 �s

t = 105 �s

Leg  of a hairpin vortex

Refrection waves

Figure 6.21: Close-up view of the time-series schlieren images of the shock-
sphere interaction process at Ms = 1.42 (d = 1.5 mm).

Figures 6.22 and 6.23 shows the time-series schlieren images at Ms = 2.02 (Mp ≈ 0.98). In

this condition, ring shape waves are also formed, but those are fixed at upstream and downstream

of the sphere as the detached and recompression waves, respectively. The wake vortices are

generated and have low-frequency oscillations. As discussed befor sections, the generation

point of the low-frequency oscillations are around the recompression wave. At t = 244, the

streamwise pattern appears due to the boundary-layer formed on the optical window.
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t = 76 �s
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Refrection waves

Recompression wave

Wake vortices

Figure 6.22: Time-series schlieren images of the shock-sphere interaction process
at Ms = 2.02 (d = 1.0 mm).
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Figure 6.23: Close-up view of the time-series schlieren images of the shock-
sphere interaction processat Ms = 2.02 (d = 1.0 mm).

Figures 6.24 and 6.25 shows the time-series schlieren images at Ms = 2.64 (Mp ≈ 1.24). In

this condition, the particle Mach number is the supersonic condition so that the bow shock is

formed. Also, the wake vortices cannot be observed due to due to the lower-pressure conditions.

In the case of the free-flight experiment, there is no stream, and thus only the disturbance due
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to the sphere exists in the test section. In the case of the shock-sphere interaction experiment,

on the other hand, there is another disturbance due to the wall turbulence on the optical window

even though the smaller model can be used. Therefore, the sensitivity to capture the flow

structure though the shock-particle interaction experiment is lower than that through the free-

flight experiments.

t = -2 �s

t = 2 �s

t = 18 �s

t = 78 �s

Incident shock

Bow shock

Recompression wave

Figure 6.24: Time-series schlieren images of the shock-sphere interaction process
at Ms = 2.64 (d = 1.0 mm).

t = 2 �s

t = 18 �s

t = 78 �s

Recompression wave

Bow shock

Figure 6.25: Close-up view of the time-series schlieren images of the shock-
sphere interaction process at Ms = 2.64 (d = 1.0 mm).
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Figure 6.26: Time-series schlieren images of the shock-sphere cluster interaction
process at Ms = 2.02 (d = 1.0 mm).

Figure 6.26 shows the interaction process of the planar-shock and clustered spheres at

Ms = 2.02 (Mp ≈ 0.98). At t = 5 µs, the sphere cluster interacts with a planar-shock wave,

and the complex structure of the reflected waves can be seen. At t = 25–175 µs, the wake

vortices generated from the sphere cluster and the recompression wave at the downstream of the

sphere cluster are developed. At t = 375µs, the breakup of the sphere cluster seems to begin.

The upper side and lower side spheres go toward the upper and lower sides, respectively. This

movement implies that the existence of the aerodynamic interaction between the spheres. It can

be considered that the strength of the interaction force in the compressible flow is larger than that

at the incompressible flow because of the shock wave issues. Therefore, it appears to be valuable

that the investigation of the aerodynamic interaction between the particle on the particle cluster.
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6.4.2 Estimation of Drag Force

The time history of the drag force acted on the sphere was estimated from the time-position

data extracted from the time-series schlieren images. The Mach number of the incident shock

was set to be Ms = 1.42, and the diameter of the sphere was varied in the ranging 0.5–1.5 mm.

Therefore, Rep and Stokes number were varied at the constant Mp of 0.53. At the steady state,

the drag coefficient of the sphere is the function of Re and M , however, there is the influence of

the unsteady forces such as added mass and Basset forces so that the drag coefficient in the non-

steady state is different from the steady state (Jourdan et al., 2007; Wagner et al., 2012; Igra and

Takayama, 1993; Suzuki et al., 2005; Parmar, Haselbacher, and Balachandar, 2010). Figures

6.27–6.29 show the time history of the position and velocity of the sphere in the streamwise

direction and the streamwise forces acted on the sphere. The velocity was calculated as first

derivative of the time-position data. In these figures, t = 0 ms and x = 0 mm indicate the

incident time and the position at t = 0 ms. Figures 6.27 and 6.28 illustrate that the position and

velocity of the sphere in the horizontal direction changes quadratically and linearly with respect

to the time so that the movement of the sphere in the streamwise direction is the isoacceleration

motion. Here, x–t diagram at t > 4 ms is non-linear because the duration time of the shock-

induced flow based on the time-history of pressure was 4 ms for the present experiments. Figure

