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Abstract 

In this paper, we will conduct an experiment that aims to compare the performance of two reinforcement 

learning algorithms, the Repeated Update Q-learning algorithm (RUQL) [1] and the Q-learning algorithm(QL) 

[5]. A simulated version of a robot crawler developed by [6] will be used in this experiment, it is shown in 

figure (1). An investigation study about the difference in performance between RUQL and Q-learning algorithm 

(QL) [5] is discussed in this paper. Several trials and tests were conducted to estimate the difference in the 

crawler’s movement using both algorithms. Additionally, a detailed description of the Markovian decision 

processes (MDPs) elements [2] is introduced, MDP model includes states, actions and rewards for the task in 

hand. The parameters that were used and tuned in this experiment will be mentioned and the reasons for 

choosing their values will be explained.  Finally, the source code for the crawler robot was modified in order to 

implement RUQL and Q-Learning (QL) algorithms, Eclipse [3] and Java SE Development Kit 8 (JDK) [4] are 

used for this purpose. After running the crawler robot simulation, the results drawn from the experiment showed 

that RUQL significantly outperforms the traditional QL.   
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1. Introduction 

The main task of this experiment is to give the crawler robot the ability to learn how to use its arm and hand in a 

way that will make the crawler move to the right as quick as possible using an improved Q-learning algorithm 

which is in this experiment RUQL. For achieving this purpose, two reinforcement-learning algorithms, namely, 

QL and RUQL were implemented in the simulation. Then the performance of both algorithms is analysed and 

results are concluded. This paper will include the following sections: MDP model for the task in hand, 

parameters used and tuned, techniques and improvements used in the experiment, and performance analysis for 

both QL and RUQL.  

2. MDP model Definition 

In this section, MDP model used in the experiment is detailed in table no. (1), while figure no. (1) is an 

approximate shape for the robot used in the simulation. 

Table 1: MDP model adapted from [8]. 

Robot Time 
State 

Reward Action 
X Y 

 

0 Up Left 0 Hand- right 

 

1 Up Right 0 Arm- down 

 

2 Down Right 0 Hand-left 

 

3 Down Left 

Number of pixels 

the robot moved > 

0 

Arm -up 

 

 

 

 

 

Figure 1: The robot used in the simulation, adapted from [8]. 

X 
Y 
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3. Parameter values used in the experiment 

In this experiment, several tests were performed using variant values of the parameters that affect QL and 

RUQL performance [1]. This variation of parameters’ values allowed us to see the differences in performance, 

these differences are clearly observed by manipulating each value of these parameters. 

RUQL contains the same parameters that are used in the traditional Q-learning algorithm, these parameters are: 

1- The learning rate parameter (α): This parameter gives weight for the new knowledge experienced by 

the robot, α value ranges between 0 and 1, where α = 1 means that only new knowledge will be 

considered, while α = 0 means that there is no learning at all, in other words new actions do not affect 

the learning process. In our experiment we used α with several values between 1 and 0.1, finally, we 

decided to keep α value equal to 1. 

2- Discount rate parameter (γ): This parameter specifies the influence of the current reward on Q-matrix 

in the following steps. (γ) values range between 0 and 1. When γ= 0, the agent will consider the 

immediate reward ignoring the future steps, this will build a one-step learning sequence. However, 

when γ value goes closer to 1, this will build a learning sequence of many steps, which could delay the 

agent’s learning process because the algorithm in this case will consider many future rewards acquired 

in many following steps. In our experiment, we used γ with value equal to 0.9. 

3-   Exploitation/exploration parameter (ɛ): This parameter gives the agent the ability to choose an action 

from the learned policy (exploitation), or experience a new action in learning step (exploration). In our 

experiment, we used ɛ-greedy action selection. We aimed to choose a random action related to the 

current state. Any action causes the robot to walk will be considered as a policy action, and its 

probability to be chosen again will be 1- ɛ, in the other hand, a new action will be chosen randomly 

with probability equal to ɛ. In our experiment, Epsilon is assigned a value equal to (0.3). 

RUQL uses the following Equation [1]: 

Q
t+1

(s, a) = [1− α]
1/π(s,a)

Q
t
(s, a) +[1 − (1 − α)

 1/π(s,a)
 ][r + γQ

t
(s’, amax)] Equation (1) 

There is another implementation for RUQL algorithm using the traditional QL algorithm [1]: 

1. for  times do 

2.       Update Q(s, a) the traditional QL update equation:  

3.        Q
t+1

(s, a) = Q
t
(s, a) + α (r +γ maxQ

t
(s, a) − Q

t
(s, a)) 

4. end 

This part of the pseudo code is guaranteed to represent RUQL correctly in the robot simulation. RUQL is also 

programmed using equation (1), but this representation needs more discussion and investigation in order to 
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correctly determine the value of Q
t
(s’, amax) which exists in equation (1), results will determine whether equation 

no.(1) is correctly represented or not. 

4. Techniques and improvements used in the experiment 

In this experiment, we decided to use an enhanced version of Q-learning algorithm, which is RUQL algorithm 

[1]; RUQL overcomes the policy bias problem that appears in Q-learning algorithm especially when it is applied 

in the non-stationary environment. The policy bias problem is related to the probability of choosing actions; it 

describes the case when Q-learning estimates a low probability for choosing an action that is expected to give a 

high payoff. Q-learning has this problem because it focuses only on updating the selected actions that has a high 

probability of being selected [1]. The main Idea that makes RUQL overcomes the policy bias problem and 

outperforms QL is that RUQL assigns higher weights for the actions that have low probability to be selected, 

and assigns lower weights for the actions that have high probability of being chosen. This is a straight forward 

addressing of the policy bias problem that was described in the previous paragraph, RUQL is defining an 

opposite approach for the definition of the policy bias problem.  RUQL update equation (equation (1)) is 

converting to the traditional Q-learning equation when choosing actions that have probability approaches to 1, in 

the other hand, RUQL will be equal to r + γQt(s’, amax) when the probability of choosing a certain action 

approaches (0) [1]. Table no. (2) shows a part of the source code for QL algorithm in the original simulation [6] 

,and two suggested and modified code for RUQL algorithm [1]. 

