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Abstract 

Self-driving car is the next milestone of the automation industry. To achieve the level of autonomy expected in a 

self-driving car, the vehicle needs to be mounted with an assortment of sensors that can help the vehicle to 

perceive its three dimensional environment better which leads to better decision-making and control of the 

vehicle. Each sensor possesses different strengths and weaknesses; they can complement each other better when 

combined. This is done by a technique called sensor fusion wherein data from various sensors are put together in 

order to enhance the meaning and accuracy of the overall information. In real time implementations, uncertainty 

in factors that affect the vehicle's motion can lead to overshoot in parameters. In order to avoid that, an 

estimation filter is used to predict and update the fused values. This project focuses on sensor fusion of Lidar 

and Vision sensor (camera) followed by estimation using Kalman filter using values available from an online 

data set. It can be seen how the use of an estimation filter can significantly improve the accuracy in tracking the 

path of an obstacle. 
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1. Introduction  

Autonomous vehicles have become an important field of interest due to their capability of autonomous 

navigation. The autonomous (or ego) vehicles can operate and react to the environment without the help of 

driver as they can make decisions based on the information perceived through the sensors. Sensors are the vital 

components of the self-driving vehicles and the robust sensing and fusion of information passed down from 

these sensors and their interpretation are key for the control of vehicle. The Intelligent Transport Systems that 

make use of various technological aspects has largely benefited from the recent rapid technological 

advancements. These systems are mostly based on sensor technologies like RADAR, Lidar or Camera. Certain 

systems are designed such that they alert the driver through audio, visual or haptical signal about the danger. 

Also, some systems are designed such that they can take over the control of vehicle during emergencies, which 

is intended to avoid accidents that result from mistakes and carelessness in complex traffic [1]. Furthermore, 

these sort of systems enable a better driving environment. Though the driving experience and vehicle safety 

measure has increased drastically over the years, the ever-changing traffic culture has sparked an extreme 

interest in the research and development of systems with high level of autonomy. Rather than just providing 

driving assistance, an autonomous car can drive itself to reach the desired location. Such high level of autonomy 

requires the vehicle to perceive the environment as done by the humans, i.e. the vehicle will have to sense the 

environment and identify distance to the obstacle, location, movement of pedestrians etc. Also, it will have to 

carry out a decision making process like humans. This results in need for new array of sensing devices, 

information processing algorithms, computing units and an entirely new Electrical and Electronic (E/E) 

architecture. The main feature that sets the autonomous vehicle different from the conventional vehicle is the 

devices that are used for perceiving and understanding the surrounding environment of the vehicle. Such 

systems consist of devices like RADAR, Lidar, GPS, Ultra Sonic, Camera, Inertial Measurement Unit (IMU) 

etc. These devices help in integrating information processing algorithms like Signal Processing, Machine 

Learning, Encryption/Decryption and decision making. The combination of all devices and associated 

algorithms helps in determining the autonomy level [2] of the autonomous vehicles. The sensors play a vital role 

in autonomous driving as they help in better perception of environment around the vehicle. The selection of 

sensors is essential for the design of an efficient autonomous driving system. This research is focusing on the 

use of LiDAR and Vision sensors. The use of these sensors will reduce the complexity that is involved in 

computation. The higher number of sensors will require a performance intensive processor. Another problem 

with using more than two sensors is writing the library function to read the data from the sensors. It is possible 

to write a library for a LiDAR or the Vision sensor, but if the system is having a greater number of sensors, 

writing libraries could take a large amount of time. This is the reason for choosing two sensors. 

2. Sensor fusion 

Each of these sensors has its own advantages and disadvantages. Among all perception functions, visual 

perception is one of the most important components. When we consider a camera, it has better performance 

when the object detection is considered. The advantage of a camera is that it can provide specific information 

related to the target. It interprets visual data and performs critical tasks such as vehicle and pedestrian detection. 