6.29 shows the time history of the drag force acting on the sphere computed by the time history

of the acceleration of the sphere and the equation of motion. Here, the acceleration of the sphere

was computed as the second derivative of the time-position data. There are the large variation

in the time history of the drag force particularly for the larger spheres, because the amount of

movement of the larger sphere is quite smaller than that of the smaller spheres due to difference

in the mass. However, the time history of the drag illustrates that the constant drag force was

acting except earlier time and at t > 4 ms. The previous studies reported that the quite large drag

is generated at the earlier time after the shock incidence. However, the present experimental

system does not provide the sensitivity and time resolution to capture the instantaneous arising

of the drag sphere. Therefore, the time history of the drag force is not fully time-resolved data.
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Figure 6.27: Time histories of the horizontal position of the sphere.
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Figure 6.28: Time histories of the streamwise velocity of the sphere.
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Figure 6.29: Time histories of the streamwise aerodynamic force.
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Figure 6.30: Comparison of the drag coefficients.
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Figure 6.31: Difference in the measured drag coefficients and predicted drag
coefficient by the drag model of Loth, 2008.

Figure 6.30 shows the relationship between Re and the drag coefficient and for the previous

and present shock-particle interaction experiments. The line in figure 6.30 indicates the drag

coefficient predicted by the drag model for steady state proposed by Loth, 2008. Also, figure

6.31 shows the difference from the Loth model. The drag force for this figure was computed from

the average acceleration estimated by the time-position data between 1.0–3.0 ms with quadratic

function fit. Also, the averaged-relative velocity between the shock induced flow and the sphere

at 1.0–3.0 ms and the gas density behind the incident shock was used to calculate the dynamic

pressure. The drag coefficient acquired by the present study is larger than the value predicted

by the drag model as well as the previous experimental study. Also, the difference between the
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drag model and experimental data becomes large as Re increases. It seems that Re was changed

by changing the diameter of the sphere so that the mass of the sphere was not constant for the

different Re. This difference leads the difference in the stokes number so that influence of the

unsteadiness should be investigated more carefully.

6.5 Conclusions

In chapter 6, the flow over a sphere at O(103) ≤ Re ≤ O(105) at speeds ranging from transonic

to supersonic and the flow over a sphere at O(103) ≤ Re ≤ O(104) at speeds ranging from

subsonic to supersonic were investigated by free-flight and shock-sphere interaction experiments

with schlieren visualization.

The flow condition for the free-flight experiment was 0.9 ≤ M ≤ 1.6 and 3.9 × 103 ≤ Re ≤

3.8× 105. Visualization of the instantaneous flowfield showed that M and Re had a greater effect

on the wake structure at O(103) ≤ Re ≤ O(105). Also, SVD was applied to the time-series

schlieren images in order to extract the mode of the wake structure from the noisy and unclear

visualization images. The use of SVD revealed the differences in the wake structure between the

transonic and supersonic conditions and allowed observation of the effect of Re. Under transonic

conditions, the amplitude of the wake structure is larger than that under supersonic conditions.

In addition, the mode of wake structure changes from the helical mode to the alternating mode as

M increases. The visualization image and SVD mode for M ≈ 1.4 showed that large-scale wake

oscillations can be observed for Re = 1.0 × 105, but the oscillation amplitude and size of the

wake structure decreases with decreasing Re. This result suggested a change in the flow regime

and the dominant frequency of the wake oscillations. In the present study, the gas density in the

visualization section was reduced to decrease Re so that the smaller-scale structure disappears

as the gas density (Re) decreases shown in figure 6.9 due to the decrease in the sensitivity of the

schlieren method. However, the SVD results indicate that the smaller scale becomes dominant

instead of the larger scale as Re (gas density) decreases. Therefore, it is considered that the

change in the wake structure is the effect of Re.