Table 2: Original and Modified code 

Q-learning code in the simulation [6]. 

oldStateValue=Q[s1Old][s2Old][move]; aReward=reward(s1Old,s2Old,s1Cur,s2Cur); 

Xpos+=aReward; 

Q[s1Old][s2Old][move]=oldStateValue+alpha*(aReward +gamma*getMaxQ(s1Cur,s2Cur) -

oldStateValue); 

return aReward; 

RUQL code modification using loop 

oldStateValue=Q[s1Old][s2Old][move];   /////////////////no change is done here 

aReward=reward(s1Old,s2Old,s1Cur,s2Cur);  /////////////////no change is done here 

Xpos+=aReward;  /////////////////no change is done here 

for (int P= 0; P <= 1/getMaxQ(s1Cur,s2Cur); P++){       

Q[s1Old][s2Old][move]=oldStateValue+alpha*(aReward+gamma*getMaxQ(s1Cur,s2Cur)-

oldStateValue); 

         return Q[s1Old][s2Old][move]; } 

 return aReward;  /////////////////no change is done here 

RUQL code modification using equation (1) 

oldStateValue=Q[s1Old][s2Old][move]; /////////////////no change is done here 

aReward=reward(s1Old,s2Old,s1Cur,s2Cur); /////////////////no change is done here 

Xpos+=aReward; /////////////////no change is done here 

double a1 = Math.pow(1- alpha, 1/getMaxQ(s1Cur,s2Cur)); 

Q[s1Old][s2Old][move]= a1*oldStateValue+ (1-a1)*(aReward+gamma*getMaxQ(s1Cur,s2Cur)); 

return aReward; /////////////////no change is done here 

5. Software and packages used in this experiment 

In this experiment, we used the following software and tools to perform our simulation: 
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1) Java SE Development Kit 8 (JDK), The JDK is a development environment for building applications, 

applets, and components using the Java programming language [4]. It can be downloaded using the 

following link: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html. 

2) Eclipse: Eclipse is an integrated development environment; it can customize the development 

environment using its powerful plug-in and workspace system that is included in its architecture [3]. 

Eclipse is written using Java and it can be used to develop applications. Eclipse can be used to develop 

applications in other programming languages 

like: Ada, ABAP,C, C++, COBOL, Fortran, Haskell, JavaScript, Lasso, Natural, Perl, PHP, Prolog, Pyt

hon, R, Ruby, Scala, Clojure, Groovy, Scheme, and Erlang [9] Eclipse can be downloaded from the 

following website http://www.eclipse.org/home/index.php. 

6. Performance results using QL and RUQL 

In this experiment, Both Algorithms were assigned the same values for the parameters α, γ and ɛ in testing the 

performance, the winning algorithm is determined by measuring the time taken by the robot to pass the track. 

The algorithm that records the least time to pass the track is considered the winner in the race. Table no. (3) 

shows part of several tests that were performed using the algorithms under study considering γ = 0.9 in all the 

tests. 

Table 3: Sample of the tests performed using QL, RUQL using loop, RUQL Equation (1) 

ɛ α 
Time- 

seconds/ QL 

Time- seconds 

/ RUQL/Loop 

Time- seconds 

/ RUQL/ 

Equation (1) 

0.1 0.1 102 103 128 

0.2 0.1 121 120 97 

0.3 0.1 154 144 141 

0.4 0.1 154 154 333 

0.5 0.1 188 256 225 

0.7 0.1 317 317 375 

0.1 1 78 99 98 

0.2 1 89 89 92 

0.3 1 140 78 107 

0.4 1 132 94 115 

0.5 1 158 120 131 

0.7 1 201 176 192 

Chart no. (1) and chart no. (2) are showing the results obtained after conducting the race several times using 

RUQL, QL and RUQL-equation (1).  

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/ABAP
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Haskell_(programming_language)
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Lasso_(programming_language)
http://en.wikipedia.org/wiki/NATURAL
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/R_(programming_language)
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Scala_(programming_language)
http://en.wikipedia.org/wiki/Clojure
http://en.wikipedia.org/wiki/Groovy_(programming_language)
http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://en.wikipedia.org/wiki/Erlang_(programming_language)
http://www.eclipse.org/home/index.php
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Figure 2 

 

Figure 3 

7. Conclusion 

The charts show that RUQL outperforms QL and RUQL- equation (1), RUQL won 41% of the races, lost 35% 

of the races and achieved draw in 23% of the races. RUQL-equation (1) won only one race, it showed extremely 

slow performance, this leads to a conclusion that the update equation is not correctly implemented because of 

the vague value of amax; therefore, it is not representing the original RUQL. The simulation best achieved record 

was 1 minute and 3 seconds, the race is uploaded on youtube.com [10], the following link leads to the race 
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uploaded file: http://www.youtube.com/watch?v=YOUYFaJZXm4. 

8. Future work 

In our seek to find the best values for the parameters in both QL and RUQL formulas, we suggested a fixed 

value for γ in the proposed experiment, which was 0.9, this is because we want to produce a multi-steps learning 

process, so that we can compare between QL and RUQL performance. In the future, we will experience 

assigning other parameters fixed values one by one and record the differences in performance between the 

algorithms under study. Also, we are planning to expand our experiment to include more improved versions of 

QL in the comparison like Hierarchical reinforcement learning algorithm [11]. 
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