In an autonomous driving system, cameras are essential because they mimic human eyes and most traffic rules 
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are designed by assuming the ability of visual perception. For example, many traffic signs share similar physical 

shapes and they are differentiated by their colored patterns that can only be captured by a visual perception 

system.  The better resolutions of camera at both lateral and elevation are also an added advantage. However, 

the camera’s functioning is largely affected by the weather. The night condition or a bad weather can affect it 

performance. This is totally against the idea of a safety sensor. In such cases, a RADAR or Lidar can be 

implemented. A comparison between RADAR and Lidar shows that a Lidar based sensor can provide good 

resolution about the position [5]. The short wavelength of Lidar lets us detect small objects and a LIDAR can 

build an exact 3D monochromatic image of an object. The Lidar also has its working principle that facilitates the 

calculation of distance and velocity to an object. The camera can measure the distance only when it is used in 

the stereo vision configuration. There is a lot of limitation in the amount of data about a physical quantity, 

procured by one sensor [3]. This is because one sensor has many of the following disadvantages: 

 Field of View (FOV) coverage is limited. 

 Temporal coverage is limited because rate of data acquisition by sensor is limited. 

 The malfunction of one sensor affects the reliability of the entire system. 

 The precision of the entire system is determined by the precision of the sensing element. 

 When some features are missing (e.g. occluded objects), measured data becomes uncertain. 

Thus, a probabilistic fusion of radar and video data improves the estimation accuracy by compensating the 

weaknesses of one sensor with the strengths of another. Combining information from multi-sensor system 

introduces new challenges [4]. One of the important challenges is a spatio-temporal task: the spatial part is the 

alignment of frame sensors while the second is handling the update rates of sensors. In the alignment process, a 

relation is found between the different coordinates in each sensor frame to ensure the transformation from one 

frame into another. Another major challenge is the timing of operation. This applies to both homogeneous and 

heterogeneous sensors. The operation frequencies of the sensors are different. For above mentioned reasons, 

sensor fusion algorithms have to tackle temporal, noisy input and output a probabilistically sound estimate of 

kinematic state. 

3. System design 

The proposed system consists of the following features: 

 Targets Data Acquisition: Taking input from the sensors i.e, camera and Lidar in the respective formats 

and storing them. 

 Camera Image Processing: Detecting targets in image captured by camera, classification and boundary 

of targets and the centroids are obtained. 

 Projection: The cloud of points obtained from Lidar is projected from the 3 dimensional spaces onto 

the 2 dimensional images procured by camera. 

 Lidar Frame Processing: Segmentation of the Lidar point cloud and extraction of centroid from 

segmented cloud. 

 Data Association: This step is being done to ensure that the same obstacle is being detected by the 2 
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sensors. 

 Bayes Fusion: To create a less noisy resultant measurement. 

 Estimation Filter: Obstacle Path Estimation using Kalman Filter. 

 

Figure 1: Block diagram of the proposed system 

4. Data acquisition and pre-processing 

4.1. KITTI vision benchmark suite 

In order to prove my hypothesis practically, an experimental set up is needed with practical real-time 

measurement of the parameter values. But such a set up is outside the scope of this project tenure due to 

pandemic restrictions. Hence, I had to rely on an online data set called KITTI VISION BENCHMARK SUITE. 

It is a joint venture of Karlsruhe Institute of Technology, Germany and Toyota Technological Institute, Chicago 

for Sensor Fusion and Robotic Analysis purposes. It has been made available for academic purposes. For the 

KITTI Database, a standard station wagon like Volkswagon Passat was fitted with 4 cameras: 2 high resolution 

color cameras and 2 gray scale video cameras, an HDL-64E Velodyne Laser Scanner and a GPS localization 

system along with an Inertial Measurement Unit. The location chosen was a highway in Karlsruhe that contains 

upto 15 cars and 30 pedestrians. Both raw images and benchmarked images were made available of which I 

have chosen the latter subject to evaluation metrics and real world benchmarks. The calibration files have also 

been made available by the authors. The cameras provide images at the rate of 10 frames per second. There were 

360 images provided per camera. Each grayscale frame is an 8 bit PNG image consisting of 1392x512 pixels. In 

effect, each image was around 5.6 MB size. While each frame of the RGB image is a 16 bit PNG image, 

amounting to double the size.  The HDL-64E Velodyne Lidar is a 360
o
 counterclockwise rotating Lidar at 10Hz. 