The time-averaged field showed that the length of the recirculation region decreases with

decreasing Re. This trend is opposite to that at Re < O(103). In contrast, there is no the
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Re dependence on the position of the separation point. Moreover, it is clarified that the wake

diameter at the end of the recirculation region in the time-averaged field is influenced by Re and

M . Particularly, the effect of M is strong because the recirculation region forcibly closed due

to the expansion wave. Thus, this parameter seems to be important for the flow pattern of the

wake.

In the shock-sphere interaction experiment, the flow visualization and drag estimation were

conducted. The experimental system for the shock-sphere interaction experiment was established

to investigate the flow properties of the sphere at Re = O(103). The flow condition of the flow

visualization was 0.45 ≤ M ≤ 1.28 and 4.0 × 103 ≤ Re ≤ 1.4 × 104, and the flow condition of

the drag estimation was M = 0.45 and 3.0 × 103 ≤ Re ≤ 9.2 × 103. This experimental system

allows us to conduct the schlieren visualization of the isolated and clustered spheres and the

drag measurements of the isolated sphere at Re = O(103). At subsonic conditions, the schlieren

visualization captured the propagation of the reflected waves and formation of the hairpin vortex

during the shock-sphere interaction process. However, the wake structure after the shock wave

passed was not captured except the initial stage of the vortex formation behind the sphere due

to the small model and low-dynamic pressure so that improvement of the sensitivity of the

flow visualization is required to capture the wake structure at further low-Re conditions. At

the transonic condition, on the other hand, the recompression wave and wake structures were

captured due to larger-dynamic pressure. However, the pattern caused by the wall turbulence

formed on the optical glasses becomes strong after a certain time. Because of that influence,

the observation of the wake structure becomes harder. Therefore, the separation of the wake

structure and the wall turbulence by the image processing is required to get the image of the

instantaneous wake structure in better quality. At the supersonic conditions, the wake structures

did not captur even though higher-M , because the pressure behind the shock wave was low

to decrease Re. The time history and the time-averaged drag forces acting on the sphere was

estimated from the time-series shadowgraph images. The average drag coefficient at the state in

the fully developed flow was compared to the result of the previous shock-particle interaction

experiment and the drag model for the steady-state. The present result showed the higher drag

coefficients compared with the predicted value of the previous model as well as the previous

shock-particle interaction experiment.
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In the present study, the characteristics of the compressible low-Re number flow over an

isolated sphere were investigated toward the modeling of the compressible multiphase flows.

The investigations were conducted by DNS of the Navier–Stokes equations, the free-flight

experiment, and the shock-sphere interaction experiment. The DNS was conducted on the

body-fitted grid with high-order schemes of sufficient accuracy. The free-flight and shock-

sphere interaction experiments were carried out by using a ballistic range and a shock tube,

respectively.

In chapter 3, the uniform flow over a stationary isolated adiabatic sphere was investigated by

the direct numerical simulation of the three-dimensional compressible Navier–Stokes equations.

The flow condition was 50 ≤ Re ≤ 1, 000 and 0.3 ≤ M ≤ 2.0. The wake of the sphere

is significantly stabilized as M increases, particularly at M ≥ 0.95. Since the stabilization

effect at higher-M conditions, the flow regime at high-M conditions is similar to that at the

lower-Re conditions. However, the turbulent kinetic energy at the higher-M is higher than

that at lower-M of similar flow regimes. Therefore, it is considered that the particle M affect

the turbulent modulation due to the wake vortices generated by the particles in the flow. The

length of the recirculation region rapidly increases around the critical M which unsteady flows

become steady flows because of the compressibility effects. The drag coefficient increases as M

increases mainly in the transonic condition and the increment is the almost pressure component.

In addition, the increment of the drag coefficient in the continuum regime is approximately the

function of M and is regardless of Re despite the low-Re condition. The relationship between the

flow geometry and drag coefficient is similar in the incompressible and compressible flows, the

effect of M and Re on such properties can approximately be characterized by the position of the

separation. The drag coefficient provided by the experiment and predicted by DNS shows great

agreement with the predicted value by the previous drag model at subsonic conditions. However,

the difference in the drag model and the results of the present DNS and experimental studies

becomes large at the transonic conditions, particularly low-Re conditions, because the previous

drag model was constructed mainly based on the incompressible experimental data in a wide

range of Re, the compressible experimental data in high-Re conditions, empirical collections,

and theoretical expressions and experimental data in the rarefied regime. Consequently, it

seems that the accuracy of the previous drag model becomes worsen at the compressible low-Re
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conditions.

In chapter 4, the uniform flow over a stationary isolated isothermal sphere was investigated

by DNS at 100 ≤ Re ≤ 300, 0.3 ≤ M ≤ 2.0, and 0.5 ≤ T R ≤ 2.0. The unsteady vortex

shedding from the sphere is promoted and suppressed in the case of the heated and cooled

spheres, respectively. In other words, the flowfield of the heated and cooled sphere is similar to

that at the lower- and higher-Re of the adiabatic spheres, respectively. It is due to the change

in the kinematic viscosity coefficient of the fluid in the vicinity of the sphere. A similar effect

can be seen in the flow geometry, such as the position of the separation point, the length of the

recirculation region, and the drag coefficient. However, the previous drag model cannot predict

the effect of the surface temperature on the drag coefficient, despite they contain the term of the

temperature ratio. It is due to that the terms for the temperature ratio in the previous compressible

drag model are originated in the formula in the rarefied regime so that those terms do not work in

the continuum regime. The effect of the surface temperature on the flow geometry and the drag

coefficient can be characterized by the position of the separation point because the kinematic

viscosity coefficient in the boundary layer has a significant effect on the flow separation. The

Nusselt number models proposed in the previous studies showed good agreement with the

present result when the temperature ratio is close to unity at subsonic conditions. However, the

difference in the predicted values of the previous model and the present DNS becomes large as

the temperature difference or M increases.

In chapter 5, the flow over a rotating isolated adiabatic sphere and the linear-shear flow over

a stationary adiabatic sphere were investigated by DNS.

The flow condition of the case of the rotating sphere was 100 ≤ Re ≤ 300, 0.3 ≤ M ≤ 2.0,

and 0 ≤ Ω∗ ≤ 1.0. The effects of M and Re on the wake structure are similar to the stationary

sphere; the pattern of the wake structure becomes similar to that at the low-Re conditions

as M increases. At high-Ω∗ conditions, however, the stabilization of the wake due to the

compressibility effect appears even though M = 0.3. The lift coefficient increases asΩ∗ increases

under subsonic conditions, and the effect ofΩ∗ is similar in also supersonic conditions, however,

the increment of the lift coefficient is reduced as M increases. Also, the increment of the lift

coefficient for low-speed cases saturates at around Ω∗ = 1.0, whereas the lift coefficient at the

supersonic condition continuously increases at Ω∗ ≥ 1.0. Reducing the lift coefficient is caused
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by the influence of the strong compression at the detached shock wave and around the upstream

side surface of the retreating side. Because of those effects, the pressure at the region where

the low-pressure region is generated in the shock-free flow becomes increases at the transonic

and supersonic flows. The increment of the drag coefficient also increases with increasing Ω∗

and its increment decreases with increasing M . The pitching moment in the opposite direction

to the rotation of the sphere at the same Ω∗ is increased as M increases because of the increase

in the attached region, the viscosity coefficient, and the velocity gradient on the surface behind

the attached shock waves. To be summarized, at the higher-M conditions, the influence of the

rotation on the wake, lift and drag coefficients is reduced, and the rotation is easy to stop. Hence,

it seems that the rotation effect is significantly reduced in supersonic conditions.

The flow condition of the case of the sphere in the linear-shear flow was 50 ≤ Re ≤ 300,

0.3 ≤ M ≤ 2.0, and α = 1.0. The flow structure at the low-subsonic condition appears to be

similar to that of the incompressible flow. However, the expansion wave and the detached shock

wave are formed only on the high-speed side at the high-subsonic and transonic conditions.

This is due to the difference in the local M of the mainstream because of the shear velocity.

This influence is the same in the supersonic condition, and it results in the formation of the

stronger shock waves on the low-speed side. The shape of the recirculation region at the

compressible condition is significantly influenced by the expansion wave. At the incompressible

and subsonic flows, the recirculation region is skewed into the high-speed side at Re > 50.

At the supersonic flow, conversely, the recirculation region is skewed into the low-speed side.

Under the incompressible condition, the reverse of the lift force at Re ≈ 50 occurs due to the

asymmetry of the recirculation region. In this case, the change in the stress distribution on the

downstream side caused by the change in the shape of the recirculation region is important.