The sensors were time synchronized by the authors. It procures the 3 dimensional coordinates of about 1.3 

million points per second and their reflectance values in the single path mode. These points are available in the 

form of text file and BIN files. The values stored as binary float matrices in BIN files which allows them to have 

greater accuracy. Hence, they were chosen for my project. Also, due to the storage limitations, the number of 

points was rectified to about 21947 points per frame. 
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4.2. Camera image processing 

Once the sensor data has been procured, relevant obstacles have to be detected from the data. In case of camera, 

we know that the sensor data consists of 2 dimensional images. Advanced image processing techniques in object 

detection can be used to identify and recognize the obstacles. There are many object detection algorithms like 

HOG detector, R-CNN, SSD, YOLO, etc which can be implemented. In this case, considering hardware 

limitations, I have opted for a simple object detection based on foreground segmentation and blob analysis 

technique. This technique is based on Gaussian Mixture Models and Blob Analysis. It consists of four steps: 

 Foreground segmentation 

 Blob Detection 

 Blob Analysis 

 Blob Tracking 

The vision toolbox of Matlab is made use of for this purpose. Using the command vision.ForegroundDetector(), 

the image frames are compared to a mixture of built-in gaussian mixture models. The parts of frame that match 

the model is considered as background and rest of the frame is considered as foreground. Depending on this 

conclusion, the image is binarized with pixel intensity 0 or black given for background pixels while intensity 

255 or white given for foreground pixels. This step is followed by a morphological opening operation to remove 

the noise and fill the gaps in detected objects. This is done using the imopen() command making use of a 

structural element (strel()) of size 1 percent of video’s width. Following this, the minimum area of the 

foreground required to be detected as a blob is specified as 8 percent of the video’s frame area.                     

Using vision.BlobAnalysis() command, the object is detected and using insertShape() a green bounding box is 

drawn around the detected obstacle and its centroid is displayed.  
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Figure 2: Algorithm for object detection using blob analysis 

It is worth noting here that when multiple objects are detected, we have to go for object recognition algorithms 

and prioritization step, in order to assign priorities to the detected obstacles in further tracking. In order to 

reduce complications, I have stuck to the main obstacle captured by the sensors, i.e, the vehicle in front of the 

ego vehicle and skipped the prioritization step. In future scope of the project, these steps can be included to 

maximize the output. 
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Figure 3:  Output of the object detection code 

4.3. Multi sensor data fusion network 

After the process of data acquisition, before doing fusion, we need to make sure that the same object is being 

detected by the sensors. For this we need to do the process of data association. This is discussed in the next 

section. For data association, we need to make sure that the data from different sources belong to the same frame 

of reference. This process is called sensor alignment. We can extend the proposed approach to n sensors and 

append the alignment process. These sensors are homogeneous and/or heterogeneous and their task is to 

measure the position of the detected obstacles. It consists of two main processes: 

 Sensor alignment process (off-line). The inputs of this process are sensor data while the outputs are the 

calibration parameters (rotation matrix and translation vector). This process is an extrinsic calibration 

between different sensors (source and targets). It allows estimating the relative position of point p in a 

common frame. 

 Object detection process (on-line). In this step, there are n processing chains. Each of them provides a 

list of the detected objects. 

With the conjunction of the calibration parameters obtained from sensor alignment process, we are able to fuse 

the data together to better detect the objects in the surroundings. In this work, focus is made on Lidar and 

camera sensor. In the following sections, each task will be detailed. 
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4.4. Sensor alignment : calibration parameters 

To efficiently perform sensor fusion, the sensors should be calibrated. The calibration process is an alignment 

procedure of the given sensor frames. That is to say, to find the relation between the coordinates of sensor 

frames to ensure the transformation from a frame into another. To carry-out this process, we need two 

calibration parameters i.e, the rotational matrix and the translation matrix. In this case, these parameters were 

already provided in the KITTI data set. Else, they have to be experimentally calculated. The data set contains 3 

calibration files: camera to camera, Velodyne to camera and IMU to Velodyne. Of these, the third file is of no 

use to this project as IMU sensor is not included. The other two files contain the various parameters needed to 

calibrate the camera and project the Lidar points from the 3 dimensional space to the image plane. Of these 

parameters, the ones that we need in order to calculate the transformation or projection matrix are R_rect and 

P_rect. Also, each of these parameters has been listed for the four cameras used in the experiment. We have 

considered only one color camera for this project. Hence, only the first camera’s parameters will be used. The 

second file we need is called Tr_velo_to_cam.txt. It is dependent on the camera’s external parameters. It is a 