However, there is no reverse of the lift force despite the drastic change in the shape of the

recirculation region at the supersonic conditions. In the compressible case, the change in the

lift coefficient at the compressible flows is related to the pressure distribution in the upstream

side of the sphere surface rather than that on the downstream side. The change in the pressure

distribution in the upstream side is due to the compressibility effect which is described by the

Prandtl–Glauert transformation and the detached shock wave. Because of those effects, the

pressure coefficient increases as M increases so that the pressure on the high-speed side is
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higher than that on the low-speed side. Thus, the lift force acting from the high-speed side to

the low-speed side and becomes large as M increases. However, the compressibility effect on

the pressure coefficient saturates in the supersonic regime, and the difference in the pressure

coefficient on the high-speed side and low-speed side becomes small as M of the mainstream

increases, and thus the negative lift decreases as M increases.

In chapter 6, the flow over an isolated sphere at Re ≤ O(103) was investigated through a

free-flight experiment and a shock-sphere interaction experiment.

The flow condition of the free-flight experiment was 3.7 × 103 ≤ Re ≤ 3.8 × 105 and

0.9 ≤ M ≤ 1.6. The small sphere (the minimum diameter of 1.5 mm) was launched into

the low-pressurized test section by a single-stage light gas gun driven by helium gas, and the

flowfield was visualized by the time-resolved schlieren measurement. The time-resolved and

the time-averaged images of the near field of the sphere were obtained and compared with

numerical results at 50 ≤ Re ≤ 1, 000. The singular value decomposition was applied to the

time-series schlieren image and it enabled us to extract the characteristic mode of the wake

structure despite the low-signal-to-noise ratio. The experimental results clarified the structure of

shock waves, recirculation region, and wake structures atO(103) ≤ Re ≤ O(105) under transonic

and supersonic flows. The amplitude of the wake oscillation is attenuated as M increases. In

addition, the width of the wake at the end of the recirculation region on the time-averaged field

is reduced by increasing M . There is less effect of Re on the separation point, but the length

of the recirculation region rapidly increases as Re decreases. The trend in the Re effect on the

length of the recirculation region is opposite to that at Re ≤ O(103). The change in trend in the

length of the recirculation region suggests the change in the pattern of the wake structure occurs

at around Re = O(103).

The flow conditions of the shock-sphere interaction experiment based on the quantities behind

the shock was 1.8 × 103 ≤ Re ≤ 1.4 × 104 and 0.4 ≤ M ≤ 1.3. The sphere dropoff system

synchronized with the shock tube operation was constructed and applied to the experiment.

The small sphere (the minimum diameter of 0.3 mm) was held on the upper wall of the shock

tube by the magnetic force and was released at the appropriate timing for the observation of

the interaction with the planar-shock wave. The flowfield acquired by the schlieren technique,

and the drag coefficient was estimated from the position-time data of the sphere. The present
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experiment achieved the visualization of the flow structure not only shock wave but also the

wake structures formed behind the sphere. Also, it was shown that the constructed setup can

conduct the visualization experiment of the clustered spheres-shock interaction, and its scattering

process was observed. The time history of the drag force acting on the sphere and the mean

drag coefficient were estimated from the time-position data of the sphere. The estimated drag

coefficient was higher than that of the estimated by the drag model in steady-state. It is a similar

trend with the previous experimental results.

From the above results, the fundamental characteristics of the flow over a sphere at the

compressible low-Re condition were clarified in the wide range of flow conditions. The obtained

knowledge will contribute to understanding the influence of the particles in the compressible

particle-laden flow and fluid mechanics of the compressible low-Re flows.
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A.1 Comparisons with Previous Incompressible Studies and

Drag Models

Tables A.1–A.5 is the summary of the comparison on the flow geometry and drag coefficients

reported by the incompressible study by Johnson and Patel, 1999 and the present study as

verification. The computational grid was the baseline grid which is the lowest accurate grid for

the present study.

Johnson and Patel, 1999 Present result (M = 0.3) Error [%]

Re = 50 139.5 140.57 0.77

Re = 100 127.0 130.29 2.59

Re = 150 121.1 123.43 1.92

Re = 200 117.4 120.00 2.21

Table A.1: Position of the separation points θs.

Johnson and Patel, 1999 Present result (M = 0.3) Error [%]

Re = 50 0.42 0.41 2.38

Re = 100 0.89 0.86 3.37

Re = 150 1.22 1.14 6.56

Re = 200 1.46 1.40 4.11

Table A.2: Lengths of the recirculation region Lr/d.

Johnson and Patel, 1999 Present result (M = 0.3) Error [%]

Re = 50 0.64 0.64 0.00

Re = 100 0.76 0.76 0.00

Re = 150 0.88 0.83 5.68

Re = 200 0.83 0.89 7.23

Table A.3: Center of the recirculation regions in x direction xc/d.
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Johnson and Patel, 1999 Present result (M = 0.3) Error [%]

Re = 50 0.21 0.22 4.25

Re = 100 0.29 0.30 1.83

Re = 150 0.33 0.33 0.00

Re = 200 0.36 0.36 0.00

Table A.4: Center of the recirculation regions in y direction yc/d.

Johnson and Patel, 1999 Present result (M = 0.3) Error [%]

Re = 50 1.58 1.54 2.53

Re = 100 1.09 1.07 1.83

Re = 150 0.90 0.88 2.22

Re = 200 0.78 0.76 2.56

Table A.5: Verification of drag coefficient CD .

The comparisons of the flow geometry and the drag coefficients with incompressible stud-

ies (Taneda, 1956; Pruppacher, Le Clair, and Hamielec, 1970; Johnson and Patel, 1999;

Tomboulides, Orszag, and Karniadakis, 1993; Magnaudet, Rivero, and Fabre, 1995; Roos

and Willmarth, 1971) shown in figure A.1, A.2, and A.3.
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Figure A.1: Comparison of the position of the separation point reported by
previous incompressible studies and the present study.
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Figure A.2: Comparison of the length of the recirculation region reported by
previous incompressible studies and the present study.
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Figure A.3: Comparison of the drag coefficient reported by previous incompress-
ible studies and the present study.
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Figure A.4: Comparison of the drag coefficient reported by previous incompress-
ible studies, predicted by drag models, and the present study.

The comparison of the drag coefficients with incompressible experimental data (Roos and

Willmarth, 1971; Johnson and Patel, 1999), incompressible drag models (Schiller and Naumann,
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1933; Putnam, 1961; Clift and Gauvin, 1971), and compressible drag models (Carlson and

Hoglund, 1964; Crowe, 1967; Henderson, 1976; Hermsen, 1979) are shown in figure A.4.

A.2 Grid Convergence Studies

A.2.1 Adiabatic Case

Table A.6 illustrates the grid size dependence on the drag coefficient. The result by the baseline

grid used in chapter 3 and its finer grid are compared. The grid resolution of the fine grid was 1.4

times of the base grid in each direction. The flow at Re = 300, M = 0.3 and Re = 300, M = 2.0

were conducted, and the relative error on the drag coefficients was less than 1%.

Baseline Fine Error [%]

M = 0.3 0.6536 0.6582 0.0835

M = 2.0 1.3866 1.3965 1.4158

Table A.6: Verification of the grid convergence for the base grid in adiabatic
cases at Re = 300 (drag coefficient).

Table A.7 shows the drag coefficients computed using baseline and fine grids at 300 ≤ Re ≤

1, 000. The fine grid for each Re correspond to the baseline grid for the next-higher Re value;

for example, the fine grid for Re = 750 corresponds to the baseline grid for Re = 1, 000.

Re = 300 Re = 500 Re = 750 Re = 1, 000

M = 0.3 M = 2.0 M = 0.3 M = 2.0 M = 0.3 M = 2.0 M = 0.3 M = 2.0

Baseline 0.6587 1.452 0.5658 1.331 0.5078 1.251 0.6473 1.197

Fine 0.6644 1.458 0.5679 1.336 0.5085 1.254 0.6507 1.201

Table A.7: Verification of the grid convergence for the wake-fine grid in adiabatic
cases (drag coefficient).
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A.2.2 Isothermal Case

Table A.8 compares of the drag coefficients between the baseline and the fine grids. The

resolution of the fine grid in each direction was 1.4 times that of the baseline grid same as the

grid convergence study for adiabatic cases.

M = 0.3 M = 2.0

T R = 0.5 T R = 2.0 T R = 0.5 T R = 2.0

Baseline 0.6206 0.7445 0.6341 0.7359

Fine 1.362 1.440 1.417 1.446

Error [%] 2.129 1.169 3.881 0.4149

Table A.8: Verification of the grid convergence for the base grid in isothermal
cases at Re = 300 (drag coefficient).