4x4 double matrix. This is used for velodyne to camera transformation. It contains the rotational matrix values 

in the first 9 cells, translation matrix in the fourth column and 2 small delta values in the fourth row. We define 

a 4x4 double matrix called R_cam_to_rect. This contains the R_rect values from the first file copied to a 4x4 

matrix and the remaining values appropriately filled. This is done to correct the order of matrix for proper 

multiplication. The screenshot of the required parameter values in Matlab workspace is given in figure 4. The 

next step is to calculate the Projection Matrix. The variable name given is P_velo_to_img. It is a 3x4 matrix 

obtained by multiplying the cameras internal parameters (P_rect), rectified rotational matrix (R_cam_to_rect) 

and external parameters (Tr_velo_to_cam). The point cloud in LiDAR plane can be converted to the 3D camera 

plane by using this equation. 

P_velo_to_img = P_rect {cam + 1} * R_cam_to_rect  *  Tr_velo_to_cam                                                          (1) 

Figure 5 illustrates the values of the projection matrix as calculated using the above equation. Once the 

projection matrix is calculated, we can easily convert the point cloud from Lidar plane to camera plane by 

multiplying the points with the projection matrix. As mentioned already, the Lidar data provided by the KITTI 

data set contains the x, y and z coordinates of the points along with a fourth column containing their reflectance 

values. The number of points has been rectified by KITTI authors from 1.3 million to a useful set of 21947 

points. These are stored per frame in BIN files. The BIN files are read using a file descriptor into a 21947x4 

double matrix called velo. In order to further reduce the computation time, we have scaled the original set by 

choosing a set of relevant 6535 points. Also, reflectance values have been neglected because it is outside the 

scope of this project. The projection equation is as follows. Here, P_t contains the transformed points to the 

camera plane. It is a 6535x3 matrix. 

P_t = P_velo_to_img * velo                                                                                                                                  (2) 
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Figure 4: Calibration parameters 

 

Figure 5: Projection matrix 
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Now the transformed points are in the camera plane but they are still in 3 dimension. They need to be converted 

to 2 dimensional points to project them to the image plane. Dividing the x and y coordinates with the z 

coordinates will project the 3D point to a 2D plane. This is contained in the P\_p matrix which is of size 6535x2 

and contains only x and y coordinates. This is plotted on the image plane as shown in Figure 6. 

 

Figure 6: Lidar points projected onto camera plane 

4.5. Lidar frame processing 

Next step is to segregate the cloud of points such that points belonging to relevant obstacles can be isolated and 

segmented. This process is called segmentation. To extract the projected points of the source sensor on the 

calibration board, the automatic extraction approach by differentiation of the measurements and background 

data in static environments is often used. However, since this work is not based on experimental set up, this 

approach cannot be used. Hence, this portion is out of scope this project. Rather, what has been done is the 

manual selection of the centroids from the given frames. The coordinates of the centroid of the obstacle obtained 

from image frames and  Lidar points were collected to an Excel sheet which has been displayed in Figure 7. 

 

Figure 7: Coordinates of obstacle’s centroid 
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4.6. Pixel to world coordinate transformation 

The coordinates of the centroid are available in pixel values. It needs to be converted in terms of real world 

distances because the points of Lidar correspond to real world distances. For this, we need the actual 

measurement of road width, size of the obstacle, etc to find the scale between pixel value and real world 

distance. Since that information was not available in the online data set, an approximated scaled down 

transformation was done considering the real world length of the image frame and the obstacle size. This data is 

recorded and shown in Figure 8. 

 

Figure 8: Centroid coordinates in terms of physical distance 

5. Data association 

Now that we have the coordinates of the centroid of the obstacle obtained from different frames of the camera 

and Lidar in terms of physical distances, we need to make sure that the coordinates procured by camera and 

Lidar belong to the same obstacle. If not, the next step which is Fusion will yield highly erratic results. In order 

to do this step, we need to calculate the distance between the centroid coordinates obtained by the 2 sensors. If 

this calculated distance lies below a certain preset threshold, which is subject to real world sizes of objects, then 

we can safely say that the coordinates belong to the same object. Another thing to be noted here is that, when we 

use the original Lidar point cluster, the centroid of the cluster will not be in the centre like the one received from 

the image because in Lidar, the distribution of point cloud is not homogeneous or uniform. So to calculate the 

distance between such a centroid of the cluster, we use Mahalanobis Distance instead of the regular Euclidean 

Distance. The simplified version of this is given below. Here the denominator stands for the variance of the data. 