A.2.3 Rotating Case

Table A.2.3 shows the results of the validation and verification studies. The number of grid

points of finer grid in each direction was 1.4 times of the baseline gird, and the size of the

computational domain of wider grid was 1.5 times of the baseline grid. As a result, the grid size

and domain size independence were confirmed on the aerodynamic force coefficients.

Baseline Fine grid Wide domain
WENOCU6-FP

(before blowing up)

M = 0.3

CL 0.56951 0.58423 0.56955 0.54950

CD 0.94177 0.94727 0.94179 0.88885

CMY −0.085754 −0.085308 −0.085750 −0.073502

M = 2.0

CL 0.14502 0.14618 0.14493 0.146156

CD 1.4764 1.4903 1.4764 1.4369

CMY −0.18108 −0.18277 −0.18107 −0.15906

Table A.9: Comparisons of aerodynamic force coefficients at Re = 300 and
Ω∗ = 1.0.
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In the present study, the central difference of the WENOCU6-FP method was replaced into

one of the splitting type proposed by Pirozzoli, 2011, in order to stabilize the calculation. The

numerical viscosity is introduced only by the dissipation term for the sixth-order WENOCU

in the replaced WENOCU6-FP. This kind of an approach is originally used by Yee, Sandham,

and Djomehri, 1999. In addition, by numerical tests using the central difference scheme

(Pirozzoli, 2011), it has been confirmed that this splitting-type scheme gives an accurate and

stable solution over conventional central discretization. Table A.9 includes the aerodynamic

force coefficients provided by the original WENOCU6-FP. Also, the time history of CL and

instantaneous CP distribution are shown in figures A.5 and A.6, respectively. It should be note

that the computation by the original WENOCU6-FP blows up as shown in figure A.5. Therefore,

the aerodynamic force coefficients shown in table A.2.3 might not be accurate. However, the CP

distribution before blowing up is very similar.

Figure A.5: Comparisons of CL time history computed by modified WENOCU6-
FP and original WENOCU6-FP (Re = 300, M = 0.3, and Ω∗ = 1.0).
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Figure A.6: Comparisons of CP distribution computed by modified WENOCU6-
FP and original WENOCU6-FP (before blowing up) forRe = 300, M = 0.3, and

Ω∗ = 1.0.
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M=1.2 M=2.0

Re δ Uedge δ Uedge
50 0.19922 0.02382 0.13150 0.02056
100 0.12134 0.02421 0.09259 0.02138
150 0.09259 0.02453 0.08356 0.02343
200 0.08356 0.02478 0.06628 0.02255
250 0.07479 0.02505 0.05801 0.02249
300 0.06628 0.02525 0.05801 0.01923

Table B.1: Boundary layer thickness and velocity at the boundary layer edge.

B.1 Estimated Flow Conditions at Boundary Layer Edge

Table B.1 is the summary of the boundary layer thickness δ and the velocity in xi-direction at

the boundary layer edge Uedge.

B.2 Effect of Data Length in Time Direction on Extracted

SVD Modes

Figure B.1 shows the influence of the data length in the time direction on the extracted SVD

modes for M = 1.39 and Re = 1.0 × 105 (P/Patm = 1.0). This is the same case with figures

6.12(c) and 6.13(a). This dataset includes 4 periods of low-frequency oscillation of the wake,

and the number of frames for SVD analysis was 61 frames. The mode corresponding to the

low-frequency oscillation of the wake can be extracted even though 25% (only one period of

the low-frequency oscillation of the wake) of the original data. However, the mode corresponds

to the low-frequency oscillation of the wake could not be captured from the 10% dataset of the

original data. In this case, the finer structure was extracted in lower modes, because the mode of

the low-frequency phenomena were not captured due to short-time data. It should be noted that

the such finer modes were extracted in the higher mode for the SVD mode of the original data.
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Mode 2 Mode 3 Mode 4 Mode 5

100%

(61 frames)

75%

(46 frames)

50%

(31 frames)

25%

(15 frames)

10%

(6 frames)

Figure B.1: Effect of data length in the time direction on the extracted fluctuating
modes by SVD (M = 1.39 and Re = 1.0 × 105).
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