If the same object is detected, "Same target located" is printed. 

  (   )   
(     )

 

   
     

     
(     )

 

   
     

                                                                                                                          (3) 
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6. Bayes fusion 

Once it is confirmed that the centroids belong to the same object, it is now time to fuse these values to get a less 

noisy resultant. The sensors are employed to detect the positions of obstacles. Position uncertainty is represented 

using the standard variation. Therefore, if X is the true position of the detected object, by using the Bayesian 

fusion, the probability of fused position PF  [ xF  yF ] 
T
 by the two sensors is given as:  

     (
 

 
)    

 
 (   )    (   )

 

        
                                                                                                                             (4) 

where P is the fused position and R is the covariance matrix are given as: 

   

  
  
  
  
  

 

  
  
 

  

                                                                                                                                                          (5) 

 

 
  

 

  
  

 

  
                                                                                                                                                       (6) 

where P1 and R1 are respectively the position and covariance matrix of sensor 1 and P2 and R2 are that of sensor 

2. So, the outcome is a combination of the two measurements weighted by their noise co-variance matrices. The 

fused results using Bayesian approach follow the measurements provided by the sensor which has the smallest 

covariance matrix and gives more trust to it. So finally, the value of fused measurement vector is: 

 ⏞  * ∑   
   

   +  ∑ *   
     +

 
                                                                                                                       (7) 

In case of 2 sensors, the equation further simplifies to: 

 ⏞  *   
       

   +  *   
        

    +                                                                                                       (8) 

R is the covariance matrix. It is an n x n positive definite symmetric matrix. 

      [
     
  

      
 ] 

      [
     
  

      
 ] 

Sensor fusion is a technique that has to be implemented in real time on a moving car and has to take in 

continuously changing values. In such situations, 2 types of errors are prominent. One is called measurement 

noise. It is the error inherent in any sensing system. The more important error is the plant or driver noise. When 

a sensor is calibrated, it is done using the simplest model: a target moving in a straight line at constant speed. 

But when implemented practically, the sensor is mounted on a moving car. Also, the targets need not be moving 

in a straight line or at constant speed. So their paths will be an accelerated curvy flight which causes errors with 
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the Bayesian filter because it doesn't have any mechanism to update the values according to the error value. At 

each time step, the sensor values are influenced by a number of factors like acceleration, gravity, angular 

velocity, air friction, stream line effects, etc. Hence the error keeps accumulating. Another technique called the 

Kalman Filter technique is efficient in handling continuously changing real time data. It has 2 cycles: a 

prediction and an updation cycle. This allows it to update the next values based on the error of the previous 

stage. Thus it minimizes error with each iteration of the algorithm. Also, it can handle both position and velocity 

(state) of the target simultaneously. It also doesn't need to remember previous data which significantly saves 

time and cost. 

7. Kalman filter 

The Kalman Filter is the most commonly used algorithm in the tracking and prediction tasks. Its use in the 

analysis of visual motion can be seen quite frequently. The purpose of filtering is to extract the required 

information from a signal, ignoring everything else. Kalman filter has found great importance as the filter is 

defined in terms of state space methods which help to simplify the implementation of filter in the discrete 

domain. Since this project is based on simulation results and not experimental set up, the initial values of a 

number of parameters that have to be practically derived are deficient. Hence, we had to stick to the most basic 

model i.e, the constant velocity model designed based on kinematics equations. The ego vehicle is assumed to 

be moving at a constant velocity of 0.37 m/s. The Kalman filter is a closed form solution to the Bayesian Filter. 

The filter assumes linear Gaussian motion and measurement models and the prior distribution 

X0  ~  N (x0, P0) 

Where x0 and P0 are the initial state and covariance matrices. 

      [
                  
                  

] ; 

      [
                           
                           

]     *
     
      

+ 

With the previous assumptions we get the following 

         (   )                                                                                                                                              (9) 

Where xkp is the predicted state matrix. A is the state transition matrix of the motion model. It is a square matrix 

(
   
  

). ∆t is the time stamp gap. It is taken equal to 0.1. wk is the error in prediction. We neglect it here.  

      (   ) 
                                                                                                                                           (10) 

Where Pkp is the Process Co-variance Matrix. Qk is the error in estimation. It is also called Driver Noise Matrix. 

These 2 steps are called the prediction step. Next is the update step. It is here we calculate the Kalman Gain 
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matrix. 

   
    

 

     
    

                                                                                                                                                   (11) 

Here, H is an identity matrix used to correct order. It transforms the given state vector into measurement. R is 

the random measurement noise. It is also called observed error. Its value is taken as 0.03*H. Using the Kalman 

Gain Matrix, we can estimate the next position or velocity to a high degree of accuracy. 

           (      )                                                                                                                               (12) 

Xk is the estimated state vector i.e, position and velocity. It is based on the predicted value as well as the actual 

measurement, Y. As we can see, the Kalman Gain Matrix acts like a weightage. Depending on whichever has 

the least co-variance in the previous step, the Kalman Gain Matrix will be adjusted to support that particular 

variable in the next round which sort of acts like a self check. 

                                                                                                                                                             (13) 

Yk is the observed value or the input measurement, the data that comes from the sensors. In our case, this will be 

the coordinates obtained after Bayes fusion. Zm is the random measurement noise, taken to be zero. 

   (    ) (   )                                                                                                                                          (14) 

One more value has to be updated i.e, Pk is the updated process co-variance matrix. I is the identity matrix used 

for order correction. In the next iteration, the estimated state vector, Xk and updated process co-variance matrix, 

Pk becomes the X(k-1) and P(k-1). 

8. Observation and results 

After implementing the Kalman Filter on the Bayes fused results, we plotted a graph of the obstacle path on the 

Cartesian plane. 2 graphs were plotted. The orange line is the path plotted using Bayes fused values from the 

sensor input while the blue line is plotted using values estimated by the Kalman Filter. We know that in order to 

avoid complications, we had gone for a constant velocity model, which means that the direction of the ego 

vehicle or the obstacle will not have change over the entire duration of the journey. As we can clearly see from 

Figure 9, the blue line resembles the constant velocity model more than the orange line. Hence we can conclude 

that an estimation filter like Kalman Filter can predict the path of the tracked objects more accurately and reduce 

the noise in measurement of the sensors rather than simply employing a fusion algorithm on the sensor data. , It 

can also be observed that Kalman filter generates a fused value that is closer to the original value. This in turn 

proves that we are tracking the object as desired. In order to get these results, only data from online sources have 

been made use of. Experimental setup and real world data collection was hampered due to pandemic 

restrictions. Parameters involved in using Kalman Filter require accurate data from experimental set up, many of 

which were absent from the online database. Approximate values have been substituted wherever possible. But 
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such approximations would affect the performance of the Kalman Filter and accuracy of the final result. In a 

highway simulation setting involving a physical system and more parameters, the Kalman filter can generate the 

sensor fusion values much faster and accurately that can help the ego vehicle to make proper decisions. 

 

Figure 9: Plot of obstacle path on Cartesian plane 

9. Conclusion 

The main purpose of this project was to achieve the fusion of data obtained from the Lidar and Camera sensors 

attached to the ego vehicle. The system was modeled successfully based on the state space model and an 

algorithm was implemented to fuse the data. The fusion algorithm devised helped to achieve the prediction and 

Kalman gain calculation that are important to the operation. It helped to perform specific task like data 

association which in turn resulted in coordinate transformation, data fusion etc. It can be observed that even 

though we have considered a constant velocity model, the final result is very similar to the original path. When 

other parameters are brought in and more factors are modeled, the accuracy of the system will improve and so 

will the complexity. For now, under the scope of this project, the constant velocity model serves the purpose of 

understanding Sensor fusion using Kalman Filter for Lidar and Camera sensor. Thus, the fusion of data from the 

camera and radar sensor was achieved successfully using the Kalman Filter. This research can be extended to an 

experimental set up using real world values for the parameters and by considering the effect of many practical 

factors that affect the system, the accuracy of prediction and updation by Kalman Filter can be further improved. 

Also, based on the generated result, a decision-making system can also be created so as to control the operation 

of the ego vehicle in real time. 
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